
Joonas Laitio, Jussi Kurki

SAHA Metadata Management System
Technical Report

Semantic Computing Research Group

A! Aalto University
School of Science
and Technology

aalto university
school of science and technology

Author: Joonas Laitio, Jussi Kurki

Title: SAHA Metadata Management System
Technical Report

Date: 21.3.2011 Language: English Number of pages:3+23

Semantic Computing Research Group

Department of Media Technology

Professorship: Media Technology Code: T-75

SAHA is a browser-based metadata editor and annotation tool for creating
data in RDF format for the semantic web. Its main function is to provide
a distributed environment where multiple distributed people can simultane-
ously annotate and edit RDF data through a web interface. The system is
built paying special heed to scalability and concurrency. For example, the
persistence is divided into two pieces to avoid the slowness of certain types
of search through the whole RDF graph. The system also provides various
ways to remotely query the data store, such as a SPARQL endpoint,. The
aim of this document is to provide enough background information and
instructions for adopting use and administration of SAHA in their own
server environment.

Keywords: semantic web, metadata, annotation, indexing

iii

Contents

Abstract ii

1 General Information 1
1.1 Features . 1
1.2 History . 1

1.2.1 SAHA1 . 2
1.2.2 SAHA2 . 2
1.2.3 SAHA3 . 2

2 System Overview 3
2.1 Architecture . 3
2.2 Authentication and User Management 3
2.3 SAHA API . 4

2.3.1 SPARQL Endpoint . 4
2.3.2 HTTP REST API . 6
2.3.3 Text Search API . 6

3 End User Instructions 8
3.1 Main View and Search . 8
3.2 Resource View . 9
3.3 Editor View . 9

3.3.1 Inline Editor . 12
3.4 Configuration View . 13
3.5 HAKO . 16

3.5.1 Using HAKO . 16
3.5.2 Configuring HAKO . 17

4 Administrational Instructions 19
4.1 Environment setup . 19
4.2 Administration Tools . 19
4.3 Building a Basis Model for a Project 20

5 Acknowledgements 22

1 General Information

The purpose of this document is to provide basic information and user
instructions for the SAHA metadata management system. With this document
it should be possible to adopt SAHA to one’s own server environment and
use all aspects of it successfully. This section describes SAHA’s general
information and development history.

1.1 Features

SAHA is a www-based tool for creating instance data for the semantic web
in RDF (triple-based) form [2]. The base features include:

• Creating, deleting and editing of resources denoted by URIs in a robust
distributed web environment

• Searching the model either by ontological class or with a global auto-
completion search

• Lookup of ontology concepts for defined fields from external ONKI
ontologies [8]

• Creating and editing point/area/route location data with a map interface

• Accessing the data from a SPARQL endpoint[6] or various other APIs

• Exporting the data as RDF/XML, Turtle (Notation 3)[1] or N-Triples

• Looking up data with a single object property based facet-search
interface[5]

1.2 History

Browser-based annotation tools for the semantic web are not an entirely novel
idea.[3][4] However, as the technology is still relatively new, implementing
them can be difficult. SAHA has gone through multiple iterations throughout
its history; these are listed below.

2

1.2.1 SAHA1

The first SAHA was created mainly by Onni Valkeapää in 2006 in the Semantic
Computing Research Group1. The architecture was based on Apache Cocoon2,
and featured most of the very basic functionality still present. The backend
was using JenaDB as the triple store, which is basically a Jena model stored
in a relational database. [7]

1.2.2 SAHA2

There were some maintenance and scalability issues with the backend of
SAHA1, which eventually led to changing the architecture from Apache
Cocoon to Spring MVC and Freemarker templates in 2008. This was a direct
file-by-file port of SAHA1, and it yielded some performance boosts all around
the system. Still, functionality like text searching was very slow since the
whole RDF model had to be iterated through.

