
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Sampo-UI: A Full Stack JavaScript
Framework for Developing Semantic Portal
User Interfaces
Esko Ikkala a,*, Eero Hyvönen a,b, Heikki Rantala a, and Mikko Koho a,b

a Semantic Computing Research Group (SeCo), Aalto University, Department of Computer Science, Finland
E-mail: firstname.lastname@aalto.fi
b HELDIG – Helsinki Centre for Digital Humanities, University of Helsinki, Finland
E-mail: firstname.lastname@aalto.fi

Abstract. This paper presents a new software framework, SAMPO-UI, for developing user interfaces for semantic portals. The
goal is to provide the end-user with multiple application perspectives to Linked Data knowledge graphs, and a two-step usage
cycle based on faceted search combined with ready-to-use tooling for data analysis. For the software developer, the SAMPO-UI
framework makes it possible to create highly customizable, user-friendly, and responsive user interfaces using current state-of-
the-art JavaScript libraries and data from SPARQL endpoints, while saving substantial coding effort. SAMPO-UI is published
on GitHub under the open MIT License and has been utilized in several internal and external projects. The framework has been
used thus far in creating five published and six forth-coming portals, mostly related to the Cultural Heritage domain, that have
had tens of thousands of end-users on the Web.

Keywords: Linked Data, Semantic portal, User interface, Web application, JavaScript, Software framework

1. Introduction

A fundamental underlying idea of the Semantic Web
is to share Linked Data (LD) which is harmonized us-
ing ontologies. This approach has been proven useful
in, for example, the Cultural Heritage (CH) domain
in aggregating, harmonizing, and enriching data silos
of different galleries, libraries, archives, and museums
(GLAM) whose contents are typically heterogeneous
and distributed, but often related semantically to each
other [1].

Semantic Web content is published for machines
via LD services and for human consumption using
web-based LD applications, such as semantic portals.
In general, semantic portals are information systems
which aggregate information from multiple sources
and publish them using Semantic Web technologies
into user interfaces for solving information needs of

*Corresponding author. E-mail: firstname.lastname@aalto.fi.

end-users [2–6]. Such portals, based on knowledge
graphs published in LD services, typically provide
the end-user with intelligent services for data explo-
ration [7] and analysis based on the well-defined se-
mantics of the content. These services may include
faceted, ontology-based, and entity-based search en-
gines, semantic browsing based on semantic relations
extracted and reasoned from the underlying knowl-
edge graphs, and tooling for data-analysis, visualiza-
tion, and serendipitous knowledge discovery [8].

To extend the notion of sharing and reusing data on
the Web, this paper proposes that one should harmo-
nize and share the way in which semantic portals, espe-
cially their user interfaces, are implemented and used,
too. It is argued that in this way implementing seman-
tic portals can be made easier for software developers,
and from the end-user’s perspective, portals based on
similar functional logic are easier to learn to use.

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:firstname.lastname@aalto.fi
mailto:firstname.lastname@aalto.fi
mailto:firstname.lastname@aalto.fi

2 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An approach towards these goals is the Sampo
model1 that has been found useful in practise while
developing a series of semantic CH portals [9]. This
model advocates the idea of providing the end-user
with multiple application perspectives to the contents.
The application perspectives are used in two basic
steps: Firstly, data of interest is filtered out using
faceted search [10] based on ontologies. Secondly,
data-analytics tools are applied to the filtered data.

As LD can be used to express virtually everything,
a vital challenge is to be able to create user-friendly
domain-centric semantic portals with minimal effort.
Domain-centric means that the underlying knowledge
graphs have been selected beforehand and the scope of
the portal is limited to a specific domain. However, the
availability of tools for building such custom applica-
tions on top of LD is limited [11].

To tackle these challenges, the key contribution of
this paper is to introduce the SAMPO-UI framework2

(hereafter SAMPO-UI refers to the SAMPO-UI frame-
work). SAMPO-UI is a new tool for addressing the fol-
lowing research question: "How can user interfaces
for semantic portals based on Linked Data be built
efficiently?". As a methodological basis, design sci-
ence [12] is applied.

A prerequisite for using SAMPO-UI is that the un-
derlying data is published as knowledge graph(s) in
SPARQL end-point(s) using the principles of LD [13].
SAMPO-UI is not targeted for data curation, but for
creating user interfaces for existing data.

An example of an application of SAMPO-UI, is
the Mapping Manuscript Migrations (MMM) por-
tal [14]. Figure 1 depicts one of its faceted search per-
spectives on over 200 000 medieval and renaissance
manuscripts. Manuscripts are first filtered using the
facets on the left. After this, the result set can be stud-
ied with data-analytic visualizations by choosing one
of the following tabs: Table, Production places, Last
Known Locations, and Migrations. In the figure the
Migrations tab has been opened for analyzing the gen-
eral trend of manuscript movement from their places of
production into their last known locations. The MMM
portal is an example of a domain-centric semantic por-

1Sampo is, according to the Finnish epic Kalevala, a mythical
machine giving riches and fortune to its holder, a kind of ancient
metaphor of technology.

2Information about SAMPO-UI can be found on the home-
page https://seco.cs.aalto.fi/tools/sampo-ui; the framework is avail-
able under the open MIT License on GitHub: https://github.com/
SemanticComputing/sampo-ui.

tal, where aggregated and harmonized LD and modern
web technologies enable studying manuscript prove-
nance on a large scale.

This paper is structured as follows. Section 2 re-
views existing tools and surveys related to creation
of user interfaces for semantic portals. In Section 3
we present specific requirements for tools for build-
ing user interfaces for semantic portals. In addition, re-
quirements regarding the portals themselves are expli-
cated. The SAMPO-UI framework is presented in Sec-
tion 4. Experiences of applying SAMPO-UI are dis-
cussed in Section 5 through a case study on how the
framework was used for building a new user inter-
face of a semantic portal about military history. Finally
in Section 6 the contributions, impact, and limitations
of SAMPO-UI are summarized, and the framework is
compared with other related systems.

2. Related Work for Semantic Portal User
Interfaces

User interfaces for LD applications can be created
in various ways, and can employ a variety of user inter-
action paradigms [15]. This section provides some rel-
evant references for designing and implementing user
interfaces for semantic portals.

Khalili et al. [16] discuss the state of end-user ap-
plication development for LD, and present the Linked
Data Reactor (LD-R), which is an open-source soft-
ware framework for building modern web-based LD
user interfaces. LD-R is based on the idea of using ex-
isting solutions, such as the Flux pattern3 and the Re-
act library4. The idea is to provide the software devel-
oper with a general starting base of a JavaScript web
application, which can be configured to view, browse
and edit LD. LD-R provides faceted search function-
alities through FERASAT [17], which is a serendipity-
fostering faceted browsing environment built on LD-R
components and their configurations.

SPARQL Faceter [18] is a JavaScript library for
building faceted search user interfaces, implemented
using AngularJS5 which is not anymore actively devel-
oped.

The metaphactory platform [11] is used for building
semantic web applications for LD, with focus on both

3Flux pattern for building user interfaces: https://facebook.github.
io/flux

4https://reactjs.org
5https://angularjs.org

https://seco.cs.aalto.fi/tools/sampo-ui
https://github.com/SemanticComputing/sampo-ui
https://github.com/SemanticComputing/sampo-ui
https://facebook.github.io/flux
https://facebook.github.io/flux
https://reactjs.org
https://angularjs.org

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 1. Visualization of the movement of pre-modern manuscripts as arcs from places of production to last known locations using the Mapping
Manuscript Migrations Portal. Subsets of manuscripts can be filtered out for visualization using the facets on the left (Label, Author, Work,
Production place etc.). The blue end of the arc shows the production place and the last known location is in red (this is not necessarily visible in
black and white print). There are different options available for inspecting the filtered result set using tabs on top of the image: Table, Production
places, Last knows locations, Migrations (selected in the image), and Export. The Export tab enables the user to export the SPARQL query,
which was used for generating the Table result view, into the public SPARQL query service Yasgui. In Yasgui the current result set can be, e.g.,
downloaded in CSV format for external analysis.

addressing management needs of large organizations
and providing domain-centric intuitive end-user inter-
faces. The platform is deployed in several different use
cases, including the ResearchSpace project using the
British Museum collection as LD.

