
A New Basis for Spreadsheet Computing:

Interval Solver for Microsoft Excel

Eero Hyvönen and Stefano De Pascale

Delisoft Ltd
Urho Kekkosen katu 8 C 30, 00100 Helsinki, FINLAND

Tel. +358 9 6866550, Fax +358 9 68665544
{eero.hyvonen,stefano.depascale}@delisoft.com

Abstract
There is a fundamental mismatch between the
computational basis of spreadsheets and our
knowledge of the real world. In spreadsheets numerical
data is represented as exact numbers and their mutual
relations as functions, whose values (output) are
computed from given argument values (input).
However, in the real world data is often inexact and
uncertain in many ways and the relationships, i.e.,
constraints, between input and output are far more
complicated. This paper shows that Interval Constraint
Solving, an emerging Artificial Intelligence based
technology, provides a more versatile and useful
foundation for spreadsheets. The new computational
basis is 100% downward compatible with the
traditional spreadsheet paradigm. The idea has been
successfully integrated with Microsoft Excel as the
add-in Interval Solver that seamlessly upgrades the
arithmetic core of Excel into interval constraint solving.
The product has been downloaded by thousands of
end-users in about 70 countries around the world and
has been used in various applications on business
computing, engineering, education and science. There
is an intriguing chance for a major breakthrough of the
AI technology on the spreadsheet platform: Tens of
millions of Excel users are making important decisions
based on spreadsheet calculations.

1. Real world spreadsheet computing

The world is full of uncertainty and complexity. Everyday
we are faced with questions like: How can I live within the
given budget? Is this technical design possible, given the
inaccurate component data? Uncertain data and constraints
are extensively used in decision making. But spreadsheets,
one of the most commonly used decision making aid of
today, force us to use exact numbers for representing
inexact data, thus distorting reality.

For example, consider the problem of computing the
present value p of a future cash flow c that will be received
after three years. If the annual future interest rates are r1, r2,
and r3 then p can be computed by using the (discounting)
formula:

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

/100))r(1/100)(1/100)((1c p 321 +⋅+⋅+= rr (1.1)

The problem is that future interest rates are volatile and that
the value of c can be uncertain, too. The value of p is then
uncertain as well. The question is: How to represent
uncertain numerical values and how to compute them?

Another major limitation of spreadsheets is that the
relationships between cell values can only be expressed
with functions evaluating output cell values from given
input cell values. In the real world things are more
complicated. For example, consider the following formula
for computing the y-coordinate of a projectile trajectory as a
function of the x-coordinate, firing angle a and initial
velocity v.

)cos(a)/(va9.81
2
1

tan(a)x y 222 ⋅⋅⋅+⋅= (1.2)

Assume that the target is on a 120m high hill (y) at a
distance of 3200m (x). The initial speed (v) of the projectile
is between 1250 m/s and 1300m/s. The task is to find out
what are the possible angles (a) between 0 and 90 degrees
for hitting the target. The formula and the given data clearly
provide the answer but it is not clear how to back solve a
from the function.

In a more general setting, the application problem may
consist of a set of functions, equations, and inequalities,
and the task is to solve any subset of variables involved,
not only one variable. For example, what are the solutions
to the equations below?

2)cos(x-)sin(x)ln(x3

3)-sin(x)ln(x2)cos(x

)ln(x)cos(x)sin(x

321

321

321

+=⋅
+=⋅+

=+
(1.3)

Traditional numerical techniques may find a solution to this
problem, but not necessarily. The success depends on the
equations and the initial guess values used as the starting
point for the iteration. At best one solution is found for one
starting point. The average spreadsheet user is not
interested in such hidden technical details but simply wants
to find a solution or ALL solutions to his/her problem by
just pushing a button! Or (s)he wants to be sure that the
problem has no solutions at all.

The examples above indicate that the following two key
concepts of the current numerical spreadsheet paradigm are
not flexible enough:

• Cell value. Only exact numbers can be used as values
and be evaluated by formulas. Given the widespread and
diverse usage of spreadsheets, a simple way for
representing uncertainty is needed.

