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Abstract

The history of Artificial Intelligence (Al) is a narrative of waves—rising optimism fol-
lowed by crashing disappointments. Al winters, such as the early 2000s, are ofien
remembered as barren periods of innovation. This paper argues that such a perspective
overlooks a crucial wave of Al that seems to be forgotten: the rise of the Semantic Web,
which is based on knowledge representation, logic, and reasoning, and its interplay with
intelligent Software Agents. Fast forward to today, and ChatGPT has reignited Al enthusi-
asm, built on deep learning and advanced neural models. However, before Large Language
Models (LLMs) dominated the conversation, another ambitious vision emerged—one
where Al-driven Software Agents autonomously served Web users based on a structured,
machine-interpretable Web. The Semantic Web aimed to transform the World Wide Web
into an ecosystem where Al could reason, understand, and act. Between 2000 and 2010,
this vision sparked a significant research boom, only to fade into obscurity as Al’s main-
stream narrative shifted elsewhere. Today, as LLMs edge toward autonomous execution,
we revisit this overlooked wave. By analyzing its academic impact through bibliometric
data, we highlight the Semantic Web’s role in Al history and its untapped potential for
modern Software Agent development. Recognizing this forgotten chapter not only deep-
ens our understanding of Al's cyclical evolution but also offers key insights for integrating
emerging technologies.
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1 Introduction

The notion of Artificial Intelligence (AI) as a distinct discipline within Computer Science
was introduced in 1956 at a workshop at Dartmouth College by early pioneers such as John
McCarthy, Marvin Minsky, and others. Since then, the history of Al has experienced recurring
cycles of enthusiasm and subsequent disillusionment, commonly referred to as “Al summers”
and “Al winters” (McCorduck, 2004). These cycles are associated with two main approaches
to creating Al: symbolic (“white box™) approaches, based on explicit knowledge represen-
tation, logic, reasoning, and search, and sub-symbolic (“black box™) approaches, based on
neural networks, machine learning, and statistical models.

Following the first AT summer in the 1960s, the first AT winter occurred in the 1970s
after it was argued in (Minsky and Papert, 1969) that sub-symbolic neural networks (then
based on single-layer perceptron) would never be useful for solving real-world tasks. As a
response, the symbolic approach, including knowledge-based expert systems and logic pro-
gramming, fuelled the next AT summer in the 1980s. However, challenges in, e.g., knowledge
representation and acquisition (Mettrey, 1987) soon led to another AI winter. Research on
multi-layer sub-symbolic neural models and learning systems continued despite—or perhaps
because of—the shortcomings of the knowledge-based approach. By expanding machine
learning models through deep learning, employing new training algorithms such as backprop-
agation, introducing novel neural architectures and non-linear activation functions, leveraging
Big Data from the Web and available databases for training, , and by using new efficient Al
chips for parallel neural computations AT has entered an unprecedented summer in the 2020s
(Kelleher, 2019). A prominent research topic today, aimed at addressing challenges in neural
systems such as hallucinations, is the combination of symbolic and sub-symbolic approaches
in neuro-symbolic (hybrid) Al systems (Hitzler and Sarker, 2022; Bhuyan and Tomar, 2024).

The early 2000s are often labelled as an AI winter, with little recognition of the relevant Al
research conducted during that time. However, this narrative overlooks significant develop-
ments from that era, including the emergence of the Semantic Web, which gained momentum
in 2001 (Berners-Lee et al., 2001; Berners-Lee, 2003). Although rooted in knowledge rep-
resentation, logic, reasoning, and ontologies—core subjects of traditional symbolic Al—this
branch of research is typically not classified as part of Al For example, in the authorita-
tive ACM Computing Classification System' of Computer Science, Al is a major first-level
category under Computing Methodologies.

Computing Methodologies
>Artificial Intelligence,

while Semantic Web is only mentioned under the minor category under Information
Systems:

Information Systems
>World Wide Web

>Web data description languages
>Semantic web description languages

According to the original Semantic Web vision outlined in 2001 (Berners-Lee et al.,
2001), the Semantic Web is centered around intelligent agents on the Web. The category of

! ACM Computing Classification System: https://dl.acm.org/ces
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Fig. 1: Categorization issue: Semantic Web research vision had strong artificial intelligence
focus but it is categorized under WWW branch

Intelligent Agents can be found as a minor subcategory under Artificial Intelligence. This
categorization issue is also illustrated in Figure 1.
Computing Methodologies
>Artificial Intelligence,
> Distributed computing
> Multi-agent systems