Bikakis and Sellis [19] have surveyed LD explo-
ration and visualization systems, and presented some
general features and requirements of such systems.
Klímek et al. [20] have surveyed existing tooling for
LD consumption for non-technical end-users and pre-
sented general requirements for end-user LD plat-
forms, encompassing variety of topics, such as, dataset
discovery and data manipulation.

Po et al. [21] present LD visualization techniques
and tools, and evaluation of the tools in different use
cases. Of the presented 16 use cases of LD visualiza-
tion, five cases (5, 6, 8, 11, and 12) are relevant for
semantic portals in general, and cover the basic func-
tionalities of them. None of the evaluated visualization
tools are able to handle all of these use cases.

For general tasks related to querying, parsing, and
processing RDF6 data in JavaScript applications, the
W3C’s RDF JavaScript Libraries Community Group
is creating standards and a collection of libraries for
using LD on the Web7.

This section presented related work for creating user
interfaces for semantic portals. The SAMPO-UI frame-
work is compared with these related systems in Sec-
tion 6.2.

3. Requirements for Tools for Building Semantic
Portal User Interfaces

In this section, desired features of semantic por-
tal user interfaces are outlined, together with require-
ments for tools for building them. This is based on
earlier research presented in Section 2, as well as

6https://www.w3.org/TR/rdf11-concepts
7http://rdf.js.org

https://www.w3.org/TR/rdf11-concepts
http://rdf.js.org

4 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the authors’ own experience in developing such sys-
tems [9, 18].

From the related work regarding tools (e.g. software
libraries and frameworks) for implementing LD appli-
cations, we found the following requirements (denoted
by T) that tools for implementing semantic portal user
interfaces should fulfill:

T1. Enable rapid creation of use case-specific appli-
cations with minimal effort [11, 18],

T2. Ability to query data directly from a SPARQL
endpoint [18, 20],

T3. Support for hierarchical data exploration using
ontologies [18, 21],

T4. Scalable techniques used, that can handle a large
number of data objects over an exploration sce-
nario, using a limited number of resources [19],

T5. Enable creating intuitive and user-friendly user
interfaces for non-technical users [11, 17, 18,
20],

T6. Ability to produce visualizations that automat-
ically adapt to available resources, especially
screen resolution and size [21],

T7. Designed and implemented in a way that fosters
sustainability [18, 20].

From the related work regarding LD applications,
we gathered requirements (denoted by SP) that are rel-
evant for the structure and functionalities of the user
interfaces of semantic portals. Most of the semantic
portals would need to fulfill these to solve the informa-
tion needs of end-users:

SP1. The portal supports having multiple perspectives
for accessing the knowledge graph(s) [9, 21],

SP2. The perspectives provide methods for brows-
ing and exploring the knowledge graphs to find
something useful and interesting without initially
knowing exactly what to search for [19, 21],

SP3. The portal employs various search paradigms [19,
22],

SP4. Users can visualize instances that share one
or more specific properties, e.g., all instances
of a specific class with a common property
value [21],

SP5. Users can visualize the properties and relations
of a specific instance [21],

SP6. Users can explore and visualize the instances of
a specific class [21],

SP7. Users can explore and follow links between var-
ious instances [21],

SP8. Users can visualize the data graphically, e.g.,
geographically on maps, temporally on a time-
line, or as a graph diagram of connected enti-
ties [20, 21],

SP9. Users can export non-RDF output, e.g., a CSV
file [20].

SAMPO-UI and the existing semantic portals using
it are evaluated against these requirements in Section
6.1. The next subsections present more detailed obser-
vations and requirements related to search paradigms,
result set visualizations, and structure of semantic por-
tal user interfaces.

3.1. Search Paradigms and Result Set Visualizations
for Semantic Portals

The following search paradigms are essential in LD
user interfaces [11, 21] like semantic portals.

Free text search across the whole knowledge graph
is the most widely recognized search paradigm. The
search can use all textual metadata fields of all entities,
or to be narrowed down to, e.g., only use labels, and/or
only use entities of specific classes.

Faceted search [10, 23], known also as view-based
search [24] and dynamic hierarchies [25], is based on
indexing data items along orthogonal category hierar-
chies, i.e., facets (e.g., places, times, document types,
etc.). In searching, the user selects in free order cat-
egories on facets, and the data items included in the
selected categories are considered the search results.
After each selection, a count is computed for each
category showing the number of results, if the user
next makes that selection, omitting categories with no
hits. The idea of faceted search is especially useful on
the Semantic Web where hierarchical ontologies used
for data annotation provide a natural basis for facets,
and reasoning can be used for mapping heterogeneous
data to facets. Faceted search can be implemented with
server-side solutions, such as Solr8, Sphinx9, and Elas-
ticSearch10, or in a LD setting using a set of config-
urable SPARQL queries, as in [17, 18].

In geospatial search the user can see resources on a
map, and browse and explore them. It should be pos-
sible to filter the result set by making a selection on a
map with e.g. drawing a bounding box.

8http://lucene.apache.org/solr
9http://sphinxsearch.com/blog/2013/06/21/

faceted-search-with-sphinx
10https://www.elastic.co

http://lucene.apache.org/solr
http://sphinxsearch.com/blog/2013/06/21/faceted-search-with-sphinx
http://sphinxsearch.com/blog/2013/06/21/faceted-search-with-sphinx
https://www.elastic.co

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Temporal search can be performed by constraining
the result set based on a timeline component or a times-
pan selector. A timeline can be used to browse and ex-
plore the resources.

The result set that has been constrained using one
or more search paradigms can be shown to the user in
many different ways. The user can be provided with
options of various result set display methods to choose
from, that are considered relevant: Table is often an
intuitive way of displaying the resulting resources as
a simple 2-dimensional table with each resource as
a separate row and their most important properties
shown as table columns. Another useful tabular for-
mat is to use a grid to position and show each result
inside a rectangle. Geospatial visualizations show the
results visually on a map as, e.g., markers, polygons or
heatmap layers. Temporal visualizations display the re-
sults on a timeline. Spatio-temporal visualizations dis-
play the results with interlinked geospatial and tem-
poral components. Statistical visualizations, e.g., bar
charts, histograms, line graphs, pie charts, and sankey
diagrams, are useful if the result set is large, by pro-
viding summaries of the results instead of individual
resources.

All of the previous display methods need to able
to handle information overloading issues [21] re-
lated to large result sets with, e.g., pagination, infi-
nite scrolling, or clustering of individual resources into
larger groups.

3.2. Structuring the User Interface of a Semantic
Portal

The structure of the user interface should support
having multiple perspectives for data exploration and
searching, each of which are built around entities of a
specific class. This way distinct perspectives to the un-
derlying data can be built iteratively and individually.

Moreover, each entity of interest in the knowledge
graph should have a landing page, which shows the
metadata related to the single entity. Additionally, the
landing pages provide both internal and external rec-
ommendation links to other related entities, e.g., for
the landing page of a person, their family, relatives, and
friends could be shown as links to the landing pages of
the persons in question. Social network visualizations
can be integrated to the landing pages of people, to
provide a useful and intuitive way of seeing the person
in their social and historical context. The URLs of the
landing pages must be constructed in a in a systematic

way to enable easy linking within the portal and from
external applications.

