
INTERVAL INPUT AND OUTPUT

Eero Hyv�onen

University of Helsinki

Department of Computer Science

eero.hyvonen@cs.helsinki.�

Keywords: interval, input, output

Abstract More and more novice users are starting to use interval extensions to

programming languages and interval-based applications. An important

question then is: What is the most simple and natural form to input

and output intervals? This paper points out conceptual and practical

diÆculties encountered when interfacing end-users with intervals. A new

interval formatting scheme is then proposed. It has been implemented in

a commercial interval extension to Microsoft Excel spreadsheet program

targeted to non-expert users.

1. INTRODUCTION

Interval arithmetic has been applied as the computational basis in
managing rounding errors [14], mathematical programming [5, 9], con-
straint logic programming [3], various solver packages [16, 19], and spread-
sheet programs [6, 7]. Interval enhancements have been speci�ed for pro-
gramming languages, such as Pascal [11], C++ [12], and Fortran [13, 4].
Ease of inputting intervals and interpreting interval outputs in various
interval tools and applications [10] will be crucial to a wider acceptance
of interval technology.
Interval applications have traditionally dealt with rounding errors oc-

curring when converting input decimal numbers into binary machine
arithmetic, when performing numerical computations with such num-
bers of �nite precision, and when converting the results back into dec-
imal form. Rounding errors may grow large in lengthy or carelessly

1In: W. Kramer, J. W. von Gudenberg (eds.): Scienti�c Computing, Validated Numerics,
Interval Methods. Kluwer, 2001, 41-52

1

2

formulated algorithms, but usually the error can be seen only in the last
digits of the results.
In most real world applications, the user is not interested in small

rounding errors or in viewing values in full precision (unless a patho-
logical rounding error has occurred). If the input values to a problem
are known with, say, four signi�cant digits, there is not much sense in
considering more digits in the output values. From this practical view-
point, the central problems of interval I/O include (1) convenience of
using intervals for representing uncertainty and (2) unambiguity of the
notations [18]. Convenience of interval input requires that the intervals
are easy to type in; on the output side it is required that the mean-
ing of intervals can be easily seen from the notation. An unambiguous
notation tells the user without misconceptions what the mathematical
interval underlying the formatted one actually is.
This paper discusses conceptual and practical diÆculties of interval

I/O based on experiences of applying intervals in spreadsheet compu-
tations [7]. A variety of interval notations are �rst presented and their
notational convenience discussed. After this, practical diÆculties arising
when formatting intervals using these notations are in focus. Finally, a
solution approach to interval formatting is suggested and its implemen-
tation described.

2. INTERVAL NOTATIONS

In interval applications, wide intervals are typically used for repre-
senting uncertainty of the real world or lack of information. Narrow
intervals are needed for rounding error bounds, precision etc.
The classic notation [min;max] for an interval [14] explicitly shows

its two bounding values. The notation is compact for wide intervals and
its meaning is fairly easy to see. With narrow intervals, the notation
becomes redundant and diÆcult to read. For example, when inputting
[1.23456789, 1.23456799] the user has to type in sequence 1.234567 twice.
When such an interval is output, it is not easy to see immediately at
what decimal position the bounds actually di�er from each other.
To make the classic notation shorter, common leading digits of the

minimum and maximum (including the sign) can be represented only
once and the trailing digits after the �rst di�erence are shown as an
interval. For example:

[1:23456789; 1:23456799] ! 1:234567 [89; 99]

I will call this notation tail notation. If the �rst digit (or sign) of the
bounds are di�erent, then tail notation is equivalent with the classic one.

Interval Input and Output 3

In many applications an interval is viewed most naturally as a sym-
metric tolerance around its midpoint. Tail notation is then not a good
choice because the common digits in front of the tail interval do not
indicate the midpoint. For example, in [1:289; 1:291] = 1:2 [89; 91] the
midpoint is 1.290, a value quite far from 1.2.
When the midpoint is of interest to the user, it is convenient to use

the midpoint with a symmetric absolute or relative error term. The
notation used e.g. in range arithmetic [1] is:

(sign)0:d1d2 � � � dn � r � 10e (1.1)

The corresponding interval is obtained by adding/subtracting digit r
with dn. For example:

0:129 � 1 � 106 = [0:1289E6; 0:1291E6]

Let us call this notation range notation.
Often the user is only interested in the number of signi�cant digits of

a value. An interval can be represented by its midpoint where trailing
digits within the precision used are replaced by the �-character. The
precision can be seen from the number of digits used. For example:

1:234 �= [1:2335; 1:2345] = 1:23 [35; 45]

This intuitively means that numbers whose rounded representation in
four digits would be 1.234 constitute the interval. This notation will be
called tilde notation.
In range and tilde notations, the interval is symmetric around its mid-

point. A more general notation would accept non-symmetric deviations
from any reference point. An interval can then be represented as the
sum of the reference point and an error interval. For example, in [19]
the following notation is used (for output):

number + [r1; r2] (1.2)

Here number is not necessarily the midpoint due to rounding errors.
For example, the interval [-0.786151377757416, -0.786151377757422] is
shown as -0.78615137775742 + [-0.4e-14, 0.2e-14]. The reference number
may even fall outside the interval range. For example, [-0.786151377757416,
-0.786151377757418] is formatted as:

�0:78615137775742 + [�0:4e � 14;�0:2e � 14]

4

Non-symmetry and negativity of the error term arises here because
the midpoint is represented with 14 decimal digits and the rounded rep-
resentation of it is not within the actual interval. Let us call this notation
error notation.
In the Fortran single number interval I/O [17], a decimal number

d1:d2 � � � dn is interpreted as the interval below:

d1:d2 � � � dn = [d1:d2 � � � dn � 1; d1:d2 � � � dn + 1] (1.3)

For example: 1:234 = [1:233; 1:235]. The format for inputting a num-
ber x without this interval interpretation is [x]. Otherwise, classic inter-
val notation is used. Let us call these conventions Fortran notation.

Table 1 Illustration of interval notations.

Notation Interval value Name

[1.233, 1235] [1.233, 1235] Classic notation

1.23[3,5] [1.233, 1.235] Tail notation

1.234� 2 [1.232, 1.236] Range notation

1.234� [1.2335, 12345] Tilde notation

1.234+[-1E-3, 2E3] [1.233, 1.236] Error notation

1.234 [1.233, 1.235] Fortran notation

Table 1 illustrates the notations discussed above. Single number I/O
forms 1.234� and 1.234 in Fortran notation correspond to quite di�er-
ent intervals. Fortran notation gives wider intervals. The semantics of
the tilde notation is compatible with the traditional idea of rounding
numbers. As a result, it is what the user probably most often needs
in real world applications. The idea of decrementing and incrementing
the last decimal digit by one (or more in range notation) is simple, but
seems more or less arbitrary and is new to most application end-users.
In general, tail, range, tilde and error notations become less useful when
interval bounds have few common leading digits, i.e., when dealing with
wide intervals. Classic notation then becomes a more natural choice.
In the above, closed �nite real intervals have been considered. Use-

ful interval extensions include open and half-open intervals, in�nite in-
tervals, integer intervals (e.g., [2..5] = f2,3,4,5g), complement intervals
stating ranges of impossible values (e.g.,]2,3[=fxjx � 2 ^ x � 3g), and
multi-intervals. All these interval classes are supported in [7].

Interval Input and Output 5

An interval notation consists of numbers, di�erent kind of brackets,
and other punctuation symbols. In programming languages, number
formatting is typically speci�ed by the programmer with a set of pa-
rameters such as the output �eld width (in characters), the number of
signi�cant digits, the number of decimals after the zero, and the number
of exponent digits. In application interfaces such as spreadsheets the
variety of formatting needs is, however, larger and depends on national
standards. The use of brackets is fairly standard world wide, but na-
tional conventions for representing numbers and punctuation di�er in
various ways. For example, the decimal comma is widely used in many
European countries in contrast to the decimal point. The list separator
used between interval bounds is not necessarily the comma. A space
or comma may be used as the digit grouping symbol, and the number
of digits in a group may vary. Leading zeros as well as trailing zeros
may be on or o� in the format. Number formatting routines handle
some of these formatting details. For others, interval speci�c routines
are needed.
In addition, application dependent and custom formats may also be

needed. For example, some number formats used in Microsoft Excel are
listed in table 2.