> Intelligent agents
> Mobile agents

Even review papers on the Semantic Web do not focus on the AI or Software Agent
research conducted during that period within the Semantic Web domain. For example, Hitzler
(Hitzler, 2021) provides a comprehensive review of the Semantic Web, detailing its evolu-
tion, core principles, and ongoing challenges. The paper highlights how the Semantic Web
extends the traditional Web by incorporating structured and linked data to enhance machine
interoperability. Key technologies such as RDF (Resource Description Framework), OWL
(Web Ontology Language), and SPARQL are discussed, emphasizing their roles in enabling
semantic interoperability. In addition, the paper explores real-world applications in domains
such as Al, knowledge graphs, and data integration. Hitzler also addresses challenges such
as scalability, reasoning complexity, and data quality, underscoring the need for continued
research and development to fully realize the Semantic Web’s potential.

The rapid advancement of Generative Artificial Intelligence (GAI) and the widespread
adoption of Large Language Models (LLMs) were catalyzed by the introduction of the
Transformer architecture, which enabled more efficient training and superior contextual
understanding in deep learning models (Vaswani et al., 2017; Kelleher, 2019). This break-
through laid the foundation for applications such as ChatGPT, which demonstrated the
potential of LLMs in generating human-like text, leading to a surge in research and com-
mercial interest. More recently, the focus has expanded beyond standalone LLMs to the
integration of Software Agents and agentic capabilities, where models exhibit autonomy,
goal-directed behaviour, and enhanced reasoning abilities (Reed et al., 2022; Yao et al., 2022).
These agentic systems, which incorporate planning, memory, and interaction mechanisms,



are now being extensively studied to augment the functionality of LLMs, enabling them to
operate dynamically in complex environments, solve multi-step problems, and interact more
effectively with users and digital ecosystems.

It appears that for some reason the Semantic Web is a forgotten wave of Al although the
current Al trend is very much happening on the Web. To study and analyze this argument,
we review previous trend analyses related to the Semantic Web and Al and present statistical
analyses of academic literature on these topics.

The remainder of this paper is structured as follows.

* Section 2 provides an overview of the Al hype cycle, detailing the recurring patterns of “Al
summers” and “Al winters”. We review and synthesize insights from previous studies on
AT history and introduce a normalized “temperature” scale to quantify these fluctuations.

* Section 3 explores the concept of the Semantic Web, its foundational vision, and its
relationship with Al-driven Software Agents.

* Section 4 presents an analysis of bibliometric data and academic trends related to Seman-
tic Web and Software Agent research. We examine search term frequencies and notable
researcher contributions to illustrate the presence of the “Forgotten AI Wave”.

* Section 5 provides a critical discussion of our findings, highlighting the broader implica-
tions of the legacy of the Semantic Web, its challenges, and its potential resurgence in
modern Al research.

* Section 6 summarizes the key takeaways from our study and outlines directions for future
research at the intersection of the Semantic Web and contemporary Al advancements.

2 Al Summers and Winters

In this section, we first discuss the general hype cycle model in Section 2.1, a framework used
to describe the waves of enthusiasm followed by subsequent disappointment that technologi-
cal fields often experience. This pattern, commonly referred to as the “hype cycle,”, has been
observed in various industries and technologies.

We then review and synthesize illustrations of Al history in Section 2.2, exploring the
alternate periods of “Al winters” and “Al summers” and placing them on a normalized scale.
These phases highlight the cycles of overenthusiasm, disillusionment, and eventual produc-
tivity, from the early promises of symbolic Al to the breakthroughs of the deep learning
revolution.

2.1 The Hype Cycle

The hype cycle model, introduced by Gartner Inc. in 1995, (Steinert and Leifer, 2010) illus-
trates the evolution of technological expectations over time. As shown in Figure 2 (Steinert
and Leifer, 2010), the model is formed by merging two distinct curves: a human-centric
expectation curve, represented by the dashed blue line, and a classical technology maturity S-
curve, represented by the dotted green line. The first equation describes the hype level, which
follows a bell-shaped curve driven by excitement, social contagion, and heuristic decision
making. This curve captures the tendency of people to overestimate the potential of a tech-
nology, leading to an initial peak of inflated expectations, followed by a sharp decline when
real-world limitations become evident.
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The second equation, the S-curve of technological maturity, represents the gradual
advancement of a technology over time. Initially, progress is slow due to limited under-
standing and minimal performance gains from early investments. However, as knowledge
accumulates and improvements accelerate, the technology experiences rapid development
until it eventually stabilizes at a plateau defined by its inherent limitations. Together, these two
curves form the hype cycle (solid gray line), which models the typical trajectory of emerging
technologies, highlighting both the initial overhype and the eventual stabilization at a realistic
level of maturity.