4. SAMPO-UI Framework

This section presents the architecture, design prin-
ciples, and the main user interface components of the
SAMPO-UI framework. More specific documentation
and instructions for software developers can be found
from SAMPO-UI’s GitHub repository11. A case study
of applying SAMPO-UI is presented in Section 5.

4.1. Architecture

The SAMPO-UI framework provides software de-
velopers with a comprehensive set of reusable and
extensible components, well-defined application state
management, and a read-only API for SPARQL queries,
which can be used for creating a modern and respon-
sive user interface for a semantic portal with mini-
mized coding effort. If the existing functionalities of
SAMPO-UI are not enough, the architecture is de-
signed to provide the software developer plenty of
freedom to incorporate new functionalities by writing
JavaScript code, utilizing the underlying libraries or
adding new libraries. Much effort has been put in test-
ing different open source libraries and choosing those
with the best prospect for long-term sustainability as a
basis for SAMPO-UI.

The framework is meant for creating full stack
JavaScript web applications. The main parts are 1) a
client based on the widely used and established Re-
act12 and Redux13 libraries, and 2) a Node.js14 backend
built with Express framework15. Angular16 could have
been another choice for a basis, but as it is a complete
framework per se, choosing React as a basis for the
client enforces a more modular structure for SAMPO-
UI, in which individual libraries (e.g. for handling the
application state or routing) can be replaced by new
ones if they become obsolete. On the other hand, this
modular structure demands more careful maintenance
of the interplay of individual libraries.

Figure 2 depicts the overall architecture of SAMPO-
UI. The general idea is that the focus of the client

11https://github.com/SemanticComputing/sampo-ui
12https://reactjs.org
13https://redux.js.org
14https://nodejs.org/en
15https://expressjs.com
16https://angular.io

https://github.com/SemanticComputing/sampo-ui
https://reactjs.org
https://redux.js.org
https://nodejs.org/en
https://expressjs.com
https://angular.io

6 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

is on displaying data. The business logic of fetching
the data from SPARQL endpoints using various search
paradigms is placed on the backend. The client makes
use of SPARQL end-point(s) by sending API requests
to the Node.js backend. Based on the API requests and
predifined configurations, the Node.js backend gener-
ates the SPARQL queries, sends them to the SPARQL
endpoint(s), and maps and merges the raw results rows
in the SPARQL 1.1 Query Results JSON Format17 into
a more developer friendly array of potentially nested
JavaScript objects.

Backend
NodeJS

GeoJSON

Client
React + Redux

Vector data

Triplestore(s)
JSON

API request
SPARQL

Additional
backends

E.g. Python

SPARQL

JSONAPI
request

JSON

Raster data

API request
PNG

CSV
export

API request
JSON

Figure 2. General architecture of SAMPO-UI.

The API endpoints provided by the Node.js back-
end are described using a document that conforms to
the OpenAPI Specification18. The same document is
used for both documenting the API, and validating
the API requests and responses. The documentation is
published with the API documentation tool Swagger
UI19. The API documentation of an example portal20

built with SAMPO-UI can be used for testing the API.
For handling the API requests related to faceted,

full text, and spatial search, the Node.js backend in-
cludes a set of generalized templates21 for SPARQL
queries. In order to connect the Node.js backend to
a specific SPARQL endpoint, the developer needs to
provide configuration22 for all desired facets and re-
sults sets. The placeholders in the SPARQL query tem-

17https://www.w3.org/TR/sparql11-results-json
18https://swagger.io/specification
19https://swagger.io/tools/swagger-ui
20https://sampo-ui.demo.seco.cs.aalto.fi/api-docs
21Generalized templates for SAMPO-UI’s core SPARQL queries:

https://github.com/SemanticComputing/sampo-ui/blob/master/src/
server/sparql/SparqlQueriesGeneral.js

22See instructions for configuring the Node.js backend for
SPARQL endpoints in SAMPO-UI’s readme: https://github.com/
SemanticComputing/sampo-ui#configuration-and-folder-structure

plates are replaced with patterns from respective con-
figuration objects by SAMPO-UI’s core functions.

While the Node.js backend makes it possible to run
any relevant JavaScript libraries on the server, the ar-
chitecture can be extended by connecting the Node.js
backend to additional backend services, as illustrated
in Figure 2. This is useful, e.g., if Python mod-
ules are needed for dynamic processing of SPARQL
query results. An example of such extension is the
Sparql2GraphServer API23 which integrates SPARQL
queries and their results with the NetworkX24 Python
package for advanced network analysis tasks that are
not currently available for JavaScript.

Figure 2 also shows how API requests to external
vector and raster-based services for geographical data
can be made directly from the client, as long as the re-
spective API key does not need be hidden. If the API
key need to be hidden, the API requests are routed
through the Node.js backend. In SAMPO-UI it is also
possible to export the results of the SPARQL queries in
CSV format, a feature deemed useful by the end-users
willing to analyse the data using additional software
libraries and tools, such as spreadsheet programs and
R. Additionally, the specific SPARQL query that was
used for the search results can be given to the end-user
if needed.

The modular architecture of the client is depicted in
Figure 3, where boundaries between the main client-
side libraries are marked with a dashed line. The state
of the application (e.g., the user’s facet selections and
the search results) is maintained using the strict unidi-
rectional data flow enforced by Redux25. To reduce the
complexity of handling side effects, asynchronous data
fetching is carried out uniformly by a Redux middle-
ware named Redux Observable26. Redux Observable
provides a base for SAMPO-UI’s epics27, which listen
for asynchronous Redux actions, send API requests to
the Node.js backend and other external services, im-
plement debouncing when necessary, and handle the
possible errors in the API responses.

23https://github.com/SemanticComputing/Sparql2GraphServer
24https://networkx.github.io
25https://redux.js.org
26https://redux-observable.js.org
27In Redux Observable epics are functions which take a stream of

actions as input and return a stream of actions.

https://www.w3.org/TR/sparql11-results-json
https://swagger.io/specification
https://swagger.io/tools/swagger-ui
https://sampo-ui.demo.seco.cs.aalto.fi/api-docs
https://github.com/SemanticComputing/sampo-ui/blob/master/src/server/sparql/SparqlQueriesGeneral.js
https://github.com/SemanticComputing/sampo-ui/blob/master/src/server/sparql/SparqlQueriesGeneral.js
https://github.com/SemanticComputing/sampo-ui#configuration-and-folder-structure
https://github.com/SemanticComputing/sampo-ui#configuration-and-folder-structure
https://github.com/SemanticComputing/Sparql2GraphServer
https://networkx.github.io
https://redux.js.org
https://redux-observable.js.org

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Action

Redux ReactRedux
middleware

Epic

Backend

Reducer

 - Default state
 - How state
 changes in
 response to
 actions

Store

 - The state
 of the app
 in one
 place

Container

 - Pass state
and actions
to React

Component

 - Render DOM
elements
according to
the app's state
 - Dispatch
 actions

Figure 3. SAMPO-UI client architecture based on the strict unidirec-
tional data flow of Redux integrated with React components.

4.2. Adaptable Server-Side or Client-Side Faceted
Search

Nowadays the size of the knowledge graphs that a
semantic portal needs to be able to process ranges from
thousands to tens of millions triples. Furthermore, the
data may be available from a single triplestore or from
multiple triplestores. For handling these varying set-
tings we have developed two main approaches for im-
plementing faceted search in SAMPO-UI. We call the
first approach "server-side faceted search" (ServerFS),
where all queries relating to faceted search are sent to
the triplestore. With this approach all limits regarding
the size of the knowledge graph and the complexity
of the queries are imposed by the triplestore and the
server used for hosting it.

The most critical requirement for ServerFS is that
all underlying data needs to be made available from a
single SPARQL endpoint. ServerFS also causes con-
siderable load on the triplestore when the knowledge
graph is large or the portal has a usage spike28, as a
selection in one facet causes the recalculation of both
the result set and the result counts of all of the active
facets.