1.2.3 SAHA3

SAHA3 is a complete rewrite of the metadata editor, implemented in 2009
mainly by Jussi Kurki. The basic architecture is quite similar to SAHA2,
with the critical addition of a full-text index in the form of Apache Lucene3

certain key functions like text searching and result sorting. The main triple
store was also changed from JenaDB to TDB, which is a lot faster to setup
and query for typical transactions in an editing environment. This is the
current iteration and the subject matter in this report.

1http://www.seco.tkk.fi/
2http://cocoon.apache.org/
3http://lucene.apache.org/

3

2 System Overview

This section describes the technical functions of SAHA in more detail as the
previous chapter. This includes the system architecture of SAHA and the
various APIs it uses and offers.

2.1 Architecture

The general system architecture is shown in Fig. 1. The central component
in the architecture is the MVC framework. It receives page load requests,
queries the persistence store, acquires the correct template and fills it with
the right data. In addition to normal requests, the MVC system handles
asynchronous requests used throughout the system in the form of DWR calls.
As the MVC system, the Spring Framework4 is used, and Freemarker5 is the
template engine. Both these and the business layer code are written in Java.

Data access from the website is twofold. All the data is stored as triples
in a triple store, Jena TDB RDF Database6, but operations that require
extensive searching and sorting, such as the autocompleting text search, use
a separate full text index that is implemented with Apache Lucene7. The full
text index is created from the data upon project initialization and updated
as the data in the triple store changes.

An alternate way to access the data is through a SPARQL endpoint,
described in more detail in section 2.3.1. The Joseki SPARQL server8 is used
here and it queries the triple store directly.

2.2 Authentication and User Management

SAHA does not natively support authentication or user roles. The URL paths
used in the web interface are constructed in such a way that it is rather easily
possible to use external authentication methods (such as those provided by
the web server) to have certain URL patterns require authentication.

4http://www.springsource.org/
5http://freemarker.sourceforge.net/
6http://openjena.org/TDB/
7http://lucene.apache.org/
8http://www.joseki.org/

4

Figure 1: SAHA system architecture

2.3 SAHA API

2.3.1 SPARQL Endpoint

The main way to remotely query SAHA’s RDF-based data storage system
is through its SPARQL endpoint. SPARQL (SPARQL Protocol and RDF
Query Language9) is a semantic query language designed for querying triple
stores, roughly analogous to how SQL is used in relational databases. For
example, to query all the resource types from a certain SPARQL endpoint,
the following query could be used:

9http://www.w3.org/TR/rdf-sparql-query/

5

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?type

WHERE { ?resource rdf:type ?type . }

The actual URLs for the project-specific SPARQL endpoints are as follows:

http://www.example.org/saha/service/data/{project}/

sparql?query={query}

where {project} is the name of the SAHA project and {query} (both without
the curly brackets) the SPARQL query. Note that because SPARQL queries
use many reserved characters for URLs, the query needs to be URL-escaped.
The result is given as SPARQL Query Results XML10, for which the MIME
type is application/sparql-results+xml. Here’s an example of what a
typical result for the above query could look like in a dataset only containing
a schema but no data:

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<head>

<variable name="type"/>

</head>

<results>

<result>

<binding name="type">

<uri>http://www.w3.org/2002/07/owl#DatatypeProperty</uri>

</binding>

</result>

<result>

<binding name="type">

<uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#Property</uri>

</binding>

</result>

<result>

<binding name="type">

<uri>http://www.w3.org/2002/07/owl#Class</uri>

</binding>

10http://www.w3.org/TR/rdf-sparql-XMLres/

6

</result>

</results>

</sparql>

NOTE: Because the SPARQL endpoint is a functional system from the
content management, only the projects present on server startup are loaded
as SPARQL endpoints. So any newly created projects cannot be queried with
SPARQL until a server restart.