• Formula. Only functions can be used as formulas that
explicate the relations between cell values. Means for
representing arbitrary constraints between variables
involved is needed. Especially, equations and
inequalities used everywhere in business, engineering,
and science should be available.

The case study of this paper shows that the idea of Interval
Constraint Solving developed in the fields of Artificial
Intelligence and Interval Analysis provides a new practical
way to overcome these limitations. By generalizing the two
core concepts of the spreadsheet paradigm, “value” and
“formula”, a new basis for the very idea of using
spreadsheets can be laid.

The new vision has been materialized as the commercial
deployed add-in product Interval Solver for Microsoft
Excel, the result of some 16 man-years of research and
development in Finland and Japan.

From the mathematical viewpoint, the solving power of
the new technology is greater than with any traditional
non-interval technique: All solutions (within a given
precision level) to equations and other constraints can be
found if enough time and memory is available. For example,
Interval Solver can actually prove that (1.3) has exactly 5
different solutions. It suffices to push a button.

This paper first explains why and when interval
constraint solving and Interval Solver is of use to a
spreadsheet user. The architecture of the software is then
presented and application of AI techniques is discussed. In
conclusion, the significance of interval constraint
technology in the development of the current spreadsheet
paradigm is discussed.

2. Interval Solver for Microsoft Excel

Interval Solver is an add-in that virtually extends the
mathematical basis of Excel into interval constraint solving.
From the user’s view point this means that (s)he can make
better use of imprecise real world data and constraints, and
solve new kind of problems that could not be addressed
with spreadsheets before. With Interval Solver one can

• bound worst and best cases satisfying the spreadsheet
formulas,

• solve back argument intervals from given goals,
• solve equations and other constraints needed in the

application, and
• find the best solution to a problem.

2.1. Bounding worst and best cases
Intervals are perhaps the simplest way of representing
uncertain numerical data. An interval [min, max] is a
continuum of values between the bounds min and max. For
example, the interest rate of the next year can be estimated
by interval [4.0, 5.0]% meaning any value between 4% and
5%. By using interval analysis, safe bounds for function
values with interval arguments can be computed.
Figure 1 depicts the situation of formula (1.1) on an Excel
sheet with Interval Solver add-in loaded. The formula for P
(seen in the formula bar) has been computed with the given
uncertain interest rate and cash flow intervals. All the user
has to do is to write the Excel function inside the
=I(expression) formula of Interval Solver. After this, interval
arguments can be used.

Figure 1. Evaluating an Excel formula with interval
arguments.

The function value was initially free, i.e., its value was
unknown. This equals to interval (-inf, inf). Interval Solver
narrowed this value to [28.6, 32.8], the interval that is
guaranteed to bound all possible values of the function
down to user-given precision. The minimum represents the
global minimum and the maximum the global maximum of
the function within the argument interval limits. Notice that
a number x is actually a collapsed interval [x, x] having the
same lower and upper bound. This means that interval
computations generalize traditional spreadsheet
computations with exact values.

There are alternative approaches for representing
uncertainty of numerical values, too. A simple way is to
enumerate scenarios. For example, in figure 1 one could
compute the formula with, e.g., all combinations of minimum
and maximum values of the arguments. This simple
approach is feasible only if the number of scenarios is
small. In figure 1 there would be 24=16 scenarios if only
bounds were considered; in the general case there are
infinitely many possibilities. Another problem is that
usually it is very difficult to say with what argument values
the formula evaluates its global minimum or maximum that is
often of greatest interest to the user. In the interval
approach, all infinitely many scenarios are bounded within
a single interval, and the actual global minimum and
maximum can always be found.

