
Paul Groth · Maria-Esther Vidal ·
Fabian Suchanek · Pedro Szekley ·
Pavan Kapanipathi · Catia Pesquita ·
Hala Skaf-Molli · Minna Tamper (Eds.)

LN
CS

 1
32

61

The Semantic Web
19th International Conference, ESWC 2022
Hersonissos, Crete, Greece, May 29 – June 2, 2022
Proceedings

Lecture Notes in Computer Science 13261

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Paul Groth ·Maria-Esther Vidal ·
Fabian Suchanek · Pedro Szekley ·
Pavan Kapanipathi · Catia Pesquita ·
Hala Skaf-Molli ·Minna Tamper (Eds.)

The Semantic Web
19th International Conference, ESWC 2022
Hersonissos, Crete, Greece, May 29 – June 2, 2022
Proceedings

Editors
Paul Groth
University of Amsterdam
Amsterdam, Noord-Holland, The Netherlands

Fabian Suchanek
Institut Polytechnique de Paris “DIG”
Télécom ParisTech
Palaiseau, France

Pavan Kapanipathi
IBM Research - Thomas J. Watson Research
Yorktown Heights, NY, USA

Hala Skaf-Molli
University of Nantes
Nantes, France

Maria-Esther Vidal
Universidad Simón Bolívar
Leibniz Information Centre for Science
and Technology
Hannover, Niedersachsen, Germany

Pedro Szekley
University of Southern California
Marina del Rey, CA, USA

Catia Pesquita
LaSIGE, Fac de Ciencias,Edif C6, Pis0 3
Universidade de Lisboa
Lisbon, Portugal

Minna Tamper
Aalto University
Espoo, Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-06980-2 ISBN 978-3-031-06981-9 (eBook)
https://doi.org/10.1007/978-3-031-06981-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0183-6910
https://orcid.org/0000-0003-0494-3279
https://orcid.org/0000-0003-1062-6659
https://orcid.org/0000-0003-1160-8727
https://orcid.org/0000-0002-4621-2266
https://orcid.org/0000-0002-1847-9393
https://orcid.org/0000-0002-3301-1705
https://doi.org/10.1007/978-3-031-06981-9

Preface

This volume contains themain proceedings of the 19th edition of the European Semantic
Web Conference (ESWC 2022). ESWC is a major venue for discussing the latest in
scientific results and innovations related to the semantic web, knowledge graphs, and
web data. While the community has become excellent at virtual discussions over the
past two years, we have missed the kind of spontaneous networking that comes with a
chat over a coffee or an exchange at a poster session. This year, we were able to have
that much needed in-person exchange again in Crete.

ESWC has always been a conference that experiments with both its format and
the kinds of content featured. This year’s research track is an example of such
experimentation. In the past, ESWC’s main research track has featured multiple
sub-tracks focused on particular topical categories; this year a single research track
was instituted, welcoming all relevant topic areas. Additionally, the research track
experimented for the first time with double-blind reviewing. Lastly, to enable authors to
cite the relevant material, references were no longer counted in page limits. The in-use
track also added innovative elements by introducing three paper types, focused on end-
user applications, technologies within real world applications, and experiences in large
knowledge graphs. The research and in-use tracks were complemented by the resource
track – focused on resources to support the research community.

The main scientific program of ESWC 2022 contained 28 papers selected out of
119 submissions (82 research, 7 in-use, 30 resource): 16 papers in the research track, 4
in the in-use track, and 8 in the resources track. The overall acceptance rate was 23%
(20% research, 57% in-use, 27% resources). As you will see within these proceedings,
the accepted contributions push forward the scientific conversation related to semantic
technologies, ranging from deep learning and knowledge graphs to integration for
software development and ontologies. ESWC continues to highlight the best research
in this area. The quality of the accepted papers put the maturity level reached by
semantic web technologies into perspective. They provide evidence of the impact
of these technologies in areas like data management, question answering, reasoning,
programming languages, and machine learning.

This program was complimented with invited keynotes from three world renowned
speakers: Matthias Niepert (University of Stuttgart and NEC Labs Europe); Tova Milo
(Tel Aviv University); and Axel Ngonga (Paderborn University).

The conference also offered other opportunities to discuss the latest research and
innovation work, including a poster and demo session, workshops and tutorials, a PhD
symposium, an EU project networking session, and an industry track. Eleven workshops
and tutorials covered topics ranging from knowledge graph construction and natural
language processing to linked data in construction andmusic.A separate volume contains
proceedings from these events.

ESWC 2022 is a reflection of the work of a community. The general and program
chairs would like to thank all of those involved. First, our thanks go to the 21members of
the organizing team. You did an amazing job. We would like to thank the 304 reviewers

vi Preface

for providing their feedback on the scientific program and to their other community
members. Here, the general chair extends his appreciation to the track chairs for ensuring
not only a rigorous and efficient review process, but also an exciting program.

Conferences need outreach. Thanks go to Benno Kruit for managing the website and
social media presence. Special thanks go to our proceedings chair, Minna Tamper, for all
her work in preparing this volume with the help of Springer. We thank STI International
for supporting the conference organization, and in particular JuliaWeninger for her quick
reactions. ESWC 2022 benefited from the support of sponsors. We thank them for the
support of this community and our sponsorship chairs Albert Meroño and Joe Raad for
securing them.

Lastly, even as we looked forward to coming together again as a community, as a
conference based in Europe, we have been shocked by the Russian invasion of Ukraine.
Our thoughts are with the colleagues and people impacted by the war.

April 2022 Paul Groth
Maria-Esther Vidal
Fabian Suchanek

Pedro Szekley
Pavan Kapanipathi

Catia Pesquita
Hala Skaf-Molli
Minna Tamper

Organization

General Chair

Paul Groth University of Amsterdam, The Netherlands

Research Track Program Chairs

Maria-Esther Vidal Leibniz University of Hannover and TIB - Leibniz
Information Centre for Science and
Technology, Germany

Fabian M. Suchanek Télécom Paris, France

Resource Track Program Chairs

Catia Pesquita LASIGE, Universidade de Lisboa, Portugal
Hala Skaf-Molli University of Nantes, France

In-Use Track Program Chairs

Pedro Szekley USC Information Sciences Institute, USA
Pavan Kapanipathi IBM Research, USA

Workshops and Tutorials Chairs

Mehwish Alam FIZ Karlsruhe – Leibniz Institute for Information
Infrastructure, Germany

Anastasia Dimou KU Leuven, Belgium

Poster and Demo Chairs

Jodi Schneider University of Illinois Urbana-Champaign, USA
Anisa Rula University of Brescia, Italy

Symposium Chairs

Ilaria Tiddi Vrije Universiteit Amsterdam, The Netherlands
Elena Simperl King’s College London, UK

viii Organization

Industry Track Program Chairs

Rinke Hoekstra Elsevier, The Netherlands
Panos Alexopoulos Textkernel, The Netherlands

Sponsorship

Albert Meroño King’s College London, UK
Joe Raad University of Paris-Saclay, France

Project Networking

Valentina Presutti University of Bologna, Italy
Marieke van Erp KNAW Humanities Cluster, The Netherlands

Web and Publicity

Benno Kruit VU Amsterdam, The Netherlands

Semantic Technologies

François Scharffe Columbia University, USA

Proceedings

Minna Tamper Aalto University, Finland

Program Committee

Ibrahim Abdelaziz IBM, USA
Maribel Acosta Ruhr University Bochum, Germany
Alessandro Adamou Open University, UK
Nitish Aggarwal Roku Inc., USA
Céline Alec Université de Caen Normandie, France
Alsayed Algergawy University of Jena, Germany
Andreea Iana University of Mannheim, Germany
Grigoris Antoniou University of Huddersfield, UK
Ghislain Auguste Atemezing Mondeca, France
Maurizio Atzori University of Cagliari, Italy
Sören Auer TIB - Leibniz Information Center Science and

Technology and University of Hannover,
Germany

Organization ix

Nathalie Aussenac-Gilles IRIT and CNRS, France
Payam Barnaghi Imperial College London, UK
Pierpaolo Basile University of Bari, Italy
Rafael Berlanga Universitat Jaume I, Spain
Russa Biswas Karlsruhe Institute of Technology, Germany
Eva Blomqvist Linköping University, Sweden
Carlos Bobed University of Zaragoza, Spain
Fernando Bobillo University of Zaragoza, Spain
Katarina Boland GESIS - Leibniz Institute for the Social Sciences,

Germany
Loris Bozzato Fondazione Bruno Kessler, Italy
Adrian M. P. Brasoveanu MODUL Technology GmbH, Austria
Carlos Buil Aranda Universidad Técnica Federico Santa María, Chile
Davide Buscaldi LIPN, Université Paris 13, France
Elena Cabrio I3S, CNRS, Inria, and Université Côte d’Azur,

France
Jean-Paul Calbimonte University of Applied Sciences and Arts Western

Switzerland HES-SO, Switzerland
Valentina Anita Carriero University of Bologna, Italy
Irene Celino Cefriel, Italy
Yoan Chabot Orange Labs, France
Pierre-Antoine Champin LIRIS, Université Claude Bernard Lyon 1, France
Maria Chang IBM, USA
Victor Charpenay École des Mines de Saint-Étienne, France
David Chaves-Fraga Universidad Politécnica de Madrid, Spain
Jiaoyan Chen University of Oxford, UK
Gong Cheng Nanjing University, China
Michael Cochez Vrije Universiteit Amsterdam, The Netherlands
Pieter Colpaert Ghent University and imec, Belgium
Simona Colucci Politecnico di Bari, Italy
Olivier Corby Inria, France
Oscar Corcho Universidad Politécnica de Madrid, Spain
Francesco Corcoglioniti Free University of Bozen-Bolzano, Italy
Julien Corman Free University of Bozen-Bolzano, Italy
Marco Cremaschi Università di Milano-Bicocca, Italy
Claudia d’Amato University of Bari, Italy
Mathieu D’Aquin Loria, University of Lorraine, France
Enrico Daga Open University, UK
Marilena Daquino University of Bologna, Italy
Jérôme David Inria, France
Victor de Boer Vrije Universiteit Amsterdam, The Netherlands
Daniele Dell’Aglio Aalborg University, Denmark

x Organization

Elena Demidova University of Bonn, Germany
Ronald Denaux Amazon, Spain
Kathrin Dentler Triply, The Netherlands
Gayo Diallo ISPED and LABRI, University of Bordeaux,

France
Dennis Diefenbach Université Jean Monet, France
Stefan Dietze GESIS - Leibniz Institute for the Social Sciences,

Germany
Christian Dirschl Wolters Kluwer Germany, Germany
Milan Dojchinovski Czech Technical University in Prague,

Czech Republic
Ivan Donadello Free University of Bozen-Bolzano, Italy
Mauro Dragoni Fondazione Bruno Kessler, Italy
Aaron Eberhart Kansas State University, USA
Fajar J. Ekaputra Vienna University of Technology, Austria
Pavlos Fafalios Institute of Computer Science, FORTH, Greece
Nicola Fanizzi Università degli Studi di Bari “Aldo Moro”, Italy
Alessandro Faraotti IBM, Italy
Daniel Faria LASIGE, Universidade de Lisboa, Portugal
Catherine Faron Zucker Université Nice Sophia Antipolis, France
Anna Fensel University of Innsbruck, Austria
Javier D. Fernández F. Hoffmann-La Roche AG, Switzerland
Mariano Fernández López Universidad CEU San Pablo, Spain
Jesualdo Tomás Fernández-Breis Universidad de Murcia, Spain
Sebastián Ferrada Linköping University, Sweden
Sebastien Ferre Université de Rennes, CNRS, and IRISA, France
Agata Filipowska Poznan University of Economics, Poland
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Adam Funk University of Sheffield, UK
Luis Galárraga Inria, France
Fabien Gandon Inria, France
Aldo Gangemi Università di Bologna and CNR-ISTC, Italy
Raúl García-Castro Universidad Politécnica de Madrid, Spain
Daniel Garijo Universidad Politécnica de Madrid, Spain
Chiara Ghidini Fondazione Bruno Kessler, Italy
Carole Goble University of Manchester, UK
Jose Manuel Gomez-Perez expert.ai, Spain
Simon Gottschalk L3S Research Center, Germany
Alasdair Gray Heriot-Watt University, Scotland
Kalpa Gunaratna Samsung Research, USA
Christophe Guéret Accenture Labs, Ireland
Peter Haase Metaphacts, Germany

Organization xi

Torsten Hahmann University of Maine, USA
Armin Haller Australian National University, Australia
Harry Halpin World Wide Web Consortium, Switzerland
Ismail Harrando EURECOM, France
Olaf Hartig Linköping University, Sweden
Maria M. Hedblom Jönköping University, Sweden
Ivan Heibi University of Bologna, Italy
Veronika Heimsbakk Capgemini, Norway
Nicolas Heist University of Mannheim, Germany
Nathalie Hernandez IRIT, France
Sven Hertling University of Mannheim, Germany
Aidan Hogan Universidad de Chile, Chile
Katja Hose Aalborg University, Denmark
Wei Hu Nanjing University, China
Madelon Hulsebos University of Amsterdam, The Netherlands
Ali Hurriyetoglu Koc University, Turkey
Eero Hyvönen Aalto University and University of Helsinki,

Finland
Luis Ibanez-Gonzalez University of Southampton, UK
Ryutaro Ichise National Institute of Informatics, Japan
Filip Ilievski USC Information Sciences Institute, USA
Antoine Isaac Europeana and VU Amsterdam, The Netherlands
Prateek Jain Nuance Communications Inc., India
Fuad Jamour University of California, Riverside, USA
Krzysztof Janowicz University of California, Santa Barbara, USA
Mustafa Jarrar Birzeit University, Palestine
Julien Romero SAMOVAR, Télécom SudParis, France
Simon Jupp SciBite, UK
Maulik R. Kamdar Elsevier Inc., USA
Naouel Karam Fraunhofer FOKUS, Germany
Katariina Kari Inter IKEA Systems, Finland
Tomi Kauppinen Aalto University, Finland
C. Maria Keet University of Cape Town, South Africa
Mayank Kejriwal USC Information Sciences Institute, USA
Ali Khalili Deloitte, The Netherlands
Haklae Kim Samsung Electronics, South Korea
Sabrina Kirrane Vienna University of Economics and Business,

Austria
Tomas Kliegr Prague University of Economics and Business,

Czech Republic
Craig Knoblock USC Information Sciences Institute, USA
Haridimos Kondylakis Institute of Computer Science, FORTH, Greece

xii Organization

Stasinos Konstantopoulos NCSR Demokritos, Greece
Roman Kontchakov Birkbeck, University of London, UK
Manolis Koubarakis National and Kapodistrian University of Athens,

Greece
Maria Koutraki L3S Research Center and Leibniz University

Hannover, Germany
Kouji Kozaki Osaka Electro-Communication University, Japan
Ralf Krestel ZBW - Leibniz Information Centre for

Economics and Kiel University, Germany
Adila A. Krisnadhi Universitas Indonesia, Indonesia
Tobias Käfer Karlsruhe Institute of Technology, Germany
Jose Emilio Labra Gayo Universidad de Oviedo, Spain
Frederique Laforest LIRIS, INSA Lyon, France
Sarasi Lalithsena IBM Watson, USA
Nelia Lasierra F. Hoffmann-La Roche, Switzerland
Danh Le Phuoc TU Berlin, Germany
Maxime Lefrançois École des Mines de Saint-Etienne, France
Yuan-Fang Li Monash University, Australia
Sven Lieber Royal Library of Belgium (KBR) and Ghent

University, Belgium
Pasquale Lisena EURECOM, France
Ismini Lourentzou Virginia Tech, USA
Jun Ma Amazon, USA
Maria Maleshkova University of Siegen, Germany
Beatrice Markhoff LIFAT, Université de Tours, France
Miguel A. Martinez-Prieto University of Valladolid, Spain
Jose L. Martinez-Rodriguez CINVESTAV, Mexico
Franck Michel I3S, CNRS and Université Côte d’Azur, France
Nandana Mihindukulasooriya IBM Research, USA
Thomas Minier Opendatasoft, France
Aditya Mogadala Saarland University, Germany
Pascal Molli LS2N, University of Nantes, France
Gabriela Montoya Aalborg University, Denmark
Kody Moodley Maastricht University, The Netherlands
Jose Mora Universidad Politécnica de Madrid, Spain
Diego Moussallem Paderborn University, Germany
Raghava Mutharaju IIIT-Delhi, India
Lionel Médini LIRIS, Université Claude Bernard Lyon 1, France
Sebastian Neumaier St. Pölten University of Applied Sciences, Austria
Vinh Nguyen National Library of Medicine, NIH, USA
Andriy Nikolov AstraZeneca, UK
Natasha Noy Google, USA

Organization xiii

Cliff O’Reilly City, University of London, UK
Oliver Lehmberg Diffbot, USA
Inah Omoronyia University of Glasgow, UK
Femke Ongenae Ghent University and imec, Belgium
Francesco Osborne Open University, UK
Matteo Palmonari University of Milano-Bicocca, Italy
Harshvardhan J. Pandit Trinity College Dublin, Ireland
George Papadakis National Technical University of Athens, Greece
Heiko Paulheim University of Mannheim, Germany
Tassilo Pellegrini St. Pölten University of Applied Sciences, Austria
Maria Angela Pellegrino Università degli Studi di Salerno, Italy
Sujan Perera IBM Watson, USA
Nathalie Pernelle LIPN, Université Sorbonne Paris Nord, France
Silvio Peroni University of Bologna, Italy
Johann Petrak University of Sheffield, UK
Guangyuan Piao National University of Ireland Maynooth, Ireland
Pierre-Henri Paris CNAM, France
Lydia Pintscher Wikimedia Deutschland, Germany
Giuseppe Pirrò Sapienza University of Rome, Italy
Dimitris Plexousakis Institute of Computer Science, FORTH, Greece
André Pomp University of Wuppertal, Germany
María Poveda-Villalón Universidad Politécnica de Madrid, Spain
Nicoleta Preda Université Paris Saclay, Versailles, France
Cédric Pruski Luxembourg Institute of Science and Technology,

