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Semantic Web – A Forgotten Wave of
Artificial Intelligence?

Abstract. The history of Artificial Intelligence (AI) is a narrative of waves—rising
optimism followed by crashing disappointments. AI winters, such as the early
2000s, are often remembered as barren periods of innovation. This paper argues
that such a perspective overlooks a crucial wave of AI that seems to be forgotten:
the rise of the Semantic Web, which is based on knowledge representation, logic,
and reasoning, and its interplay with intelligent Software Agents. Fast forward to
today, and ChatGPT has reignited AI enthusiasm, built on deep learning and ad-
vanced neural models. However, before Large Language Models (LLMs) domi-
nated the conversation, another ambitious vision emerged—one where AI-driven
Software Agents autonomously served Web users based on a structured, machine-
interpretable Web. The Semantic Web aimed to transform the World Wide Web
into an ecosystem where AI could reason, understand, and act. Between 2000 and
2010, this vision sparked a significant research boom, only to fade into obscurity
as AI’s mainstream narrative shifted elsewhere. Today, as LLMs edge toward au-
tonomous execution, we revisit this overlooked wave. By analyzing its academic
impact through bibliometric data, we highlight the Semantic Web’s role in AI his-
tory and its untapped potential for modern Software Agent development. Recog-
nizing this forgotten chapter not only deepens our understanding of AI’s cyclical
evolution but also offers key insights for integrating emerging technologies.

Keywords. Artificial Intelligence, Software Agents, Semantic Web, World Wide
Web, Hypertext

1. Introduction

The notion of Artificial Intelligence (AI) as a distinct discipline within Computer Science
was introduced in 1956 at a workshop at Dartmouth College by early pioneers such as
John McCarthy, Marvin Minsky, and others. Since then, the history of AI has experienced
recurring cycles of enthusiasm and subsequent disillusionment, commonly referred to as
“AI summers” and “AI winters” [1]. An AI winter refers to a period of reduced funding,
interest, and progress in AI research, typically following unmet expectations or techno-
logical limitations. In contrast, an AI summer denotes a phase of heightened enthusi-
asm, investment, and innovation, often driven by breakthroughs in algorithms, comput-
ing power, or applications. These cycles are associated with two main approaches to cre-
ating AI: symbolic (“white box”) approaches, based on explicit knowledge representa-
tion, logic, reasoning, and search, and sub-symbolic (“black box”) approaches, based on
neural networks, machine learning, and statistical models.

Following the first AI summer in the 1960s, the first AI winter occurred in the 1970s
after it was argued in [2] that sub-symbolic neural networks (then based on single-layer
perceptron) would never be useful for solving real-world tasks. As a response, the sym-
bolic approach, including knowledge-based expert systems and logic programming, fu-
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elled the next AI summer in the 1980s. However, challenges in, e.g., knowledge repre-
sentation and acquisition [3] soon led to another AI winter. Research on multi-layer sub-
symbolic neural models and learning systems continued despite—or perhaps because
of—the shortcomings of the knowledge-based approach. By expanding machine learning
models through deep learning, employing new training algorithms such as backpropaga-
tion, introducing novel neural architectures and non-linear activation functions, leverag-
ing Big Data from the Web and available databases for training, , and by using new effi-
cient AI chips for parallel neural computations AI has entered an unprecedented summer
in the 2020s [4]. A prominent research topic today, aimed at addressing challenges in
neural systems such as hallucinations, is the combination of symbolic and sub-symbolic
approaches in neuro-symbolic (hybrid) AI systems [5,6].

The early 2000s are often labelled as an AI winter, with little recognition of the rel-
evant AI research conducted during that time. However, this narrative overlooks signif-
icant developments from that era, including the emergence of the Semantic Web, which
gained momentum in 2001 [7,8]. Although rooted in knowledge representation, logic,
reasoning, and ontologies—core subjects of traditional symbolic AI—this branch of re-
search is typically not classified as part of AI. For example, in the authoritative ACM
Computing Classification System1 of Computer Science, AI is a major first-level cat-
egory under Computing Methodologies while Semantic Web is only mentioned under
the minor category under Information Systems. According to the original Semantic Web
vision outlined in 2001 [7], the Semantic Web is centered around intelligent agents on
the Web. The category of Intelligent Agents can be found as a minor subcategory under
Artificial Intelligence. This categorization issue is also illustrated in Figure 1.