A more sophisticated approach for representing
numerical uncertainty is to use probability distributions as
function arguments and then evaluate the functions using
Monte Carlo simulation. This is a widely used approach
and there are several software add-in packages available for
spreadsheets, such as Crystal Ball (Crystal Ball, 1998) and
@Risk (@Risk, 1998). In the probabilistic view, an interval

can be seen as a distribution whose form is completely
unknown and whose definite integral over the interval is
one. All variables are statistically independent from each
other.

For the average spreadsheet user, probabilistic modeling
may be too difficult to use. Intervals provide a simpler low-
end approach for representing numerical uncertainty and
have thus a better chance of being adopted by the
spreadsheet users. Furthermore, intervals can be used for
constraint solving as will be seen later. This is the key
contribution of Interval Solver.

2.2. Solving back argument intervals
Assume that cell A1 contains the formula =A2+A3. Given
argument values A2 and A3, the value of A1 is computed.
The computational model of spreadsheets is a classical
example of forward propagation.

However, in many problems the goal is known and the
task is to back solve argument values that lead to feasible
solutions. Constraint propagation is a handy classical AI
technique for solving such problems. For example, if A1
and one of the arguments, say A2 are known in the above
example, then the remaining argument A3 can be computed
(A3=A1-A2). This value can then be propagated further to
formulas in which variable A3 is used, and so on.
Constraint propagation makes it possible to evaluate
formulas “backwards” or “symmetrically”, not only
“forward” from known argument values to function value.

The idea of constraint propagation is not new in
spreadsheet computing. It was actually adopted already by
the early developers of the first major spreadsheet program,
VisiCalc, in the late 70’s. The best known result of this
branch of development is TK!Solver (TK!Solver, 1998), a
tool for mathematical modeling.

In interval constraint solving, the classical numerical
value propagation is generalized into a still more versatile
computational model: Intervals are propagated instead of
exact numbers. The idea is to narrow initial variable
intervals by using local consistency filtering techniques
developed originally for solving discrete constraint
satisfaction problems. The result of the narrowing
procedure is a set of intervals that definitely bound all exact
solutions to the constraints, i.e., the solution set.

For example, reconsider figure 1. The problem now is to
determine the needed cash flow C and interest rates that
would match a desired present value P. In figure 2, the user
has set present value goal P=29 in the situation of figure 1.
In ordinary Excel, one cannot assign to a cell a formula and
a value simultaneously, but with Interval Solver this can be
done by double-clicking the cell. In response, Excel has
refined two interest rates and the cash flow accordingly.
Modified values are shown in bold font for user’s
convenience. Interval Solver has bounded all possible
scenarios that may lead to the goal within the given initial
intervals – a useful piece of information for the decision-
maker.

Figure 2. Interval goal seeking in Interval Solver.

Interval Solver is capable of determining the global value
interval of function formulas, but in back solving only
locally consistent (Hyvönen, 1992) bounds may be
obtained. A problem of locally consistent bounds is that
they may have excess width in certain situations, i.e., local
narrowing does not necessarily result in the narrowest
intervals bounding all solutions. Various consistency
criteria can be used for filtering, such as arc-consistency,
box consistency, 2B-consistency, and 3B(w)-consistency
(Lebbah, Lhomme, 1998), but the problem of excess width
remains in the general case. In spite of this limitation,
narrowed bounds provide insight to the user regarding the
safe space of possibilities available. If needed, the methods
discussed below can be used for verifying the feasibility of
an arbitrary point within a cell interval.

2.3. Solving equations, inequalities, and other
constraints
The goal-seeking example above illustrated the idea that a
spreadsheet formula is, from the mathematical viewpoint,
actually a constraint equation. It tells how the function
value and its arguments relate to each other, i.e., what value
combinations are mathematically possible. In the same spirit
the whole spreadsheet can be interpreted as a set of
equations, inequalities, and other constraints whose
variables have initial interval ranges. A spreadsheet thus
formulates an Interval Constraint Satisfaction problem. The
natural task then is either to

• bound all solutions of the constraint system or
• find its individual solutions.