The stages outlined in the hype cycle depicted in Figure 2 are closely related to the way
many studies have seen the historical trajectory of Al:

1. Innovation Trigger: A new technology or concept emerges, generating early excitement
and media interest, although practical applications are not yet fully understood.

2. Peak of Inflated Expectations: Media hype and early success stories fuel high expec-
tations, leading to overenthusiasm and unrealistic predictions about the technology’s
potential, with many projects launched but most failing to deliver.

3. Trough of Disillusionment: Initial excitement fades as challenges and limitations become
evident, causing skepticism due to failed projects and unmet expectations, leading to a
decline in interest and reduced investments.

4. Slope of Enlightenment: A gradual understanding of the technology’s real potential and
limitations develops, leading to practical applications and increasing adoption as early
adopters recognize value in realistic use cases.

5. Plateau of Productivity: The technology becomes mainstream and widely adopted, with
stable, practical use cases delivering real benefits, achieving sustainable growth and a
proven track record.



These stages, which reflect periods of intense optimism and disillusionment, are com-
monly referred to as “Al summers” and “Al winters”. During AT summers, expectations for Al
technologies reach the “Peak of Inflated Expectations”, driven by breakthroughs and media
enthusiasm, while subsequent AI winters align with the “Trough of Disillusionment™, as the
technology fails to meet overinflated promises. Over time, as understanding deepens and prac-
tical applications emerge, Al progresses through the “Slope of Enlightenment” to a stable
“Plateau of Productivity”, marking phases of realistic growth and adoption.

2.2 Review and Synthesis of AI History Illustrations

In this section, we present illustrations of Al history. The insights and illustrations discussed
here are derived from a combination of sources, including scientific papers, blog posts, and
public presentations available on the internet, providing a comprehensive perspective on the
cyclical nature of Al development.

All available AI history illustrations were analyzed, as listed below: (Menzies, 2003;
Kautz, 2022; Noguchi et al., 2018; Toosi et al., 2021; Francesconi, 2022; Colliot, 2023; Har-
guess and Ward, 2022; Perspectives, 2020; Lu, 2022; Research and Analysis, 2020; Winiger,
2017; Altmann, 2023; Latta, 2021; Schuchmann, 2019; Lim, 2018; Solé, 2022).

To quantify “summer” and “winter”, a grading scale from +10 to -10 was used, normaliz-
ing each illustration to this same scale. This means that all figures receive a maximum value of
+10 when they visually reach their peak and -10 when they visually reach their lowest point.
This grading serves as an indication of “temperature,” verbally expressed as “Al summer”
(hot) or “AlI winter” (cold). The aggregated illustration is presented in Figure 3. This figure
also indicates that the period of active Semantic Web research is generally considered an Al
winter. Furthermore, none of the studies mention either the topic Semantic Web or Software
Agents as representing any form of Al boom in historical Al illustrations.

2.3 Summary of AI Illustrations

All AT history illustrations known to the authors of this study depict the period from 2000 to
2010 as an Al winter rather than a time of substantial research advancements. These accounts
consistently emphasize stagnation and minimal innovation, portraying this period as one char-
acterized by diminished funding, waning public interest, and a general lack of transformative
breakthroughs in AI. While some research activities continued during this time, the prevailing
perception is that AI did not experience any major surge or revolution.

Furthermore, none of the Al history illustrations reviewed in this study explicitly men-
tion Software Agents or the Semantic Web. This absence suggests that these topics were not
widely recognized or highlighted as pivotal elements within the broader narrative of Al devel-
opment during this period. Their exclusion reinforces the notion that this era was marked
more by stagnation than by the emergence of significant new paradigms or technologies.
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Fig. 3: History of Artificial Intelligence as illustrated by previous studies. Period of active
Semantic Web development is identified typically as AT Winter period

3 The Semantic Web and Its Vision of AI Software Agents
3.1 Software Agents Before Semantic Web

The 1990s witnessed the emergence of software agents as a concept in computer science,
driven by the need for autonomous and intelligent systems in increasingly complex environ-
ments. This decade saw the consolidation of core agent characteristics, including autonomy,
proactivity, reactivity, and social ability (Nwana, 1996; Wooldridge and Jennings, 1995). The
rapid expansion of the World Wide Web around 1994 underscored the potential for agents to
operate within this new digital space (Maes, 1994). Foundational research explored diverse
aspects of agent technology, from theoretical underpinnings and formal methods to practi-
cal applications for information management and personalized assistance (Wooldridge and
Jennings, 1995; Maes, 1994).