Computing Methodologies

Artificial Intelligence (AI)

Information Systems

World Wide Web

Distributed Computing

Semantic Web

Overlapping Concepts

Semantic Web Description Languages

Classified under Web, not AI

Multi-agent Systems Intelligent Agents Mobile Agents Cooperation and Coordination

Web Data Description Languages

AI Winter (Early 2000s)

Limited Recognition

Figure 1. Categorization issue: Semantic Web research vision had strong artificial intelligence focus but it is
categorized under WWW branch

Even review papers on the Semantic Web do not focus on the AI or Software Agent
research conducted during that period within the Semantic Web domain. For example,
Hitzler [9] provides a comprehensive review of the Semantic Web, detailing its evolution,
core principles, and ongoing challenges. The paper highlights how the Semantic Web
extends the traditional Web by incorporating structured and linked data to enhance ma-
chine interoperability. Key technologies [10] such as RDF (Resource Description Frame-
work), OWL (Web Ontology Language), and SPARQL are discussed, emphasizing their
roles in enabling semantic interoperability. In addition, the paper explores real-world ap-

1ACM Computing Classification System: https://dl.acm.org/ccs

https://dl.acm.org/ccs
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plications in domains such as AI, knowledge graphs, and data integration. Hitzler also
addresses challenges such as scalability, reasoning complexity, and data quality, under-
scoring the need for continued research and development to fully realize the Semantic
Web’s potential.

The rapid advancement of Generative Artificial Intelligence (GAI) and the widespread
adoption of Large Language Models (LLMs) were catalyzed by the introduction of the
Transformer architecture, which enabled more efficient training and superior contextual
understanding in deep learning models [11,4]. This breakthrough laid the foundation for
applications such as ChatGPT, which demonstrated the potential of LLMs in generating
human-like text, leading to a surge in research and commercial interest. More recently,
the focus has expanded beyond standalone LLMs to the integration of Software Agents
and agentic capabilities, where models exhibit autonomy, goal-directed behaviour, and
enhanced reasoning abilities [12,13]. These agentic systems, which incorporate plan-
ning, memory, and interaction mechanisms, are now being extensively studied to aug-
ment the functionality of LLMs, enabling them to operate dynamically in complex envi-
ronments, solve multi-step problems, and interact more effectively with users and digital
ecosystems.

It appears that for some reason the Semantic Web is a forgotten wave of AI although
the current AI trend is very much happening on the Web. To study and analyze this
argument, we review previous trend analyses related to the Semantic Web and AI and
present statistical analyses of academic literature on these topics.

The remainder of this paper is structured as follows.

• Section 2 provides an overview of the AI hype cycle, detailing the recurring pat-
terns of “AI summers” and “AI winters”. We review and synthesize insights from
previous studies on AI history and introduce a normalized “temperature” scale to
quantify these fluctuations.

• Section 3 explores the concept of the Semantic Web, its foundational vision, and
its relationship with AI-driven Software Agents.

• Section 4 presents an analysis of bibliometric data and academic trends related to
Semantic Web and Software Agent research. We examine search term frequencies
and notable researcher contributions to illustrate the presence of the “Forgotten AI
Wave”.

• Section 5 provides a critical discussion of our findings, highlighting the broader
implications of the legacy of the Semantic Web, its challenges, and its potential
resurgence in modern AI research.

• Section 6 summarizes the key takeaways from our study and outlines directions
for future research at the intersection of the Semantic Web and contemporary AI
advancements.

2. AI Summers and Winters

In this section, we first discuss the general hype cycle model, a framework used to de-
scribe the waves of enthusiasm followed by subsequent disappointment that technolog-
ical fields often experience. This pattern, commonly referred to as the “hype cycle,”,
has been observed in various industries and technologies.nWe then review and synthe-
size illustrations of AI history, exploring the alternate periods of “AI winters” and “AI
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summers” and placing them on a normalized scale. These phases highlight the cycles of
overenthusiasm, disillusionment, and eventual productivity, from the early promises of
symbolic AI to the breakthroughs of the deep learning revolution.

The Hype Cycle The hype cycle model, introduced by Gartner Inc. in 1995, [14]
illustrates the evolution of technological expectations over time. As shown in Figure 2
[14], the model is formed by merging two distinct curves: a human-centric expectation
curve, represented by the dashed blue line, and a classical technology maturity S-curve,
represented by the dotted green line. The first equation describes the hype level, which
follows a bell-shaped curve driven by excitement, social contagion, and heuristic deci-
sion making. This curve captures the tendency of people to overestimate the potential
of a technology, leading to an initial peak of inflated expectations, followed by a sharp
decline when real-world limitations become evident.

Figure 2. Hype Cycle: Hype Level, Engineering or Businessa Maturity and combination Hype Cycle [14]

The second equation, the S-curve of technological maturity, represents the gradual
advancement of a technology over time. Initially, progress is slow due to limited under-
standing and minimal performance gains from early investments. However, as knowl-
edge accumulates and improvements accelerate, the technology experiences rapid devel-
opment until it eventually stabilizes at a plateau defined by its inherent limitations. To-
gether, these two curves form the hype cycle (solid gray line), which models the typical
trajectory of emerging technologies, highlighting both the initial overhype and the even-
tual stabilization at a realistic level of maturity. The stages outlined in the hype cycle
depicted in Figure 2 are:

1. Innovation Trigger: A new technology or concept emerges, generating early
excitement and media interest, although practical applications are not yet fully
understood.

2. Peak of Inflated Expectations: Media hype and early success stories fuel high
expectations, leading to overenthusiasm and unrealistic predictions about the
technology’s potential, with many projects launched but most failing to deliver.