In some application settings, e.g. in NameSampo
portal [27] that re-uses several existing SPARQL end-
points, it is not possible to aggregate all data into a sin-
gle triplestore. For these settings we have developed
a second approach named "client-side faceted search"
(ClientFS). The main idea here is that the whole ini-
tial result set for faceted search is first fetched into
the client as JavaScript objects, after which all faceted
search functionalities are implemented using a set of
Redux selectors29.

28If the triplestore is deployed using a Docker container or similar,
it is possible to handle the usage spikes with autoscaling [26] carried
out by a container-orchestration system.

29https://github.com/reduxjs/reselect

Triplestore Triplestore(s)

Server-side faceted search
(ServerFS)

Client-side faceted search
(ClientFS)

 Client
 Store: facet values, selections, hit
 counts and results.

 Backend
 - Convert facet selections into
 SPARQL.
 - Map result rows into JavaScript
 objects.

 Backend
 - Convert initial query into SPARQL.
 - Map result rows into JavaScript
 objects and combine results from
 multiple triplestores.

 Client
 Store and calculate: facet values,
 selections, hit counts, and results.

Figure 4. Faceted search architecture options of SAMPO-UI.

Based on our experiences, due to the memory limit
set by the browser running the client, the initial result
set in ClientFS has to have an upper limit of approxi-
mately 30 000 instances on modern mobile devices or
desktops with more than 4 GBs of RAM. Even though
this limitation rules out many large knowledge graphs,
we have found ClientFS effective especially when the
initial query is a full text query, which is sent to mul-
tiple triplestores simultaneously. Then the results from
each triplestore are merged and used as the initial re-
sult set for ClientFS. This approach is in use, e.g., in
the above-mentioned NameSampo portal.

Figure 4 illustrates how the different tasks related to
faceted search are divided between the client and the
backend, when using either ServerFS or ClientFS. The
example configurations of SAMPO-UI include tem-
plates for both ServerFS and ClientFS approaches. It
is also possible to use the ServerFS and ClientFS ap-
proaches simultaneously in a single semantic portal,
provided that they are separated into distinct perspec-
tives. This is demonstrated in the example portal30,
which combines perspectives from NameSampo and
MMM portals.

4.3. Main Views of a Semantic Portal

Figure 5 illustrates the three main views of SAMPO-
UI for building a complete user interface of a semantic
portal.

30https://sampo-ui.demo.seco.cs.aalto.fi

https://github.com/reduxjs/reselect
https://sampo-ui.demo.seco.cs.aalto.fi

8 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Faceted search perspective 1

Portal landing page

Faceted search perspective 2 ...

Entity landing page

Facets Result set
visualizations

Result set
visualizations

Figure 5. Main views of a semantic portal, using the default structure
provided by the Sampo-UI framework. The arrows depict navigation
links between the views.

The portal landing page welcomes the user with
an introduction text and list of links to different
faceted search perspectives for studying the underly-
ing knowledge graph(s). To minimize page load time,
no SPARQL queries are being executed on this view.

Each faceted search perspective typically contains
a group of facets configured for a specific entity type
in the knowledge graph. For viewing the search results
and conducting data analysis tasks several result set
visualization components can be added.

The entity landing page provides information re-
lated to a single entity. The faceted search perspective
and the entity landing page share the same result set
visualization components.

Component-based user interface development is en-
forced by many state-of-the-art libraries and frame-
works for web application development, such as Re-
act31, Angular32, and Vue.js33. By adopting component-
based design principles, SAMPO-UI provides the de-
veloper with a selection of approximately 120 ready-
to-use user interface components34, which act as the
building blocks for the three main views presented in
Figure 5.

Figure 6 demonstrates how a group of SAMPO-UI
components can be used for building a faceted search
perspective. The following subsections explain these
components and also a number of other components
for facets and result set visualizations in detail.

4.4. User Interface Components for Facets

The Hierarchical checkbox facet component has
been developed for filtering with URIs, literal values,

31https://reactjs.org/docs/thinking-in-react.html
32https://angular.io/guide/architecture-components
33https://vuejs.org/v2/guide/components.html
34The user interface components of SAMPO-UI are documented

at https://semanticcomputing.github.io/sampo-ui, where the docu-
mentation texts are generated dynamically from the comments in the
source code using the popular open source development tool Story-
book.

or geographical regions. The user can make selections
with checkboxes or by drawing a bounding box on a
map. There are several additional user-controllable op-
tions for faceted search, such as sorting of facet val-
ues (e.g., by hit counts), visualization of facet value
distributions (e.g., by a pie chart), and selecting mul-
tiple disjunctive values in a single facet. For showing
hierarchies of arbitrary depth efficiently, only concepts
and their parent concepts need to be selected in the
SPARQL query of the facet. The SAMPO-UI backend
offers functions for converting the raw SPARQL re-
sults into a complete hierarchy, where all child con-
cepts of each concept are explicitly available. This
complete hierarchy is required for showing the hierar-
chical facet values and their hit counts to the end-user.

For free text search a Text facet component can be
used. For filtering with date or integer ranges the de-
veloper can choose to use either the Date facet with
date pickers, the Range facet with input fields, or the
Slider facet component.

Specific user-controllable options for each facet are
provided by the Facet header component. The cur-
rently active facet selections are shown to the user with
the Active filters component. All facet components of
SAMPO-UI are connected to the centralized state of
the application, as presented in Figure 3. Having a cen-
tralized state offers a uniform way for listening for user
input in any of the facet components, and updating the
state of the other facets and result set visualizations ac-
cordingly.

4.5. User Interface Components for Result Set
Visualizations

On the faceted search perspective shown in Figure 5,
the Perspective tabs component provides the user the
ability to switch between different result set visualiza-
tions, while persisting the state of the facets. The de-
fault component for rendering the results is Paginated
table, illustrated in Figure 6. It has controls for pagina-
tion actions, changing the rows per page, and sorting
the result set. The Paginated table component consists
of a number of smaller components, which are used
to handle for example expanding of rows and showing
multiple values in a single table cell. Separate compo-
nents are provided for displaying plain text, HTML, or
images in the Paginated table component, or elsewhere
in the application.

For rendering geographical data, SAMPO-UI pro-
vides two map components: Leaflet map and Deck.gl
map. The Leaflet map component is based on the

https://reactjs.org/docs/thinking-in-react.html
https://angular.io/guide/architecture-components
https://vuejs.org/v2/guide/components.html
https://semanticcomputing.github.io/sampo-ui

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 6. A selection of SAMPO-UI components for building a faceted search perspective of a semantic portal.

Leaflet35 library and it’s highly efficient marker cluster
plugin36 for rendering up to 50 000 map markers at a
time. Furthermore, the component includes function-
ality for showing external map layers from Web Map
Tile Service (WMTS) and Web Feature Service (WFS)
APIs.

Unlike the Leaflet map component, the Deck.gl37

map component is based on WebGL technology. We-
bGL enables a three-dimensional map view as well as
new ways for the analysis of large geographical result
sets. The result sets can be for example rendered as
a heatmap layer for visualizing geographical distribu-
tion, or as an arc layer for visualizing the movement of
entities.

To visualize spatio-temporal data, the Deck.gl com-
ponent is used as a basis for the Temporal map com-
ponent. The Temporal map component renders any ge-
ographical data with timestamps as an interactive ani-
mation.

35https://leafletjs.com
36https://github.com/Leaflet/Leaflet.markercluster
37https://deck.gl

For showing statistics, SAMPO-UI has ready-to-use
Pie chart, Line chart, and Bar chart components based
on ApexCharts38 and Google Charts39. Each of these
components have their own data processing and con-
figuration functions for reducing the trouble of deploy-
ing them in new use cases.