Luxembourg
Tara Raafat University of Surrey, UK
Srinivas Ravishankar IBM Research, USA
Simon Razniewski Max Planck Institute for Informatics, Germany
Diego Reforgiato Università degli Studi di Cagliari, Italy
Blake Regalia University of California, Santa Barbara, USA
Georg Rehm DFKI, Germany
Achim Rettinger Trier University, Germany
Artem Revenko Semantic Web Company GmbH, Austria
Petar Ristoski IBM Research - Almaden, USA
Giuseppe Rizzo LINKS Foundation, Italy
Sergio José Rodríguez Méndez Australian National University, Australia
Roghaiyeh Gachpaz Hamed Trinity College Dublin, Ireland
Edelweis Rohrer Universidad de la República, Uruguay
Julian Rojas Ghent University, Belgium
Maria Del Mar Roldan-Garcia Universidad de Málaga, Spain
Henry Rosales-Méndez University of Chile, Chile
Catherine Roussey INRAE, France

xiv Organization

Edna Ruckhaus Universidad Politécnica de Madrid, Spain
Sebastian Rudolph TU Dresden, Germany
Harald Sack FIZ Karlsruhe - Leibniz Institute for Information

Infrastructure and KIT, Germany
Angelo Antonio Salatino Open University, UK
Muhammad Saleem University of Leipzig, Germany
Emanuel Sallinger TU Wien, Austria
Felix Sasaki Cornelsen Verlag GmbH and TH Brandenburg,

Germany
Ulrike Sattler University of Manchester, UK
Fatiha Saïs LRI, Paris-Saclay University, France
Marco Luca Sbodio IBM Research, Ireland
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Daniel Schwabe PUC-Rio, Brazil
Gezim Sejdiu University of Bonn, Germany
Juan F. Sequeda data.world, USA
Barış Sertkaya Frankfurt University of Applied Sciences,

Germany
Dominic Seyler Baidu Research, USA
Pavel Shvaiko Informatica Trentina, Italy
Gerardo Simari Universidad Nacional del Sur and CONICET,

Argentina
Evren Sirin Clark & Parsia, LLC, USA
Hala Skaf-Molli University of Nantes, France
Xingyi Song University of Sheffield, UK
Adrián Soto Fintual, Chile
Blerina Spahiu Università degli Studi di Milano Bicocca, Italy
Marc Spaniol Université de Caen Normandie, France
Kavitha Srinivas IBM, India
Steffen Staab Universität Stuttgart, Germany, and University of

Southampton, UK
Nadine Steinmetz TU Ilmenau, Germany
Armando Stellato University of Rome Tor Vergata, Italy
Simon Steyskal Siemens AG Austria, Austria
Umberto Straccia ISTI-CNR, Italy
Heiner Stuckenschmidt University of Mannheim, Germany
Gerd Stumme University of Kassel, Germany
Vojtěch Svátek Prague University of Economics and Business,

Czech Republic
Ruben Taelman Ghent University and imec, Belgium
Hideaki Takeda National Institute of Informatics, Japan
Valentina Tamma University of Liverpool, UK

Organization xv

Andrea Tettamanzi Université Nice Sophia Antipolis, France
Andreas Thalhammer F. Hoffmann-La Roche AG, Switzerland
Tobias Weller University of Mannheim, Germany
Konstantin Todorov LIRMM, University of Montpellier, France
Riccardo Tommasini INSA Lyon, France
Anna Tordai Elsevier, The Netherlands
Sebastian Tramp eccenca GmbH, Germany
Cassia Trojahn UT2J and IRIT, France
Raphaël Troncy EURECOM, France
Umair Ul Hassan National University of Ireland Galway, Ireland
Jürgen Umbrich Onlim GmbH, Austria
Ricardo Usbeck Hamburg University, Germany
Sahar Vahdati InfAI, Germany
Ludger Van Elst DFKI, Germany
Frank Van Harmelen Vrije Universiteit Amsterdam, The Netherlands
Miel Vander Sande Meemoo, Belgium
Ruben Verborgh Ghent University and imec, Belgium
Serena Villata I3S, CNRS and Université Côte d’Azur, France
Boris Villazón-Terrazas Majorel, Spain
Fabio Vitali University of Bologna, Italy
Domagoj Vrgoc Pontificia Universidad Católica de Chile, Chile
Andreas Wagner Schaeffler AG, Germany
Kewen Wang Griffith University, Australia
Ruijie Wang University of Illinois Urbana-Champaign, USA
Rigo Wenning W3C, France
Xander Wilcke Vrije Universiteit Amsterdam, The Netherlands
Cord Wiljes Nationale Forschungsdateninfrastruktur (NFDI)

e.V., Germany
Gregory Todd Williams Amazon Web Services, USA
Zhe Wu eBay, USA
Josiane Xavier Parreira Siemens AG Österreich, Austria
Fouad Zablith American University of Beirut, Lebanon
Hamada Zahera Paderborn University, Germany
Ondřej Zamazal Prague University of Economics and Business,

Czech Republic
Songmao Zhang Chinese Academy of Sciences, China
Ziqi Zhang Sheffield University, UK
Rui Zhu University of California, Santa Barbara, USA
Antoine Zimmermann École des Mines de Saint-Étienne, France
Matthäus Zloch GESIS - Leibniz Institute for the Social Sciences,

Germany
Amal Zouaq Ecole Polytechnique de Montréal, Canada

xvi Organization

Hanna Ćwiek-Kupczyńska Institute of Plant Genetics, Polish Academy of
Sciences, Poland

Umutcan Şimşek Semantic Technology Institute Innsbruck, Austria

Additional Reviewers

Ayats, Hugo
Braun, Christoph
Bruns, Oleksandra
Burgdorf, Andreas
Eckert, Kai
Ettorre, Antonia
Flouris, Giorgos
Gesese, Genet Asefa
He, Yuan
Hoppe, Fabian
Hosseini Beghaeiraveri, Seyed Amir
Hosseinzadeh Vahid, Ali
Jain, Nitisha
Kugler, Kai
König, Lukas
Marcia, Diego
Marx, Edgard
Mohtashim, Mirza

Möller, Cedric
Parvin, Parvaneh
Paulus, Alexander
Salman, Muhammad
Santini, Cristian
Schestakov, Stefan
Scrocca, Mario
Sha, Alyssa
Siciliani, Lucia
Sierra-Múnera, Alejandro
Silvestre, Jorge
Simón Ramos, José Manuel
Singh, Gunjan
Tietz, Tabea
Vimercati, Manuel
Werner, Simon
Yan, Xi
Zhuang, Zhiqiang

Sponsors

Platinum Sponsors

VideoLectures.NET is an award-winning free and open access educational video
lectures repository. The lectures are given by distinguished scholars and scientists
at the most important and prominent events such as conferences, summer schools,
workshops, and science promotional events in many fields of science. The portal is
aimed at promoting science, exchanging ideas, and fostering knowledge sharing by
providing high-quality didactic contents not only to the scientific community but also
to the general public. All lectures, accompanying documents, information, and links are
systematically selected and classified through the editorial process taking into account
users’ comments.

Organization xvii

Gold Sponsors

Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for
engineering excellence, innovation, quality, reliability, and internationality for more
than 170 years. The company is active around the globe, focusing on the areas of
electrification, automation, and digitalization. One of the largest producers of energy-
efficient, resource-saving technologies, Siemens is a leading supplier of efficient power
generation and power transmission solutions and a pioneer in infrastructure solutions as
well as automation, drive, and software solutions for industry. With its publicly listed
subsidiary Siemens Healthineers AG, the company is also a leading provider of medical
imaging equipment – such as computed tomography and magnetic resonance imaging
systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2018,
which ended on September 30, 2018, Siemens generated revenue of e83.0 billion and
net income of e6.1 billion. At the end of September 2018, the company had around
379,000 employees worldwide. Further information is available at www.siemens.com.

Silver Sponsors

Elsevier is a global information analytics business that helps scientists and clinicians
to find new answers, reshape human knowledge, and tackle the most urgent human
crises. For 140 years, we have partnered with the research world to curate and verify
scientific knowledge. Today, we’re committed to bringing that rigor to a new generation
of platforms. Elsevier provides digital solutions and tools in the areas of strategic research
management, R&D performance, clinical decision support, and professional education,
including ScienceDirect, Scopus, SciVal, ClinicalKey, and Sherpath. Elsevier publishes
over 2,500 digitized journals, including The Lancet and Cell, 39,000 e-book titles, and
many iconic reference works, including Gray’s Anatomy. Elsevier is part of RELX
Group, a global provider of information and analytics for professionals and business
customers across industries.

https://www.siemens.com/global/en.html
https://www.elsevier.com/
https://www.elsevier.com/solutions/sciencedirect
https://www.elsevier.com/solutions/scopus
https://www.elsevier.com/solutions/scival
https://www.elsevier.com/solutions/clinicalkey
https://www.elsevier.com/solutions/sherpath
https://www.thelancet.com/
https://www.cell.com/
https://www.elsevier.com/books/grays-anatomy/standring/978-0-7020-5230-9
https://www.relx.com/

xviii Organization

Ontotext is a global leader in enterprise knowledge graph technology and semantic
database engines. Ontotext employs big knowledge graphs to enable unified data access
and cognitive analytics via text mining and integration of data across multiple sources.
Ontotext GraphDBtm engine and Ontotext Platform power business critical systems in
the biggest banks, media companies, market intelligence agencies, and car and aerospace
manufacturers. Ontotext technology and solutions are spread wide across the value chain
of the most knowledge intensive enterprises in financial services, publishing, healthcare,
pharma, manufacturing, and public sectors. Leveraging AI and cognitive technologies,
Ontotext helps enterprises get competitive advantage by connecting the dots of their
proprietary knowledge and putting in the context of global intelligence.

Springer is part of Springer Nature, a leading global research, educational, and
professional publisher, home to an array of respected and trusted brands providing
quality content through a range of innovative products and services. Springer Nature
is the world’s largest academic book publisher, publisher of the world’s most influential
journals, and a pioneer in the field of open research. The company numbers almost
13,000 staff in over 50 countries and has a turnover of approximately e1.5 billion.
Springer Nature was formed in 2015 through the merger of Nature Publishing Group,
PalgraveMacmillan,Macmillan Education, and Springer Science+BusinessMedia. Find
out more at www.springernature.com.

Bronze Sponsors

IOS Press is an independent, international STM publishing house established in 1987 in
Amsterdam. One of our guiding principles is to embrace the benefits a lean organization
offers. While our goal is to keep things simple, we strive to meet the highest professional
standards. Our business practices are straightforward, transparent, and ethical. IOS Press
serves the informationneeds of scientific andmedical communitiesworldwide. IOSPress
now publishes more than 100 international journals and approximately 75 book titles
each year on subjects ranging from computer sciences and mathematics to medicine and
the natural sciences. Please visit iospress.com to find out more.

https://www.springernature.com/in
https://www.iospress.com/

Organization xix

metaphacts is a Germany-based company delivering metaphactory – a platform that
empowers customers to accelerate their knowledge graph journey and drive knowledge
democratization, improve data literacy, and reach smarter business decisions with data.
The metaphacts team offers unmatched experience and know-how around enterprise
knowledge graphs for our clients in areas such as pharma and life sciences, engineering
and manufacturing, energy, finance, business, and cultural heritage.

https://metaphacts.com/product

Contents

Research

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 3
Bingchao Wu, Chenglong Deng, Bei Guan, Yongji Wang,
and Yuxuan Kangyang

An Analysis of Links in Wikidata . 21
Armin Haller, Axel Polleres, Daniil Dobriy, Nicolas Ferranti,
and Sergio J. Rodríguez Méndez

Knowledge Graph Entity Type Prediction with Relational Aggregation
Graph Attention Network . 39

Changlong Zou, Jingmin An, and Guanyu Li

Union and Intersection of All Justifications . 56
Jieying Chen, Yue Ma, Rafael Peñaloza, and Hui Yang

Supervised Knowledge Aggregation for Knowledge Graph Completion 74
Patrick Betz, Christian Meilicke, and Heiner Stuckenschmidt

Expressive Scene Graph Generation Using Commonsense Knowledge
Infusion for Visual Understanding and Reasoning . 93

Muhammad Jaleed Khan, John G. Breslin, and Edward Curry

Impact of the Characteristics of Multi-source Entity Matching Tasks
on the Performance of Active Learning Methods . 113

Anna Primpeli and Christian Bizer

Optimal ABox Repair w.r.t. Static EL TBoxes: From Quantified ABoxes
Back to ABoxes . 130

Franz Baader, Patrick Koopmann, Francesco Kriegel,
and Adrian Nuradiansyah

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 147
Unmesh Joshi and Jacopo Urbani

The Problem with XSD Binary Floating Point Datatypes in RDF 165
Jan Martin Keil and Merle Gänßinger

xxii Contents

DCWEB-SOBA: Deep Contextual Word Embeddings-Based
Semi-automatic Ontology Building for Aspect-Based Sentiment
Classification . 183

Roos van Lookeren Campagne, David van Ommen, Mark Rademaker,
Tom Teurlings, and Flavius Frasincar

Never Mind the Semantic Gap: Modular, Lazy and Safe Loading of RDF
Data . 200

Eduard Kamburjan, Vidar Norstein Klungre, and Martin Giese

Improving Question Answering Quality Through Language Feature-Based
SPARQL Query Candidate Validation . 217

Aleksandr Gashkov, Aleksandr Perevalov, Maria Eltsova,
and Andreas Both

Learning Concept Lengths Accelerates Concept Learning in ALC 236
N’Dah Jean Kouagou, Stefan Heindorf, Caglar Demir,
and Axel-Cyrille Ngonga Ngomo

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph
Completion . 253

Mojtaba Nayyeri, Sahar Vahdati, Md Tansen Khan,
Mirza Mohtashim Alam, Lisa Wenige, Andreas Behrend,
and Jens Lehmann

Hierarchical Topic Modelling for Knowledge Graphs . 270
Yujia Zhang, Marcin Pietrasik, Wenjie Xu, and Marek Reformat

Resources

Do Arduinos Dream of Efficient Reasoners? . 289
Alexandre Bento, Lionel Médini, Kamal Singh, and Frédérique Laforest

A Programming Interface for Creating Data According to the SPAR
Ontologies and the OpenCitations Data Model . 305

Simone Persiani, Marilena Daquino, and Silvio Peroni

LD Connect: A Linked Data Portal for IOS Press Scientometrics 323
Zilong Liu, Meilin Shi, Krzysztof Janowicz, Blake Regalia,
Stephanie Delbecque, Gengchen Mai, Rui Zhu, and Pascal Hitzler

Chowlk: from UML-Based Ontology Conceptualizations to OWL 338
Serge Chávez-Feria, Raúl García-Castro, and María Poveda-Villalón

Contents xxiii

QuoteKG: A Multilingual Knowledge Graph of Quotes . 353
Tin Kuculo, Simon Gottschalk, and Elena Demidova

Stunning Doodle: A Tool for Joint Visualization and Analysis
of Knowledge Graphs and Graph Embeddings . 370

Antonia Ettorre, Anna Bobasheva, Franck Michel, and Catherine Faron

Capturing the Semantics of Smell: The Odeuropa DataModel for Olfactory
Heritage Information . 387

Pasquale Lisena, Daniel Schwabe, Marieke van Erp, Raphaël Troncy,
William Tullett, Inger Leemans, Lizzie Marx, and Sofia Colette Ehrich

Stream Reasoning Playground . 406
Patrik Schneider, Daniel Alvarez-Coello, Anh Le-Tuan,
Manh Nguyen-Duc, and Danh Le-Phuoc

In-Use Track

The Dow Jones Knowledge Graph . 427
Ian Horrocks, Jordi Olivares, Valerio Cocchi, Boris Motik, and Dylan Roy

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore . . . 444
Adam Sanchez-Ayte, Fabrice Jouanot, and Marie-Christine Rousset

Matching Multiple Ontologies to Build a Knowledge Graph
for Personalized Medicine . 461

Marta Contreiras Silva, Daniel Faria, and Catia Pesquita

FindSampo: A Linked Data Based Portal and Data Service for Analyzing
and Disseminating Archaeological Object Finds . 478

Heikki Rantala, Esko Ikkala, Ville Rohiola, Mikko Koho,
Jouni Tuominen, Eljas Oksanen, Anna Wessman, and Eero Hyvönen

Author Index . 495

Research

Enhancing Sequential Recommendation
via Decoupled Knowledge Graphs

Bingchao Wu1,3, Chenglong Deng1,3, Bei Guan1,3, Yongji Wang1,2,3(B),
and Yuxuan Kangyang2,3

1 Collaborative Innovation Center, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{bingchao2017,chenglong2018,guanbei}@iscas.ac.cn
ywang@itechs.iscas.ac.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

kyyx@ios.ac.cn
3 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Sequential recommendation can capturedynamic interest pat-
terns of users based on user interaction sequences. Recently, there has been
interest in integratingtheknowledgegraph(KG)intosequentialrecommen-
dation.Existingworks suffer fromtwomainchallenges: a) representingeach
entity in the KG as a single vector can confound heterogeneous information
about the entity; b) triple-based facts are modeled independently, lacking
the exploration of high-order connectivity between entities. To solve the
above challenges, we decouple the KG into two subgraphs, namely CRoss-
user Behavior-based graph and Intrinsic Attribute-based graph (Crbia),
depending on the type of relation between entities. We further propose a
CrbiaNet based on the two subgraphs. First, CrbiaNet obtains behavior-
level and attribute-level semantic features from these two subgraphs inde-
pendentlybydifferentgraphneural networks, respectively.Then,CrbiaNet
applies a sequentialmodel incorporating these semantic features to capture
dynamic preference of the users. Extensive experiments on three real-world
datasets show that our proposed CrbiaNet outperforms previous state-of-
the-art knowledge-enhanced sequential recommendation models by a large
margin consistently.