3. Trough of Disillusionment: Initial excitement fades as challenges and limita-
tions become evident, causing skepticism due to failed projects and unmet expec-
tations, leading to a decline in interest and reduced investments.
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4. Slope of Enlightenment: A gradual understanding of the technology’s real po-
tential and limitations develops, leading to practical applications and increasing
adoption as early adopters recognize value in realistic use cases.

5. Plateau of Productivity: The technology becomes mainstream and widely
adopted, with stable, practical use cases delivering real benefits, achieving sus-
tainable growth and a proven track record.

Although the hype-cycle is typically illustrated as a single expectation curve, it ac-
tually overlays the S-curve of technology diffusion; how these two curves interact de-
termines both the tempo and the amplitude of successive boom-and-bust phases, yet this
relationship remains only sketchily articulated in the literature. Consequently, existing
research offers limited guidance on when firms and investors should initiate, scale, or
exit their involvement in order to capture upside while containing downside risk. Closing
this gap will require analytical frameworks that fuse expectation dynamics with adoption
kinetics and strategic positioning along the hype-cycle.

Review and Synthesis of AI History Illustrations In the following we synthesise
evidence from peer-reviewed papers, technical blogs, and public presentations to trace
the recurring boom-and-bust pattern that has characterised artificial-intelligence research
and commercialisation. Importantly, AI is not a single invention but a shifting portfolio
of techniques – from symbolic reasoning and expert systems to machine learning, deep
learning, and today’s large-scale generative models. Each element in this portfolio fol-
lows its own trajectory, so the broad history of AI is best understood as the superposition
of many overlapping hype cycles rather than one monolithic wave.

Take software agents as an illustrative example. Introduced in the early 1990s, agent
technology ascended to widespread media enthusiasm, encountered technical and mar-
ket barriers, resurfaced with the rise of web services, and is now experiencing renewed
interest through autonomous AI assistants. In other words, the same underlying concept
has already traversed the Gartner hype-cycle several times.

Viewed in aggregate, these technology-specific curves explain why the field repeat-
edly climbs to a Peak of Inflated Expectations, descends into a Trough of Disillusionment,
and, where genuine utility is present, climbs the Slope of Enlightenment to a durable
Plateau of Productivity. Recognising AI as a constellation of evolving technologies helps
clarify why optimism and disappointment can coexist—and why practical value often
emerges only after multiple passes through the cycle.

All available AI history illustrations were analyzed, as listed below: [15,16,17,18,
19,20,21,22,23,24,25,26,27,28,29,30].

To quantify “summer” and “winter”, a grading scale from +10 to -10 was used,
normalizing each illustration to this same scale. This means that all figures receive a
maximum value of +10 when they visually reach their peak and -10 when they visually
reach their lowest point. This grading serves as an indication of “temperature,” verbally
expressed as “AI summer” (hot) or “AI winter” (cold). The aggregated illustration is
presented in Figure 3. This figure also indicates that the period of active Semantic Web
research is generally considered an AI winter. Furthermore, none of the studies mention
either the topic Semantic Web or Software Agents as representing any form of AI boom
in historical AI illustrations.

AI history illustrations known to the authors of this study depict the period from
1995 to 2010 as an AI winter rather than a time of substantial research advancements.
These accounts consistently emphasize stagnation and minimal innovation, portraying
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Figure 3. History of Artificial Intelligence as illustrated by previous studies. Period of active Semantic Web
development is identified typically as AI Winter period

this period as one characterized by diminished funding, waning public interest, and a
general lack of transformative breakthroughs in AI. While some research activities con-
tinued during this time, the prevailing perception is that AI did not experience any major
surge or revolution.

Furthermore, none of the AI history illustrations reviewed in this study explicitly
mention Software Agents or the Semantic Web. This absence suggests that these topics
were not widely recognized or highlighted as pivotal elements within the broader narra-
tive of AI development during this period. Their exclusion reinforces the notion that this
era was marked more by stagnation than by the emergence of significant new paradigms
or technologies.

3. The Semantic Web and Its Vision of AI Software Agents

Hype Cycles: Software Agent Technology Software agent technology has gone through
a hype cycle a couple of times during its history. The following quote is from 1996:

”Agents are here to stay, not least because of their diversity, their wide range of appli-
cability and the broad spectrum of companies investing in them. As we move further
and further into the information age, any information-based organization which does
not invest in agent technology may be committing commercial hara-kiri.” [31]

Authors of the above quote wrote another article a few years later [32] stating that
the assumptions were too high. If anything, companies that invested in agent technology
in the 1990s were perhaps the ones to commit a form of hara-kiri.