This interpretation extends the usability of spreadsheet
computing tremendously. Equations and inequalities can
now be used on the sheet in addition to the traditional
functions. In Interval Solver the expression inside the
=I(expression) formula can be not only a function, but also
an equation or an inequality, such as:

=I(A1^2*B2=SIN(C1)+3)
=I(LN(A1)^B1>=TAN(C1)+C1^3)

One can also use logical and numerical constraints mixed.
For example:

=I(IMPLIES(A1>B1^2, AND(D2=0, A1<SIN(B1))))

Solutions to the equations and logical constraints can be
generated automatically by pushing a button. The
spreadsheet has become an expert for equation solving and
Boolean logic.

For example, figure 3 depicts a typical problem
encountered in electrical designing. The circuit to be
analyzed consists of batteries and resistors whose voltages
and resistances are known. The task is to solve the nine
currents C13:C21 shown on the sheet. This can be done in a
standard way by using Kirchoff’s laws (equations) that
relate resistances, voltages and currents with each other.
The equations are written and shown in cells B25:B30 (for
the currents) and B32:B34 (for the voltages).

Figure 3. Solving the nine unknown currents of an electrical circuit. Cells have been given mnemonic names by using
Excel’s Name command on the Insert menu.

Figure 4. Finding all 16 solutions to kinematics equations describing a robot arm. The ninth solution is viewed.

Since an equation does not have a numerical value, the
equation itself is shown as the value of the corresponding
=I(equation) formula. Initially, values for the voltages and
resistances were given and values for currents were
unknown, i.e., they have very large interval values. The
unique solution is found immediately and is shown in the
figure.

Interval constraint solving techniques differ from other
numerical techniques in one important way. Possible
solutions are never accidentally lost. As a result, all
solutions can always be found if enough time and memory
is available. Furthermore, if a situation is found infeasible,
then the problem has no solutions for sure. This guarantee
holds even when rounding errors are present. In interval
computations outward rounding interval arithmetic is used,
and imprecise floating-point numbers are represented by
tiny safe intervals bounding the actual value.

For the spreadsheet user this theoretical robustness is of
great importance. Traditional numerical methods cannot in
general guarantee that a solution will be found even if there
were one. Convergence of iteration depends, e.g., on the
gradients of the equations, initial guess values for the
variables etc. It is not feasible to assume that a non-expert
spreadsheet user understands the restrictions, conditions
and limitations related to traditional numerical equation
solving techniques. In interval solving all solutions can in
principle always be found.

For example, figure 4 depicts the problem of finding the
solutions to a difficult non-linear set of 12 kinematics
equations. After evaluation, the View Solutions dialog box
of Interval Solver has popped up and all 16 solutions to the
equations can be viewed on the sheet. The user can be sure
that this equation system has precisely these 16 solutions
within the precision criteria used.

2.4. Finding the best solution to a problem
In figures 1 and 2, intervals were used for bounding the
solution set. After the system has narrowed the intervals,
the user can constrain the problem further by inserting new
constraints or by modifying the intervals. For example, in
figure 2 the target, present value P, was modified. After any
modification, Interval Solver may be able to narrow related
intervals further. The user and Interval Solver can work
together in a mixed-initiative mode and the problem can be
solved in a top-down fashion by refining stepwise
constraints for the solutions. This is not possible in
traditional spreadsheet computing.

This approach can be used for finding the best solution
to the problem at hand, i.e., for solving optimization
problems. The user sets desired goal values, Interval Solver
narrows related cell values, the user modifies them again
according to his preferences, and so on. If the situation is
found at some point infeasible, special relaxation (Hyvönen,
1991) commands of Interval Solver can be applied in order
to enlarge intervals and to make the bounds feasible again.