Keywords: Sequential recommendation · Knowledge graph ·
Heterogeneous information · Graph neural network

1 Introduction

The recommendation system aims to suggest related items to users from a mas-
sive collection of items, thereby alleviating the problem of information over-
load. Sequential recommendation has been receiving increasing attention from
researchers in the recommendation field. It is necessary to model dynamic user
preference over time to provide accurate and high-quality recommendations.
With the popularity and effectiveness of deep learning technologies in the fields
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-06981-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_1

4 B. Wu et al.

of computer vision and natural language processing, much of the literature on
sequential recommendation has focused specifically on capturing sequential pat-
terns from the historical interaction sequences sorted by time to predict future
items for users via neural network models, such as GRU4Rec [6], Caser [22],
SASRec [9], and BERT4Rec [21].

Although sequential recommendation has achieved great success in capturing
dynamic user preference, it is limited by the fact that the vector of user pref-
erence is learned independently through each user’s interaction sequence, and
a large portion of the user interaction sequence is sparse [4]. Recently, many
previous studies have focused on injecting the KG into sequential recommenda-
tion models through path-based methods (e.g., MASR [8] and KSRN [41]) and
embedding-based methods (e.g., Chorus [27] and KERL [29]) to solve the afore-
mentioned problems. The path-based approaches extract meta-paths that are
relevant to user behavior sequences from the KG. However, these approaches
rely heavily on expert knowledge to design reasonable meta-paths, and it is
difficult to enumerate all potentially useful meta-paths [4]. The research in this
paper is concerned with embedding-based approaches, which use the KG embed-
ding methods to acquire the embedding of each entity in the KG. The existing
embedding-based methods integrated into sequential recommendation models
are divided into two categories, i.e., traditional distance-based models (e.g.,
TransE [1] and TransR [13]) and traditional semantic matching models (e.g.,
DistMult [35] and ComplEx [24]).

Fig. 1. (a) The heterogeneous information in the KG. (b) The high-order connectivity
between items in the KG where the yellow dashed line indicates no directly connected
edges between items. (Color figure online)

In the recommendation domain, there are two challenges in applying these
two categories of embedding-based approaches to encode semantic features in
the KG.

– Heterogeneous semantic information of items: the KG in the recommendation
domain includes intrinsic attribute-level semantic information of items and
behavior-level semantic information of items extracted from user logs [14]. A
case is shown in Fig. 1-(a), the bottom two triples (iPhone, brand, Apple) and
(iPhone, category, Phone) construct the attribute-level semantic information
of iPhone, and the top two triples generate the behavior-level semantic infor-
mation of iPhone. Existing embedding-based methods applied to sequential

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 5

recommendation confound two types of heterogeneous information in a single
vector.

– High-order connectivity between items: the embedding-based approaches
mentioned above only model each fact consisting of a triplet individually,
and ignore the high-order connectivity between items [28]. The high-order
connectivityis a multi-hop relation path between items [30], which allows
exploring deeper semantic information about items. A case is shown in Fig. 1-
(b). Even though there are no directly connected edges between iPhone and
Apple Watch, we can still capture the potential semantic relation through a
multi-hop connection (iPhone−→MacBook−→AirPods−→Apple Watch).

While the existing works (e.g., KSR [7], KERL [29] and GFE-SASRec [36])
utilize graph neural networks to model high-order connectivity, they only con-
sider one type of KG or conflate heterogeneous information of items into a
single vector. To overcome these challenges, we propose a sequential recom-
mendation model CbiaNet1 via merging decoupled knowledge graphs. First,
we decouple the KG into two complementary subgraphs, named the cross-user
behavior-based graph and the intrinsic attribute-based graph. Then, two knowl-
edge sub-extractors encode the two subgraphs independently by graph neural
networks to solve the problem of confounding heterogeneous semantics and to
capture the higher-order connections between items. Next, a hierarchical knowl-
edge aggregator combines the heterogeneous semantic information to generate
high-level semantic features. Finally, a sequential model incorporating the high-
level semantic features is developed to capture the dynamic preference of the
users. We conduct experiments on three real-world datasets, and the experimen-
tal results show that our proposed CrbiaNet outperforms the existing state-of-
the-art recommendation models. In addition, we extend the high-level semantic
features to several sequential recommendation models, which also improves their
performance.

2 Related Work

2.1 Sequential Recommendation

In order to model the dynamic interests of users, sequential recommendation
methods utilize the user’s historical interaction data. Markov chains are applied
in traditional sequential recommendation methods by estimating the transition
probability between items within the previous action sequence [19,20]. With the
great success of deep learning methods in various fields, many efforts have been
made to model users’ historical interaction sequences by utilizing neural net-
works [6,9,12,21,22]. GRU4Rec [6] applies Gated Recurrent Units (GRU) to the
session-based recommendation. NARM [12] further introduces attention-based
GRU by assigning different weights to items of historical interaction sequences.
Besides, Caser [22] and NextItNet [37] introduce Convolution Neural Network

1 The codes are released at https://github.com/paulpig/sequentialRec.git..

https://github.com/paulpig/sequentialRec.git.

6 B. Wu et al.

(CNN) to learn sequential patterns as local features by using convolutional fil-
ters. Recently, various studies have validated that self-attention mechanisms
effectively model dependencies between items [9,21]. SASRec [9] utilizes left-
to-right Transformer models [25] to predict the next item. BERT4Rec [21] uses
bidirectional Transformer models (BERT [3]) to encode user interest vectors
by optimizing a Cloze task [23]. Sequential recommendations focus only on the
user’s own interaction sequence, ignoring the similar co-occurrence across users
between items and relationships between items at the attribute level.

2.2 Knowledge-Enhanced Recommendation

KGs have been applied in various recommendation models to improve the perfor-
mance of the recommendation where KGs use triples to describe realistic facts,
such as the user-item KG [41], the item-item KG [34], and the item-attribute
KG [41]. Several graph-based recommendation models jointly encode behavior-
level user-item relations and knowledge-level item-item relations to introduce
semantic knowledge from KG into the recommender system, such as KHGT [32],
UGRec [39], and SMIN [14]. However, the above graph-based models cannot
capture the dynamic user preference, so more research is focused on how to uti-
lize knowledge graphs to enhance sequential recommendation models. Existing
studies on injecting knowledge graphs into sequential models are mainly divided
into two categories: path-based and embedding-based methods. For path-based
methods, MASR [8] introduces meta-paths from the knowledge graph to cap-
ture global contextual information and applies the sequential model to capture
the local contextual information. KARN [41] combines users’ historical behavior
sequences and the path between the user and the target item for recommenda-
tion. For embedding-based methods, KERL [29] uses TransR to obtain seman-
tic features from KG that are fused into the sequential models. Chorus [27],
RCF [34], and KDA [26] use DistMult to extract semantic features of items
from KG by bilinear objectives and use the semantic features as input to the
sequential model. Despite these recent advancements, the above knowledge graph
embeddings cannot capture the higher-order connections between items in KG.
DHIMN [33] applies a GCN-based message-passing layer to capture the high-
level semantic knowledge in the KG, but ignores heterogeneous information of
item relations in KG.

3 Problem Definition and Notation

3.1 Cross-User Behavior-Based Graph (CRBGraph)

In the recommendation domain, item relations extracted from user logs natu-
rally exist in the datasets [15,26]. For example, the relation also buy (also view)
between iPhone and MacBook means that users bought an iPhone and also
bought (viewed) a MacBook afterwards. Here we represent these item relations
with a cross-user behavior-based graph G1, defined as {(h, r, t)|h, t ∈ I, r ∈ Rb}

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 7

where I and Rb denote sets of item instances and item relations, respectively.
The relations between item-item pairs are all positively correlated, so all types
of item relations are reduced to a positive relation. This means that r ∈ {0, 1}
where r = 1 represents that there is a behavior-level link between the item-item
pair.

3.2 Intrinsic Attribute-Based Graph (IAGraph)

In addition to behavior-level links between items, there are various types of item
attributes, such as category and brand. Here we utilize the item-attribute pairs
to generate an intrinsic attribute-based graph G2, defined as {(h, r′, a)|h ∈ I, a ∈
A, r′ ∈ Ra}, where I and A denote sets of item instances and attribute values,
and Ra is the set of attribute-level relations. For example, the triple (iPhone,
brand, Apple) represents that the brand of the iPhone is Apple.

3.3 Task Description

Assume that there are M users and N items in the recommender system. Given
the graphs G1,G2 and the interaction sequence Su = [iu1 , iu2 , · · · , iuT] of user u
where iu1 ∈ I and T is the length of the interaction sequence, the knowledge-
enhanced sequential recommendation task is denoted as follows:

i∗u = argmaxik∈IP (iuT+1 = ik|Su,G1,G2)

where iuT+1 is the predicted item at T + 1 time step, and P is the probability
distribution over I.

4 Method

The overview of CrbiaNet is shown in Fig. 2. The knowledge extractor is firstly
employed to obtain heterogeneous item features from two distinct KGs, com-
prising a Behavior-level Knowledge Sub-extractor (BKS) and an Attribute-level
Knowledge Sub-extractor (AKS). Then, the knowledge aggregator applies a hier-
archical integration strategy to generate high-level semantic features by merging
heterogeneous item features. Finally, a sequential interactions modeling layer
merging high-level semantic features is employed to capture the dynamic user
intention from the user’s historical interaction sequence.

4.1 Knowledge Extractor

In this section, we design two types of graph neural networks to encode the
behavior-level and attribute-level higher-order semantic features from the CRB-
Graph and the IAGraph, respectively. To model the CRBGraph, we design
a behavior-level knowledge sub-extractor that aggregates semantic features of
neighbors based on the flow direction of message passing in the graph neural net-
work. For IAGraph, we aggregate the neighborhood information to the central
node through the relationship-aware attention mechanism of the attribute-level
knowledge sub-extractor.

8 B. Wu et al.

Fig. 2. The overall framework of our proposed model.

Behavior-Level Knowledge Sub-extractor (BKS). CRBGraph is a
directed homogeneous graph in which each triple contains the time-series relation
between the head and the tail entity. For example, the triple (phone, also buy,
phone case) means that users bought a phone and then also bought a phone case.
Each node in the CRBGraph appears as a head entity in some related triples and
as a tail entity in the rest of the related triples. This indicates that each node
in the CRBGraph contains two types of time-series relations. To capture these
time-series relations, we construct two-sided semantic features for each node,
Hin and Hout.

Specially, given the item i, one-hop neighbors of i are divided into out-degree
neighbors N out

i and in-degree neighbors N in
i . For example, N out

5 of the item v5
is {v1, v4, v6} and N in

5 is {v2, v3} in Fig. 3-(a). One-side semantic feature of item
i at kth layer, in-degree feature H(k)

in,i, aggregates the features H(k−1)
out,i at (k−1)th

layer in neighbors N in
i . The other-side feature H(k)

out,i aggregates H(k−1)
in,i in N out

i .
The formula for the aggregation operation is:

H(k)
in,i =

∑
j∈N in

i

1√
|N in

j |
√

|Nout
i |H

(k−1)
out,j , (1)

H(k)
out,i =

∑
j∈Nout

i

1√
|Nout

j |
√

|N in
i |H

(k−1)
in,j (2)

where |N out
i | and |N in

i | are the number of items in N out
i and N in

i , respectively.
A case is shown in Fig. 3-(b), the in-degree features {H(k−1)

in,1 ,H(k−1)
in,4 ,H(k−1)

in,6 } at

(k − 1)th layer of {v1, v4, v6} are propagated to the out-degree feature H(k)
out,5 at

kth layer of the item v5 by Eq. 1. Note that H(0)
out = H(0)

in = Eb, which means
that H(0)

out and H(0)
in are from a shared embedding layer Eb to avoid overfitting.

Next, we stack more layers to capture higher-order item relations by Eq. 1
subject to k > 1 and obtain the final in-degree representation Hin by averaging

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 9

Fig. 3. (a) The items in the orange and blue dashed boxes are the out-degree and
in-degree neighbors; (b) The red and green dashed circles indicate the out-degree and
in-degree features, respectively. (Color figure online)

the in-degree item features at each layer. The final out-degree representation
Hout is derived using the similar operation. Finally, we optimize the behavior-
level knowledge sub-extractor using the BPR loss [18]:

LCB = −
∑

(i,j,j′)∈DR

ln σ(ŷij − ŷij′); ŷij = Hout,iHT
in,j (3)

where DR is {(i, j, j′)|(i, r, j) ∈ G1 ∧ r = 1, (i, r′, j′) ∈ G1 ∧ r′ = 0}.

Attribute-Level Knowledge Sub-extractor (AKS). Another knowledge
sub-extractor is applied to encode potential attribute-level knowledge of items
via a graph neural network, which can explore the user’s preference at the
attribute level. The high correlation of the attribute information and the pref-
erence behavior has been verified in [11,31].

First, the translation-based method TransR [13] is applied to model the first-
order connectivity of entities in the IAGraph. However, it lacks the encoding of
high-order connectivity between entities. We further introduce a graph attention
network consisting of message propagation layers and message aggregation lay-
ers. For the kth message propagation layer, we use the relation-aware attention
mechanism to integrate neighbors of the central item i:

T(k)
Fi

=
∑

(i,r,a)∈Fi

π(k)(i, r, a)T(k)
a (4)

where Fi is the set of triples with the item i as the head entity in G2, and T(k)
a

is the feature of the entity a at kth layer; π(k)(i, r, a) indicates the decay factor
of the triple (i, r, a) in the message propagation [30]:

π(k)(i, r, a) =
exp(f (k)(i, r, a))

∑
(i,r′,a′)∈Fi

exp(f (k)(i, r′, a′))

f (k)(i, r, a) = (WrT(k)
a)ᵀtanh

(
(WrT

(k)
i + T(k)

r)
) (5)

where Wr is the relation-aware trainable parameter, and T(k)
i and T(k)

r are the
features of the entity i and the relation r. For the kth message aggregation layer,

10 B. Wu et al.

T(k)
Fi

and T(k)
i are aggregated by two types of feature interactions and a nonlinear

transformation and then passed to the (k + 1)th layer:

T(k+1)
i = σ

(
W1(T

(k)
i + T(k)

Fi
)
)

+ σ
(
W2(T

(k)
i � T(k)

Fi
)
)

(6)

where σ is a LeakyReLU activation layer; W1 and W2 are the trainable param-
eters; Note that T(0) = Ea where Ea is an embedding table.

To model the higher-order connectivity in the IAGraph, we stack more layers
and average the features of entities at each layer to generate T. To optimize this
sub-extractor, we introduce the BPR-based loss LAT :

LAT = −
∑

(i,r,a,a′)∈DA

ln σ(ȳi,r,a − ȳi,r,a′); ȳi,r,a = TiWa
rT

T
a (7)

where σ is a sigmoid activation layer, and DA is {(i, r, a, a′)|(i, r, a) ∈
G2, (i, r, a′) /∈ G2}; Wa

r is the trainable parameter.

4.2 Knowledge Aggregator

To merge the heterogeneous content information of each item into a fixed size
embedding, we design a knowledge aggregator by integrating the semantic fea-
tures of items extracted from the BKS and the AKS in a hierarchical man-
ner. These item features consist of two parts: 1) high-order semantic features of
items, including high-order out-degree features Hout, high-order in-degree fea-
tures Hin and high-order attribute-based features T; 2) item embeddings, con-
taining embeddings Eb of input to the AKS and embeddings Ea of input to the
BKS. The fused high-order semantic features Mh

k are integrated by an attention
mechanism that dynamically assigns attention weights to the three high-order
semantic features mentioned above:

Mh
k =

∑

V ∈{Hout,Hin,T}
wk

v ∗ Vk,

wk
v =

exp(W1
f tanh(W2

fVk
T))

∑
Q∈{Hout,Hin,T} exp(W1

f tanh(W2
fQk

T))

(8)

where W1
f and W2

f are the parameters of the attention mechanism. The fused
item embeddings Ml

k are merged using the same attention mechanism. Next, a
learnable gate is introduced to balance the contributions of the fused high-order
item features Mh

k and the fused item embeddings Ml
k:

Gk = σ(W1
gM

h
k + W2

gM
l
k)

Mk = Gk · Mh
k + (1 − Gk) · Ml

k

(9)

where W1
g and W2

g are the learnable parameters and σ is a sigmoid function;
M is the high-level semantic knowledge.

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 11

4.3 Sequential Interactions Modeling (SIM)

In sequential interactions modeling, sequential models (e.g., GRU4Rec [6], SAS-
Rec [9], and BERT4Rec [21]) are widely used to capture the dynamic user pref-
erence based on historical interaction sequences. In this paper, we apply SASRec
to encode the user interest representation, which consists of an embedding layer
and self-attention blocks [25]. To inject the rich semantic knowledge extracted
from the two KGs into SASRec, the embedding layer of SASRec is initialized by
the high-level semantic knowledge M extracted from the knowledge aggregator.
Specifically, given M and a user’s interaction sequence Su = [i1, i2, · · · , iT], the
input embedding is:

ESu = [M0 + P0,M1 + P1, · · · ,MT + PT] (10)

where P is a position embedding table. Then, we apply self-attentive blocks to
establish dependencies between interactive items and capture the dynamic pref-
erence of the user through multi-head attention layers (MH) and fully connected
feed-forward layers (FNN):

HSu = FFN(MH(ESu)) (11)

where HSu is the hidden representation of the user interaction sequence Su. For
MH and FFN, [25] has a detailed definition. To optimize the SIM, we adopt a
binary cross entropy loss as the objective function:

LSQ = −
∑

Su∈S

∑

t∈[1,2,··· ,T]

(ln σ(ỹtj) +
∑

k/∈Su

ln(1 − σ(ỹtk)); ỹtj = HSu,tMh
j

T

(12)
Note that the fused high-order item features Mh are used as semantic features
of the target items to avoid overfitting.

4.4 Model Learning and Prediction

We use the pre-training and fine-tuning paradigm to better incorporate the
semantic information extracted from KGs into the sequential recommendation
model. Specifically, the BKS and the AKS are first pre-trained according to the
optimization objectives in Eq. 3 and Eq. 7, and then fine-tuned together with the
knowledge aggregator and the SIM using the optimization objective in Eq. 12.
The final objective function of CrbiaNet is:

LCrbiaNet = LSQ + αLCB + βLAT + γ(||θ||22) (13)

where L2 regularization on θ with the weight γ is designed to prevent overfitting,
and α and β are the weights of the loss functions for different knowledge sub-
extractors. In the inference phase, we only use the SIM as an online service to
ensure the efficiency of the service.