The development of various agent architectures, such as reactive, deliberative, and hybrid
models, further illustrated the field’s commitment to creating sophisticated autonomous
entities (Weiss, 1999). Researchers also focused on defining the boundaries of agency, dis-
tinguishing agents from conventional programs through taxonomies and formal definitions
(Franklin and Graesser, 1996). The intellectual roots of software agents were traced back
to Distributed Artificial Intelligence (DAI) and Carl Hewitt’s Actor model from 1977, high-
lighting the long-standing interest in distributed and interacting intelligent systems (Nwana,
1996; Hewitt, 1977; Wooldridge, 2009). This period laid a solid foundation for the subse-
quent exploration of synergies between software agents and emerging technologies like the
Semantic Web.



3.2 The Vision of the Semantic Web and Intelligent Agents

Tim Berners-Lee, James Hendler, and Ora Lassila, in their seminal 2001 paper “The Seman-
tic Web” (Berners-Lee et al., 2001), envisioned an evolution of the World Wide Web into a
more intelligent and interconnected system. This Semantic Web would be an infrastructure
where information has explicitly defined meaning, facilitating human-computer cooperation
and enabling machines to understand and process web data through a universal framework
of metadata and ontologies. This involved enriching web resources with semantic markup
using languages like RDF and OWL, making content machine-processable (McGuinness and
Van Harmelen, 2004). The goal was a transition from unstructured documents to intercon-
nected data, enhancing knowledge sharing, reuse, and integration (Shadbolt et al., 2006),
aligning directly with AT’s goals of machine understanding and reasoning (Berners-Lee et al.,
2001). As of the time of writing, this highly influential paper has garnered over 30,000
citations.

Intelligent agents were conceived as crucial actors within this vision, able to automatically
access, interpret, and reason about the semantically marked-up information (Hendler, 2001).
These agents would act on behalf of users, performing tasks such as information retrieval, ser-
vice discovery, automated decision-making (e.g., scheduling meetings or making purchases),
and seamless interaction across different platforms (Mcllraith et al., 2001). Personal assis-
tants, guided by rules, ontologies, and user profiles, were highlighted as prime examples of
potential applications (Lassila and Swick, 2001).

The paper’s emphasis on Al Software Agents, and the backgrounds of Hendler and
Lassila in intelligent agents and knowledge representation, underscore the Semantic Web’s
connection to advancing autonomous systems capable of reasoning, decision-making, and
communication (Berners-Lee et al., 2001). By leveraging standardized semantics, agents
could interpret and act upon information with greater sophistication. This vision linked the
future of the Semantic Web to developments in Al and positioned Software Agents as a criti-
cal component in realizing the Web’s full potential. While the full vision remains unrealized,
it remains a cornerstone in the intersection of Semantic Web technologies and Al Software
Agent development.

3.3 Key Enabling Technologies and the Semantic Web Stack

Several technologies were crucial for realizing the vision of the Semantic Web and its integra-
tion with intelligent agents. The Resource Description Framework (RDF) provided a standard
model for data interchange on the web, enabling the expression of relationships between
resources (Lassila and Swick, 1998). The Web Ontology Language (OWL), built upon RDF,
was designed to represent rich and complex knowledge about entities, their classifications,
and relationships (McGuinness and Van Harmelen, 2004; Horrocks et al., 2003). Ontologies,
formal and explicit specifications of shared conceptualizations, provided a common vocabu-
lary and understanding of specific domains, which was crucial for enabling agents to interpret
information consistently (Gruber, 1993).

Agent Communication Languages (ACLs), such as the Foundation for Intelligent Physical
Agents (FIPA) ACL (FIPA, 2002), were recognized as essential for facilitating interaction
and information exchange between autonomous agents. Furthermore, initiatives like OWL-S
(later known as DAML-S) (Martin et al., 2004) aimed to provide semantic descriptions of web



services, allowing agents to automatically discover, invoke, and compose these services based
on their semantic properties. The development of these technologies demonstrates a focused
effort to build the necessary infrastructure for intelligent agents to function effectively within
the Semantic Web, with a strong emphasis on knowledge representation (ontologies, RDF,
OWL) and inter-agent communication (ACLs, Semantic Web Services).

Figure 4 illustrates the ”Semantic Web Stack,” a layered architecture proposed by Tim
Berners-Lee for organizing the technologies of machine-readable web data (Berners-Lee,
2006). URIs and Unicode provide the foundation for identification and character encod-
ing. XML offers a syntax for structured documents, while RDF and RDF Schema (RDFS)
define a standardized way to describe resources and their relationships (Brickley and Guha,
2004). OWL builds on this to enable the creation of complex ontologies. Rule languages like
RIF (Rule Interchange Format) and SWRL (Semantic Web Rule Language), along with the
SPARQL query language, were intended to support inference and querying over this seman-
tically rich data (Horrocks et al., 2004). Higher layers of the stack were envisioned to handle
logical reasoning, proof verification, and trust establishment through cryptographic methods,
ultimately enabling applications with enhanced interoperability.