Interval Solver also contains a tool for solving traditional
optimization problems directly with the help the of “Solver”

add-in that comes with each Microsoft Excel copy. An
interval CSP in Interval Solver consists of the interval
bounds set for the cell values, their value types
(real/integer), equations, inequalities, and logical
constraints written on the sheet. These constructs can be
transformed into a classical Excel Solver model and be
solved using Excel Solver. By this way individual solutions
can be found by which a given target function (cost
function) gets its minimum, maximum or a preset specific
value, given a set of constraints. By bounding solutions
first with the interval model, the initial guess values can be
selected within a reasonable range, and the optimization
problem can be solved more easily. Interval Solver provides
a natural way for expressing optimization problems. Any
variable involved, not only the target cell value can be
optimized dynamically based on the interval model.

However, since Excel Solver is a classical optimization
tool, interval techniques are not used. This means that the
solution found might be only a local optimum and that only
at most one solution corresponding to the set of initial
guess values can be found. There are in the general case no
guarantees that a solution will be found even if there were
one. Constrained interval optimization (Hansen, 1992)
provides a remedy to this problem and will be available in
future releases of Interval Solver as an alternative
optimization tool.

3. Uses of AI technology

The mathematical basis of Interval Solver lays in the three
InC++ interval libraries for C++, developed originally at
VTT Technical Research Centre of Finland (Hyvönen, De
Pascale, 1995; InC++, 1998):

Library Purpose
LIA InC++ Overloads C++ arithmetic into extended

interval arithmetic.
GIA InC++ Library for evaluating the global value

range of a function with interval
arguments.

ICE InC+ Interval Constraint Solving library
based on LIA and GIA InC++.

Among these libraries, GIA and ICE are interesting from the
AI viewpoint. Reconsider figure 1. The problem of
determining the actual global minimum and maximum of P is
easy in this case because the formula function happens to
be monotonic. However, in the general non-monotonic case
(e.g., formula (1.2)) the problem is very difficult both from
the algorithmic and computational viewpoints. The global
min/max is then not obtained by a combination of argument
interval limits.

There is only one class of numerical techniques that is
guaranteed to always find the global minimum/maximum,
global interval optimization techniques (Hansen, 1992).
These algorithms vary in detail but the underlying idea in

all of them is to perform an exhaustive branch-and-prune
search in which the initial argument intervals are split into
tighter and tighter subintervals until precision conditions
for the solution are satisfied. The search is accelerated by
various pruning heuristics based on the best min/max
candidate found thus far, on the mathematical properties of
the function (such as first and second gradients), and on
special narrowing operators for the arguments (such as the
interval Newton operator). An indication of the
implementational complexities involved is that GIA InC++
library employed in Interval Solver consists of over 50.000
lines of C++ code.

include <ice.h>
// Include ICE InC++ library header
main () {

// Construct the equation set object “I” (of class Ice)
Ice I;
I.SetDefaultUnknown("[-1e8,1e8]");
// Default interval bounds for variable values
I.InsertConstraint("x1^2+x2^2+x3^2-1=0");
I.InsertConstraint("x1^2+x2^2+x3^2-

2*x1=0"); I.InsertConstraint("x1^2+x2^2-
1=0");

// Solve (evaluate) equation constraints
I.SetPropagationMode(PMGlobal);
// Set mode for finding individual solutions
I.SetMaxSolutionNumber(1000);
// Search for up to 1000 solutions
ICEConsistencyType c;
// Consistency type after evaluation
I.Evaluate(&c);
// Analyze and display the result
if (c!=CTInfeasible)

I.DisplayGlobalSolutions();
return 0;

};

Figure 5. An example of programming with ICE InC++. All
solutions to a set of tree equations in three variables are
solved and displayed.

The key technology underlying Interval Solver is Interval
Constraint Satisfaction (Davis, 1987; Cleary, 1987,
Hyvönen, 1989) developed in the fields of artificial
intelligence, (constraint) logic programming, and interval
analysis (Interval, 1998). The interval constraint satisfaction
problem (ICSP) corresponding to a sheet is represented as a
C++ object of class Ice included in the ICE InC++ library.
This class has a simple dynamic string-based interface by
which constraints can be inserted and removed from the
ICSP, interval domains set for the variables, precision
criteria set for solutions etc. For an example of the
programming interface, the C++ code in Figure 5 shows
how to solve three equations in three variables with ICE
InC++.