2.3.2 HTTP REST API

For getting info about a specific resource, one can use a simple HTTP request
to get all of the triples of that resource in RDF format. The request URL is
formed as follows:

http://www.example.org/saha/{project}/export.shtml?uri={uri}

where {project} is the name of the SAHA project and {uri} is the URI of the
target resource, URL-escaped. If the results are wanted in human-readable
HTML form, the address is similarly:

http://www.example.org/saha/{project}/resource.shtml?uri={uri}

2.3.3 Text Search API

It is also possible to make remote text searches with the same API that the
web interface itself uses for its autocompletion text search. The output of
this API is designed to be used with Dojo’s FilteringSelect widget11 but can
be applied to other uses as well. The request is formed as follows:

http://www.example.org/saha/service/instance_search/

?model={project}&name={query}

The results given by the API are in JSON format with the following
structure:

11http://docs.dojocampus.org/dijit/form/FilteringSelect

7

{"items":

[{"name":"{display HTML}",

"uri":"{uri}"},

{"name":"{display HTML}",

"uri":"{uri}"}],

"identifier":"uri"}

where {display HTML} is HTML designed to appear in the widget’s combo
box (containing info about why the search matched the hit) and {uri} is the
URI of the resource that the search hit.

8

3 End User Instructions

3.1 Main View and Search

The main view is the front page of a project and gives a general overview of
it. On the left side all the classes (as denoted by owl:Class) are listed, along
with the count of how many instances of that class exist in the project. New
instances can also be created from this list as can be seen in Fig. 2. The
instances for any class can be browsed and filtered to find the desired ones.

Figure 2: Resource view

The searchbar at the top of the screen is available through most views
of SAHA, excluding HAKO. The search box there is a dynamic one that
searches for the given string prefix in all the resource labels and any of their
literal property values. By default the amount of search results shown is
limited. There are two meta characters that can be used in the search box:

;
The semicolon breaks the search so that the matches must be exact
word matches and not prefixes.

+
The plus sign removes the restriction on the result size - all hits are
shown and not only the first few. This can be combined with the ;

metacharacter above for a search of type search;+.

9

3.2 Resource View

The resource view, shown in Fig. 3, is a basic overview of a resource. There
is a resource view for each resource in the model. All the property values of
the resource are listed, except those that are configured to be hidden. The
data cannot be edited here—to do that the [edit] button must be pressed,
which takes the user to the Editor view, described in section 3.3.

Figure 3: Resource view

3.3 Editor View

The editor view is where most of the actual model editing takes place. There
is an editor view for each resource in the model. In the editor view of a
specific resource, the properties of that resources can be added, modified and
removed. As shown in Fig. 4 along with an overview of the editor view, there
are two main types of properties—ones whose value is a literal, and ones
whose value is another resource.

Editing literal properties (appointed by the higher red circle in Fig. 4)
is straightforward. As the values are in most cases simple strings, they can
easily be added or edited by modifying their respective text fields. The text
field for editing existing properties is brought up by clicking the current value.
Handling object properties—those that have a resource as their value—is a
bit more complicated.

Object properties are added by writing parts of the desired object’s label
into the search field (appointed by the lower red circle in Fig. 4). This

10

Figure 4: Editor view with literal and object properties

prompts an autocompletion search done (by default) both to the local model
and any external sources configured for the property. The search functionality
is very similar to the overall search, but typically the search set is only a
subset of the whole model. The resources found are shown below the search
field, as seen in Fig. 5. Choosing one of the results will put that resource as
a value for the property.

11

Figure 5: Search results for object properties

12

3.3.1 Inline Editor

The inline editor is a powerful tool available for adding and editing object
properties. As shown in Fig. 6, the inline editor is effectively an editor within
the editor. When adding or editing object properties, often there are some
small edits that need to be done for the object resource as well, but leaving
the current resource view and coming back would be cumbersome. Thus the
resource that is the property’s value can be edited in place, both when adding
or editing object properties.

Figure 6: Inline resource editor

13

Inline editors can be nested; one can be opened within another inline
editor to an arbitrary degree. They can also be closed to avoid view cluttering.
Closing an inline editor also closes all inline editors nested within it.

3.4 Configuration View

The configuration view is for configuring how resources are edited. This
mostly involves choosing and arranging the appropriate properties and their
possible value sets. There is an editor view for each class in the model,
denoted by being of type owl:Class12 or a subclass of it. The changes affect
all resources that have this class as type. The actual view, shown in Fig. 7,
contains separate options for literal and object properties.