Recently, in December 2024, Microsoft CEO Satya Nadella stated that AI-driven
software agents are fully revolutionizing business-to-business (B2B) applications. Ac-
cording to Nadella, AI-driven agents will take over business logic and enable new AI-
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powered applications, placing software agents at the heart of the current AI hype. The
full quote from an episode of the BG2 Pod series, where Nadella stated in an interview
video [33], e.g., is:

“I think that the notion that business applications (B2B Apps) exist, that is probably
where they all collapse, in the (Software) Agent-era.” – “Because if you think about
it, they (B2B Apps) are essentially CRUD-databases with a bunch of business logic.
The business logic will go to these Agents. These Agents are going to be multi-repo-
CRUD so they are not going to discriminate between what the backend is. They are
going to be updating multiple databases. All the (business) logic will be in the AI-tier
(Agent-layer) so to speak.” “Once the AI-tier becomes the place where all the logic
is, then people will start replacing the backends. – As we speak, I think we are seeing
quite high rates of wins in our Dynamics backends and the Agent use. We will go
very aggressive trying to collapse it all. Whether it is customer service, be it finance
and operations. . . ” – “People want more AI-native business apps. It means the logic
tier can be orchestrated by AI and AI Agents in a very seamless way.”

Obviously, noting that agent technology has had inflated expectations in the past
does not prove anything about the future. This time, it might be different, as the overall
technology infrastructure has evolved significantly since the 1990s. We also have to re-
member that, for example, neural networks have experienced several hype cycles before
the major breakthrough in the 2010s.

Software Agents Before the Semantic Web Long before the Web era, the con-
ceptual foundations for software agents was established by research in Distributed Ar-
tificial Intelligence (DAI) and the Actor model [34]. DAI cast intelligence as an emer-
gent phenomenon arising from multiple, loosely-coupled problem solvers that cooperate
across a network, thereby elevating autonomy and negotiation to primary design con-
cerns [35,36]. In parallel, the Actor model supplied a concrete computational metaphor
of independent, concurrently executing entities that communicate solely through asyn-
chronous message passing. Together these two traditions contributed the twin conceptual
pillars of distribution and concurrency, which later researchers distilled into the now-
standard agent properties of social ability and proactive–reactive behaviour [37].

The 1990s witnessed the emergence of software agents as a concept in computer sci-
ence, driven by the need for autonomous and intelligent systems in increasingly complex
environments. This decade saw the consolidation of core agent characteristics, including
autonomy, proactivity, reactivity, and social ability [31,38]. The rapid expansion of the
World Wide Web around 1994 underscored the potential for agents to operate within this
new digital space [39]. Foundational research explored diverse aspects of agent tech-
nology, from theoretical underpinnings and formal methods to practical applications for
information management and personalized assistance [38,39].

The development of various agent architectures, such as reactive, deliberative, and
hybrid models, further illustrated the field’s commitment to creating sophisticated au-
tonomous entities [40]. Researchers also focused on defining the boundaries of agency,
distinguishing agents from conventional programs through taxonomies and formal def-
initions [41]. The intellectual roots of software agents were traced back to Distributed
Artificial Intelligence (DAI) and Carl Hewitt’s Actor model from 1977, highlighting the
long-standing interest in distributed and interacting intelligent systems [31,34,37].
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From Definitions to Standards.The explicit taxonomies and formal definitions pro-
duced during this period played a pivotal role in standardising the concept of agency. By
establishing a common vocabulary, they enabled the Foundation for Intelligent Physical
Agents (FIPA) to publish its initial specifications—most notably the FIPA Agent Commu-
nication Language (FIPA ACL) and a reference architecture that has since underpinned
almost every industrial-grade multi-agent platform [42]. These efforts, together with sub-
sequent W3C initiatives (e.g. the Agent Markup Language submission), ensured that later
Semantic-Web agents could interoperate across organisational and domain boundaries
on the basis of well-defined semantics rather than ad-hoc conventions.

The Vision of the Semantic Web and Intelligent Agents Tim Berners-Lee, James
Hendler, and Ora Lassila envisioned in their seminal 2001 paper “The Semantic Web” [7]
an evolution of the World Wide Web into a more intelligent and interconnected system.
This Semantic Web would be an infrastructure where information has explicitly defined
meaning, facilitating human-computer cooperation and enabling machines to understand
and process web data through a universal framework of metadata and ontologies. This
involved enriching web resources with semantic markup using languages like RDF and
OWL, making content machine-processable [43]. The goal was a transition from unstruc-
tured documents to interconnected data, enhancing knowledge sharing, reuse, and inte-
gration [44], aligning directly with AI’s goals of machine understanding and reasoning
[7]. This highly influential paper has garnered over 30 000 citations by today.

Intelligent agents were conceived as crucial actors within this vision, able to au-
tomatically access, interpret, and reason about the semantically marked-up information
[45]. These agents would act on behalf of users, performing tasks such as information re-
trieval, service discovery, automated decision-making (e.g., scheduling meetings or mak-
ing purchases), and seamless interaction across different platforms [46]. Personal assis-
tants, guided by rules, ontologies, and user profiles, were highlighted as prime examples
of potential applications [47].