User Interface & applications |

Fig. 4: Semantic Web Stack by Tim Berners-Lee 2006 (Berners-Lee, 2006)

Figure 5 depicts Tim Berners-Lee’s 2003 “rollout vision” for the Semantic Web, pro-
jecting the integration of layered technologies from basic markup (SGML, XML, RDF) to
advanced constructs (OWL, DAML+OIL) and logic (Prolog, RuleML), culminating in proof
and trust mechanisms for automated reasoning and secure interoperability (Berners-Lee,
2003).

However, this vision was not fully realized. While RDF and OWL saw adoption in niche
areas, widespread uptake was hampered by competing technologies and shifting industry
priorities. The higher layers of the Semantic Web stack, particularly those based on formal
logics, faced limited adoption due to the complexity of technologies like OWL dialects and
fundamental differences in assumptions compared to traditional database systems. OWL’s
Open World Assumption (unknown facts are not presumed false) and lack of a Unique
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Fig. 5: The Semantic Web Wave 2003 by Tim Berners-Lee (Berners-Lee, 2003)

Names Assumption (identical names don’t necessarily mean identical entities) contrasted
with the closed-world and unique-names assumptions prevalent in many database applica-
tions. Despite initiatives like the W3C’s Semantic Web Activity program and efforts on Web
Services (e.g., OWL-S) to advance intelligent software agents as envisioned in the original
Semantic Web paper (Berners-Lee et al., 2001), this direction did not achieve the expected
success within the Semantic Web context.

3.4 Software Agents in the LLM Age 2017 onwards

The advent of large language models (LLMs) has dramatically reshaped the landscape of
software agent development, opening up new possibilities and challenges. Pre-LLM, agents
often relied on meticulously crafted rules, ontologies, and knowledge bases, limiting their
adaptability and generalizability (Wooldridge, 2009; Russell and Norvig, 2010). While these
approaches provided a degree of control and explainability, they struggled to handle the
complexity and ambiguity of real-world scenarios. LLMs, trained on massive datasets, offer
a fundamentally different approach. They possess an unprecedented ability to understand
and generate natural language, reason, and even exhibit some degree of common sense,
albeit imperfectly (Brown et al., 2020; Ouyang et al., 2022; Wei et al., 2022). This inherent
capability allows LLM-powered agents to interact with users and environments in a much
more natural and flexible way, reducing the need for extensive manual programming and
domain-specific knowledge engineering.

The integration of LLMs with agent frameworks has led to the emergence of "LLM-
powered agents” or "LLM agents,” capable of performing a wider range of tasks than their
predecessors. These agents can leverage LLMs for various functions, including natural lan-
guage understanding (NLU), natural language generation (NLG), planning, decision-making,
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and even tool use (Xi et al., 2023; Wang et al., 2023; Yang et al., 2023). For instance, an LLM
agent can be prompted to break down a complex task into smaller, manageable sub-tasks,
search the web for relevant information, interact with APIs to execute actions, and summa-
rize the results for the user (Yao et al., 2022; Shinn et al., 2023). Frameworks like LangChain
(Chase, 2022) and AutoGen (Wu et al., 2023) provide tools and abstractions to facilitate the
development and deployment of these agents, enabling developers to chain together LLM
calls, external tools, and custom logic. This marks a significant shift from symbolic Al to a
more data-driven, emergent approach to agent development.

Despite the significant advancements, LLM agents also present unique challenges. One
major concern is the potential for "hallucinations,” where the LLM generates plausible-
sounding but factually incorrect or nonsensical information (Ji et al., 2023). This can lead
to unreliable agent behavior and requires careful mitigation strategies, such as grounding
the LLM’s responses in external knowledge sources or employing techniques like retrieval-
augmented generation (RAG) (Lewis et al., 2020). Other challenges include ensuring the
safety and ethical behavior of agents, managing the computational cost of running large mod-
els, and addressing biases inherent in the training data (Bender et al., 2021; Weidinger et al.,
2021). Furthermore, the "black box” nature of LLMs can make it difficult to understand
the reasoning behind an agent’s actions, hindering debugging and limiting trust in critical
applications (Doshi-Velez and Kim, 2017).