Table 2 Some number formats used in Microsoft Excel.

Format Meaning Example

Number Show n digits after the zero, no exponent. 123.45
Currency As above but with a currency symbol. $100
Accounting As above but with column alignment. $100
Percentage Shown with % (divide by 100). 23%
Scienti�c Exponent form, show n decimals. 1.23E-23
General Dynamic format selection. 123
Custom User de�ned format. 123 pieces

To make any notation simpler, shorthand notations for punctuation
used in intervals can be supported. It is also possible to give the most
commonly used intervals short names. For example, + could mean the
interval [0, inf), E the empty interval etc.

3. FORMATTING MISCONCEPTIONS

Number formatting is used to hide unnecessary or false precision.
Formatting also makes the values more convenient to read.

6

In interval formatting it is often diÆcult to know how much output
space will be needed. The value to be output may, for example, be a
simple integer, such as 1, but at some other time the value may be a
complicated real multi-interval consisting of several interval constituents
with lots of decimal digits to be shown. In a spreadsheet, for example,
intervals have to �t in narrow cells whose widths are �xed. If a com-
plicated interval has to be output, the format must somehow be made
less space consuming. Widening the cell or making the font size smaller
would destroy the layout of the interface sheet. The choice left is to
trade space for precision by using a format with fewer digits and/or
fewer constituent intervals in multi-intervals.
Whatever the reason for formatting, the user should somehow be ad-

vised whenever a value is not shown down to the precision (s)he implicitly
assumes. Otherwise the notation becomes ambiguous. In the following,
the user's misconceptions of single number and true interval notations
are discussed.

Single number formatting

The basic question in interval formatting is how a
oating point num-
ber, such as 1.234, should be interpreted when (1) it is output as a
single number and (2) as an interval bound. In the notations of the pre-
vious section, the main interpretations for a formatted single number,
say 1.234, are:

(A) Exact value 1:234000 � � �. Trailing zeros are implicitly assumed.
This is the usual convention of programming languages, spread-
sheets, etc.

(B) Interval 1:234 �= 1:234 � 0:0005. Here explicitly shown digits are
considered the signi�cant ones and no trailing zeros are assumed.
This is the convention used in ordinary decimal rounding.

(C) Interval 1:234 � 0:001. The convention of Fortran single number
I/O.

In traditional number formatting, trailing zeros may be left out in the
output (A). In the same way, trailing zeros usually need not be typed
in for convenience. Here convenience is in con
ict with unambiguity:
information of precision is lost and it is not clear what the formatted
number means.
Interpretation (B) is widely used in application �elds, such as physics,

where the number of signi�cant digits is of central importance. This no-
tation maintains precision information. However, it is often inconvenient

Interval Input and Output 7

with values that can be represented exactly with few digits. For example,
1
4 = 0:25 but has to be output 0.25000 if 6 signi�cant digits are used. In
interval applications, integer values are often obtained as neighbouring
real values (or bounds) due to rounding errors. Such values cannot be
formatted unambiguously as concise integers when using interpretation
(B), but trailing zeros have to be appended. In interval formats this
leads to long outputs.
In (C) the ambiguity problem is addressed by forcing the user to input

(append) enough trailing zeros or other digits to indicate precision [18].
Output formatting means that a maximally precise decimal number is
determined such that if its last digit is incremented and decremented
by 1, then the result bounds the original interval value. This idea looks
reasonable, addresses the trailing digit problem of (B), but leads to mis-
conceptions as well. For example, in the Java calculator of [17] that uses
this convention, the input interval 1.33 is stored internally approximately
as the interval [1.31999999999999984, 1.34000000000000008] due to in-
terpretation (C) and decimal to binary conversions. The single number
output value for this interval is not 1.33, as one would expect, but 1.3.
Such a peculiarity is highly undesirable in application interfaces. If the
user types in value 1.33 in an input �eld, it is very confusing if this is
echoed back as 1.3!
In Fortran single I/O notation, interval interpretation of numbers is

the default and special format [x] is employed for expressing an exact
value x. However, in an application such as spreadsheets, the users
are happy with using numbers for exact values (A) and this convention
would be diÆcult to change. If a number is meant to be an interval, this
should be an exception rather than default, and be indicated by a special
interval notation. Otherwise compatibility with the current convention
is lost.