12 B. Wu et al.

5 Experiment

5.1 Experimental Settings

Datasets. We conduct experiments on the Amazon dataset [5], which includes
the interactions between users and items and metadata of items with natu-
ral item relations [27] (e.g., also view, also buy) and attributes of items (e.g.,
price, brand and category). CRBGraph (G1) and IAGraph (G2) are constructed
from the natural item relations and the attributes of items, respectively. We
use three representative sub-datasets in the Amazon dataset: Beauty(Beauty),
Sports and Outdoors(Sports), and Toys and Games(Toys). The detailed statis-
tics of Amazon datasets are consistent with [40]. To construct user interaction
sequences, we group user interaction records, sort them according to the times-
tamps ascendingly. We filter out users and items with less than five interaction
records following previous studies [9,21].

Parameter Settings and Evaluation Metrics. CrbiaNet is trained by the
Adam optimizer [10] with a learning rate of 0.001, where the batch size of the
knowledge sub-extractors (BKS and AKS) and SIM are set as 2048 and 256,
respectively. Gradients are clipped when the gradient norm is greater than five.
The number of layers and the embedding dimensions are set to 2 and 64 for BKS,
AKS, and SIM. Following previous sequential recommendation models [9,21], the
maximum length of the user interaction sequence is set as 50. The weights α,
β and γ are set to 1.0. Besides, the leave-one-out strategy is used for training
and evaluation, and top-k HIT Ratio(HR@k) and top-k Normalised Discounted
Cumulative Gain (NDCG@k) are considered to be ranking metrics. Following
previous studies [6,9], we evaluate the performance of the models by combining
the ground-truth item and 99 randomly sampled non-interactive negative items.

Baseline Methods. To validate the effectiveness of our proposed CrbiaNet
model, we select nine previous representative models as baseline methods.

– BPR [18] is a classical Bayesian personalized ranking algorithm with implicit
feedback based on stochastic gradient descent.

– FM [17] considers the combined features based on linear regression.
– GRU4Rec [6] applies GRU [2] to model user interaction sequences for

session-based recommendations with a ranking loss function.
– SASRec [9] is a sequential recommendation model based on deep unidirec-

tional transformers that capture dynamic user interests.
– BERT4Rec [21] uses BERT [3] to encode user interaction sequences by deep

bidirectional transformers.
– FDSA [38] captures the dynamic user preference by simultaneously modeling

both item-level and feature-level(attribute-level) sequences.
– S3-Rec [40] adopts the paradigm of pre-training and fine-tuning, where

attributes are employed in the pre-training phase.

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 13

Table 1. The performance of our proposed model and previous existing recommenda-
tion models on three datasets, where the best results and the second best results are
marked in bold and underlined, respectively.

Datasets Metric BPR FM GRU4Rec SASRec BERT4Rec FDSA S3-Rec Chorus KDA\T CrbiaNet

Beauty

HR@5 0.3602 0.1461 0.3487 0.3754 0.4034 0.4010 0.4502 0.4575 0.4846 0.5123∗

NDCG@5 0.2601 0.0934 0.2580 0.2832 0.3080 0.2974 0.3407 0.3402 0.3654 0.3875∗

HR@10 0.4659 0.2311 0.4460 0.4795 0.5052 0.5096 0.5506 0.5694 0.6008 0.6204∗

NDCG@10 0.2944 0.1207 0.2893 0.3168 0.3408 0.3324 0.3732 0.3766 0.4031 0.4225∗

Sports

HR@5 0.3629 0.1603 0.3208 0.3538 0.3922 0.3855 0.4267 0.4540 0.4504 0.4860∗

NDCG@5 0.2624 0.1048 0.2257 0.2493 0.2852 0.2756 0.3104 0.3346 0.3273 0.3554∗

HR@10 0.4851 0.2491 0.4389 0.4805 0.5203 0.5136 0.5614 0.5823 0.5831 0.6200∗

NDCG@10 0.3018 0.1334 0.2638 0.2900 0.3264 0.3170 0.3538 0.3761 0.3701 0.3988∗

Toys

HR@5 0.3140 0.0978 0.3284 0.3684 0.3926 0.3994 0.4420 0.4290 0.4961 0.5149∗

NDCG@5 0.2286 0.0614 0.2422 0.2712 0.2979 0.2903 0.3270 0.3306 0.3806 0.3974∗

HR@10 0.4138 0.1715 0.4293 0.4751 0.4959 0.5129 0.5530 0.5291 0.6015 0.6217∗

NDCG@10 0.2607 0.0850 0.2746 0.3057 0.3313 0.3271 0.3629 0.3631 0.4147 0.4320∗

– Chorus [27] is a sequential recommendation model with natural item rela-
tions and corresponding temporal dynamics.

– KDA [26] injects natural item relations between items, attributes of items,
and temporal evolution information as additional knowledge into the sequence
recommendation. For the sake of fairness, the temporal evolution information
is removed in this paper and named KDA\T.

5.2 Performance Comparison

Table 1 shows the results of all baselines and our proposed CrbiaNet model on
all datasets. First, sequential recommendation methods (e.g., GRU4Rec, SAS-
Rec, and BERT4Rec) outperform collaborative filtering methods (e.g., BPR and
FM) because the dynamic user preference can be captured by encoding the his-
tory of the user’s interaction with the recommender system. The performance
of sequential recommendation models can be further improved by merging the
attributes of items (e.g., FDSA and S3-Rec), which indicates the attribute-based
side information is helpful for recommender systems. Chorus obtains better per-
formance due to incorporating behavior-based (natural) item relations. In addi-
tion, KDA\T achieves the previous state-of-the-art performance on the three
datasets by integrating both attributed-based and behavior-based KGs. One
possible reason for this is that the complex relations between the target items
and the items in the user’s historical interaction sequence are explicitly captured
by the KGs.

Then, CrbiaNet consistently outperforms the pure and attribute-enhanced
sequential recommendation models in the three datasets, thanks to the rich
heterogeneous semantic features injected into the sequential interaction model.
Compared with pure sequential recommendation methods (e.g., GRU4Rec, SAS-
Rec, and BERT4Rec), CrbiaNet achieves better recommendation performance,
demonstrating that the underlying semantic knowledge embedded in the KGs
is helpful for capturing the dynamic user preference. CrbiaNet is superior to

14 B. Wu et al.

Table 2. The effectiveness of each component of our proposed CrbiaNet on the three
datasets.

Model Metric Beauty Sports Toys

CrbiaNet
HR@10 0.6204 0.6200 0.6217

NDCG@10 0.4225 0.3988 0.4320

CrbiaNet-BKS
HR@10 0.6033 0.5964 0.5924

NDCG@10 0.4076 0.3801 0.4086

CrbiaNet-AKS
HR@10 0.5134 0.5189 0.5203

NDCG@10 0.3396 0.3178 0.3422

CrbiaNet-ADD
HR@10 0.6066 0.6145 0.6192

NDCG@10 0.4156 0.3930 0.4274

CrbiaNet-RANDOM
HR@10 0.4795 0.4805 0.4751

NDCG@10 0.3168 0.2900 0.3057

FDSA and S3-Rec incorporating only attribute-based knowledge, suggesting that
behavior-based(natural) item relations are helpful for the recommendation. This
shows that co-occurrence patterns from item-item pairs of historical interaction
sequences of similar users mitigate the disadvantage of sparse user interaction
behaviors.

Finally, our proposed CrbiaNet achieves the state-of-the-art performance in
three datasets compared with previous knowledge-enhanced sequential recom-
mendation models (Chorus and KDA\T). The following facts can illustrate these
results: 1) independent modeling of CRBGraph and IAGraph allows encoding
the heterogeneous semantic information of items more efficiently (see the Sub-
sect. 5.4 for more discussion); 2) high-order connections between items in CRB-
Graph and IAGraph can be captured by message passing mechanism in the
knowledge extractor; 3) the knowledge aggregator effectively aggregates the het-
erogeneous semantic information of items, which helps to dynamically assign
attention weights to different semantic features based on user interest.

5.3 Ablation Study

To investigate the impact of components in CrbiaNet, we compare CrbiaNet
with its four variants:

– CrbiaNet-BKS: This model incorporates only the semantic features extracted
from CRBGraph by the behavior-level knowledge sub-extractor (BKS) into
the sequential interactions modeling (SIM) to demonstrate the impact of
cross-user item relations on recommendation performance.

– CrbiaNet-AKS: This model uses only the semantic features extracted from
the IAGraph via attribute-level knowledge sub-extractor (AKS) to inject into
the SIM.

– CrbiaNet-ADD: This model replaces the complex knowledge aggregator (KA)
with the simple addition operation to fuse heterogeneous semantic features
to validate the effectiveness of the integration strategy.

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 15

– CrbiaNet-RANDOM: This model replaces the high-level semantic knowledge
M extracted from KGs with an embedding layer with 0 mean and 0.01 stan-
dard deviation.

Table 2 shows HR@10 and NDCG@10 for these models in all three datasets.
We summarize the following findings. First, the BKS of modeling the cross-user
item relations in the CRBGraph is the most critical component of CrbiaNet.
CrbiaNet-BKS offers significant performance gains over the other three vari-
ants in all three datasets, indicating that co-occurrence patterns from item-item
pairs can guide the extraction of more accurate user interests. Second, CrbiaNet-
AKS outperforms CrbiaNet-RANDOM by utilizing attribute-based semantic fea-
tures extracted from the IAGraph, demonstrating the need to incorporate the
attributes of items. In addition, CrbiaNet-AKS outperforms FDSA [38] on both
NDCG@10 and HR@10, which validates that our proposed AKS can effectively
extract attribute-aware high-level semantic knowledge. Last, the difference in
performance between CrbiaNet and CrbiaNet-ADD suggests that the hierarchi-
cal knowledge integration strategy can better integrate heterogeneous semantic
features from the KGs by dynamically assigning attention weights to features.

5.4 Effectiveness of Knowledge Extractor

To validate the effectiveness of our proposed knowledge extractor, we compare
CrbiaNet with three variants in terms of graph construction and graph encoding:

– DisMult: To explore the effectiveness of extracting heterogeneous semantic
features from CRBGraph and IAGraph independently, this model first con-
structs a unified knowledge graph by merging CRBGraph and IAGraph, and
then uses DisMult [35] instead of the knowledge extractor in this paper (for
more details see [34]).

– TransR(IA): This model replaces AKS with TransR [13] to validate the neces-
sity of potential attribute-aware high-order semantic features for recommen-
dations.

– TransR(CB): This model uses TransR [13] instead of BKS to encode CRB-
Graph to validate the effectiveness of behavior-level high-order item relations.

The results of these variants and CrbiaNet are shown in Fig. 4. CrbiaNet achieves
better performance than DisMult. Two reasons may cause this phenomenon: 1)
CrbiaNet encodes different types of KGs independently to avoid confusion of het-
erogeneous semantic features; 2) the bilinear diagonal model (DisMult) cannot
map attribute-level and behavior-level semantic features to the identical seman-
tic space. Compared to TransR(IA) and TransR(CB), CrbiaNet achieves the
best performance on all three datasets. This shows that high-level semantic fea-
tures are practical for sequential recommendations. In addition, the most signifi-
cant performance gap is observed between CrbiaNet and TransR(CB), indicating
that behavior-level high-order item relations play a crucial role in encoding the
dynamic user preference.

16 B. Wu et al.

Fig. 4. Performance of the knowledge extractor in CrbiaNet and other extractors on
three datasets.

Fig. 5. Impact of knowledge extractor depth.

5.5 Impact of Knowledge Extractor Depth

This subsection considers the impact of the number of layers in the knowledge
extractor to validate the necessity of high-order connections between items in
the KGs. The results are summarized in Fig. 5. First, we can observe that rec-
ommendation performance is improved by stacking a certain number of layers
in the knowledge extractor, indicating that stacking more layers can explore
higher-order item relations in the KG and mine the potential preference of users.
However, the recommendation performance of CribaNet on Amazon Beauty and
Amazon Toys datasets decreases when more layers are stacked in the knowledge
extractor. This shows that stacking too many layers in the knowledge extractor
may lead to the problem of over-smoothing. This problem is prevalent in the
graph neural networks [16], and we leave the exploration of solving this problem
as future work. In addition, the over-smoothing problem does not affect Crib-
iaNet on Amazon Sports dataset when the number of layers is stacked to five.
The reason might be that there are more triples in the KG on the Sports dataset
than the other two datasets, and longer-distance item relations are required to
encode the heterogeneous semantic knowledge of items.

5.6 Compatibility of High-level Semantic Knowledge

To explore the validity and compatibility of High-level Semantic Knowledge M
(HSK) mentioned in the Subsect. 4.2, we conduct an experiment employing the
HSK and its three variants on four sequential models (GRU4Rec [6], NARM [12],

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 17

Fig. 6. The performance of CrbiaNet and its variants under different sequential models
on three datasets.

SASRec [9], and BERT [21]): 1) w/o HSK: This method uses randomly initial-
ized embeddings to replace the HSK; 2) only fine-tuning HSK: This method
only uses the optimization objective in Eq. 12 to obtain the HSK through fine-
tuning CrbiaNet; 3) only pre-training HSK: This approach only uses the opti-
mization objectives in Eq. 3 and Eq. 7 to obtain the HSK through pre-training
the knowledge extractor and keeps the HSK constant in the fine-tuning stage.
4) full HSK: This method first pre-trains the knowledge extractor to obtain
the HSK, and then fine-tunes CrbiaNet to adapt the HSK to the sequential
recommendation task.

The experimental results are shown in Fig. 6. First, we can observe that all
sequential models achieve better performance than ‘w/o HSK’ when merging
HSK, indicating that our proposed HSK is compatible and effective with the
sequential recommendation models. In addition, the sequential models’ perfor-
mance decreases on both ‘only fine-tuning HSK’ and ‘only pre-training HSK’
compared to ‘full HSK’, which suggests that our proposed HSK can fully exploit
the deeper underlying semantic features in the heterogeneous KGs.

6 Conclusion

In this paper, we propose a CrbiaNet for sequential recommendation by merg-
ing heterogeneous semantic features of entities extracted from decoupled KGs.
In our approach, we decouple the original KG in the recommendation domain
into two subgraphs, named the cross-user behavior-based graph and the intrin-
sic attribute-based graph. Then, we propose two knowledge sub-extractors to
acquire higher-order features of entities with different semantics independently
by graph neural networks. Finally, the high-order semantic features are combined
and fed into the sequential recommendation model to enhance the representation
of the user preference. We construct experiments on Amazon datasets, and the
experimental results show that CrbiaNet outperforms the previous state-of-the-
art recommendation models.

Acknowledgement. This research project was supported by the Foundation of Sci-
ence and Technology Project of Hebei Education Department (Grants No. ZD2021063).

18 B. Wu et al.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, vol. 26 (2013)

2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

3. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

4. Guo, W., et al.: Dual graph enhanced embedding neural network for ctrprediction.
arXiv preprint arXiv:2106.00314 (2021)

5. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends
with one-class collaborative filtering. In: Proceedings of the 25th International
Conference on World Wide Web, pp. 507–517 (2016)

6. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

7. Huang, J., Zhao, W.X., Dou, H., Wen, J.-R., Chang, E.Y.: Improving sequen-
tial recommendation with knowledge-enhanced memory networks. In: The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pp. 505–514 (2018)

8. Huang, X., Qian, S., Fang, Q., Sang, J., Xu, C.: Meta-path augmented sequential
recommendation with contextual co-attention network. ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 16(2), 1–24 (2020)

9. Kang, W.-C., McAuley, J.: Self-attentive sequential recommendation. In: 2018
IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable
from digital records of human behavior. Proc. Natl. Acad. Sci. 110(15), 5802–5805
(2013)

12. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based
recommendation. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 1419–1428 (2017)

13. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence (2015)

14. Long, X., et al.: Social recommendation with self-supervised metagraph informax
network. arXiv preprint arXiv:2110.03958 (2021)

15. Ma, W., et al.: Jointly learning explainable rules for recommendation with knowl-
edge graph. In: The World Wide Web Conference, pp. 1210–1221 (2019)

16. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. arXiv preprint arXiv:1905.10947 (2019)

17. Rendle, S.: Factorization machines. In: IEEE International Conference on Data
Mining, pp. 995–1000. IEEE (2010)

18. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618 (2012)

19. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 811–820 (2010)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2106.00314
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2110.03958
http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/1205.2618

Enhancing Sequential Recommendation via Decoupled Knowledge Graphs 19

20. Shani, G., Heckerman, D., Brafman, R.I., Boutilier, C.: An MDP-based recom-
mender system. J. Mach. Learn. Res. 6(9) (2005)

21. Sun, F., et al.: BERT4Rec: sequential recommendation with bidirectional encoder
representations from transformer. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 1441–1450 (2019)

22. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 565–573 (2018)

23. Taylor, W.L.: “Cloze procedure”: a new tool for measuring readability. J. Q. 30(4),
415–433 (1953)

24. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

26. Wang, C., Ma, W., Zhang, M., Chen, C., Liu, Y., Ma, S.: Toward dynamic user
intention: temporal evolutionary effects of item relations in sequential recommen-
dation. ACM Trans. Inf. Syst. (TOIS) 39(2), 1–33 (2020)

27. Wang, C., Zhang, M., Ma, W., Liu, Y., Ma, S.: Make it a chorus: knowledge-
and time-aware item modeling for sequential recommendation. In: Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 109–118 (2020)

28. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link
prediction. Symmetry 13(3), 485 (2021)

29. Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.: Kerl: a knowledge-
guided reinforcement learning model for sequential recommendation. In: Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 209–218 (2020)

30. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: KGAT: knowledge graph attention
network for recommendation. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

31. Wu, L., Yang, Y., Zhang, K., Hong, R., Fu, Y., Wang, M.: Joint item recommen-
dation and attribute inference: an adaptive graph convolutional network approach.
In: Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 679–688 (2020)