The ongoing research in LLM-powered agents focuses on addressing these limitations
and exploring new capabilities. This includes developing methods for improving the factual
accuracy and reliability of LLMs, designing more robust and explainable agent architectures,
and creating effective evaluation metrics to assess agent performance across diverse tasks
(Nakano et al., 2021; Ram et al., 2023). The convergence of LLMs and software agents rep-
resents a significant step towards building more general-purpose, adaptable, and intelligent
systems, with the potential to transform how we interact with computers and automate com-
plex tasks. However, responsible development and deployment, with a keen awareness of the
inherent challenges, are crucial to realizing the full potential of this technology.

For example, Microsoft CEO Satya Nadella recently stated that Al-driven Software
Agents are fully revolutionizing business-to-business (B2B) applications. According to
Nadella, Al-driven agents will take over business logic and enable new Al-powered applica-
tions, placing software agents at the heart of the current Al hype. In December 2024, during
an episode of the BG2 Pod series, Nadella stated in the interview video (Nadella, 2024), e.g.,
that:

* “I think that the notion that business applications (B2B Apps) exist, that is probably where
they all collapse, in the (Software) Agent-era.”

* “Because if you think about it, they (B2B Apps) are essentially CRUD-databases with a
bunch of business logic. The business logic will go to these Agents. These Agents are going
to be multi-repo-CRUD so they are not going to discriminate between what the backend
is. They are going to be updating multiple databases. All the (business) logic will be in the
Al-tier (Agent-layer) so to speak.”

* “Once the Al-tier becomes the place where all the logic is, then people will start replacing
the backends.”
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* “As we speak, I think we are seeing quite high rates of wins in our Dynamics backends and
the Agent use. We will go very aggressive trying to collapse it all. Whether it is customer
service, be it finance and operations. ..”

* “People want more Al-native business apps. It means the logic tier can be orchestrated by
Al and AI Agents in a very seamless way.”

4 Academic Significance and Statistics

In this section, we use Google Scholar and other bibliometric tools to evaluate the significance
of the research wave surrounding the Semantic Web. By analyzing citation counts, publication
trends, and related metrics, we assess the impact and reach of Semantic Web research within
the academic community. This evaluation provides insight into how the Semantic Web con-
cept influenced subsequent studies, interdisciplinary collaborations, and its adoption in both
Al and broader technological domains. Such an analysis helps contextualize the Semantic
Web’s role in shaping research agendas and its interplay with advancements in Al, particularly
in the development of intelligent systems and software agents.

4.1 Was the Semantic Web a Significant Research Wave? - Google
Scholar Analysis
To assess the significance of the Semantic Web and its associated Al trends compared to

other common Al research themes, we conducted Google Scholar searches, with the results
presented in the Table 6.

Google Scholar Search Number of search results (2025/03)
Semantic Web 3 410 000

Semantic Web Artificial Intelligence | 1660000

Semantic Web Agents 1190 000

Semantic Web Software Agents 600 000

5940 000
7 250 000
5470000

Software Agents
Artificial Intelligence
Machine Learning

Neural Networks 4 850 000
Decision Tree 3 820000
Random Forest 3 950 000
Large Language Models 6 130 000
Backpropagation 1310000
Xgboost 150 000

Fig. 6: Academic search result hits from Google Scholar using different search terms without
time filters

The Semantic Web was undoubtedly a high-magnitude research wave, as evidenced by
3.41 million Google Scholar search results (March 2025). While broader topics like “Artificial
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Intelligence” (7.25M) and “Machine Learning” (5.47M) have higher volumes, the Seman-
tic Web’s specific focus on structured, meaningful data integration, along with its connection
to related areas such as Artificial Intelligence (1.66M) and Agents (1.19M), underscores
its significant impact. Despite its narrower scope, the Semantic Web established founda-
tional principles that continue to influence modern Al and data technologies, solidifying its
importance in the research landscape.

4.2 Semantic Web in Google Books

Google Books Ngram Viewer
0, “semantic web’ x @

1990 - 2022 - English ~ Case-insensitive Smoothing -

Fig. 7: Google Books: number of hits using “Semantic Web” as key words (Data not available
after 2022)

Figure 7 presents a screenshot from the Google Books Ngram Viewer, illustrating the
historical prominence of the term Semantic Web in English-language books from 1990 to
2022. The graph shows a significant rise in usage beginning in the early 2000s, coinciding
with the publication of the seminal 2001 paper by Tim Berners-Lee, James Hendler, and
Ora Lassila, which introduced the concept. Usage peaks between 2005 and 2010, reflecting
heightened academic and industrial interest in its potential to transform data structuring and
access on the Web. However, the decline after this peak suggests a waning emphasis on the
Semantic Web in scholarly and public discourse, possibly due to challenges in realizing its full
vision or a shift toward emerging technologies such as machine learning and deep learning.
This trend underscores the cyclical nature of technological interest, aligning with broader
discussions of the hype cycle.