User operations on a sheet, such as inserting a formula,
setting a cell value, etc. are mapped into sequences of
member function calls of the underlying Ice object. This

mapping is written in the macro language of Excel, Visual
Basic. 117 different member functions of ICE InC++ library
are used for the interface.

ICE InC++ library does all mathematical constraint
solving regarding formulas written inside the
=I(expression). Excel itself maintains the algebraic formulas
on the sheet mutually consistent. This makes Interval
Solver invisible to the user and the integration seamless.
For example, changing cell names in formulas when
copying, pasting or moving cells is automatic as usual.
User-defined cell names, as well as the different alias
function names used in the various country versions of
Excel are available with Interval Solver, too. Figure 6
illustrates the general integration architecture.

Visual Basic Interface

Ice class object
corresponding to an ICSP.

ICE InC++ library

Excel sheet

User interaction

Event handling

Ice member function calls

Figure 6. The interaction model of Interval Solver. Visual
Basic interface layer catches user interactions (inserting
data, moving cells, etc.) and commands. The Ice object, i.e.,
the ICSP corresponding to the sheet, is updated
accordingly, or solved depending on the user interaction.

ICE InC++ library uses a large variety of interval constraint
solving techniques. The constraint set is manipulated and
simplified by algebraic manipulation routines in order to
make it easier to solve numerically. In numerical evaluation,
the tolerance propagation approach (Hyvönen, 1992) is
enhanced with global interval optimization algorithms
(Hansen, 1992), narrow operators (Benhamou et al., 1994;
Van Hentenryck et al., 1997), conditioning matrices
(Kearfott, 1996), and structure sharing techniques
(Hyvönen, De Pascale, 1996).

Interval constraint solving was originally proposed as a
new computational basis for spreadsheet programs in
(Hyvönen, 1991; Hyvönen, De Pascale, 1996).

4. Application Use and Payoff

Interval Constraint Solving technology has recently gained
more and more attention not only in AI research but in
business as well. There has been a lot of development

activity in the logic programming community resulting in
several interval constraint extensions of Prolog, such as
BNR Prolog (BNR Prolog, 1998) and Prolog IA (PrologIA,
1998). First stand-alone mathematical solvers based on the
new scheme, such as Numerica (Numerica, 1998) and
UniCalc (UniCalc, 1998), have been introduced in the
market. These systems and tools are intended mainly for
expert usage and programmers.

In contrast, Interval Solver targets (also) non-expert
users of spreadsheets. With the help of the new
computational basis, the usage of spreadsheets has been
extended to new classes of applications that deal with
uncertain data and/or involve problem solving under user-
given constraints, a typical situation in business planning,
technical design, science, and in many other fields.

Interval Solver is a generic tool for end-users
spreadsheets. It virtually generalizes the arithmetical basis
of Excel and the range of applications is therefore as wide
as that of spreadsheets. Most users indicate business
computations as their main area of interest. Typical
applications include cash flow analysis, budgeting, and risk
analysis involving uncertain future data. In engineering
applications, Interval Solver provides the user with a simple
tool for performing design and other calculations involving
e.g. component data with tolerances, and for solving
equations. The pay-off comes from getting more realistic
and better results to support decision making. Non-expert
users can now solve -- with little training in their customary
spreadsheet environment -- new classes of mathematically
complicated problems.

Together with word processing, database and Internet
tools, spreadsheets have been one of the most influential
software applications of information technology.
According to a Gartner Group some 30 million spreadsheet
programs were shipped in 1997, most of which (90%) were
copies of Excel, and the market is growing rapidly. There is
the intriguing possibility that interval constraint
technology will eventually lead to a paradigm shift in
utilizing spreadsheets.