Realising this vision depends on the ability of autonomous agents to converse. The
FIPA ACL specification meets this requirement by supplying a performative-based mes-
sage envelope whose semantics are defined in a modal logic of communicative acts [48].
When the content field of such messages is expressed in RDF or OWL, the resulting
utterances are simultaneously interpretable at the data and the speech-act levels, thereby
enabling richly contextualised dialogues among heterogeneous Web agents [49]. Ac-
cordingly, ACLs form the critical bridge between the Semantic Web’s data layer and the
multi-agent community’s interaction layer.

The paper’s emphasis on AI Software Agents, and the backgrounds of Hendler
and Lassila in intelligent agents and knowledge representation, underscore the Seman-
tic Web’s connection to advancing autonomous systems capable of reasoning, decision-
making, and communication [7]. By leveraging standardized semantics, agents could in-
terpret and act upon information with greater sophistication. This vision linked the future
of the Semantic Web to developments in AI and positioned Software Agents as a critical
component in realizing the Web’s full potential. While the full vision remains unreal-
ized, it remains a cornerstone in the intersection of Semantic Web technologies and AI
Software Agent development.

Key Enabling Technologies and the Semantic Web Stack Several technologies
were crucial for realizing the vision of the Semantic Web and its integration with intel-
ligent agents. The Resource Description Framework (RDF) provided a standard model



May 2025

for data interchange on the web, enabling the expression of relationships between re-
sources [50]. The Web Ontology Language (OWL), built upon RDF, was designed to rep-
resent rich and complex knowledge about entities, their classifications, and relationships
[43,51]. Ontologies, formal and explicit specifications of shared conceptualizations, pro-
vided a common vocabulary and understanding of specific domains, which was crucial
for enabling agents to interpret information consistently [52].

Agent Communication Languages (ACLs), such as the Foundation for Intelligent
Physical Agents (FIPA) ACL [53], were recognized as essential for facilitating interac-
tion and information exchange between autonomous agents. Furthermore, the DAML-S
ontology—renamed OWL-S after the release of OWL [54] was created to add a machine-
interpretable semantic layer to conventional web service descriptions. It exposes three
mutually supportive components: a Service Profile that advertises what the service does,
a Process Model that specifies how the service can be executed, and a Grounding that
binds abstract inputs and outputs to concrete message exchanges. Together these compo-
nents allow an intelligent agent to match its goals to advertised profiles and thus discover
relevant services, to use the process model and grounding information to construct and
send the correct messages for direct invocation, and to chain multiple process models into
coherent workflows for automatic composition of complex tasks. The development of
DAML-S/OWL-S therefore represents a focused effort to supply the semantic infrastruc-
ture—rooted in ontologies, RDF, and OWL—along with the inter-agent communication
mechanisms required for truly autonomous agents on the Semantic Web.

Software Agents in the LLM Age 2017 onwards The advent of large language
models (LLMs) after the advent of the Transformer [11] has dramatically reshaped the
landscape of software agent development, opening up new possibilities and challenges.
Pre-LLM, agents often relied on meticulously crafted rules, ontologies, and knowledge
bases, limiting their adaptability and generalizability [37,55]. While these approaches
provided a degree of control and explainability, they struggled to handle the complexity
and ambiguity of real-world scenarios. LLMs, trained on massive datasets, offer a fun-
damentally different approach. They possess an unprecedented ability to understand and
generate natural language, reason, and even exhibit some degree of common sense, albeit
imperfectly [56,57,58]. This inherent capability allows LLM-powered agents to interact
with users and environments in a much more natural and flexible way, reducing the need
for extensive manual programming and domain-specific knowledge engineering.

The integration of LLMs with agent frameworks has led to the emergence of ”LLM-
powered agents” or ”LLM agents,” capable of performing a wider range of tasks than
their predecessors. The simple definition for an LLM Agent is an artificial entity with
prompt specifications (initial state), conversation trace (state), and ability to interact with
the environments such as tool usage (action) [59,60]. These agents can leverage LLMs
for various functions, including natural language understanding (NLU), natural language
generation (NLG), planning, decision-making, and even tool use [61,62,63]. For in-
stance, an LLM agent can be prompted to break down a complex task into smaller, man-
ageable sub-tasks, search the web for relevant information, interact with APIs to exe-
cute actions, and summarize the results for the user [13,64]. Frameworks like LangChain
[65] and AutoGen [66] provide tools and abstractions to facilitate the development and
deployment of these agents, enabling developers to chain together LLM calls, external
tools, and custom logic. This marks a significant shift from symbolic AI to a more data-
driven, emergent approach to agent development.
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Despite the significant advancements, LLM agents also present unique challenges.
One major concern is the potential for ”hallucinations,” where the LLM generates
plausible-sounding but factually incorrect or nonsensical information [67]. This can lead
to unreliable agent behavior and requires careful mitigation strategies, such as ground-
ing the LLM’s responses in external knowledge sources or employing techniques like
retrieval-augmented generation (RAG) [68]. Other challenges include ensuring the safety
and ethical behavior of agents, managing the computational cost of running large mod-
els, and addressing biases inherent in the training data [69,70]. Furthermore, the ”black
box” nature of LLMs can make it difficult to understand the reasoning behind an agent’s
actions, hindering debugging and limiting trust in critical applications [71].