12URI: http://www.w3.org/2002/07/owl#Class

14

Figure 7: Configuration view

15

The functions of the different options are as follows:

Literal properties

localized
Controls whether or not to show the language definition for literals.
If it is shown, the language definition can be modified and all new
values for this property are set to the default language. If it is not
set, new values will not have a language definition.

picture property
Properties with this option set are not treated like normal literal
properties. Instead, there will be a file upload field in the editor
view intended for uploading pictures. The picture will be saved
into the data model folder of the project and a marker literal value
will be saved to the property, which when viewed from the resource
view is dereferenced to the actual image and it is shown. Fully
supported image formats are JPG, GIF and PNG.

This setting can also be used to upload other file types than images
such as audio data—in that case nothing is shown in the resource
view except a link to the uploaded file.

Object Properties

deny instantiation
If this setting is checked, the user cannot create new resources
when setting a value for this property. This essentially means that
the user can only choose from a preset or separately defined group
of values instead of being able to create new values on the fly.

deny local references
When searching for possible values for this property, the instances
in the local model (that are of appropriate class as defined by the
property’s range definition13) are not included in the search. Only
the external ontologies are searched.

adding external ontologies
The search set can be expanded beyond the local project data by
configuring ONKI repositories. These repositories are searched in
addition to the data that’s locally present.

13URI: http://www.w3.org/2002/07/owl#range

16

ontology name
Name of the ONKI ontology to be connected to. If the name
set here is an URL, it is instead assumed that this is the URL
to the WSDL definition of a web service that implements the
ONKI web service interface14.

parent restrictions
URI or a list of URIs that specifies the ancestors for the search
set. All search results have one of the defined URIs as a parent
- the hierarchy is defined by the external ontology can be of any
kind, such as one defined by skos:broader15 or dc:isPartOf16.

type restrictions
URI or a list of URIs that specifies the root classes for the
search set. More specifically, all search results are of a type
that is one of the listed URIs or a subclass thereof.

3.5 HAKO

HAKO is a lightweight multifacet search system designed to function as a
more powerful way to search and filter data in a SAHA project than the
normal text search provides. It uses the same data stores and indices as
SAHA and is essentially an integral part of the same system. HAKO can be
accessed from a link in the upper right hand side of the SAHA main view.

3.5.1 Using HAKO

Using HAKO for searching instances is straightforward. At first, all possible
results are shown. These are then filtered in two ways:

Text search
The text search filters results by their label. The search is a prefix
search, so it matches words starting with the search term(s).

Faceted search
The main way to filter information is the facet search. Using preconfig-
ured properties as facets, the search can be restricted to those resources

14http://www.yso.fi/onkiwebservice/
15URI: http://www.w3.org/2004/02/skos/core#broader
16URI: http://purl.org/dc/terms/isPartOf

17

that have certain values on certain properties. Fig. 8 shows a search
with three facet restrictions (the format, subject and language of the
items in the search set) active - only resources that meet all these three
criteria are shown.

Figure 8: An example HAKO search

3.5.2 Configuring HAKO

Configuring HAKO is done by going to the HAKO view of a project through
the HAKO link in SAHA with no HAKO configuration done. Instead of the
regular HAKO view in a configured project, this brings up the configuration
screen shown in Fig. 9. Once the configuration is done, the only way to bring
up the configuration page again is to reset the configuration and set them up
from scratch.

All that the configuration consists of is a list of the instance classes and
facet properties.

18

Instance classes
Instance classes define the set of possible search results. All shown
results, shown on the right side in the HAKO view in Fig. 8, must be
of a type configured here.

Facet properties
Facet properties are the properties used for constraining the search. All
shown search results must have the matching values for these properties.
Fig. 8 shows three facet properties, circled in red on the left side.