Interval formatting

When a number is used as an interval bound (in classic notation),
interpretation (A) is traditionally used. Number formatting is needed if
the interval is shown with fewer digits. However, formatting the bounds
leads to confusing situations in practice. The basic problem is that if
interval bounds are formatted as usual by rounding numbers, then the
formatted interval may not bound the actual interval value. For example,
if [1.2346, 1.2360] is formatted as [1.235, 1.236] with four decimal digits,
then the actual minimum 1.2346 is not within the formatted bounds.
The interval [0.51, 0.52] would show as [1,1] = 1 if the limits are repre-

8

sented with only one signi�cant digit. The formatted value is completely
out of the original range.
Interval formatting in this traditional way therefore conceptually vio-

lates a fundamental philosophical basis of interval computations: inter-
vals should always safely include all actual values. The confusion arises
because the interpretation (A) is ambiguous: it does not tell whether
a value is precise or rounded. A possible remedy would be to use sys-
tematically (B) and only rounded numbers with a desired number of
signi�cant digits. However, this would force the user and the system al-
ways to indicate the number of signi�cant digits by extra trailing digits,
which is in con
ict with our original goal of making the notation shorter
and simpler, i.e., convenient.
The problem is similar in tail notation, as well. In range notation,

a related formatting phenomenon arises, but the original interval still
remains within the formatted one. For example, the midpoint of interval
[1.254, 1.258] is 1.256. It could be formatted as 1:256 � 2. If only
two signi�cant digits were used, the midpoint would be 1.3 and the
formatted representation should be 1:3� 1 to include the original value.
The new midpoint 1.3 is, however, out of the original interval. The same
phenomenon is encountered with the error notation.

3.1. A NEW FORMATTING SCHEME

To summarize the discussion above, the following partly con
icting
goals should be set for interval I/O. (1) Unambiguity. The format should
be unambiguous: It should be clear to the user whether a formatted
value is accurate or contains a signi�cant rounding or other error. (2)
Containment property. The formatted interval should contain the ac-
tual underlying interval. (3) Convenience. Intervals should be easy to
type in and read by the user. (4) Compatibility. Numerical formatting
conventions should be compatible with those in use among end-users.
A proposal for matching these goals is presented next.
Interval formatting involves four precision levels. First, the usual

mathematical in�nite precision (IP). Second, machine arithmetic pre-
cision (MP). Third, an application dependent precision (AP) level for
considering two (rounded) values or intervals equal. Fourth, format pre-
cision (FP) level. The third level AP is not considered in the current
approaches to I/O formatting.
Since users typically interpret numeric values by using the single num-

ber formatting convention (A), compatibility (4) demands that rounded
values should be indicated by a notational convention. Otherwise the
notation becomes ambiguous (1). For showing rounded values, the tilde

Interval Input and Output 9

notation seems most natural because it is compatible with the idea
of rounding and maximally concise { only one additional character in
needed. Tilde notation can be used both for representing single values
and intervals in classic notation.
For example, when formatting [1.254, 1.258] as a single number with

two signi�cant digits, the output value is 1:3 �. The actual underlying
interval is within 1:3 � and the tilde explicitly tells the user that this is
only an (outward) approximation of the actual interval. Less precision is
lost than when using range notation and interval 1:3�1=[1.2, 1.4] since
the user interprets the output as 1:3 �= [1:25; 1:35] � [1:254; 1:258].
Tilde notation can be used in interval bounds as well. For example,

[1.254, 1.258] could be formatted in a natural way as [1.25�, 1.26�] in
three signi�cant digits.
However, tildes add inconvenience and should be avoided when not

absolutely necessary. The idea of introducing the application precision
level (AP) is useful here. Tilde should be added only if the rounded
value is inexact according to (AP). This is natural since AP tells the
largest error or di�erence that is of interest to the application and to
the user. If the di�erence between the actual value and the formatted
one is smaller than AP, then normal rounded representation can be used
without violating interpretation (A) and without the inconveniences of
using extra trailing digits.
For example, let the relative application precision level be AP=1E-6.