The ongoing research in LLM-powered agents focuses on addressing these limi-
tations and exploring new capabilities with the emerging multi-agent systems (MAS).
This includes developing methods for improving the factual accuracy and reliability of
LLMs, designing more robust and explainable agent architectures, and creating effective
evaluation metrics to assess agent performance across diverse tasks [72,73]. The conver-
gence of LLMs and software agents represents a significant step towards building more
general-purpose, adaptable, and intelligent systems, with the potential to transform how
we interact with computers and automate complex tasks. However, responsible develop-
ment and deployment, with a keen awareness of the inherent challenges, are crucial to
realizing the full potential of this technology.

Could Semantic Web Principles Complement LLMs? Unlike the high-dimensional
token spaces in which large language models (LLMs) operate, an ontology offers a
canonical, machine-interpretable vocabulary of entities, relations and axioms. Mapping
generated spans to URI-identified concepts therefore gives each symbol an unambiguous
referent, providing the first step toward faithful explanations [74]. OWL and RDF guar-
antee sound, monotonic inference but require careful manual modelling, limit expressiv-
ity to stay decidable, adopt an Open World Assumption and incur worst-case exponential
reasoning cost. LLMs sit at the opposite end of the spectrum: they learn broad coverage
automatically, answer in closed-world style with constant-time decoding, and tolerate
noisy data—yet offer no built-in notion of truth, identity or provenance. Combining the
two thus pairs the symbolic rigour of OWL/RDF with the statistical reach of LLMs.

• Pattern 1 – ontology-constrained decoding During generation the model is
prompted or fine-tuned so that every entity mention must be resolvable to an on-
tology concept; illegal continuations are pruned. This drastically reduces halluci-
nations and yields provenance for every token. A practical example is the plant-
disease classifier of [75], where OWL reasoning is used online to check that the
captioned visual attributes entail a unique disease class.

• Pattern 2 – knowledge graph RAG. Retrieval-augmented generation in which
the retriever indexes a knowledge graph rather than free text grounds answers in
triples whose semantics are explicit. Recent systems such as ITEMIZE show that
even small models achieve state-of-the-art accuracy and produce subgraph-level
rationales that users can inspect [76].

• Pattern 3 – neuro-symbolic post-hoc explanation. After an LLM produces an
answer, a reasoning engine aligns the answer with the ontology, derives mini-
mal entailment paths, and verbalises them as “because-clauses.” Confalonieri and
Guizzardi identify reference modelling, commonsense reasoning and knowledge-
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refinement as the three main roles ontologies play in such explanatory pipelines
[74].

4. Academic Significance and Statistics

In this section, we use Google Scholar and other bibliometric tools to evaluate the signifi-
cance of the research wave surrounding the Semantic Web. By analyzing citation counts,
publication trends, and related metrics, we assess the impact and reach of Semantic Web
research within the academic community. This evaluation provides insight into how the
Semantic Web concept influenced subsequent studies, interdisciplinary collaborations,
and its adoption in both AI and broader technological domains. Such an analysis helps
contextualize the Semantic Web’s role in shaping research agendas and its interplay with
advancements in AI, particularly in the development of intelligent systems and software
agents.

Was the Semantic Web a Significant Research Wave? - Google Scholar Analysis
To assess the significance of the Semantic Web and its associated AI trends compared
to other common AI research themes, we conducted Google Scholar searches 2. The
Semantic Web was undoubtedly a notable research wave, as evidenced by 3.41 million
Google Scholar search results (March 2025). While broader topics like “Artificial Intel-
ligence” (7.25M) and “Machine Learning” (5.47M) have higher volumes, the Semantic
Web’s specific focus on structured, meaningful data integration, along with its connection
to related areas such as Artificial Intelligence (1.66M) and Agents (1.19M), underscores
its significant impact. Despite its narrower scope, the Semantic Web established founda-
tional principles that continue to influence modern AI and data technologies, solidifying
its importance in the research landscape.

Figure 4. Google Books: number of hits using “Semantic Web” as key words (Data not available after 2022)

2Google Scholar–based metrics have well-known caveats: (i) uneven disciplinary and language coverage
(e.g., conference proceedings and non-English venues indexed less consistently than major English journals);
(ii) inclusion of non-peer-reviewed or duplicate records that can inflate counts; (iii) continuous re-indexing
that causes citation numbers to fluctuate over time; and (iv) keyword matching, where the search string may
appear only tangentially in a document, so the retrieved set is not guaranteed to be semantically aligned with
the intended topic. Accordingly, all figures reported here should be read as indicative rather than definitive.
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Semantic Web in Google Books Figure 4 presents a screenshot from the Google
Books Ngram Viewer, illustrating the historical prominence of the term Semantic Web in
English-language books from 1990 to 2022. The graph shows a significant rise in usage
beginning in the early 2000s, coinciding with the publication of the seminal 2001 pa-
per by Tim Berners-Lee, James Hendler, and Ora Lassila, which introduced the concept.
Usage peaks between 2005 and 2010, reflecting the increased academic and industrial
interest in its potential to transform data structuring and access on the Web. However, the
decline after this peak suggests a waning emphasis on the Semantic Web in scholarly and
public discourse, possibly due to challenges in realizing its full vision or a shift toward
emerging technologies such as machine learning and deep learning. This trend under-
scores the cyclical nature of technological interest, aligning with broader discussions of
the hype cycle.