Moreover, as LD provides a good basis for graph
structures, SAMPO-UI includes a Network component
for visualizing result sets as networks. The component
is based on the Cytoscape.js40 graph theory library. For
advanced network analysis tasks that are not supported
in the JavaScript ecosystem, the component utilizes the
Sparql2GraphServer Python API, as explained in Sec-
tion 4.1.

Because the underlying visualization libraries con-
sume data in different formats, specific result mapper
functions are provided in the backend of SAMPO-UI
for converting the raw SPARQL results into desired
formats for all the different libaries in use.

38https://apexcharts.com
39https://developers.google.com/chart
40https://js.cytoscape.org

https://leafletjs.com
https://github.com/Leaflet/Leaflet.markercluster
https://deck.gl
https://apexcharts.com
https://developers.google.com/chart
https://js.cytoscape.org

10 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Thanks to the component-based design and the cen-
tralized application state, the developer can easily
add new components and result mapper functions for
searching and for visualizing results sets as needed.
The responsiveness and accessibility of the major-
ity of SAMPO-UI’s components is achieved using the
Material-UI library41, which is a React implementa-
tion of the established Material Design language42 de-
veloped and backed by Google.

5. Case Study: Implementing the User Interface of
a Semantic Portal

In this section experiences of applying the SAMPO-
UI framework to create user interfaces are presented
and reflected using the development work for the user
interface of the WarVictimSampo 1914–1922 por-
tal43 [28] as a case study.

5.1. Background for Developing the Portal

The WarVictimSampo portal was created to re-
place an older web application that was used to pro-
vide access to the War Victims 1914–1922 database44

maintained by the National Archives of Finland.
The database contains detailed information especially
about the victims of the Finnish Civil War in 191845,
including all known death records from that time due
to the wars. The data has been used both by researchers
of history and by the general public interested in find-
ing out information about their deceased ancestors.

Simultaneously with the development of the new
user interface, the database was updated with new vic-
tims and converted into a LD knowledge graph. The
new portal needed to work with the knowledge graph
and enable exploring, visualising, and studying the re-
sults in ways that are useful for both researchers and
the general public. The project had relatively little re-
sources and time for creating the user interface of the
portal, so it was was preferable to use some existing
application or framework as a basis for the user inter-

41https://material-ui.com/
42https://material.io/
43The portal is published at https://sotasurmat.narc.fi/en. See the

homepage https://seco.cs.aalto.fi/projects/sotasurmat-1914-1922/en
for more information about the project.

44http://vesta.narc.fi/cgi-bin/db2www/sotasurmaetusivu/main?
lang=en

45The data contains also Finnish victims of the First World War
and the Kindred Nations Wars in 1914–1922.

face. SAMPO-UI was selected because it is based on
modern currently maintained technologies, and offers
a comprehensive starting base of a complete full stack
JavaScript web application.

The portal was created with two faceted search per-
spectives to the data with various options for search
and visualization: the war victims perspective, and
a perspective for battles of the Finnish Civil War.
More perspectives are planned to be added later. The
WarVictimSampo portal was opened to the public in
November 2019 and gathered nearly 20 000 unique
users in the first month.

5.2. Creating the User Interface

The development started by forking the SAMPO-
UI GitHub repository. SAMPO-UI provides a pre-
configured environment for full stack JavaScript devel-
opment. Babel46 is used for converting the latest fea-
tures of JavaScript, such as arrow functions and the
async/await syntax, into a backwards compatible ver-
sion of the language for current and older browsers.
Webpack47 handles the automatically restarting devel-
opment server for the client, and bundling all source
code and dependencies into static assets. The Node.js
backend is run concurrently with the client, and is
automatically restarted using Nodemon48 when the
source code is changed. Uniform coding style is en-
forced by using the JavaScript Standard Style49 pack-
age.

The War Victims of Finland 1914–1922 database
has very detailed information about the victims and a
piece of information can relate to a person in more
than 150 different ways. In the portal this data can be
filtered with multiple different types of facets to best
fit each type of information. These facets were created
using the facet components of SAMPO-UI presented
in Section 4.4. Most of the facets, like birth place and
occupation facets, were created with the Hierarchical
checkbox facet component. The birth dates and death
dates can be filtered with facets created with the Date
facet component. Free text search for the victims name
was created with the Text facet component, and a facet
for number of children was created with the Slider
facet component.

46https://babeljs.io
47https://webpack.js.org
48https://nodemon.io
49https://standardjs.com

https://material-ui.com/
https://material.io/
https://sotasurmat.narc.fi/en
https://seco.cs.aalto.fi/projects/sotasurmat-1914-1922/en
http://vesta.narc.fi/cgi-bin/db2www/sotasurmaetusivu/main?lang=en
http://vesta.narc.fi/cgi-bin/db2www/sotasurmaetusivu/main?lang=en
https://babeljs.io
https://webpack.js.org
https://nodemon.io
https://standardjs.com

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

After filtering out a result set in the portal, the results
can be analyzed with various result set visualizations
based on the components presented in Section 4.5. The
default visualization of the results is a table created
with the Paginated table component. There is also map
for visualizing the death places and the battle places.
The map was created with the Leaflet map component.

For statistical analysis the portal includes pie chart
and a line chart result set visualization. The pie chart
and line chart visualizations were created based on
existing components of SAMPO-UI with some cus-
tomization to better cater for this specific use case. For
example, it was deemed useful to have the line chart
visualization automatically calculate the average and
median values of age for the war victims while also
presenting the distribution as a chart.

The Temporal map component of SAMPO-UI was
used for representing the course of events in the
Finnish Civil War. The component, presented in Fig-
ure 7, is used for the animation result tab of the Battles
perspective, where the temporal and spatial metadata
of 1182 battles of the Finnish Civil War is rendered
as an animation, with playback functionalities at the
bottom of the map.

The entity landing pages for war victims are a core
functionality of the portal. To best express things spe-
cific to this case, such as sources of different pieces of
information, a custom component was created by ex-
tending the general entity landing page component of
SAMPO-UI.

Finally the CSV export functionality of SAMPO-UI
was deployed for creating a button that enables the
downloading of the current result set as a CSV file
where one row corresponds to a one victim. This fea-
ture was considered important and was requested by
history researchers.

5.3. Reflections of Using SAMPO-UI

Faceted search, combined with visualizations for
data analysis, was easy to implement with the SAMPO-
UI framework. This kind of user interface can be a
powerful tool when researching data, and can help
finding serendipitous phenomena for further analysis
by close reading.

For example, Figure 8 shows two different line
charts generated by the line chart view of the War-
VictimSampo for comparing the ages of people from
one side of the Civil War whose official place of res-
idence was in two different provinces of Finland. In

both charts, the party “Red”50 is selected from the
“Party” facet. In the upper chart, Province of Turku and
Pori is selected from the “Registered province” facet
and in the lower one the Province of Viipuri. There is
a big difference in the shape of the charts, and the me-
dian age at death for people from the Province of Vi-
ipuri is five years greater. Therefore, for some reason,
members of the Red party from the Province of Viipuri
died a lot older than those from the Province of Turku
and Pori. This is apparently previously unknown phe-
nomena in the data, but could be easily found using the
combination of faceted search and result set visualiza-
tions for data analysis.

 Party:
 Reds

 Registered province:
 Province of Turku and Pori

 Party:
 Reds

 Registered province:
 Province of Viipuri

Figure 8. Two line charts generated with the WarVictimSampo portal
depicting number of people of certain age at death in the result set.
The upper chart depicts people of the Red party from the Province of
Turku and Pori and the lower chart depicts people of the Red party
from the Province of Viipuri.

Using SAMPO-UI as the basis for a new user in-
terface for a semantic portal saved resources and
time, and demanded considerably less programming
skill than would have otherwise been necessary. The
SAMPO-UI’s default structure and responsive layout
for a user interface could be adopted with minor con-
figuration.