4.3 When Did Software Agent Research Emerge?

One of the most promising future approaches is integrating software agents with large lan-
guage models (LLMs) to enable not only discussions but also the execution of actions and
commands by applications. To analyze the origins and activity trends of software agent
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Search: "Software Agents"

Search from Searchto Google Scholar: hits ) Google Books: frequency
1970 1974 7 i]
1975 1579 12 i}
1980 1984 8 | 5,00€-09
1985 1989 39 | 1,00€-08
1990 1904 | 463 B 5,00€-08
1995 199 [ ] 6320 R s00c07
2000 2000 HEENG70 | BT as0e07
2005 2000 MGG = BT s00e07
2010 2014 NG00 |HT 250607
2015 202 NG00 | 2}00€-07
2020 2024 R 13700 B 2,206-07

Fig. 8: Search results with “Software Agents” with five year time intervals Google Scholar
(hits) and Google Books (frequencies)

research, we compiled statistics from Google Scholar and Google Books Ngram Viewer, with
the results presented in Figure 8.

Google Scholar searches indicate that the term “Software Agents” appeared with minimal
activity in the 1970s and 1980s, with only a handful of mentions. Significant growth occurred
in the 1990s, reaching 463 results between 1990 and 1994. The field experienced exponential
growth after 2000, peaking between 2005 and 2015, with over 16,000 search results in each
five-year period. Activity has slightly declined in recent years, with 15,400 results from 2015
to 2020 and a projected 13,700 from 2020 to 2024, indicating sustained but slightly reduced
interest in the field.

Figure 8 highlights the historical prominence of the term “Software Agents” in English-
language books from 1990 to 2019, showing a significant rise in usage between 2000 and
2010. This trend suggests that Software Agent research received substantial attention dur-
ing this period, coinciding with the heightened focus on the Semantic Web. The overlap
is noteworthy, as the original Semantic Web vision in 2001 envisioned a machine-readable
web where Software Agents could perform complex tasks on behalf of users. The simul-
taneous growth in interest in Software Agents and the Semantic Web underscores their
interconnectedness, with Software Agents positioned as a key application of Semantic Web
technologies. This period represents a peak in academic and industrial enthusiasm for intel-
ligent, autonomous systems capable of leveraging structured web data, aligning with broader
trends in artificial intelligence research.

The illustration in Figure 9 depicts the number of Google Scholar search hits for the gen-
eral terms Software Agent and specific combination “Software Agents” from 1990 to 2010,
highlighting their academic prevalence over time. The data indicates a steady increase in pub-
lications for both terms, with Software Agent experiencing continuous growth and peaking
around 2010 at approximately 413,000 hits. In contrast, the more specific term “Software
Agents” saw rapid growth until about 2005, reaching a peak of approximately 5,230 hits
before experiencing a slight decline. This suggests that while interest in the broader concept
of software agents continued to grow, research using the specific phrase ”Software Agents”
peaked mid-decade before stabilizing or declining.
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Fig. 9: Citation Trends in Software Agent Research: Google Scholar Cites Per Year. Data
extracted from Google Scholar.

5 Discussion

This paper has provided a review and synthesis of previous studies on Al history, particu-
larly the cycles of Al summers and Al winters in Section 2. We introduced a normalized
temperature scale to quantify these fluctuations. Section 3 explored the Semantic Web’s foun-
dational vision and its relationship with Al-driven Software Agents, while Section 4 analyzed
bibliometric data and academic trends, highlighting the Forgotten AT Wave.

5.1 Software Agents: A Hot Topic—But Where Did They Come From?

As discussed in Section 3.4, Software Agents are currently a hot topic, with Microsoft’s CEO
recently predicting that Al-driven Software Agents will disrupt B2B software applications.

Where did agents originate? Al history is marked by cycles of optimism and setbacks.
In Section 2, we reviewed prior studies and illustrations of Al history, concluding that the
Semantic Web and Software Agents represent a neglected phase in AI’s evolution. This
section explores why this research wave did not gain widespread recognition, the challenges
that limited its impact, and how modern Al developments may revive its core principles.

5.2 Was the Term Artificial Intelligence a Curse?

A key question arises: Why wasn’t the Semantic Web recognized as a distinct Al wave? As
revisited in Section 3, the original Semantic Web vision in 2001 sought to create a machine-
readable web enabling intelligent reasoning and automation. Software Agents played a central
role, designed to operate autonomously, interact with structured data, and execute user tasks.
During the early 2000s, Semantic Web research saw a surge in academic publications and
funding, as evidenced by our citation analysis.