Figure 5. Search results with “Software Agents” with five year time intervals Google Scholar (hits) and Google
Books (frequencies)

When Did Software Agent Research Emerge? One of the most promising future
approaches is integrating software agents with large language models (LLMs) to enable
not only discussions but also the execution of actions and commands by applications. To
analyze the origins and activity trends of software agent research, we compiled statistics
from Google Scholar and Google Books Ngram Viewer, with the results presented in
Figure 5.

Google Scholar searches indicate that the term “Software Agents” appeared with
minimal activity in the 1970s and 1980s, with only a handful of mentions. Significant
growth occurred in the 1990s, reaching 463 results between 1990 and 1994. The field
experienced exponential growth after 2000, peaking between 2005 and 2015, with over
16,000 search results in each five-year period. Activity has slightly declined in recent
years, with 15,400 results from 2015 to 2020 and a projected 13,700 from 2020 to 2024,
indicating sustained but slightly reduced interest in the field.

Figure 5 highlights the historical prominence of the term “Software Agents” in
English-language books from 1990 to 2019, showing a significant rise in usage between
2000 and 2010. This trend suggests that Software Agent research received substantial
attention during this period, coinciding with the heightened focus on the Semantic Web.
The overlap is noteworthy, as the original Semantic Web vision in 2001 envisioned a
machine-readable web where Software Agents could perform complex tasks on behalf
of users. The simultaneous growth in interest in Software Agents and the Semantic Web
underscores their interconnectedness, with Software Agents positioned as a key applica-
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tion of Semantic Web technologies. This period represents a peak in academic and in-
dustrial enthusiasm for intelligent, autonomous systems capable of leveraging structured
web data, aligning with broader trends in artificial intelligence research.

The illustration in Figure 6 depicts the number of Google Scholar search hits for the
general terms Software Agent and specific combination ”Software Agents” from 1990
to 2010, highlighting their academic prevalence over time. The data indicates a steady
increase in publications for both terms, with Software Agent experiencing continuous
growth and peaking around 2010 at approximately 413,000 hits. In contrast, the more
specific term ”Software Agents” saw rapid growth until about 2005, reaching a peak of
approximately 5,230 hits before experiencing a slight decline. This suggests that while
interest in the broader concept of software agents continued to grow, research using the
specific phrase ”Software Agents” peaked mid-decade before stabilizing or declining.

Figure 6. Citation Trends in Software Agent Research: Google Scholar Cites Per Year. Data extracted from
Google Scholar.

5. Discussion

This paper has provided a review and synthesis of previous studies on AI history, partic-
ularly the cycles of AI summers and AI winters in Section 2. We introduced a normalized
temperature scale to quantify these fluctuations. Section 3 explored the Semantic Web’s
foundational vision and its relationship with AI-driven Software Agents, while Section 4
analyzed bibliometric data and academic trends, highlighting the Forgotten AI Wave.

Software Agents: A Hot Topic—But Where Did They Come From? As discussed
in Section 3, Software Agents are currently a hot topic, with Microsoft’s CEO recently
predicting that AI-driven Software Agents will disrupt B2B software applications. Where
did agents originate? AI history is marked by cycles of optimism and setbacks. In Sec-
tion 2, we reviewed prior studies and illustrations of AI history, concluding that the Se-
mantic Web and Software Agents represent a neglected phase in AI’s evolution. This sec-
tion explores why this research wave did not gain widespread recognition, the challenges
that limited its impact, and how modern AI developments may revive its core principles.

Were the Terms Artificial Intelligence and Semantic Web a Curse? A key ques-
tion arises: Why wasn’t the Semantic Web recognized as a distinct AI wave? As revis-



May 2025

ited in Section 3, the original Semantic Web vision in 2001 sought to create a machine-
readable web enabling intelligent reasoning and automation. Software Agents played a
central role, designed to operate autonomously, interact with structured data, and exe-
cute user tasks. During the early 2000s, Semantic Web research saw a surge in academic
publications and funding, as evidenced by our citation analysis. One possible explana-
tion, as suggested by Ora Lassila in his keynote talk [77], is that Artificial Intelligence
was perceived negatively at the time, leading researchers to distance themselves from
the term. Instead, they used alternatives terms, such as Software Agents and Knowledge
Representation. A similar trend occurred in the early 1980s when Geoffrey Hinton and
other researchers avoided using the term Neural Networks due to its controversial status
within the AI community [78].