Figure 9: HAKO configuration view

19

4 Administrational Instructions

This section describes tools and instructions for creating and administrating
SAHA and SAHA projects. The section separately describes administrating
existing projects and creating base models for new projects.

4.1 Environment setup

SAHA is implemented to be used as a web application on a Tomcat (5+)
server. There are only a few environment-specific settings, and they are all
located in the SAHA3 Spring bean definitions in (as of the current version)
/src/main/resources/saha3-beans.xml. It defines the beans SahaProjec-
tRegistry and SahaChat, both of which require the base directory for storing
the projects as a parameter.

Further, there are two backup systems implemented. SahaBackupManager
keeps three different backups for each model —one that is refreshed daily,
one every week and one every month. The system keeps a manifest and
timestamped backups in the specified backupDirectory folder. SimpleBack-
upManager is similar but only stores one backup per model, refreshed daily.
It is less complex and thus more robust, but the backup could get corrupted
as well as it is a day old at longest.

4.2 Administration Tools

There are two main ways to administrate SAHA in the web user interface:
a general admin page and a project-specific management page. The general
admin page is accessed from the URL:

http://www.example.org/saha/saha3/admin.shtml

By default the URL is not protected by authentication requirements and
access should generally be controlled by e.g. a web server based authentication
system. The admin view provides separate log info for the whole application
and the backup system, along with general information about the application
process such as uptime and memory usage. Specific projects can also be
modified —they can be added/merged/rewritten with an RDF file or closed.
Closing a project frees any memory used by the project and releases file
channels so that the project info can be modified from the file system without
shutting down the server.

20

The project-specific management page is accessed from the main view
of a project (Sec. 3.1). It is protected by a password that can be changed
from that management view - on project creation it’s set as an installation-
specific default. Features offered by the management page are project deletion,
adding/merging/rewriting the project with a given rdf input file, and changing
the management password.

4.3 Building a Basis Model for a Project

Because SAHA is designed to be an instance editor for generating metadata,
it doesn’t handle multiple meta-levels completely. Specifically, it is hard to
alter the class hierarchy and certain class and property relations after the
project is initialized. So the schema that is loaded in upon project creation
should be finalized beforehand. This section describes which aspects of the
schema control what behavior in the SAHA user interface: the ones directly
related are listed below.

NOTE: This is separate from the SAHA-specific configuration done via
the web UI as described in section 3.4. The web UI configuration is for settings
that only control the UI’s and data’s behavior in SAHA, while the schema
definitions below also control the data’s behavior outside SAHA. As the
configuration view settings (the ones listed at Section 3.4) are only interesting
in the context of SAHA, they are stored in a separate XML configuration file
instead of the data model.

rdfs:label, skos:prefLabel
These are the basic label properties used: a label is shown instead of
the resource’s localname in every applicable spot in the user interface.
For functions that don’t call for a specific label property but instead an
implicit ‘‘label’’ is created, by default skos:prefLabel is used.

owl:Class, rdfs:subClassOf
The classes in the base model serve as the skeleton for the annotations.
These are shown in the main view (Sec. 3.1) along with their respective
instance counts. All the types of resources that are supposed to be
creatable and editable in a SAHA model must have their class defi-
nition included in the base model as well. The class hierarchy used
in the creation of the class tree in the main view is built from the
rdfs:subClassOf triples in the base model.

21

owl:DatatypeProperty, owl:ObjectProperty, xsd:date
All properties must be defined in the base model to be able to add new
triples that have them as predicate. Object properties are defined with
owl:ObjectProperty and literal properties with owl:DatatypeProperty.
Datatypes for typed literals are ignored with the exception of xsd:date,
which, when used as the range of a DatatypeProperty, prompts the use
of a calendar widget instead of a regular text field.

rdfs:comment
Any rdfs:comments that a property has are displayed in the editor
view (Sec. 3.3). This is intended to be a way to give instructions to
users in how to use those properties when annotating.

rdfs:domain
By default, only the properties that are in a class’s domain (as denoted
by rdfs:domain) are shown as options for new triples in the editor
view (Sec. 3.3). Other properties must be explicitly added to the class’s
domain from the configuration view (Sec. 3.4).