5. Development and Deployment

In the late 80’s and early 90’s, research on using interval
arithmetic as the basis for interval constraint satisfaction
was carried at VTT Technical Research Centre of Finland,
and in a joint project with Electrotechnical Laboratory,
Japan. A result of this work was an interval constraint
solver and an interval spreadsheet demo system
implemented in Lisp. Based on the first results, it was
decided to implement the technology for industrial
applications in C++ and to apply it to a major commercial
spreadsheet program, Excel.

It turned out, however, that the 16-bit address space
provided by Excel at that time was too small for handling
problems of reasonable size. Also Excel’s macro language
turned out to be too limited for a commercial level
implementation of the new interval vision. With the new 32-

bit Windows versions and the new Visual Basic macro
language, the situation changed rapidly in 1996. The first
implementation of interval constraints for Excel called
“Range Solver” was exhibited by VTT at CeBIT 96 fair in
Hannover, Germany. Interval Solver is its direct descendant
commercialized by Delisoft Ltd, a spin-off of VTT.

The first version of Interval Solver 97 was finished
during autumn 1997 and was released internationally in
April 1998 at COMDEX Japan, Tokyo. The software
evaluation kit has been available through Delisoft Web site
(www.delisoft.com), Ziff-Davis Libraries, Download.com,
etc., and recently also through representatives in various
countries (USA, Canada, Australia, Hong Kong, Korea,…).
There are currently several thousand downloaders in about
70 countries.

The software consists of over 100,000 lines of code 80%
of which is mathematical routines in C++. Several people
were involved with the research on interval computations,
but the actual code of Interval Solver as well as the manual,
setup program, and electronic tutorial were written by the
authors of this paper.
The development and especially the commercialization
phases of Interval Solver were far more demanding than
was initially expected. In order to meet the high efficiency
requirements of spreadsheet users, the software had to be
geared and tuned very carefully. Tiny modifications in the
algorithms easily resulted in order of magnitude differences
in performance. Computational efficiency of interval
constraint solving techniques is very sensitive not only to
the algebraic form of the ICSP but also to the initial interval
values used. Various heuristics can be used to speed up
convergence, but there is no single optimal strategy that
works always fine.

Besides the technical difficulties in implementing and
tuning the mathematical constraint engine, lots of
difficulties were encountered with the interface to Excel. A
key problem there was the enormous versatility of ways in
which the user may interact with Excel and potentially
confuse the system by making the sheet and the underlying
ICSP model mutually incoherent. Most operations in Excel
such as inserting a formula can be made in several
alternative ways. All of them have to be caught. An
additional practical problem was that a new fundamentally
different version of macro language provided by Microsoft
for Excel 97 was released in the middle of the development
process causing redesign needs for the interface.
Fortunately, the new version was more versatile from
Interval Solver viewpoint. Last but not least, several
deficiencies were encountered in different Excel versions.
They had to be circumscribed by special programming
tricks.

6. Conclusions

Interval constraint solving and Interval Solver provide a
more versatile basis for spreadsheet computing. Two key
concepts of spreadsheets have been generalized:

• The idea of cell value is generalized from exact
numbers to intervals. An exact value is a special case
of the notion of interval.

• The idea of (function) formula is generalized into
equations, inequalities, and logical constraints. A
function is a special case of an equation.

From the computational viewpoint, the idea of forward
propagation of exact values is generalized into interval
constraint propagation. Again, forward propagation is a
special case of the new model, interval constraint
propagation.

Interval constraint solving is a conceptually simple,
robust scheme for representing and solving difficult
mathematical problems under uncertainty. Solutions are
never lost as when using traditional numerical techniques.
A price to be paid for the robustness and the ease of usage
is increased computational complexity. However, results
indicate that in many cases interval constraint solving
methods can successfully compete with or even outperform
the best traditional numerical techniques (Van Hentenryck
et al., 1997).