50The Civil War was fought between socialist Reds (“punainen”
in Finnish) and conservative Whites (“valkoinen”).

12 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 7. Animation result set visualization of the battles of the Finnish Civil War. As time goes by on the time slider at the bottom, new battles
emerge as red spots and turn later into black spots. In the image, the main front line of the Civil War from east to west can be seen. The battles
can filtered using the facets on the left.

The ability to easily customize the existing compo-
nents, and add new ones, was very useful here. This
made it possible to better express the characteristics of
the specific rich and complicated data. The customiza-
tion requires some programming skill, but the core
functionality provided by the framework includes ro-
bust patterns and tools for processing the data and de-
livering it to the components in a predictable and uni-
form way. Because the framework is integrated with
a plethora of open source JavaScript visualizations li-
braries, even the creation of new result set visualiza-
tion components is relatively easy.

6. Discussion

This section describes the contributions, availability,
sustainability, and limitations of SAMPO-UI.

6.1. Contributions

This paper presented general features and require-
ments for user interfaces of semantic portals and the
new SAMPO-UI JavaScript framework for developing
such user interfaces. SAMPO-UI is our proposed solu-
tion to the research question "How can user interfaces
for semantic portals based on Linked Data be built effi-
ciently?". Experiences on applying Sampo-UI for cre-
ating a new user interface was presented through a case
study.

Table 1 presents the already published and forth-
coming semantic portals that have been implemented
using SAMPO-UI. The portals categorized as internal
in Table 1 have been developed by the Semantic Com-
puting Research Group (SeCo)51, while external por-
tals, such as the portal for the Norwegian placename
registry Norske Stadnamn52, are examples of external
adoption of SAMPO-UI.53

The impact of the framework has been demonstrated
through the case study presented in Section 5, the por-
tals already using it, and the several new semantic por-
tal user interfaces that are being built with it as shown
in Table 1.

The following list of SAMPO-UI’s properties re-
flects the framework against the requirements for tools
presented in Section 3:

T1. Ready-to-use basis for a user interface of a se-
mantic portal, which needs only minor modifica-
tions for deploying as a modern web application
into production,

T2. Well documented API and query templates for
using single and multiple SPARQL endpoints,

51https://seco.cs.aalto.fi
52https://toponymi.spraksamlingane.no
53More information about the portals and related publications

can be found on the homepage: https://seco.cs.aalto.fi/applications/
sampo.

https://seco.cs.aalto.fi
https://toponymi.spraksamlingane.no
https://seco.cs.aalto.fi/applications/sampo
https://seco.cs.aalto.fi/applications/sampo

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Semantic portals using the SAMPO-UI framework. Five of these portals have already been published, and six forthcoming portals are underway.
Some information regarding the forthcoming portals is marked as “to be announced” (TBA). The two different faceted search approaches are
explained in section 4.2. An extended version of this table including links to the portals and their homepages can be found at https://seco.cs.
aalto.fi/applications/sampo.

Portal Year Domain Unique
users

Knowledge
graph size
in triples

Faceted search
approach

Primary data owner

Internal portals

NameSampo 2019 Place names 35 000 241 068 456 ClientFS Institute for the Languages of Finland,
National Land Survey of Finland, and
the J. Paul Getty Trust

WarVictimSampo
1914–1922

2019 Military history 21 000 9 815 265 ServerFS National Archives of Finland

Mapping
Manuscript
Migrations

2020 Pre-modern
manuscripts

2200 22 472 633 ServerFS Schoenberg Institute for Manuscript
Studies, Bodleian Libraries, and Institut
de recherche et d’histoire des textes

LetterSampo TBA Epistolary data TBA TBA ServerFS The Circulation of Knowledge project
LawSampo TBA Law TBA TBA ServerFS Ministry of Justice, Finland
AcademySampo TBA Finnish Academic

People 1640–1899
TBA TBA ServerFS University of Helsinki, Finland

HistorySampo TBA Historical events TBA TBA ServerFS Agricola Network of Historians
FindSampo TBA Archaeology and

citizen science
TBA TBA ServerFS Finnish Heritage Agency

ParliamentSampo TBA Parliamentary
data

TBA TBA ServerFS Parliament of Finland

External portals

Norske
stadnamn

2019 Place names Unknown 217 353 538 ClientFS Norwegian Mapping Authority and the
J. Paul Getty Trust

Staff portal 2019 Human resources Unknown Unknown ClientFS Lingsoft Ltd.

including password protected SPARQL end-
points,

T3. Hierarchical checkbox facet component for query-
ing and visualizing ontological hierarchies of ar-
bitrary depth efficiently,

T4. Two scalable faceted search approaches, ServerFS
and ClientFS, for different use scenarios. Result
set visualization components use pagination and
clustering,

T5. Facilitate creating user-friendly, intuitive, and ac-
cessible user interfaces by enforcing the Material
Design guidelines as a basis,

T6. User interface components and visualization li-
braries support responsive web design,

T7. Sustainability fostered by providing open source
code, extensive documentation, and support for
software development through preconfigured de-
velopment environments.

The semantic portals created with SAMPO-UI con-
tain features which are here reflected against the se-
mantic portal requirements presented in Section 3:

SP1. The portals provide multiple perspectives for ac-
cessing the knowledge graph(s),

SP2. Each perspective includes a user interface based
on faceted search with different result set visual-
izations to support data analysis,

SP3. Faceted, text, temporal, and geographical search
paradigms are supported,

SP4. Faceted search is efficient for visualizing in-
stances that share one or more specific proper-
ties,

SP5. Customised entity landing pages provide various
ways to study individual entities using several vi-
sualizations,

SP6. Each perspective is customized for a specific en-
tity type,

SP7. The perspectives are interlinked with each other
and they contain links to the entity landing pages,
which are in turn interlinked with each other,

SP8. The data can be visualized using interactive
maps, statistics, networks, and animations,

SP9. Ready-to-use functionalities for CSV export.

https://seco.cs.aalto.fi/applications/sampo
https://seco.cs.aalto.fi/applications/sampo

14 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Considering the requirements for tools for creat-
ing user interfaces for semantic portals, as well as
the requirements for the portals themselves, SAMPO-
UI fullfills each requirement. As many of the require-
ments are somewhat subjective, limitations regarding
the framework are discussed in Section 6.3.

6.2. Comparison with Existing Linked Data User
Interface Libraries and Frameworks

The design philosophy behind SAMPO-UI differs
from existing frameworks for LD user interfaces pre-
sented in Section 2. Instead of focusing on provid-
ing the software developer with configuration files and
options as in, e.g., LD-R and SPARQL Faceter, in
SAMPO-UI the center of attention is keeping the ad-
ditional layer between LD specifics and underlying
JavaScript libraries as thin as possible. This provides
the developer with full control of writing and extend-
ing the actual client-side or server-side JavaScript code
when necessary.

These choices are based on the experiences of de-
veloping SAMPO-UI in conjunction with multiple LD
based projects in different domains, where it has be-
come evident that implementing user interfaces for se-
mantic portals requires a remarkably wide range of
flexibility to be able to adapt to the particular data
models, schemas, search indices, and external APIs in
use. Furthermore, as the data models get more com-
plex and domain specific, it becomes virtually impossi-
ble to create universally applicable user interface solu-
tions that could be taken into use by employing solely
configuration files.

SPARQL Faceter’s ideas of using only SPARQL for
data retrieval is also adopted in SAMPO-UI, and the
other requirements found in the study have guided our
work. SPARQL Faceter is a library, which means that
there has to be an existing application where it can be
imported for creating a fully functional semantic por-
tal. SAMPO-UI takes the setting further by providing
the developer a comprehensive ready-to-use basis for
a complete JavaScript application with a client and a
backend. This basis needs only minor modifications
for deploying it in production as a polished user inter-
face for a semantic portal.