32. Xia, L., et al.: Knowledge-enhanced hierarchical graph transformer network for
multi-behavior recommendation. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 35, no. 5, pp. 4486–4493 (2021)

33. Xie, T., Xu, Y., Chen, L., Liu, Y., Zheng, Z.: Sequential recommendation on
dynamic heterogeneous information network. In: 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 2105–2110. IEEE (2021)

34. Xin, X., He, X., Zhang, Y., Zhang, Y., Jose, J.: Relational collaborative filtering:
modeling multiple item relations for recommendation. In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 125–134 (2019)

35. Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and rela-
tions for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575
(2014)

36. Yang, Z., Dong, S., Hu, J.: GFE: general knowledge enhanced framework for
explainable sequential recommendation. Knowl.-Based Syst. 230, 107375 (2021)

http://arxiv.org/abs/1412.6575

20 B. Wu et al.

37. Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional
generative network for next item recommendation. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, pp. 582–590
(2019)

38. Zhang, T., et al.: Feature-level deeper self-attention network for sequential recom-
mendation. In: IJCAI, pp. 4320–4326 (2019)

39. Zhao, X., Cheng, Z., Zhu, L., Zheng, J., Li, X.: UGRec: modeling directed and
undirected relations for recommendation. arXiv preprint arXiv:2105.04183 (2021)

40. Zhou, K., et al.: S3-Rec: self-supervised learning for sequential recommendation
with mutual information maximization. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp. 1893–1902
(2020)

41. Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: A knowledge-aware attentional rea-
soning network for recommendation. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, pp. 6999–7006 (2020)

http://arxiv.org/abs/2105.04183

An Analysis of Links in Wikidata

Armin Haller1(B) , Axel Polleres2 , Daniil Dobriy2 , Nicolas Ferranti2 ,
and Sergio J. Rodrı́guez Méndez1

1 Australian National University, Canberra, ACT 2601, Australia
{armin.haller,sergio.rodriguezmendez}@anu.edu.au

2 Vienna University of Economics and Business, Vienna, Austria
{axel.polleres,daniil.dobriy,nicolas.nicolas}@wu.ac.at

Abstract. Wikidata has become one of the most prominent open knowledge
graphs (KGs) on the Web. Relying on a community of users with different exper-
tise, this cross-domain KG is directly related to other data sources. This paper
investigates how Wikidata is linked to other data sources in the Linked Data
ecosystem. To this end, we adapt previous definitions of ontology links and
instance links to the terminological part of the Wikidata vocabulary and perform
an analysis of the links in Wikidata to external datasets and ontologies from the
Linked Data ecosystem. As a side effect, this reveals insights on the ontological
expressiveness of meta-properties used in Wikidata. The results of this analysis
show that while Wikidata defines a large number of individuals, classes and prop-
erties within its own namespace, they are not (yet) extensively linked. We discuss
reasons for this and conclude with some suggestions to increase the interconnect-
edness of Wikidata with other KGs.

1 Introduction

Wikidata, as a “multilingual Wikipedia for data” [25], has grown to a knowledge graph
(KG) containing over 95M entities1. Since its beginning in 2012, Wikidata has been
conceived as a KG that is built bottom-up by its many editors (plus, partially, automatic
bots). As a backend, Wikidata uses Wikibase, an open-source software suite for creat-
ing collaborative knowledge bases, which allow its many editors to contribute to this
KG. Being build bottom-up by domain experts who often also maintain the external
original source of data that is being added, Wikidata already includes many links to
other datasets, for example, through the reuse of external identifiers for entities (e.g.,
ORCID records for academics, DOIs for digital artefacts, or the Ensembl identifier for
genes (e.g., Q14864292)). This allows the editors of Wikidata to (automatically) inte-
grate data from external KGs that remain under the control of the original publisher. In
fact, such automatic integration of external data through bots2 already exists on Wiki-
data itself, e.g., a Citationgraph bot that updates citation numbers of academic works.
Consequently, Wikidata has become in practice a data directory that serves as entry
point to external datasets, other knowledge graphs, or ID providers, respectively. These

1 cf. https://www.wikidata.org/wiki/Special:Statistics.
2 https://www.wikidata.org/wiki/Wikidata:Bots.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 21–38, 2022.
https://doi.org/10.1007/978-3-031-06981-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_2&domain=pdf
http://orcid.org/0000-0003-3425-0780
http://orcid.org/0000-0001-5670-1146
http://orcid.org/0000-0001-5242-302X
http://orcid.org/0000-0002-5574-1987
http://orcid.org/0000-0001-7203-8399
https://www.wikidata.org/wiki/Special:Statistics
https://www.wikidata.org/wiki/Wikidata:Bots
https://doi.org/10.1007/978-3-031-06981-9_2

22 A. Haller et al.

observations motivate a more in-depth study on the linkage of Wikidata with other KGs
and the types of links used for such linking.

Previous work has established link types definitions between datasets [13]. Broadly,
this work defined two categories of links, ontology links and instance links. We aim to
herein re-use and adapt these definitions and apply them to the Wikidata data model. To
do so, we evaluate the HDT dump of the entire Wikidata KG from March 3rd, 20213.

For the analysis of ontology links, however, we can not directly use the established
link types definitions in [13], since Wikidata does practically not rely on the RDFS/-
OWL semantics and vocabularies. While – strictly speaking, in terms of its (RDFS and
OWL) TBox constructs used – Wikibase and, as such, Wikidata, use a very simple
ontology (i.e., wikiba.se/ontology), the actual ontology to describe entities in Wikidata
is largely build bottom-up by the community itself, not using RDFS/OWL. Indeed,
Wikidata partially tries to re-use and integrate external ontologies, but it does so by
introducing its own meta-model, and only links to external ontologies through specific,
again community-introduced, property relations, such as equivalent class (P1709).
This flexibility allows the community to extend the knowledge graph rapidly by adding
a rich set of statements about entities in the world without much concern for (logical)
consistency expected in the stricter frameworks of RDFS and OWL. This liberty comes
with drawbacks, though, with semantic errors or inconsistencies, such as incoherent
meta-modeling of classes/instances [23] (i.e., using a taxonomy relation instance of
(P31) or a subclass of (P279) relation for similar items4), being prevalent. However,
many of these problems are eventually resolved through discussions among the editors.
There have been some studies on such quality issues within Wikidata [18], but generally
there is still little understanding of the quality and evolution of knowledge contained
within Wikidata, particularly on the schema level and the schematic relations to other
ontologies on the Web.

We therefore present an extension of the definitions of ontology links in [13] by
mapping them to the informal, community-developed Wikidata meta-model. In the
course of that, we also compare the available meta-properties in Wikidata to their
respective corresponding properties in the OWL and RDFS vocabulary which allows us
to draw some preliminary conclusions about the ontological expressivity used in Wiki-
data’s meta-modeling. The mapping also allows us to analyse the extend of ontology
links and instance links from Wikidata to other KGs. Specifically, we aim to investi-
gate how central Wikidata is to the Linked Data ecosystem by testing the following
hypotheses in our analysis.

First, for a KG to serve as a central hub for Linked Data, it should use classes and
properties that are defined within its own namespace to represent entities in its KG.
Not relying on external ontologies to provide semantics to entities within makes a KG
robust to changes in the semantics or availability of external ontologies and as such, a
reliable link target for other KGs. It has been observed in our previous study [13] that
DBpedia, an existing central hub for Linked Data, exhibits this phenomena that we test
in our first hypothesis.

3 https://www.rdfhdt.org/datasets/.
4 For instance, the pattern {[] wdt:P279 ?X; wdt:P31 ?X.} indicates ambiguous sub-

class vs. instance of usage on 2131 entities, run on 9 Dec 2021 at https://w.wiki/4XQw.

https://wikiba.se/ontology
https://www.rdfhdt.org/datasets/
https://w.wiki/4XQw

An Analysis of Links in Wikidata 23

H1 Wikidata defines the vast majority of its terminological entities and properties in
its authoritative namespace.

Our next set of hypotheses are concerned with the extend to which Wikidata is linked
to other ontologies in the Linked Data ecosystem.

H2.1 As a central KG, the ratio of class links to classes defined within Wikidata is
much larger than the same ratio for other datasets in the Linked Data ecosystem.

H2.2 As a central KG, the ratio of property links to properties defined within Wikidata
is much larger than the same ratio for other datasets in the Linked Data ecosystem.

H3 As a central KG, Wikidata does not type entities using classes from external
ontologies, i.e., classes using a namespace other than the authoritative namespace
of Wikidata.

Our next two hypotheses are concerned with the extend of which Wikidata is linked to
other KGs on an instance level and if the link targets are indeed RDF data.

H4.1 As a central KG, Wikidata includes links from entities defined in its authoritative
namespace to entities defined in other KGs and the ratio of such instance links to
entities defined in Wikidata is much larger than for other datasets in the Linked
Data ecosystem.

H4.2 The amount of instance links to RDF resources is relatively higher than to other
types of Web resources, i.e., the content type of the target URI in an instance link
is a common RDF serialisation.

In our last hypothesis we test for how many of the entities defined within Wikidata, it is
(claims to be) the only authoritative source. A central hub for Linked Data should not
be the authoritative source for entities, but rather only provide a persistent identity for
an entity, while linking to the authoritative external source.

H5 Wikidata establishes equivalence or some weaker forms of likeness relations for
the majority of its unique individuals that are part of an instance link, i.e., between
entities defined within the Wikidata authoritative namespace and entities defined in
other authoritative namespaces.

The remainder of this paper is structured as follows. In Sect. 2 we discuss the ontol-
ogy in Wikidata and provide our mapping semantics between the Wikidata meta-model
and RDFS/OWL. In Sect. 3 we describe our methodology to analyse link types in Wiki-
data. Section 4 presents the results of this analysis and the hypotheses tested on the
entire Wikidata RDF corpus. We discuss related work in Sect. 5 before we conclude in
Sect. 6.

2 The Wikidata Ontology Schema

In terms of a formal backbone terminology, Wikidata relies on Wikibase’s minimal pre-
defined schema, i.e., wikiba.se/ontology that is used to describe the wiki pages of an
entity on Wikidata, and, among other things, defines what constitutes a statement for
an entity through the wikiba.se/ontology#Statement class. However, for our research,

https://wikiba.se/ontology
https://wikiba.se/ontology#Statement

24 A. Haller et al.

this ontology is somewhat irrelevant, as we are looking at internal and external links
between entities and the schema (properties and classes used at the statement level)
in Wikidata’s itself, rather than the Wikibase meta-model. The actual vocabulary used
to describe entities in Wikidata is collaboratively built, bottom-up, and indeed its own
meta-modelling properties, similar to RDFS/OWL vocabulary properties, have been
introduced to this end in the Wikidata namespace. That is, while Wikidata follows the
RDF model, it does not use the RDFS or OWL semantics for its ontological meta-
model: it rather conflates5 what in the traditional Semantic Web stack is defined in
RDFS and OWL, i.e., the knowledge about things, groups of things, and relations
between things, with what would normally be defined in upper-level or domain ontolo-
gies. In this section we will therefore discuss the specific meta-modelling classes and
relations that are introduced in Wikidata, their relations and – where possible – their
mapping to RDFS/OWL. This mapping will form the basis of our link analysis. We
emphasize that our proposed mapping is one possible interpretation of the (evolving)
meta-model in Wikidata, with the specific purpose of providing formal semantics for
our link analysis: we acknowledge that the community does not provide such a mapping
by design, in order to avoid (too) strong formal ontological commitment.

Fig. 1. Overview of the top-level class hierarchy of the Wikidata ontology

2.1 Classes in Wikidata

Figure 1 presents the top-level class hierarchy of Wikidata. Wikidata formally distin-
guishes between items that are classes, for example, person (Q215627), and items that
are instances, for example, Barack Obama (Q76) who is an instance of (P31) human,
which itself is a subclass of (P279) person (Q215627). These instances are related to
its class via the instance of (P31) relation. Classes in Wikidata are items that are in

5 See https://www.wikidata.org/wiki/Wikidata:WikiProject Ontology/Top-level ontology list
for the top two layers of the ontology.

https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Top-level_ontology_list

An Analysis of Links in Wikidata 25

the object position of an instance of (P31) relation or in the subject or object posi-
tion in a subclass of (P279) statement. There is also a is meta-subclass of (P2445)
relation, but it is hardly used in Wikidata6. The Wikidata top-level class for class items
is class (Q16889133), which itself is a subclass of entity (Q35120). Wikidata also
distinguishes between first-order classes (Q104086571) and second-order classes
(Q104086571)7.

A metaclass (Q19361238) is defined that is the superclass of fixed-order classes.
As such, a second-order class is a metaclass, the instances of which are classes
of individuals, for example, the aircraft class (Q1875621) is a second-order class
whose members (instances) are first-order classes, including for example wide-body
quadjet (Q19394992) and aircraft functional class (Q20027953) which has a sub-
class wide-body twinjet (Q18683432). While the latter (i.e., the use of an aircraft func-
tional class only for wide-body twinjet, but not for wide-body quadjets) is an example
of a non-intuitive subclass hierarchy in Wikidata, it may also reflect different mod-
elling choices by different users. We have argued previously [14] that such a bottom-
up development may eventually lead to a more broadly accepted Web ontology. Also,
while Wikidata does distinguish between classes and instances, it does not mandate that
instances can not also be subclasses of (P279) a class or classes can not be defined
as instances of (P31) an instance. While such meta-modeling is not per se forbid-
den in OWL2 (i.e., through “punning”8), in Wikidata it often appears with entities that
should be either a class or an instance, but not both. For example, Wiener Schnitzel
(Q6497852) is a subclass of schnitzel which is a subclass of meat dish, while at
the same time Wiener Schnitzel is also an instance of veal dish which itself is a
subclass of meat dish. The only assumption in Wikidata is that entity (Q35120) is
the class of all items and therefore all items are an instance of entity (Q35120), as
well as all classes are subclasses of entity (Q35120) which is not unlike the role of
rdfs:Resource in the RDF meta-model.

2.2 Properties in Wikidata

Properties in Wikidata use the full generality of RDF properties in the sense that they
represent both binary (object) relations and (atomic value) attributes. That is, proper-
ties are used to define arbitrary item-property-value triples where the value can either
be an item or a literal. On top of that, reminding one of RDF’s reification mechanism,
each such statement can also be qualified, i.e., additional information can be added to
the statement (e.g., contextual or provenance information). Indeed, the relation between
Wikidata’s qualified statements to reification and other potential meta-statement encod-
ings in RDF has been discussed in detail by Hernández et al. [15].

Properties, like entities, have their own Wikidata page and use opaque identi-
fiers starting with “P”. Wikidata reuses some RDFS/OWL properties, e.g., rdf:type,

6 i.e., there are 37 uses of P2445 in total in Wikidata as of August 2021.
7 There are higher orders of second-order class, i.e., third-, fourth- and fifth-order classes, each

of which is an instance of the higher ordered class, all of which are subclasses of the fixed-
order class (Q23959932).

8 cf. https://www.w3.org/TR/owl2-new-features/#Simple metamodeling capabilities.

https://www.w3.org/TR/owl2-new-features/#Simple_metamodeling_capabilities

26 A. Haller et al.

rdfs:label, owl:complementOf, owl:someValuesFrom, owl:allValuesFrom etc.
However, as discussed earlier, these are merely used to define statements about pages in
Wikidata using the wikiba.se ontology, rather than for terminological statements about
Wikidata classes and properties. Yet, in order to define such terminological properties
within the Wikidata KG, “properties for properties” (73 as of November 2021)9 are
defined in the Wikidata “ontology”.

As compared to other RDF KGs, where typically the RDFS/OWL namespaces
are used for terminological properties and a separate ontology namespace is used for
domain entities/relations, Wikidata’s terminological properties use the same namespace
as properties that describe entities/relations. For example, in KGs using the RDFS/OWL
semantics, relations such as “subClassOf” use the RDFS namespace while a relation
like “name” uses a domain-ontology namespace such as FOAF, whereas in Wikidata
“subclass of” (P279) and “given name” (P735) share the same namespace.

In the following we discuss under which circumstances we treat which of these
properties as equivalent to their related RDFS/OWL properties as per Table 1: addi-
tional to introducing its own already mentioned instance of (P31), and subclass of
(P279) relations, to describe taxonomic relations and identify class memberships and
hierarchies, respectively, Wikidata introduces a property to describe the hierarchical
relation between properties, i.e., subproperty of (P1647), which we consider equiv-
alent to the rdfs:subPropertyOf relation. However, note that this property is used in
Wikidata exclusively to link properties within the Wikidata namespace, i.e., it is not
used for linking to external vocabularies. For linking to properties external to the Wiki-
data namespace, external subproperty (P2236) and external superproperty (P2235)
are introduced. We consider these equivalent to rdfs:subPropertyOf, or its inverse,
respectively.

Domain and range properties are not directly defined in Wikidata. These property
restrictions10 can be stated in Wikidata using a qualified property constraint (P2302)
on the property, where a skolemized IRI is assigned to the entity that is defined as either
a type constraint (Q21503250) for the domain classes of the property, or, respectively,
as value-type constraint (Q21510865) for the range classes of the property; the respec-
tive target class is referenced with the property (P2308). For example, the domain for
the date of birth property (P569) is defined to be Human (Q5) (among others) with
the following triples11,

t1 = wdt:P569 p:P2302 :qe.

t2 = :qe ps:P2302 wd:Q21503250.

t3 = :qe pq:P2308 wd:Q5.

9 cf. https://www.wikidata.org/wiki/Wikidata:List of properties/Wikidata property for proper
ties.

10 We note here again that subtle semantic differences such as constraining (i.e., CWA) vs implicit
(i.e., OWA) semantics of certain properties are not relevant for the purpose of our link analysis.