The exponent -6 suggests that the user is interested in 6+1=7 sig-
ni�cant digits. If an interval limit 123456789 is represented in for-
mat 1.2346E+09, then the absolute error of this form is e=j123456789-
1.2346E+09j=3211, assuming that the user interprets numbers as usual
by (A). The formatted number is compared with the actual value. In
this case, the relative error e/123456789 = 2.60E-05 is greater than the
desired level 1E-6, and the bound is formatted as 1.2346�E+09. At
relative precision level AP=1E-4 (>2.60E-05) the tilde would disappear,
and the bound would show as 1.2346E+09. For another example, inter-
val [1.5, 2] is represented internally as [1.4999999999999998, 2] and is
shown concisely as [1.5, 2] without tildes or trailing zeros at any prac-
tical application precision level (AP) (that is looser than the machine
arithmetic precision). This is in coherence with the user's interpretation
of single numbers, where errors smaller than AP are considered insignif-
icant. Corresponding violations against the containment property with
respect to the in�nite precision interpretation IP are accepted, if the
containment property according to AP holds.
The bene�t of the notation convention above is that it is unambiguous

to the user and is still convenient. Rounded values with lost precision

10

are explicitly indicated but only when necessary, i.e., when the rounding
actually results in signi�cant lost of precision. As a result, convenient
short rounded number formats can be used.
This kind of use of tilde-notation is not useful in non-scienti�c formats

with a �xed number of decimal places. For example, if the bounds of
the interval [0.001, 0.0041] are formatted with 2 decimal places, then
the result would be [0.00, 0.00]. If the application precision level is, say
AP=1E-6, then using 0:00 � clearly violates the containment property
with respect to AP. If �xed decimal place formats are used, then an
interval with identical formatted bounds may actually be quite wide
according to AP, and should not be formatted as a single number. For
example, if [0.001, 0.0041] is formatted using 2 decimal digits as [0.00,
0.00] instead of 0.00, then the user can see that the value is a true interval
according to AP.

4. AN IMPLEMENTATION

In [7] a spreadsheet is interpreted mathematically as an Interval Con-
straint Satisfaction Problem (ICSP). Spreadsheet formulas are used as
constraint expressions, i.e., spreadsheet formulas, and cell values tell
interval values for the variables in the formulae.
We developed interval I/O routines in the setting of this application

based on the new formattings scheme above. The heart of the implemen-
tation is a C++ library for extended interval arithmetic. This library
contains class Interval for real and integer intervals and class DInter-
val for corresponding multi-intervals. An interval parser inside class
constructors identi�es various input formats with shorthand notations.
Outward rounding is performed when needed.
Each sheet is associated with an AP level. This is the precision crite-

rion for "solutions" when solving the ICSP. Boxes that can be considered
exact according to AP are regarded as solutions to the problem at hand
(solutions to equation, inequation, and logical constraints). When an
interval is considered to be exact, i.e., a number, Excel's own number
formatting rules are used. Also for true interval values, interval format-
ting makes use of Excel's own cell formatting properties set by the user.
In this way, compatibility of interval formatting with Excel's own for-
matting is obtained. All Excel formats listed in table 2 are supported
in interval formatting. Numerical punctuation conventions of Excel's
di�erent country versions are supported, too.
Dynamic interval formatting was implemented in the system. When

a cell is formatted to "General", the default format of Excel, our system
tries to �t the interval in the given space with an iterative trial-and-

Interval Input and Output 11

error algorithm. Here the formatter drops formatting precision step
by step. At each precision level, the interval is �rst formatted. Then
multi-intervals are merged if they overlap (in the formatted sense). The
result is tried to be �t in the cell. If the format is still too wide, the
next precision level is considered, and so on. If the space available is
insuÆcient also in tilde-notation at the lowest precision level, then the
cell is �lled with #-signs to indicate insuÆcient space as usual in Excel.
If the user is not happy with a formatted result, (s)he should make the

corresponding column wider. To make this easy, the interval formatter
was integrated with a column widening procedure. A column can be
widened to �t all intervals properly without lost precision (tildes) by
double clicking on its left or right side.