Instead of using only client-side code, introducing a
Node.js backend to the architecture adds some overall
complexity, but the benefits are plentiful. A significant
part of the logic related to various search paradigms
and the processing of search results can be carried out
in the backend using pure JavaScript, instead of having

to integrate the functionality inside client-side frame-
works or libraries, which are known to become depre-
cated considerably sooner than pure JavaScript code.
Additionally, using the backend for SPARQL queries
makes it possible to run many computationally ex-
pensive operations related to data processing on the
server, instead of relying on the varying computational
resources of the client. Also querying password pro-
tected APIs or SPARQL endpoints using only client-
side code is impossible without exposing the API keys
or passwords to the users.

A central task in developing user interfaces for LD
is to be able to convert raw SPARQL result rows into
arrays of JavaScript objects. With simple SPARQL
queries this is trivial, provided that one result row cor-
responds to one entity of interest. However, in real
world settings it is typical that a high number of
SPARQL result rows need to be merged into arrays of
deeply nested JavaScript objects. This kind of func-
tionality was not supported in any of the existing li-
braries we have surveyed, so a comprehensive set of
result handling functions were developed in SAMPO-
UI.

6.3. Limitations and Future Work

When designing user interfaces for semantic por-
tals, one has to select which search paradigms are
supported. A key challenge here is that the search
paradigm selection affects the data creation phase and
publishing phase, so that ontologies and metadata an-
notations support the planned user interfaces, and that
the needed APIs and search indices are deployed and
properly configured. Hence the functionalities pro-
vided by the SAMPO-UI components are dependent on
the nature of the knowledge graph at hand, and the per-
formance and configuration of the triplestore used for
deploying it.

Since a user interface built with the SAMPO-UI
framework is a full stack application with a client
and a backend, SAMPO-UI cannot be included as an
independent library, such as Leaflet, into an exist-
ing JavaScript application. Instead, the framework is
meant to be used as a basis for a complete user inter-
face of a semantic portal, including a predefined devel-
opment environment, centralized state management,
routing, and other relevant features. This in turn en-
ables building a complete web application from scratch
by forking the SAMPO-UI repository, followed by mi-
nor adaptations for the knowledge graph(s) in ques-
tion.

E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The backend of Sampo-UI could also be used by an-
other client via the well defined API. In order to fur-
ther improve the reusability of SAMPO-UI, in the fu-
ture the client and the backend could be refactored and
separated into respective packages, and published in
the Node package manager Registry54.

As the API provided by SAMPO-UI’s backend is
read-only, functionalities related to editing and main-
taining knowledge graphs are intentionally left out
from the scope of the framework to avoid the com-
plexity and security issues related to user manage-
ment. Furthermore, supporting editing of LD while
maintaining the integrity of knowledge graphs with
wildly differing and complex data models, such as the
CIDOC CRM55 and its derivatives, is very challenging,
as many of the data models for knowledge graphs are
designed solely for presenting the data, not for editing.

SAMPO-UI is built on a group of external dependen-
cies, which are listed in the standard package.json file.
For keeping the framework up to date, these dependen-
cies need to be updated periodically, while maintaining
their mutual compatibility.

Several new features are being planned for SAMPO-
UI, based on the requirements of different projects us-
ing it. One requested extension for faceted search is
"faceted search within a facet", where, for example,
instead of filtering the result set of books by authors,
one could filter by author’s birth date. This would re-
quire refactoring the core application state and compo-
nents of SAMPO-UI so that each facet could have it’s
own filters for all relevant properties of the facet val-
ues. Another development trend is creating new visu-
alizations of result sets. In contrast to modifying the
facet components, they are easier to implement indi-
vidually without touching the core parts of the applica-
tion’s state. For example, visualizing imprecise tempo-
ral information on zoomable timelines, combined with
proper clustering algorithms for large result sets would
certainly bring out new insights from already existing
knowledge graphs.

6.4. Availability and Sustainability

The SAMPO-UI framework is being developed in
a GitHub repository56, which contains example struc-
ture, configurations, and documentation for building
a complete user interface for a semantic portal from

54https://docs.npmjs.com/using-npm/registry.html
55http://www.cidoc-crm.org
56https://github.com/SemanticComputing/sampo-ui

scratch. User interfaces built with SAMPO-UI are be-
ing developed in separate repositories, which are cre-
ated by forking the SAMPO-UI repository. When new
functionalities are added to the SAMPO-UI core repos-
itory, they can be merged into other respective repos-
itories when needed, to facilitate code re-use. De-
pendency management and backward compatibility of
SAMPO-UI is ensured by using Semantic Version-
ing57. The first stable version of the framework was
released on April 24, 2020.

Sustainability of SAMPO-UI is supported by releas-
ing the framework with the open MIT License, and in-
deed the software has already been used by external
users with some contributions. Several new portals are
being developed using SAMPO-UI, which means that
the framework will be supported and developed further
by its developer, the Semantic Computing Research
Group (SeCo) at the Aalto University and University
of Helsinki (HELDIG).

Acknowledgments

The SAMPO-UI framework have been developed
gradually during several projects in 2018–2020. Thanks
to the Academy of Finland and University of Helsinki
Future Fund for funding. The authors wish to acknowl-
edge CSC – IT Center for Science, Finland, for com-
putational resources.

References

[1] E. Hyvönen, Publishing and Using Cultural Heritage Linked
Data on the Semantic Web, Synthesis Lectures on the Seman-
tic Web: Theory and Technology, Vol. 2, Morgan & Clay-
pool Publishers, San Rafael, CA, USA, 2012, pp. 1–159.
doi:10.2200/S00452ED1V01Y201210WBE003.

[2] O. Suominen, Methods for Building Semantic Portals, PhD
thesis, Aalto University, Finland, 2013. http://urn.fi/URN:
ISBN:978-952-60-5254-0?locale-attribute=en.

[3] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho,
A. Maedche, H.-P. Schnurr, R. Studer and Y. Sure, Semantic
community Web portals, Computer Networks 33 (2000), 473–
491. doi:10.1016/S1389-1286(00)00039-6.

[4] N. Stojanovic, A. Maedche, S. Staab, R. Studer and Y. Sure,
SEAL: a framework for developing SEmantic PortALs,
in: Proceedings of the 1st international conference on
Knowledge capture, K-CAP ’01, Association for Comput-
ing Machinery, New York, NY, USA, 2001, pp. 155–162.
doi:10.1145/500737.500762.

57https://semver.org

https://docs.npmjs.com/using-npm/registry.html
http://www.cidoc-crm.org
https://github.com/SemanticComputing/sampo-ui
http://urn.fi/URN:ISBN:978-952-60-5254-0?locale-attribute=en
http://urn.fi/URN:ISBN:978-952-60-5254-0?locale-attribute=en
https://semver.org

16 E. Ikkala et al. / Sampo-UI: A Framework for Developing Semantic Portal User Interfaces

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[5] E. Hyvönen, Semantic Portals for Cultural Heritage, in:
Handbook on Ontologies, 2nd edn, S. Staab and R. Studer,
eds, Springer, Berlin, Heidelberg, 2009, pp. 757–778.
doi:10.1007/978-3-540-92673-3_34.

[6] H. Lausen, Y. Ding, M. Stollberg, D. Fensel, R. Lara Hernán-
dez and S.-K. Han, Semantic web portals: state-of-the-art sur-
vey, Journal of Knowledge Management 9(5) (2005), 40–49.
doi:10.1108/13673270510622447.

[7] S. Idreos, O. Papaemmanouil and S. Chaudhuri, Overview
of Data Exploration Techniques, in: Proceedings of the
2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, Association for Comput-
ing Machinery, New York, NY, USA, 2015, pp. 277–281.
doi:10.1145/2723372.2731084.