rdfs:range
When searching for values for object properties, all shown local hits are
of a type that is in the property’s range, as defined by rdfs:range. If
the range is not set, all resources are searched. NOTE: this does not
affect hits from an external ontology - those are controlled purely by
their specific settings as set in the configuration view (Sec. 3.4).

wgs84:lat, wgs84:long
The properties wgs84:lat17 and wgs84:long18 in a class’s domain
denote that it’s intrinsitc for that type of resource to have a location
in the form of latitude and longitude coordinates. A map interface is
added to those resource in the editor to input and edit coordinate data.

sapo:hasPolygon, sapo:hasRoute
Like the wgs84 properties, sapo:hasPolygon19 and sapo:hasRoute20

in a class’s domain denote that a resource can have an area or route,
respectively. Appropriate map interfaces are added to those resources.

17http://www.w3.org/2003/01/geo/wgs84 pos#lat
18http://www.w3.org/2003/01/geo/wgs84 pos#long
19http://www.yso.fi/onto/sapo/hasPolygon
20http://www.yso.fi/onto/sapo/hasRoute

22

NOTE: A resource can only have one type of location info, and only
one of that type at a time.

Most other schema definitions do not have an effect on SAHA functionality.
Naturally, the triples themselves are preserved in the model and can be used
in other applications should the model be exported from SAHA. They include,
but are not limited to, the following:

owl:maxCardinality, owl:minCardinality, owl:cardinality
SAHA does not keep track of or enforce cardinalities. This is problematic
in the open world in the first place, so it’s up to the user to ensure that
there are no missing or extraneous resource values.

owl:allValuesFrom, owl:someValuesFrom, owl:oneOf
SAHA does not support value restrictions. If you want to restrict a
property to a certain set of values, this can be done by properly setting
the range of that property to an appropriate class and disallowing
instantiation.

5 Acknowledgements

The current implementation of SAHA is mainly developed by Jussi Kurki,
with some work done by Joonas Laitio. Some of the design owns homage
to the previous SAHA versions, implemented by Onni Valkeapää, Olli Alm,
Joonas Laitio and Katariina Nyberg.

Developing SAHA has been a part of the National Semantic Web On-
tology project in Finland21 (FinnONTO, 2003–2012), funded mainly by the
National Technology and Innovation Agency (Tekes) and a consortium of 38
organizations.

21http://www.seco.tkk.fi/projects/finnonto/

23

References

[1] T. Berners-Lee and D. Connolly. Notation 3 (N3) A readable RDF syntax.
W3C Submission, Jan, 2008.

[2] D. Brickley, R.V. Guha, and B. McBride. RDF vocabulary description
language 1.0: RDF schema. W3C recommendation, 10:27--08, 2004.

[3] S. Handschuh and S. Staab. Authoring and annotation of web pages in
CREAM. In Proceedings of the 11th international conference on World
Wide Web, pages 462--473. ACM, 2002.

[4] J. Kahan, M.R. Koivunen, E. Prud’Hommeaux, and R.R. Swick. Annotea:
an open RDF infrastructure for shared Web annotations. Computer
Networks, 39(5):589--608, 2002.

[5] J. Kurki and E. Hyvönen. Collaborative Metadata Editor Integrated with
Ontology Services and Faceted Portals. 2010.

[6] E. Prud’Hommeaux, A. Seaborne, et al. SPARQL query language for
RDF. W3C working draft, 4, 2006.

[7] O. Valkeapää, O. Alm, and E. Hyvönen. Efficient content creation on
the semantic web using metadata schemas with domain ontology services
(system description). The Semantic Web: Research and Applications,
pages 819--828, 2007.

[8] Kim Viljanen, Jouni Tuominen, and Eero Hyvönen. Ontology libraries for
production use: The finnish ontology library service onki. In Proceedings
of the 6th European Semantic Web Conference (ESWC 2009), May 31 -
June 4 2009. Springer-Verlag.