One possible explanation, as suggested by Ora Lassila in his keynote talk (Lassila, 2024),
is that Artificial Intelligence was perceived negatively at the time, leading researchers to
distance themselves from the term. Instead, they used alternatives terms, such as Software
Agents and Knowledge Representation. A similar trend occurred in the early 1980s when

15



Geoffrey Hinton and other researchers avoided using the term Neural Networks due to its
controversial status within the AT community (Ford, 2018).

5.3 Why Didn’t Software Agents on the Semantic Web Succeed?

Despite initial momentum, the Semantic Web failed to become a mainstream Al paradigm.
One primary reason was the dominance of symbolic reasoning and logic-based Al at the time,
which contrasted with the statistical and data-driven approaches that later fueled AI’s success.
Software Agents lacked access to the powerful natural language processing (NLP) and deep
learning techniques that characterize modern Al applications.

Although the Semantic Web did not achieve its grand vision of intelligent software agents,
its principles are resurfacing in contemporary Al, particularly through Large Language
Models (LLMs) and Al-driven Software Agents.

5.4 Revisiting the Semantic Web in the Age of LLMs

Recent advancements highlight the renewed relevance of Semantic Web concepts such as
structured knowledge representation, reasoning, and autonomous agents. Knowledge graphs,
an evolution of Semantic Web technologies, are widely used by companies like Google
and Microsoft to enhance Al-driven search and recommendation systems. Moreover, mod-
ern Software Agents are now integrated with LLMs, enabling them to interpret unstructured
text, execute commands, and autonomously interact with various data sources—efTectively
realizing the Semantic Web’s vision through alternative means.

A growing emphasis on Al explainability, data provenance, and structured knowledge
integration suggests that Semantic Web technologies could find new applications in the evolv-
ing Al landscape. Hybrid neuro-symbolic Al approaches that combine statistical learning
with symbolic reasoning may leverage the Semantic Web’s structured data to enhance Al
reasoning and interpretability.

5.5 Lessons from the Forgotten A1 Wave

The Semantic Web’s history offers valuable lessons on AI’s cyclical evolution. The shift
from logic-based Al to deep learning was not a rejection of earlier methods but rather an
adaptation to technological constraints and industry priorities. As Al progresses, integrating
structured knowledge with modern techniques could yield more powerful, interpretable, and
autonomous systems.

Recognizing the Semantic Web as part of AI’s history provides a more comprehensive
view of technological evolution. Instead of seeing it as a failed wave, we can understand it as
a crucial step in AI's development—one whose principles may yet play a key role in the next
generation of intelligent systems.

6 Conclusion: Reintegrating the Semantic Web into AI’s
History

Our key contributions in this paper are as follows:
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* We reviewed previous illustrations of Al history and synthesized them into a uniform scale
in Section 2.

* We identified the Semantic Web and Software Agents as a forgotten wave of Artificial
Intelligence by connecting them to the current AI boom and analyzing academic statistics,
as discussed in Section 1 and Section 4.

The Semantic Web represents a significant yet often underappreciated chapter in the evo-
lution of artificial intelligence. Emerging in the early 2000s, its vision of a machine-readable
web, capable of empowering Al-driven Software Agents, promised transformative applica-
tions ranging from intelligent automation to advanced data integration. While the grand vision
articulated by Tim Berners-Lee, James Hendler, and Ora Lassila remains unrealized in its
entirety, its influence on structuring and interpreting web data continues to resonate in modern
technologies, including knowledge graphs, ontologies, and interoperability standards.

In this paper, we revisited the academic and industrial impact of the Semantic Web, using
bibliometric analysis and historical context to argue for its rightful place within AI’s broader
narrative of hype cycles, Al winters, and eventual breakthroughs. In particular, the over-
looked connection between the Semantic Web and Al Software Agent research from 2000
to 2010 highlights its contributions to advancing intelligent systems. Despite challenges in
achieving widespread adoption and the subsequent shift in focus toward machine learning and
deep learning paradigms, the Semantic Web established foundational principles that remain
relevant to contemporary Al development.

Recognizing the contributions of the Semantic Web enriches our understanding of AI's
history and underscores the importance of examining past technological waves to draw
lessons for the future. By reintegrating this forgotten wave into AI’s historical discourse, we
gain a more comprehensive perspective on the cyclical nature of innovation and the interplay
between vision and practicality in shaping technological progress.
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