11 Prefixes are used as follows: wd: <http://www.wikidata.org/entity/>, wdt: <http://www.
wikidata.org/prop/direct/>, pq: <http://www.wikidata.org/prop/qualifier/>, p: <http://www.
wikidata.org/prop/>, ps: <http://www.wikidata.org/prop/statement/>.

https://www.wikidata.org/wiki/Wikidata:List_of_properties/Wikidata_property_for_properties
https://www.wikidata.org/wiki/Wikidata:List_of_properties/Wikidata_property_for_properties
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/qualifier/
http://www.wikidata.org/prop/
http://www.wikidata.org/prop/
http://www.wikidata.org/prop/statement/

An Analysis of Links in Wikidata 27

Table 1. Mapping of Wikidata properties to RDFS/OWL properties

RDFS/OWL property Equivalence established through Wikidata property

rdf:type equivalent property (P1628) instance of (P31)

rdfs:subClassOf equivalent property (P1628) subclass of (P279)

rdfs:subPropertyOf equivalent property (P1628) subproperty of (P1647)

rdfs:subPropertyOf equivalent property (P1628) external subproperty (P2236)

Inverse rdfs:subPropertyOf equivalent property (P1628) external superproperty (P2235)

rdfs:range equivalent property (P1628) expressed via property constraint
(P2302)

rdfs:domain equivalent property (P1628) expressed via property constraint
(P2302)

rdfs:label documented as matchinga rdfs:label

rdfs:comment documented as matchinga schema:description

rdf:first documented as matchinga expressed via series ordinal
(P1545)

rdf:rest documented as matchinga expressed via series ordinal
(P1545)

rdfs:member documented as matchinga part of (P361)

Inverse rdfs:member inverse property (P1696) of part
of (P361)

has part (P527)

owl:equivalentProperty equivalent property (P1628) equivalent property (P1628)

owl:equivalentClass equivalent property (P1628) equivalent class (P1709)

owl:inverseOf equivalent property (P1628) inverse property (P1696)

owl:di erentFrom equivalent property (P1628) di erent from (P1889)

owl:unionOf equivalence intendedb union of (P2737)

owl:disjointUnionOf equivalence intendedb disjoint union of (P2738)

owl:onProperty no documented equivalence possible candidates: property
constraint (P2302)

owl:sameAs no documented equivalence possible candidates: exact match
(P2888), said to be the same as
(P460)

owl:disjointWith no documented equivalence N/A

owl:propertyDisjointWith no documented equivalence N/A

owl:propertyChainAxiom no documented equivalence N/A

owl:assertionProperty no documented equivalence N/A
acf. https://www.wikidata.org/wiki/Wikidata:Relation between properties in RDF and in Wikidata.
bcf. https://www.wikidata.org/wiki/Wikidata:Property proposal/Archive/48#P2737.

where :qe is actually a skolemized blank node with the IRI wd:statement/
P569-F9768BAA-6BB3-4710-A3E1-B6FB9432D372. Note that for our analy-
sis of links, when only considering whether an external ontology is referenced on a
property, we do not need to distinguish if the object that belongs to an external names-
pace is a domain or range class, i.e., we will not need to check in our SPARQL query
below if the target object is a type constraint (Q21503250) or value-type constraint
(Q21510865).

https://www.wikidata.org/wiki/Wikidata:Relation_between_properties_in_RDF_and_in_Wikidata
https://www.wikidata.org/wiki/Wikidata:Property_proposal/Archive/48#P2737

28 A. Haller et al.

In order to state equivalence between two properties, Wikidata introduces the prop-
erty equivalent property (P1628). Disjointness between properties cannot be stated
in Wikidata: in fact, disjointness between properties was proposed by the community
(and voted on)12, but eventually not included. While the reason for its non-inclusion is
unclear, it is challenging to maintain disjointness with other properties in a bottom-up
created KG where properties can be added arbitrarily.

There is also no relation to define property chain axioms (i.e.,
owl:propertyChainAxiom), nor is there support for negative property assertions, i.e.,
a relation similar to owl:assertionProperty does not exist.

As shown above, Wikidata uses the relation property constraint (P2302) to define
restrictions on a property. While such a restriction can have more than one triple, it
is otherwise very similar to owl:onProperty; as such, for the purpose of our analysis,
we consider it equivalent. Restrictions are linked to either a class or property using the
OWL properties, owl:onClass, owl:onProperty.

3 Links in Wikidata

Based on the above correspondences of Wikidata’s terminological properties with RDF-
S/OWL, we are ready to define different link types in the Wikidata data model. Here
we will rely on definitions of link types in the RDFS/OWL model defined in our earlier
work [13] in terms of resp. SPARQL queries on the Wikidata model13. This enables
us to directly provide a quantitative and qualitative analysis of the discovered links in
terms of the resp. query results.

3.1 Dataset Corpus and Authoritative Namespaces

In order to analyse links to other datasets in the Wikidata KG, we first need to establish
a list of authoritative namespace URIs that are defined by KGs other than Wikidata.
For that, we are using the dataset corpus that was defined and published in [13], i.e.,
the LODCloud, augmented with historically available datasets that were cached in the
LODLaundromat [4] and provided as a downloadable corpus in HDT [8]. The Wikidata
HDT file (using the http://www.wikidata.org namespace URI) was added to that corpus.
The resulting corpus consists of 431 Linked Datasets, each encoded in HDT for a total
size of 104 GB (uncompressed 353 GB), with a total number of 17,841,499,814 (i.e.,
≈17.8 billion) triples.

3.2 Ontology Corpus

As with the dataset corpus, we are reusing the ontology corpus published by Haller
et al. [13], i.e., a crawl of the unique classes and properties in prefix.cc as well
as the declared classes and properties in each dataset (the 431 from above). While not
every ontology is registered in prefix.cc (a total of 2,794 ontologies are registered as of
August 2021), our process also follows all import statements in those ontologies. Given

12 https://www.wikidata.org/wiki/Wikidata:Property proposal/disjoint with.
13 All code implemented in Python is available at: https://github.com/arminhaller/LinksInLOD.

http://www.wikidata.org
https://www.wikidata.org/wiki/Wikidata:Property_proposal/disjoint_with
https://github.com/arminhaller/LinksInLOD

An Analysis of Links in Wikidata 29

that ontologies are supposed to be a shared conceptualisation of a domain, if no other
ontology reuses the ontology, it is unlikely to be used in many datasets, nor is it likely
been used in Wikidata either.

3.3 Link Type Analysis

As per the definitions in our previous work [13] we distinguish two general types of
links, Ontology (TBox) Links and Instance (ABox) Links. Ontology Links are further
classified into class links, instance typing links, property links and instance role links.
Instead of providing re-definitions of those links to match the meta-model of Wikidata,
we provide reformulations of the operationalised SPARQL queries that retrieve those
link types and that implement the mapping relations between the Wikidata meta-model
and the RDFS/OWL semantics as defined in Table 1.

For instance, let the dataset dsWD be Wikidata with the set of its authoritative
namespaces (i.e., the namespaces denoting Wikidata-defined URIs) being NSdsWD

= {http://www.wikidata.org/entity/, http://www.wikidata.org/prop/direct/, https://www.
wikidata.org/wiki/Special:EntityData/}. Further, let ds2 denote the Disease Ontology,
with NSds2 = { http://identifiers.org/doid/} and let further ds3 denote the schema.org
vocabulary, with NSds3 = {http://schema.org/}. We shall denote the mentioned names-
paces with the prefixes wd:, wdt:, data:, doid:, and schema:, respectively. If
we consider now the triple,

t1 = wd:Q84263196 wdt:P2888 doid:0080600.

in dsWD, stating that COVID-19 (Q84263196) is an exact match (P288) to the
class DOID:0080600 in the Human Disease Ontology, it shall be considered an instance
link, from dsWD to ds2: while doid:0080600 is a class in the Human Disease Ontology,
it is used in an instance position in the triple above from Wikidata, therefore it is an
instance link. The next triple we consider

t2 = wd:Q84263196 wdt:P31 wd:Q609748.

defines COVID-19 (Q84263196) as an instance of (P31) of the emerging commu-
nicable disease (Q609748) class. While this is not a link, but rather an internal ontolog-
ical reference within dsWD, however,

t′2 = wd:Q84263196 rdf:type schema:Dataset.

is indeed an ontology link, more specifically, an instance typing link from dsWD to
ds3. In fact, every wiki page in Wikidata is defined as of type schema:Dataset. Next,

t3 = wdt:P569 wdt:P1628 schema:birthDate.

is an example of a property link from dsWD to ds3. Finally,

t4 = wd:Q5 wdt:P1709 schema:Person

is a class link from dsWD to ds3.
In order to define these link types more clearly, in the following we provide

SPARQL queries on the Wikidata data model that correspond to the link types defined
in [13], adapted to the correspondences in Table 1.

http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
https://www.wikidata.org/wiki/Special:EntityData/
https://www.wikidata.org/wiki/Special:EntityData/
http://identifiers.org/doid/
http://schema.org/

30 A. Haller et al.

Ontology (TBox) Links. With the query shown in Listing 1.1 we retrieve all external
classes, i.e., classes using a namespace other than the Wikidata namespace (using the
FILTER statement) that are not explicitly declared as an RDFS/OWL class (which no
class in Wikidata is) or as a type of class (Q16889133), but are used to i) define an
instance (i.e., they are used in an assertional axiom), ii) define a terminological axiom
that either extends or narrows a class through a subclass of relation (P279), iii) define
a class’ equivalence (P1709), union of (P2737), disjoint union of (P2738) or iv) define
the domain or range of a property (pq:P2308).

Listing 1.1. SPARQL query used to retrieve all external classes.

SELECT DISTINCT ?C WHERE {
{[] a ?C. } UNION
{[] wdt:P279 ?C. } UNION {?C wdt:P279 []. } UNION
{?C wdt:P2738 [].} UNION
{?C wdt:P1709 [].} UNION {[] wdt:P1709 ?C.} UNION
{?C wdt:P2737 [].} UNION
{[] pq:P2308 ?C. }
FILTER (!regex(str(?C), "http://www.wikidata.org","i"))

.
}

For each class URI retrieved through this query, we check its occurrence in either
the subject or object position in any triple in the KG. The number of resulting triples
constitutes the number of Class Links in the Wikidata KG.

For Property Links we follow a similar process. With the query shown in Listing 1.2,
we retrieve all external properties (i.e., properties using a namespace other than the
authoritative Wikidata namespace) that are not explicitly declared as a property but are
used: i) within a subproperty relation (P1647) or external sub/superproperty relation
(P2236, P2235), iii) in a property restriction or to define the domain or range of a class
(P2302), or iv) to define a properties’ equivalence (P1628), inverseness with/to another
property (P1696), different from (P1889), complement of (P8882).

Listing 1.2. SPARQL query used to retrieve external properties.

SELECT DISTINCT ?P WHERE {
{?P wdt:P1647 []. } UNION {[] wdt:P1647 ?P. } UNION
{[] wdt:P2236 ?P. } UNION
{[] wdt:P2235 ?P. } UNION
{?P wdt:P1628 []. } UNION {[] wdt:P1628 ?P. } UNION
{?P wdt:P1696 []. } UNION {[] wdt:P1696 ?P. } UNION
{?P wdt:P1889 []. } UNION {[] wdt:P1889 ?P. } UNION
{?P wdt:P8882 []. } UNION {[] wdt:P8882 ?P. } UNION
{?P wdt:P2302 []. }
FILTER (!regex(str(?P), "http://www.wikidata.org","i"))

.
}

For each property URI retrieved through this query, we check its occurrence in the
predicate position in any triple in the dataset. The number of resulting property URIs
constitutes the occurrence of Property Links in the dataset.

An Analysis of Links in Wikidata 31

Instance Links (ABox Links). Before we can compute the number of Instance Links
from an individual in the Wikidata namespace to any individual in an external names-
pace, we first need to find all unique individuals in the KG.

1. We find all individuals of classes/properties that are declared (i.e., individuals that
are defined as a type of a class/property using (P31)). For each retrieved unique
individual, we check if they are defined in the Wikidata namespace. If not, the triple
they appear in is counted as an Instance Typing Link.

2. We then find all individuals that are reused from a non-authoritative namespace URI
in the subject position without being explicitly declared as a type of a class or prop-
erty. To retrieve those, we first query all triples in the dataset and then check for each
unique subject URI that is not in the Wikidata namespace, if it is already in the set
of declared instances (as of step 1), or if it is in the set of classes and properties (cf.
Sect. 3.2). If it is neither, we count the triple as an Instance Link.

3. We then follow a similar process for each individual reused from a non-authoritative
namespace URI in the object position. For each unique object URI, we check the
following conditions: i) the subject URI does not contain the Wikidata namespace
URI, ii) the predicate is not an instance of (P31) relation, and iii) the object URI is
not already contained within the set of declared instances. If none of these conditions
are satisfied, we record it as an Instance Link.

4 Evaluation of Links

In the following, we discuss the results of the link analysis of Wikidata. All tests were
performed on a machine with 8vCPUs, 380 GB RAM and 5 TB hard disk space.

4.1 General Statistics of the Wikidata KG

Before we analyse the number and types of links in Wikidata, we present some general
statistics of the Wikidata KG that we computed using its HDT file in Table 2. The first
noteworthy observation we can make is that the ratio between unique subjects to unique
predicates in Wikidata is 1/41810, whereas in the LOD dataset corpus [13] the ratio
was 1/3900 if using the mean and 1/19 if using the median. Since the Wikidata KG
with 1.69bn triples is much larger than the largest KG in the LOD corpus, i.e., the 2016
version of DBpedia with 1.04bn triples, which itself was much larger than the mean
number of triples (i.e. 16.92 m) for all datasets in the corpus, suggests that the number
of predicates in a KG grows following an asymptotic function. This seems natural, as
while the number of entities in a general KG such as Wikidata is potentially infinite, the
attributes that can be assigned to those entities are somehow limited.

Supporting our first hypothesis, Wikidata defines all of its 89 m unique individuals
using its own ontology. The number of unique individuals is also larger than the number
of claimed unique entities defined in Wikidata at the time the HDT file was generated
(March 2021), i.e., 73 m, meaning that all entities (plus some more) are defined within
the Wikidata namespace. While the number of unique subjects, with 1.62bn is a lot
larger than the number of unique individuals (i.e., 89 m), this is due to the fact that Wiki-
data introduces skolemized IRIs for qualified statements on an entity, and not because of

32 A. Haller et al.

entities being defined using external ontologies, i.e., instance typing links (see below).
As such, on average for each unique entity about 18 entities are created as part of the
subgraph for that entity and that redirect in the Linked Data API to that target entity.
For example, for the entity Barack Obama (Q76) there are 394 skolemized IRIs (as
of November 2021), such as http://www.wikidata.org/entity/statement/q76-F23589FF-
58A6-438B-BC7E-79F6B436AFD0 that describes a qualifier about Barack Obama’s
education at (P69) Harvard Law School which he completed with an academic degree
(P512) of Juris Doctor with an end time (P582) of 1991. These qualified statements do
not have their own page on Wikidata, but they do resolve to the page where they are
defined through the Linked Data API.

Table 2. General statistics of the
Wikidata KG

Triples 1,693,668,039
Unique Subjects 1,625,057,179
Unique Predicates 38,867
Unique Objects 2,538,585,808

Table 3. Class/property statistics in Wikidata

Unique Individuals 89,120,227
Unique Declared Classes 0
Unique Undeclared Classes: 2,522,595
Unique Declared Properties: 74,309
Unique Undeclared Properties: 29,167

4.2 Ontology Links

Before we set out to test our hypotheses related to ontology links in Wikidata, we
first present some general statistics on the use of classes and properties in Wikidata
in Table 3. For our analysis we distinguish between declared and undeclared classes,
i.e., class URIs that are defined within the authoritative namespace of the KG using a
triple {[] rdf:type owl:Class.} or {[] rdf:type rdfs:Class.}, and
class URIs that are merely reused from a different namespace URI. Since Wikidata does
not use rdf:type relations for class definitions (as above), all 2,522,595 unique classes
defined in Wikidata are undeclared according to the RDFS/OWL semantics.

In contrast to class URIs, properties in Wikidata are declared using the
owl:DatatypeProperty and owl:ObjectProperty types. In fact, each property, denoted
by an identifier starting with “P” includes up to nine datatype and object property
definitions, each with a different URI of that property identifier (i.e., strictly speak-
ing different properties) as defined by the wikiba.se ontology, e.g., for date of birth
(P569) this includes http://www.wikidata.org/prop/direct/P569 which is defined as an
owl:DatatypeProperty and http://www.wikidata.org/prop/statement/P569 as a short-
hand property to find the statements this property is used in which is also defined as an
owl:DatatypeProperty. Therefore the number of declared properties in March 2021
(i.e., 74,309) is more than six times larger than the claimed number of properties on
Wikidata, i.e., 9,367 properties as of November 202114,15 (Table 4).

14 https://www.wikidata.org/wiki/Wikidata:List of properties.
15 No longitudional data is published on the Wikidata site, but the growth in the number of prop-

erties between July and November 2021 was 3.4%.

http://www.wikidata.org/entity/statement/q76-F23589FF-58A6-438B-BC7E-79F6B436AFD0
http://www.wikidata.org/entity/statement/q76-F23589FF-58A6-438B-BC7E-79F6B436AFD0
http://www.wikidata.org/prop/direct/P569
http://www.wikidata.org/prop/statement/P569
https://www.wikidata.org/wiki/Wikidata:List_of_properties

An Analysis of Links in Wikidata 33

Table 4. Link Type statistics

Class Links 3,955

Property Links 835

Instance Typing Links 0 (173,168,537)

Instance Links 173,177,045

Class Links. There are only 3,955 class links defined in Wikidata. This is comparable
to the other datasets in the LOV corpus that were analysed previously [13], where the
number of class links is relatively constant around 100–10,000 per dataset. However,
Wikidata uses 2.5 m classes (compared to an average of 6,379 classes per dataset), with
a ratio of class links per class of only 0.0015, while the average ratio of class links
per class for the datasets in the LOV cloud is 11.27. One of the reasons why the ratio
is so low, is that many instances in Wikidata are also defined as classes (see above),
contrary to many other KGs where there is a strict separation between TBox and ABox
axioms. Also, the user interface’s (Wikibase) autocomplete feature when creating links
to classes only works for classes in the Wikidata namespace, but not for external URIs of
classes. Still, as a central hub of the Linked Data ecosystem, one would expect Wikidata
to have more such links, particularly given the bottom-up development of the Wikidata
ontology. The 2016 version of DBpedia [2], for example, includes 8,258 class links for
its 3,197 classes with a ratio of 2.58, even though its ontology is built by experts top-
down. We therefore need to reject our hypothesis H2.1. To increase the number of class
links, a relation similar to “external subproperty” should be introduced in Wikidata to
define external subclass relations on a class. A lookup service (based for example on the
LOV API [24]) could then guide Wikidata editors to the existence of external classes.