[8] E. Hyvönen, Using the Semantic Web in Digital Humanities:
Shift from Data Publishing to Data-analysis and Serendipitous
Knowledge Discovery, Semantic Web – Interoperability, Us-
ability, Applicability 11(1) (2020), 187–193. doi:10.3233/SW-
190386.

[9] E. Hyönen, “Sampo” Model and Semantic Portals for Digi-
tal Humanities on the Semantic Web, in: DHN 2020 Digital
Humanities in the Nordic Countries. Proceedings of the Digi-
tal Humanities in the Nordic Countries 5th Conference, CEUR
Workshop Proceedings, vol. 2612, 2020, pp. 373–378.

[10] D. Tunkelang, Faceted search, Synthesis Lectures on Infor-
mation Concepts, Retrieval, and Services, Vol. 1, Morgan &
Claypool Publishers, San Rafael, CA, USA, 2009, pp. 1–80.
doi:10.2200/S00190ED1V01Y200904ICR005.

[11] P. Haase, D.M. Herzig, A. Kozlov, A. Nikolov and J. Trame,
metaphactory: A Platform for Knowledge Graph Management,
Semantic Web – Interoperability, Usability, Applicability 10(6)
(2019), 1109–1125. doi:10.3233/SW-190360.

[12] A.R. Hevner, S.T. March, J. Park and S. Ram, Design Science
in Information Systems Research, MIS Quarterly 28(1) (2004),
75–105. doi:10.2307/25148625.

[13] T. Heath and C. Bizer, Linked Data: Evolving the Web
into a Global Data Space, Synthesis Lectures on the Se-
mantic Web: Theory and Technology, Morgan & Clay-
pool Publishers, San Rafael, CA, USA, 2011, pp. 1–136.
doi:10.2200/S00334ED1V01Y201102WBE001.

[14] E. Hyvönen, E. Ikkala, J. Tuominen, M. Koho, T. Burrows,
L. Ransom and H. Wijsman, A Linked Open Data Service and
Portal for Pre-modern Manuscript Research, in: Proceedings of
the Digital Humanities in the Nordic Countries 4th Conference
(DHN 2019), CEUR Workshop Proceedings, Vol-2364, 2019,
pp. 220–229.

[15] C. Bizer, T. Heath and T. Berners-Lee, Linked Data
- The Story So Far, International Journal on Seman-
tic Web and Information Systems 5(3) (2009), 1–22.
doi:10.4018/jswis.2009081901.

[16] A. Khalili, A. Loizou and F. van Harmelen, Adaptive
Linked Data-driven Web Components: Building Flexible and
Reusable Semantic Web Interfaces, in: The Semantic Web.
Latest Advances and New Domains. ESWC 2016., H. Sack,
E. Blomqvist, M. d’Aquin, C. Ghidini, S.P. Ponzetto and
C. Lange, eds, Lecture Notes in Computer Science, Vol. 9678,
Springer, Cham, 2016, pp. 677–692. doi:10.1007/978-3-319-
34129-3_41.

[17] A. Khalili, P. Van den Besselaar and K.A. de Graaf, FERASAT:
A Serendipity-Fostering Faceted Browser for Linked Data, in:

The Semantic Web. ESWC 2018, A. Gangemi, R. Navigli, M.-
E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai and
M. Alam, eds, Lecture Notes in Computer Science, Vol. 10843,
Springer, Cham, 2018, pp. 351–366. doi:10.1007/978-3-319-
93417-4_23.

[18] M. Koho, E. Heino and E. Hyvönen, SPARQL Faceter – Client-
side Faceted Search Based on SPARQL, in: Joint Proceedings
of the 4th International Workshop on Linked Media and the
3rd Developers Hackshop, CEUR Workshop Proceedings, Vol
1615, 2016.

[19] N. Bikakis and T. Sellis, Exploration and Visualization in the
Web of Big Linked Data: A Survey of the State of the Art, in:
Proceedings of the Workshops of the EDBT/ICDT 2016 Joint
Conference, CEUR Workshop Proceedings, Vol 1558, 2016.

[20] J. Klímek, P. Škoda and M. Nečaskỳ, Survey of tools
for Linked Data consumption, Semantic Web – Interop-
erability, Usability, Applicability 10(4) (2019), 665–720.
doi:10.3233/SW-180316.

[21] L. Po, N. Bikakis, F. Desimoni and G. Papastefanatos, Linked
Data Visualization: Techniques, Tools and Big Data, Synthesis
Lectures on Data, Semantics and Knowledge, Vol. 10, Morgan
& Claypool Publishers, San Rafael, CA, USA, 2020, pp. 1–
157. doi:10.2200/S00967ED1V01Y201911WBE019.

[22] M.A. Hearst, Search User Interfaces, Cam-
bridge University Press, Cambridge, UK, 2009.
doi:10.1017/CBO9781139644082.

[23] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearin-
gen and K.-P. Lee, Finding the flow in web site search,
Communications of the ACM 45(9) (2002), 42–49.
doi:10.1145/567498.567525.

[24] A.S. Pollitt, The key role of classification and indexing in view-
based searching, Technical Report, University of Huddersfield,
UK, 1998.

[25] G.M. Sacco, Guided Interactive Diagnostic Assistance, in: En-
cyclopedia of Healthcare Information Systems, N. Wickramas-
inghe and E. Geisler, eds, IGI Global, Hershey, Pennsylvania,
USA, 2008, pp. 631–635.

[26] E. Casalicchio and V. Perciballi, Auto-scaling of Containers:
the Impact of Relative and Absolute Metrics, in: 2017 IEEE
2nd International Workshops on Foundations and Applications
of Self* Systems (FAS* W), Institute of Electrical and Electron-
ics Engineers, New York, New York, USA, 2017, pp. 207–214.
doi:10.1109/FAS-W.2017.149.

[27] E. Ikkala, J. Tuominen, J. Raunamaa, T. Aalto, T. Ainiala,
H. Uusitalo and E. Hyvönen, NameSampo: A Linked Open
Data Infrastructure and Workbench for Toponomastic Re-
search, in: Proceedings of the 2nd ACM SIGSPATIAL Work-
shop on Geospatial Humanities, Association for Comput-
ing Machinery, New York, NY, USA, 2018, pp. 2:1–2:9.
doi:10.1145/3282933.3282936.

[28] H. Rantala, E. Ikkala, I. Jokipii, M. Koho, J. Tuominen and
E. Hyvönen, WarVictimSampo 1914–1922: A Semantic Por-
tal and Linked Data Service for Digital Humanities Research
on War History, in: The Semantic Web: ESWC 2020 Satel-
lite Events, A. Harth, V. Presutti, R. Troncy, M. Acosta,
A. Polleres, J.D. Fernández, J. Xavier Parreira, O. Hartig,
K. Hose and M. Cochez, eds, Lecture Notes in Computer
Science, Vol. 12124, Springer, Cham, 2020, pp. 191–196.
doi:10.1007/978-3-030-62327-2_33.

	Introduction
	Related Work for Semantic Portal User Interfaces
	Requirements for Tools for Building Semantic Portal User Interfaces
	Search Paradigms and Result Set Visualizations for Semantic Portals
	Structuring the User Interface of a Semantic Portal

	Sampo-UI Framework
	Architecture
	Adaptable Server-Side or Client-Side Faceted Search
	Main Views of a Semantic Portal
	User Interface Components for Facets
	User Interface Components for Result Set Visualizations

	Case Study: Implementing the User Interface of a Semantic Portal
	Background for Developing the Portal
	Creating the User Interface
	Reflections of Using Sampo-UI

	Discussion
	Contributions
	Comparison with Existing Linked Data User Interface Libraries and Frameworks
	Limitations and Future Work
	Availability and Sustainability
	Acknowledgments

	References