Also terminology and research focus regarding the Semantic Web has changed dur-
ing the years [9]. A good deal of research in the early 2000’s focused first on ontolo-
gies, the silver bullet [79] of the Semantic Web and formal description logics for defin-
ing them. This line of research encountered the classical challenges of symbolic AI and
expert systems. Many people thought that the Semantic Web initiative is doomed to fail
and the term, just like AI, got some negative flavor. However, the focus then shifted to
semantically simpler (linked) data [80], the new oil of the digital era that could be used
more easily as a basis for practical applications. Jim Hendler had already in the late 90’s
in the SHOE project3 stated: A little semantics goes a long way. The next step ahead was
introduction of the notion of knowledge graphs (KG) [81] that essentially combines on-
tologies and linked data in practical application domain settings. This idea was adopted
successfully, for example, by major web technology companies, such as Google (Google
KG), Microsoft (Satori KG), and Facebook (Open Graph). However, the idea of the se-
mantic web is not necessarily mentioned when talking about linked data and KGs.

Why Didn’t Software Agents on the Semantic Web Succeed? Despite initial mo-
mentum, the Semantic Web failed to become a mainstream AI paradigm. One primary
reason was the dominance of symbolic reasoning and logic-based AI at the time, which
contrasted with the statistical and data-driven approaches that later fueled AI’s success.
Software Agents lacked access to the powerful natural language processing (NLP) and
deep learning techniques that characterize modern AI applications. Although the Seman-
tic Web did not achieve its grand vision of intelligent software agents, its principles are
resurfacing in contemporary AI, particularly through Large Language Models (LLMs)
and AI-driven Software Agents.

Revisiting the Semantic Web in the Age of LLMs Recent advancements highlight
the renewed relevance of Semantic Web concepts such as structured knowledge represen-
tation, reasoning, and autonomous agents. Knowledge graphs, an evolution of Semantic
Web technologies, are widely used by companies like Google and Microsoft to enhance
AI-driven search and recommendation systems. Moreover, modern Software Agents are
now integrated with LLMs, enabling them to interpret unstructured text, execute com-
mands, and autonomously interact with various data sources—effectively realizing the
Semantic Web’s vision through alternative means.

A growing emphasis on AI explainability, data provenance, and structured knowl-
edge integration suggests that Semantic Web technologies could find new applications in
the evolving AI landscape. Hybrid neuro-symbolic AI approaches that combine statisti-

3https://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html

https://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html
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cal learning with symbolic reasoning may leverage the Semantic Web’s structured data
to enhance AI reasoning and interpretability.

Lessons from the Forgotten AI Wave The Semantic Web’s history offers valuable
lessons on AI’s cyclical evolution. The shift from logic-based AI to deep learning was
not a rejection of earlier methods but rather an adaptation to technological constraints
and industry priorities. As AI progresses, integrating structured knowledge with modern
techniques could yield more powerful, interpretable, and autonomous systems. Recog-
nizing the Semantic Web as part of AI’s history provides a more comprehensive view of
technological evolution. Instead of seeing it as a failed wave, we can understand it as a
crucial step in AI’s development—one whose principles may yet play a key role in the
next generation of intelligent systems.

6. Conclusion: Reintegrating the Semantic Web into AI’s History

The key contributions in this paper are as follows:

• We reviewed previous illustrations of AI history and synthesized them into a uni-
form scale in Section 2.

• We identified the Semantic Web and Software Agents as a forgotten wave of Arti-
ficial Intelligence by connecting them to the current AI boom and analyzing aca-
demic statistics, as discussed in Section 1 and Section 4.

We argued tha the Semantic Web represents a significant yet often underappreci-
ated chapter in the evolution of artificial intelligence. Emerging in the early 2000s, its
vision of a machine-readable web, capable of empowering AI-driven Software Agents,
promised transformative applications ranging from intelligent automation to advanced
data integration. While the grand vision articulated by Tim Berners-Lee, James Hendler,
and Ora Lassila remains unrealized in its entirety, its influence on structuring, integrat-
ing, and interpreting web data continues to resonate in modern technologies, including
knowledge graphs, ontologies, and standards for Findable, Accessible, Interoperable ja
Re-usable FAIR data4 for scientific data management and stewardship.

In this paper, the academic and industrial impact of the Semantic Web was revisited
using bibliometric analysis and historical context to argue for its rightful place within
AI’s broader narrative of hype cycles, AI winters, and eventual breakthroughs. In par-
ticular, the overlooked connection between the Semantic Web and AI Software Agent
research from 2000 to 2010 highlights its contributions to advancing intelligent systems.
Despite challenges in achieving widespread adoption and the subsequent shift in focus
toward machine learning and deep learning paradigms, the Semantic Web established
foundational principles that remain relevant to contemporary AI development.

Recognizing the contributions of the Semantic Web enriches our understanding of
AI’s history and underscores the importance of examining past technological waves to
draw lessons for the future. By reintegrating this forgotten wave into AI’s historical dis-
course, we gain a more comprehensive perspective on the cyclical nature of innovation
and the interplay between vision and practicality in shaping technological progress.

4FAIR data: https://www.go-fair.org/fair-principles/

https://www.go-fair.org/fair-principles/
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