5. CONCLUSIONS

This paper reviewed various interval notations and pointed out their
bene�ts and limitations in inputting and outputting intervals. It was
then shown that several conceptual problems and anomalies arise when
formatting intervals using these notations.
As a solution approach, a new formatting scheme involving format-

ting, application and mathematical precision levels was proposed. The
idea was to use short rounded numbers and notation enhanced with tilde
for values not precise enough according the application precision level.
The scheme is unambiguous to the user, concise and convenient to use,
formatted intervals always bound the underlying actual values, and the
system in compatible with the user's traditional interpretation of num-
bers. We also introduced the idea of dynamic interval formatting for
�tting intervals in insuÆcient output space by reducing format preci-
sion. The ideas presented have been implemented and were integrated
in an add-in product Interval Solver for Microsoft Excel.
According to my experience, both as a designer of interval software

and an application end-user, interval formatting is much more compli-
cating and confusing than it �rst seems. People get confused easily and
are irritated by notational in
exibilities and anomalies. As more and
more non-expert users are beginning to use interval software, complexi-
ties of interval notations and formatting, if not properly dealt with from
a very practical viewpoint, become a serious practical hinder for a wider
acceptance of interval techniques.

12

Acknowledgments

This paper is based on joint research with Stefano De Pascale. Thanks to William

Walster for discussions. Technology Development Centre of Finland and Delisoft Ltd.

have partly funded the research.

References

[1] Aberth, O. (1998). Precise numerical method using C++. New York:
Academic Press.

[2] Blomquist, F. (1997) Pascal-XSC BCD-Version 1.0. Institut f�ur
Angewandte Mathematik. Karlsruhe, Germany: Universit�at Karl-
sruhe (TH).

[3] Home page of BNR Prolog: www.als.com/als/clpbnr/clp info.html.

[4] Chiriaev, D., Walster W. (1998). Fortran 77 Interval Arithmetic
Speci�cation. www.mscs.mu.edu/�globsol/apers/spec.ps.

[5] Hansen, E. (1992). Global Optimization Using Interval Analysis. New
York: Marcel Dekker.

[6] Hyv�onen, E., De Pascale, S. (1996). Interval Computations on the
Spreadsheet. In [10], 169-210.

[7] Hyv�onen E., De Pascale, S. (1999). A New Basis for Spread-
sheet Computing: Interval Solver for Microsoft Excel. Proceedings
of AAAI99/IAAI99, 799-806. Menlo Park, California: American As-
sociation for AI.

[8] Interval Arithmetic Programming Reference (2000). Sun WorkShop
6 Fortran 95. Palo Alto: Sun Microsystems inc.

[9] Kearfott, B. (1996). Rigorous Global Search: Continuous Problems.
New York: Kluwer.

[10] Kearfott, B., Kreinovich, V. (eds.) (1996). Applications of Interval
Computations. New York: Kluwer.

[11] Klatte, R., Kulisch, U., Neaga, M., Ratz, D. (1992). Pascal { XSC
Language Reference with Examples. New York: Springer-Verlag.

[12] Klatte, R., Kulisch, U., Wietho�, A., Lawo, C., Rauch, M. (1993).
C-XSC { A C++ Class Library for Extended Scienti�c Computing.
New York: Springer-Verlag.

[13] M77 Reference Manual, Minnesota Fortran 1977 Standards Version,
Edition 1 (1983). Minneapolis, Minnesota: University of Minnesota.

[14] Moore, R. (1996). Interval Analysis. Englewood Cli�s, N.J.:
Prentice-Hall.

Interval Input and Output 13

[15] Home page of Prolog IA software (2000): http://prologianet.univ-
mrs.fr/Us.

[16] Semenov, A. (1996). Solving optimization problems with help of the
UniCalc solver. In [10], 211-214.

[17] Schulte, M., Zelov, V., Walster W., Chiriaev, D. (1997). Single-
number interval I/O. In: Developments in Reliable Computing. New
York: Kluwer.

[18] Walster, W. (1988). Philosophy and practicalities of interval analy-
sis. In: Moore, R. (ed.). Reliability in computing, 309-323. New York:
Academic Press.

[19] Van Hentenryck, P., Michel, L., Deville, Y. (1997). Numerica. A
Modeling Language for Global Optimization. Cambridge: The MIT
Press.