Spreadsheet programs are among the most widely used
applications of information technology. However, after the
pioneering days of VisiCalc in 1979, their underlying
computational idea has not changed much. Interval Solver
demonstrates that artificial intelligence techniques can
make a substantial contribution in the development of the
spreadsheet paradigm.

Acknowledgements

Thanks to Dr. Eero Peltola, Technology Development
Centre of Finland, Sitra, and VTT Information Technology
for fruitful co-operation.

References

@Risk (1998) Product information of @Risk available at
http://www.palisade.com.

Benhamou, F., McAllester, D., Van Hentenryck, P. (1994)
CLP(Intervals) revisited. Proceedings of the International
Symposium on Logic Programming (ILPS-94), Ithaca, New
York, 124-138.

BNR Prolog (1998) Home page of BNR Prolog:
http://www.als.com/als/clpbnr/clp_info.html.

Cleary, J. (1987) Logical Arithmetic. Future Computing
Systems 2 (2), 1987.

Crystal Ball (1998). Product information of Crystal Ball
available at http://www.decisioneering.com.

Davis, E. (1987) Constraint propagation with interval
labels. Artificial Intelligence 8, 99-118.

Hansen, E. (1992) Global Optimization Using Interval
Analysis, Marcel Dekker, New York.

Van Hentenryck, P., MacAllister, D., Kapur, D. (1997)
Solving polynomial systems using a branch-and-prune
approach. SIAM Journal of Numerical Analysis, 34 (2).

Van Hentenryck, P., Michel, L., Deville, Y. (1997)
Numerica. A Modeling Language for Global Optimization.
MIT Press, Cambridge.

Hyvönen, E. (1989) Constraint reasoning based on
interval arithmetic. Proceedings of IJCAI-89, Morgan
Kaufmann, Los Altos, Calif., 1193-1198..

Hyvönen, E. (1991) Interval constraint spreadsheets for
financial planning. Proceedings of the 1st International
Conference on Artificial Intelligence Applications on Wall
Street. IEEE Press, New York.

Hyvönen, E. (1992) Constraint reasoning based on
interval arithmetic: the tolerance propagation approach.
Artificial Intelligence 58, 71-112.

Hyvönen, E., De Pascale, S. (1995) InC++ library family
for interval computations. Reliable Computing,
supplement, Proceedings of Applications of Interval
Computations, El Paso, Texas, 1995.

Hyvönen, E., De Pascale, S. (1996) Interval Computations
on the Spreadsheet. In: (Kearfott and Kreinovich, 1996),
169-210.

Hyvönen E., De Pascale, S.: Shared Computations for
Efficient Interval Function Evaluation. In: G. Alefeld, E.
Frommer (eds.): Scientific Computing, Computer
Arithmetic and Validated Numerics, Akademie-Verlag,
Berlin, Germany, 1996.

Interval (1998) Home page of interval computations
research: http://cs.utep.edu/interval-comp/main.html.

InC++ (1998) Home page of InC++ libraries:
http://www.delisoft.com/InCLibraries.

Interval Solver (1998) Interval Solver home page:
http://www.delisoft.com/ExcelProducts/IntervalSolver.

Kearfott, B. (1996) Rigorous Global Search: Continuous
Problems. Kluwer, New York.

Kearfott, B., Kreinovich, V. (eds.) (1996) Applications of
Interval Computations. Kluwer, New York.

Lebbah, Y., Lhomme O. (1998) Acceleration methods for
numeric CSPs. Proceedings of AAAI-98, AAAI Press,
Menlo Park, Calif., 19-24.

Moore R. (1966) Interval Analysis. Prentice-Hall,
Englewood Cliffs, N.J.

Numerica (1998) Home page of Numerica:
http://www.ilog.com/html/products/optimization/numerica.h
tm.

Prolog IA (1998) Home page of Prolog IA software:
http://prologianet.univ-mrs.fr/Us.

TK!Solver (1998) TK!Solver home page:
http://www.uts.com/.

UniCalc (1998) UniCalc home page:
http://www.rriai.org.ru/UniCalc/