Property Links. There are only 835 property links for a total of 74,309 properties in
Wikidata, i.e., there are on average only 0.01 property links per property, a ratio that
is much lower than for the LOD corpus. We therefore must also reject our hypothesis
H2.2, that Wikidata includes many more property links per property than other datasets.
One of the reasons for this low property link ratio might be that while there exist sev-
eral properties in the Wikidata ontology that are specifically designed to link to external
ontologies or allow external URIs to be used, i.e., equivalent property (P1628), di er-
ent from (P1889), external subproperty (P2236), external superproperty (P2235)
these are only relatively recent additions. External subproperty and superproperty which
are used 94 and 159 times, respectively, were only added in May 2017 and May 2018,
after many of the 74k properties in Wikidata have been defined. There would need to be
a concerted effort by the community to update existing properties with these relations.

Instance Typing Links. There are no instance typing links in Wikidata that use the
instance of (P31) relation. Since, to the best of our knowledge, Wikibase does not allow
users to add an external URI when using the instance of relation it is not unexpected
that there are no such links. There are 173 m instance typing links using the rdf:type

34 A. Haller et al.

relation. However, since they are all (auto-generated) links to define a Wikidata page
as a schema:Dataset and a schema:Article we excluded them. Therefore we can
confirm our hypothesis H3 that as a KG with a general and sufficiently comprehensive
ontology, Wikidata types all entities using its own ontology and therefore includes no
instance typing links.

4.3 Instance Links

Wikidata includes many links from entities (unique individuals) defined in its authori-
tative namespace to entities defined in other KGs. With 173 m such links, it means that
10.22% of all triples in the Wikidata graph link to individuals that use a namespace
other than the Wikidata namespace. However, the ratio of such links to entities (at 1.94)
is much lower than with other datasets in the LOD ecosystem (8.6) and we therefore
need to reject our hypothesis H4.1.

Even this number includes many links to Wikipedia. In fact, every entity in Wikidata
that also has a Wikipedia entry includes hundreds of links to Wikipedia. However, while
they are considered links according to our definition, none of the target resources are,
in fact, RDF resources, but the Wikipedia entity is created in the Wikidata namespace
(using the Wikipedia URL).

While for ontology links we are able to verify for all links if the target URI is an
RDF resource, with the large number of instance links, we can not. However, to test
our hypothesis H4.2 a sample of 1,924,940 target URIs from all instance links was ran-
domly collected. We then built a simple crawler that checked for each URI if a document
in RDF format can be retrieved at the target URI, i.e., classifying the links in two main
groups: Web resources, and RDF entities. Table 5 shows that the majority of links point
to resources other than RDF. While we therefore need to reject our hypothesis H4.2, the
fact that a quarter of resources are, in fact, RDF resources is encouraging, given that
for many entities there may not yet exist an RDF representation outside of Wikidata. To
distinguish RDF from non-RDF resources in links, i.e., to distinguish 1-star linked data
from higher-ordered linked data [5], Wikidata should automatically qualify links based
on the target format of the linked resource (Table 6).

Table 5. Instance links content-types
statistics

URL Not Found 18,081 (0.9%)
Other Errors 138,656 (7.2%)
Timeout 218,542 (11.4%)
RDF Entities 471,088 (24.5%)
Web Resources 1,078,573 (56.0%)

Table 6. Instance Link types statistics

owl:sameAs Links 0
Exact Match (P2888) Links 3,268,021
Said to be the Same (P460) Links 2
Inverse Property (P1696) Links 0

We also checked how many of the instance links use an equivalence or some weaker
forms of likeness relations to test our Hypothesis 5. Unsurprisingly, no instance link
uses the owl:sameAs relation, as Wikibase does not allow its use and encourages the
use of the exact match (P2888) relation. However, with 3,268,021 such links, at most16

16 Some individuals might use more than one exact match relation.

An Analysis of Links in Wikidata 35

only 3.7% of all unique individuals use the exact match relation to an individual
defined in a namespace other than the Wikidata namespace. P460 and P1696 are not
used. We therefore must also reject Hypothesis 5 (Table 7).

Table 7. Hypotheses testing

H1 Wikidata defines the vast majority of its terminological entities and prop-
erties in its authoritative namespace

Supported

H2.1 The ratio of class links to classes in Wikidata is higher than in the LOD
ecosystem

Rejected

H2.2 The ratio of property links to properties in Wikidata is higher than in the
LOD ecosystem

Rejected

H3 Wikidata does not type entities using classes from external ontologies Supported

H4.1 Wikidata’s ratio of instance links to entities is higher than for other datasets
in the LOD ecosystem

Rejected

H4.2 Most instance links point to RDF Web resources Rejected

H5 Wikidata includes similarity relations for a majority of its instance links Rejected

5 Related Work

There are many works that analyse different quality aspects of Wikidata. Erxleben
et al. [9] introduce RDF exports that connect Wikidata to the Linked Data Web. In [6]
an axiomatic theory for multi-level modeling is used to analyse Wikidata content and
to identify a significant number of problematic classification and taxonomic statements.
Färber et al. [11] present an extensive survey of open KGs, including Wikidata. Freire
& Isaac [10] present an assessment of Wikidata for high-quality machine interpretation
of its alignment properties to RDF/S, OWL, SKOS, and schema.org.

Piscopo & Simperl [18] present a systematic literature review of 28 papers about
data quality in Wikidata, categorised by quality dimensions addressed. The complete-
ness aspect of Wikidata is analysed in [3], which cites some tools and services that
address various quality aspects around the WikiMedia projects. Pillai et al. [16] com-
pare Wikidata with other KGs from the perspectives of completeness of its relations,
timeliness of the data, and accessibility as the data quality criteria. Abian et al. [1]
present an approach based on cross-comparing date values (the concept of contempo-
rary constraint) to discover inconsistent temporal data in Wikidata. Piscopo & Sim-
perl [17] study the relationship between different Wikidata user roles and the quality of
the Wikidata ontology by proposing a framework to evaluate the ontology as it evolves.
Samuel [21] introduces the WDProp tool that provides to human users an overview
and statistics of various multi-language aspects of Wikidata properties, such as labels,
descriptions, and aliases. Shenoy et al. [23] present a quality analysis of Wikidata focus-
ing on correctness.

Other work exists that analyse interlinking in linked data in general [20,26] or qual-
ity studies and approaches that considered interlinking of linked data as an assessment
metric [7,12,19,22].

https://schema.org/

36 A. Haller et al.

None of the above works, however, have analysed how interlinked and central Wiki-
data is to the LOD ecosystem, and more specifically, analysed the number and types of
links defined within Wikidata as presented in this paper.

6 Conclusion

We have analysed the number and types of links in Wikidata to evaluate how central
Wikidata is to the Linked Open Data ecosystem. While Wikidata is the largest, most
comprehensive general knowledge KG on the Web using also a comprehensive, bottom-
up developed ontology that is used to type its many entities, it is not (yet) serving as a
central hub for linked data on the Web.

For its relative lack of instance links, this means that either the Wikidata editors
deem such links as obsolete, or that these links are yet to be included or that they already
exist, but rather as incoming links from the external dataset to Wikidata. However, as a
bottom-up created KG, there is the possibility for anyone who owns a dataset to actually
create an outgoing link in the Wikidata namespace to the dataset they own. Many bots
(332, https://www.wikidata.org/wiki/Wikidata:Bots) have been created for exactly this
reason (i.e., automatically creating outgoing links from Wikidata to other datasets),
and they improve the discoverability, and as such the visibility, of the external dataset.
Every dataset publisher, for their own benefit, should therefore consider creating those
outgoing links in the Wikidata KG.

Comparatively for its size, Wikidata also includes less ontology links than other
datasets in the LOD ecosystem. While this can be partially explained by the fact that
many individuals defined in Wikidata are also classes, skewing the ratio between classes
and class links, this does not apply to property links, where there is no such distinction.
Most properties in Wikidata are not linked to external properties at all, even though
specific properties exist in the Wikidata ontology (e.g., external subproperty, external
superproperty) to do so. While we have suggested in this paper that some changes to
the user interface of Wikibase may encourage editors to provide more such links, a fun-
damental rethink of ontology design may have to occur too. Specifically, common best-
practise in ontology engineering is to include links from an ontology to other ontologies
(i.e., through import statements or URI reuse). However, in the case of the Wikidata
ontology, the developers of domain ontologies should consider to create those links to
their ontologies in the Wikidata namespace, rather than in the other direction.

Wikidata also does not (yet) provide many equivalence or weaker forms of likeness
relations from its entities to external entities. There is an onus on the Wikidata editor
community to ensure that such links are increasingly provided, given that Wikidata
should generally not be the authoritative source of entities, but link to an authoritative
representation of an entity through, for example, the exact match relation in Wikidata.
However, as above, the lack of such links may also be an indication that entities defined
in Wikidata do not yet exist or never will exist in the LOD ecosystem.

As future works, we first would like to analyse the evolution of links on Wikidata
over time using several historical snapshots of the published Wikidata HDT files. Also,
a deeper analysis of the entities that are linked (e.g., what are the top-ranked instance
and ontology namespaces referenced from Wikidata) is planned for a future work.

https://www.wikidata.org/wiki/Wikidata:Bots

An Analysis of Links in Wikidata 37

Acknowledgment. This research has received funding from the Teaming.AI project, which is
part of the European Union’s Horizon 2020 research and innovation program under grant agree-
ment No 957402.

References

1. Abián, D., Bernad, J., Trillo, R.: Using contemporary constraints to ensure data consistency.
In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 2303–
2310, April 2019

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus
for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825,
pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 52

3. Balaraman, V., Razniewski, S., Nutt, W.: Recoin: relative completeness in Wikidata. In: Wiki
Workshop 2018 co-located with the Web Conference 2018 in Lyon, France, 24 April 2018,
April 2018

4. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laundromat:
a uniform way of publishing other people’s dirty data. In: Mika, P., et al. (eds.) ISWC 2014.
LNCS, vol. 8796, pp. 213–228. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 14

5. Berners-Lee, T.: Linked Data. W3C Design Issues, July 2006. http://www.w3.org/
DesignIssues/LinkedData.html

6. Brasileiro, F., Almeida, J.P.A., Carvalho, V.A., Guizzardi, G.: Applying a multi-level model-
ing theory to assess taxonomic hierarchies in Wikidata. In: Proceedings of the 25th Interna-
tional Conference Companion Volume on World Wide Web, pp. 975–980 (2016)

7. Debattista, J., Auer, S., Lange, C.: Luzzu - a methodology and framework for linked data
quality assessment. J. Data Inf. Qual. 8(1), 4:1–4:32 (2016)

8. Debattista, J., Lange, C., Auer, S., Cortis, D.: Evaluating the quality of the LOD cloud: an
empirical investigation. Semant. Web 9(6), 859–901 (2018)

9. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata
to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 4

10. Freire, N., Isaac, A.: Technical usability of Wikidata’s linked data. In: Abramowicz, W.,
Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 373, pp. 556–567. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-36691-9 47

11. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpedia, Free-
base, OpenCyc, Wikidata, and YAGO. Semant. Web 9(1), 77–129 (2018)

12. Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using net-
work measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30284-8 13

13. Haller, A., Fernández, J.D., Kamdar, M.R., Polleres, A.: What are links in linked open data?
A characterization and evaluation of links between knowledge graphs on the web. J. Data
Inf. Qual. 12(1), 1–34 (2020)

14. Haller, A., Polleres, A.: Are we better off with just one ontology on the web? Semant. Web
11(1), 87–99 (2020)

15. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with Wikidata?
In: Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge
Base Systems, vol. 1457, pp. 32–47. CEUR-WS.org (2015)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-319-11964-9_14
https://doi.org/10.1007/978-3-319-11964-9_14
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-030-36691-9_47
https://doi.org/10.1007/978-3-642-30284-8_13
https://doi.org/10.1007/978-3-642-30284-8_13

38 A. Haller et al.

16. Pillai, S.G., Soon, L.-K., Haw, S.-C.: Comparing DBpedia, Wikidata, and YAGO for web
information retrieval. In: Piuri, V., Balas, V.E., Borah, S., Syed Ahmad, S.S. (eds.) Intelligent
and Interactive Computing. LNNS, vol. 67, pp. 525–535. Springer, Singapore (2019). https://
doi.org/10.1007/978-981-13-6031-2 40

17. Piscopo, A., Simperl, E.: Who models the world?: collaborative ontology creation and user
roles in Wikidata. Proc. ACM Hum.-Comput. Interact. 2(CSCW), 141:1–141:18 (2018)

18. Piscopo, A., Simperl, E.: What we talk about when we talk about Wikidata quality: a liter-
ature survey. In: Proceedings of the 15th International Symposium on Open Collaboration,
New York, NY, USA (2019)

19. Raad, J., Beek, W., van Harmelen, F., Pernelle, N., Saı̈s, F.: Detecting erroneous identity
links on the web using network metrics. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS,
vol. 11136, pp. 391–407. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-
6 23

20. Radulovic, F., Mihindukulasooriya, N., Garcı́a-Castro, R., Gómez-Pérez, A.: A comprehen-
sive quality model for linked data. Semant. Web 9(1), 3–24 (2018)

21. Samuel, J.: Towards understanding and improving multilingual collaborative ontology devel-
opment in Wikidata. In: Proceedings of Wiki Workshop 2018 co-located with the Web Con-
ference 2018, Lyon, France, April 2018

22. Sarasua, C., Staab, S., Thimm, M.: Methods for intrinsic evaluation of links in the web of
data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.)
ESWC 2017. LNCS, vol. 10249, pp. 68–84. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58068-5 5

23. Shenoy, K., Ilievski, F., Garijo, D., Schwabe, D., Szekely, P.: A study of the quality of Wiki-
data. arXiv preprint arXiv:2107.00156 (2021)

24. Vandenbussche, P., Atemezing, G., Poveda-Villalón, M., Vatant, B.: Linked open vocabu-
laries (LOV): a gateway to reusable semantic vocabularies on the web. Semant. Web 8(3),
437–452 (2017)

25. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10), 78–85 (2014)

26. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment
for linked data: a survey. Semant. Web 7(1), 63–93 (2016)

https://doi.org/10.1007/978-981-13-6031-2_40
https://doi.org/10.1007/978-981-13-6031-2_40
https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-319-58068-5_5
https://doi.org/10.1007/978-3-319-58068-5_5
http://arxiv.org/abs/2107.00156

Knowledge Graph Entity Type Prediction
with Relational Aggregation Graph

Attention Network

Changlong Zou, Jingmin An, and Guanyu Li(B)

Faculty of Information Science and Technology, Dalian Maritime University,
Dalian, Liaoning, China

liguanyu@dlmu.edu.cn

Abstract. Most of the knowledge graph completion methods focus on
inferring missing entities or relations between entities in the knowledge
graphs. However, many knowledge graphs are missing entity types. The
goal of entity type prediction in the knowledge graph is to infer the missing
entity types that belong to entities in the knowledge graph, that is, (entity,
entity type=?). At present, most knowledge graph entity type prediction
models tend to model entities and entity types, which will cause the rela-
tions between entities to not be effectively used, and the relations often
contain rich semantic information. To utilize the information contained in
the relation when performing entity type prediction, we propose a method
for entity type prediction based on relational aggregation graph atten-
tion network (RACE2T), which consists of an encoder relational aggre-
gation graph attention network (FRGAT) and a decoder (CE2T). The
encoder FRGAT uses the scoring function of the knowledge graph com-
pletion method to calculate the attention coefficient between entities. This
attention coefficient will be used to aggregate the information of relations
and entities in the neighborhood of the entity to utilize the information of
the relations. The decoder CE2T is designed based on convolutional neu-
ral network, which models the entity embeddings output by FRGAT and
entity type embeddings, and performs entity type prediction. The exper-
imental results demonstrate that the method proposed in this paper out-
performs existing methods. The source code and dataset for RACE2T can
be downloaded from: https://github.com/GentlebreezeZ/RACE2T.

Keywords: Knowledge graph · Entity type · Relational aggregation ·
Attention · Scoring function · Convolutional neural network

1 Introduction

Knowledge graph stores information mainly in the triple [5], denoted as (ei, rk, ej),
where ei is the head entity, ej is the tail entity, and rk is the relation between ei

and ej . Besides the triples, knowledge graphs usually contain many entity type
instances in the form of entity-entity type tuples [30] (denoted as (e, t)), indicat-
ing that an entity e is of a certain entity type t, for example, (Chicago, Film) and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 39–55, 2022.
https://doi.org/10.1007/978-3-031-06981-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_3&domain=pdf
https://github.com/GentlebreezeZ/RACE2T
https://doi.org/10.1007/978-3-031-06981-9_3

40 C. Zou et al.

Fig. 1. Knowledge graph triples. The solid shape represents the entity; the hollow
shape represents the entity type; the solid line represents the relation; the dotted line
points to the entity type.

(Chicago, City). The entity type information in the knowledge graphs is widely
used in various downstream tasks, such as entity alignment [32], entity linking [3],
knowledge graph completion [25]. Missing entity types can undermine the effec-
tiveness of algorithms in such tasks. However, knowledge graphs, especially cross-
domain knowledge graphs, often face quality problems with incomplete entity type
information. For example, 10% of the entities with type /music/artister in FB15K
[2], do not have type /people/person in Freebase [13].

The missing entity type of knowledge graph can be solved by entity type pre-
diction, which is a subproblem of knowledge graph completion. Early methods
for predicting entity types in knowledge graphs are mainly based on probabil-
ity distributions, such as SDtype [19]. Recently, representation learning [7] has
gradually become the basis of knowledge graph-related research. For knowledge
graphs, representation learning is the learning low-dimensional embedding vector
representations of objects in the knowledge graph by methods such as machine
learning. The learned embedding vectors preserve the semantic information of
the objects in the knowledge graph and can be used for various downstream
tasks based on the knowledge graph. In this paper, we mainly use representation
learning to infer the missing entity types of entities in the knowledge graph.

At present, most entity type prediction models based on representation learn-
ing directly model entities and entity types, such as ETE [13], and ConnectE
[31]. Thus these models have a common drawback of not effectively utilizing
the knowledge graph triples. To be precise, the information of relations is not
utilized, or these models deal with each entity-entity type tuple independently,
without utilizing the semantically rich relations inherent in the neighborhood of
entities in the knowledge graph. As shown in Fig. 1, the semantic information
of the relations Islocation and Iswriter helps to infer that the type of entity
Chicago may include City and Film.

GAT (Graph Attention Network) [22] is an effective tool for generating knowl-
edge graph entity embeddings. It assigns different weights to entities in the neigh-
borhood of the entity according to their importance. This weight will be used

RACE2T: Knowledge Graph Entity Type Prediction 41

to aggregate the neighborhood information of the entity. However, GAT cannot
utilize relational information.

Based on the above statements, in this work, we introduce a method for
entity type prediction based on relational aggregation graph attention network
(RACE2T), consisting of an encoder relational aggregation graph attention net-
work (FRGAT) and a decoder CE2T. The encoder FRGAT is designed based on
GAT and is mainly used to utilize relation information. FRGAT uses the scoring
function of the knowledge graph completion method to calculate the attention
between entities and entities in its neighborhood and uses that attention to
aggregate information about entities and relations. Meanwhile, considering the
limited ability of expressiveness of existing entity type prediction models, we pro-
pose a convolutional neural network-based entity type prediction model CE2T
as a decoder. CE2T is composed of convolution, projection, and inner prod-
uct layers. It models the entity embeddings output by FRGAT and entity type
embeddings and performs entity type prediction. We demonstrated the effective-
ness of our proposed model on the FB15K and FB15KET and YAGO43K and
YAGO43KET datasets and obtained advanced results.

2 Related Works

2.1 Knowledge Graph Completion Models

Translation-based models treat relations as translations from head entities to tail
entities and use energy-based scoring functions. The basic idea of the TransE
[2] model is that if the triple (ei, rk, ej) holds, then the sum of the head entity
embedding and the relation embedding should be as close as possible to the tail
entity embedding, i.e., ei +rk ≈ ej . TransH [23] and TransD [6] use a projection
strategy and are extensions of TransE.

Semantic matching models use scoring functions based on the similarity of
head and tail entities under a given relation. RESCAL [18] follows a relational
learning approach based on a tensor factorization model that considers the inher-
ent structure of relational data. DisMult [29] is a simplified version of RESCAL
and uses a basic bilinear scoring function to match the underlying semantics of
entities and relations in vector space. HOLE [17] combines the expressive ability
of RESCAL with the simplicity of DisMult through the use of unique circular
correlation operation. In addition to translation models and semantic matching
models, there are ConvE [4], ConvKB1 [15], and CapsE2 [16], based on convolu-
tional neural networks. Meanwhile, some models use additional information for
knowledge graph completion [24].

In this paper, we will use the scoring functions of TransE [2], TransH [23],
TransD [6], and DisMult [29] to calculate the attention between entities.

1 https://github.com/daiquocnguyen/ConvKB.
2 https://github.com/daiquocnguyen/CapsE.

https://github.com/daiquocnguyen/ConvKB
https://github.com/daiquocnguyen/CapsE

42 C. Zou et al.

2.2 Knowledge Graph Entity Type Prediction Models

CUTE [26] is a cross-language knowledge graph entity type prediction model,
which mainly uses cross-language entity links between Chinese and English enti-
ties to construct training data. However, CUTE is based on non-representation
learning. MuLR [28] learns multi-level embedding representations of entities
through character, word, entity descriptions, and entity embeddings and then
performs entity type prediction. HMGCN [9] is a knowledge graph entity type
prediction model based on GCN [11], which considers relations, entity descrip-
tion information, and Wikipedia categories. Cat2Type [1] is similar to HMGCN
in that both use Wikipedia categories for knowledge graph entity type predic-
tion. APE [8] utilizes the attribute, structure, and type information of entities
in the knowledge base for entity type prediction and learns entity embeddings
through neural networks. FIGMENT [27] is mainly used to judge the types of
entities in the corpora, including global models and context models. However, it
additionally requires a large annotated corpora.

In short, the most significant difference between RACE2T and MuLR [28],
FIGMENT [27], APE [8], HMGCN [9], and Cat2Type [1] is that RACE2T mainly
uses entity-entity type tuples (e, t) and triples to learn embedding representations
for objects. However, these models do not, and they usually require additional
information (e.g., entity description information, corpus). Therefore, the follow-
ing mainly introduces entity type prediction models that use entity-entity type
tuples and triples for modeling.

Ref [14] proposed two knowledge graph entity type prediction models for
encoding entity-entity type tuples (e, t), namely linear model and embedding
model. The scoring function of the linear model is φ(e, t) = tTe, where e is the
entity embeddings and t is the entity type embeddings. The scoring function of
the embedding model is φ(e, t) = tTV UTe, where U and V are the projection
matrices. However, both models do not use the knowledge graph triples, or they
do not use the relations between entities.

The knowledge graph entity type prediction model proposed in the Ref [13]
uses an asynchronous approach to learn the embedding representation of entities,
relations and entity types. First, using knowledge graph completion methods,
such as RESCAL [18], TransE [2], HOLE [17], and ContE [12], learn the entity
embedding e. Second, keep the entity embeddings e unchanged during training,
and update the entity type embeddings by minimizing the distance between the
entity embedding and the entity type embedding, namely, RESCAL-ET, HOLE-
ET, TransE-ET, and ETE3. Their scoring function is φ (e, t) = ‖e − t‖�1, where
‖x‖�1 represents the �1 norm of the vector x. Although these methods use the
relations between entities during training, the semantic information the relations
is not utilized in making entity type predictions.

ConnectE4 [31] uses entity-entity type tuples and entity type triples5 for
training and entity type prediction. However, entity type triples are created
3 https://github.ncsu.edu/cmoon2/kg.
4 https://github.com/Adam1679/ConnectE.
5 For details of entity type triples, see Ref [31].

https://github.ncsu.edu/cmoon2/kg
https://github.com/Adam1679/ConnectE

RACE2T: Knowledge Graph Entity Type Prediction 43

does not consider the semantics that entities represent when they correspond to
different types. Meanwhile, entity type triples lead to data leakage in the test
set. The scoring function of ConnectE is: φ (e, t) = ‖M · e − t‖�2, where M is
projection matrix, ‖x‖�2 represents the �2 norm of the vector x. ConnectE uses
an asynchronous approach to learn embeddings of entities, relations and entity
types, and its training process is divided into three stages. Firstly, the model uses
TransE [2] to train entity embeddings and relation embeddings. Secondly, the
model trains the entity type embeddings and the projection matrix M by mini-
mizing φ (e, t). Finally, the entity type triples are trained using TransE and only
the embedding of the relations is changed, the entity type embedding remains
unchanged.

It can be concluded that none of the above entity type prediction models do
not effectively utilize the relations in the knowledge graph triple. Although Con-
nectE [31] utilizes relations through entity type triples, the entity type triples
cause the leakage of the test set. In order to effectively use the relation infor-
mation when predicting entity types, this paper uses the encoder FRGAT to
aggregate the informations of entities and relations in the neighborhood of a
given entity and uses the decoder CE2T to predict the entity type of the knowl-
edge graph. Meanwhile, these methods mainly adopt an asynchronous way to
learn the embeddings of objects (entity, relation and entity type). While the
method in this work uses synchronous way to learn the embeddings of objects.

3 Methods

The method (RACE2T) in this paper adopts the form of encoder-decoder. The
encoder is FRGAT. The decoder is CE2T, which is designed based on the con-
volutional neural network and is specially used to predict the entity type of
knowledge graph. The overall framework is shown in Fig. 2.

3.1 Problem Definition and Symbol

The goal of knowledge graph entity type prediction is to infer the type t of a given
entity e. Entity initial embedding matrix E ∈ R

|E|×D, relation initial embedding
matrix R ∈ R

|R|×D, entity type embedding matrix T ∈ R
|T |×�, where E , R and

T respectively represent the collection of all entities, relations, and entity types,
|E|, |R|, and |T | respectively represent the number of entities, relations, and
entity types, D is the dimension of the initial embedding vector of entities and
relations, and � is the dimension of the embedding vector of entity types. The
output matrix of the last layer of FRGAT is E0 ∈ R

|E|×d, and d represents the
dimension of FRGAT output embeddings.

3.2 Encoder: FRGAT

For a triple (ei, rk, ej), its entity and relation embeddings are ei, rk and ej ,
respectively. To make the model obtain sufficient expressive ability, the input

44 C. Zou et al.

entity and relation embeddings are converted into a higher-dimensional embed-
ding using projection operation: hi = eiW 1, zk = rkW 2, and hj = ejW 1,
where ei ∈ E, rk ∈ R, ej ∈ E, W 1 ∈ R

D×D1 , W 2 ∈ R
D×D1 , D1 > D. At

the same time, W 1 = W 2 will be restricted to ensure that entity embedding
and relation embedding are in the same semantic space after projection. Then,
in FRGAT, the calculation equation for the attention between the entity ei and
the entity ej is as follows:

aijk = σ (f (hi,zk,hj)) (1)

where σ (·) represents the activation function, aijk represents the importance
(attention) of ej to ei, f (·, ·, ·) represents the scoring function in the knowledge
graph completion method. Since there may be more than one other entities in
the first-order neighborhood of entity ei, we use softmax to normalize aijk:

αijk = softmax (aijk) =
exp (aijk)

∑
n∈Ni

∑
r∈Rin

exp (ainr)
(2)

Fig. 2. The overall framework of RACE2T. The FRGAT in this figure includes two
graph attention layers. The first layer includes two attention heads, and the second
layer includes one.

where Ni is the entity set contained in the first-order neighborhood of entity ei,
Rin is the set of relations between linked entity ei and the entities contained in
Ni, and αinr represents the importance of entity en to entity ei. To aggregate the
information of entities and relations, we use the message propagation mechanism
proposed in Ref [21] to perform a combination operation on the embedding vector

RACE2T: Knowledge Graph Entity Type Prediction 45

of the entity and the relation in the form of RD × R
D → R

D. In this case, the
new embedding of the entity ei is expressed as:

h
′
i = σ

⎛

⎝
∑

j∈Ni

∑

k∈Rij

αijkψ (hj ,zk)

⎞

⎠ (3)

where ψ (·, ·) represents combination operation.
Similar to GAT [22], a connected and independent multi-head atten-

tion mechanism is used to stabilize the learning process of the model and
enhance the generalization ability of the model. Under the multi-head atten-
tion mechanism: hm

i = eiW
m
1 , zm

k = rkW m
2 , hm

j = ejW
m
1 , and αm

ijk =
softmax

(
σ

(
f

(
hm

i ,zm
k ,hm

j

)))
, where W m

1 ∈ R
D×D1 , W m

2 ∈ R
D×D1 , m repre-

sents the m-th attention head, as shown in the attention head 1 and attention
head 2 of Fig. 2. The new embedding of entity ei is expressed as:

h
′
i =

M

‖
m=1

σ

⎛

⎝
∑

j∈Ni

∑

k∈Rij

αm
ijkψ

(
hm

j ,zm
k

)
⎞

⎠ (4)

Fig. 3. The framework of CE2T.

where M represents the number of heads in the multi-head attention mechanism,
and ‖ represents the vector connect operation, as shown in the middle part of
Fig. 2. At the same time, in order to use the embedding vector of the relation
in the following aggregation process, the conversion matrix W r ∈ R

D×M ·D1 is
used to perform a linear transformation on the embedding vector of the input
relation. The relation embedding after transformation is expressed as:

z
′
k = rkW r (5)

To reduce the number of parameters, we use the average to obtain the final
embedding vector of the entity in the last layer of the FRGAT model instead of
linking embeddings from multiple attention heads. The final entity embedding
vector is used as the input of the decoder (CE2T), which is expressed as follows:

h
′
i = σ

⎛

⎝ 1
M

M∑

m=1

∑

j∈Ni

∑

k∈Rij

αm
ijkψ

(
hm

j ,zm
k

)
⎞

⎠ (6)

46 C. Zou et al.

3.3 Decoder: CE2T

Inspired by the application of convolutional neural network in knowledge graph
completion [4,15], we propose a convolutional neural network-based knowledge
graph entity type prediction model (CE2T6) as the decoder of this paper. The
framework of CE2T is shown in Fig. 3.

The scoring function of CE2T is defined as:

φ (e, t) = σ (vec (σ (e ∗ Ω)) · M) t (7)

where e ∈ R
d represents the final embedding of the entity output by FRGAT,

t ∈ R
� represents the embedding vector of the entity type, Ω represents the

set of convolution kernels, M represents the projection matrix, ∗ represents
convolution operation, and vec (·) represents vectorization operation.

As shown in Fig. 3, during the forward propagation process, the entity embed-
ding e of the CE2T input needs to be found in the entity embedding matrix
E0 of the FRGAT output. Suppose the convolution kernel of the convolution
layer Ω ∈ R

|Ω |×1×f , the step size is cs, where |Ω| represents the number of
convolution kernels, and 1 × f is the size of the convolution kernel. Then the
output of the convolutional layer is F = σ (e ∗ Ω) ∈ R

|Ω |×a×b, where a = 1,
b = (d − f) /cs + 1. Then reshape F into vector vec (F) ∈ R

|Ω |·a·b as the input
of the projection layer.

The function of the projection layer is to project the features of the entity
embedding vector extracted by the convolutional layer into the �-dimensional
space. Both the CE2T model and the ConnectE model use a similar pro-
jection strategy, but the ConnectE [31] model projects the embedding vec-
tor of the entity, while the CE2T model projects the feature vector of the
entity output by the convolutional layer. The weight of the projection layer
is M ∈ R

|Ω |·a·b×�. The entity projection vector projected to the �-dimensional
space is: ė = σ (vec (F) · M) ∈ R

�. Finally, entity e and entity type t similarity
score is calculated by the inner product operation between the entity projection
vector ė and the entity type embedding t.

3.4 Training

To accelerate the training of the RACE2T model, we use the 1-N scoring pro-
posed in the Ref [4], i.e., we score both the projection vector of an entity and
the embedding vector of all entity types, as shown in the inner product layer of
Fig. 3. At the same time, to minimize the cross-entropy loss to train the param-
eters of RACE2T, we use the sigmoid function to normalize φ (e, t) to between
0 and 1, which is p = sigmoid (φ (e, t)). The loss function of RACE2T is defined
as:

L = − 1
|T |

|T |∑

i=1

yi log (pi) + (1 − yi) log (1 − pi) (8)

6 https://github.com/GentlebreezeZ/CE2T.

https://github.com/GentlebreezeZ/CE2T

RACE2T: Knowledge Graph Entity Type Prediction 47

where y ∈ R
|T | is the binary label vector. If (e, t) is true, the corresponding

position of y is 1. Otherwise, it is 0. The optimizer uses Adam [10].

3.5 Performing

For each entity that appears in the test set, the entity type predicted by the
RACE2T model is:

t̂ = arg max
t∈T

sigmoid (φ (e, t)) (9)

4 Experiments

4.1 Datasets

The datasets used for knowledge graph entity type prediction in this paper are
FB15KET [13], and YAGO43KET [13] (the form is: (entity, entity type)), and the
corresponding knowledge graph triple datasets are FB15K [2], and YAGO43K
[13]. The entity types in FB15KET, and YAGO43KET are mapped to the entities
in FB15K, and YAGO43K, respectively. The statistics of datasets are shown in
Table 1. FRGAT uses triple datasets to utilize the information about the relation,
and CE2T uses entity-entity type tuple datasets to learn the embedding of entity
types and perform entity type prediction.

Table 1. Statistics of datasets.

Dataset |E| |T | #Train #Valid #Test

FB15KET 14951 3851 136618 15749 15780

YAGO43KET 41723 45182 375853 42739 42750

Dataset |E| |R| #Train #Valid #Test

FB15K 14951 1345 483142 – –

YAGO43K 42335 37 331687 – –

4.2 Experimental Setup

Evaluation Metrics: Use ranking-based metric for evaluation [2]. First, for
each tested entity-entity type tuple, we remove the entity type. Then, the ranking
of the entity types predicted by RACE2T is calculated according to Eq. (9).
Finally, its exact rank is obtained by the correct entity type. Two metrics are
used for evaluation: the mean reciprocal rank (MRR) [2] and the proportion of
correct entity types that predict the top k (HITS@k, k = 1, 3, 10) [2].

48 C. Zou et al.

Model Parameters Setting: The optimal parameters of the RACE2T model
are determined by grid search. Specifically: the embedding dimension of entity
and relation is adjusted in {50, 100}, the embedding dimension of entity type is
adjusted in {100, 200, 300}, the dimension of hidden layer of FRGAT is adjusted
in {200, 300}, the output dimension of FRGAT is adjusted in {200, 400, 600},
the batch size is adjusted in {128, 256, 512}, the number of layer is adjusted in
{1, 2, 3}, the number of attention head is adjusted in {1, 2, 3, 4}, the learning rate
is adjusted in {0.0001, 0.0005, 0.00 1, 0.01}, the number of convolution kernels
is adjusted in {10, 32, 64, 128}, the size of the convolution kernel is adjusted in
{1 × 2, 1 × 4, 1 × 8}, and the stride size of convolution operation is adjusted in
{1, 2, 4, 8}. We use Xavier to initialize model parameters. Detailed parameter
settings can be found on our GitHub7.

4.3 Entity Type Prediction Experiments

The baselines choose RESCAL [18], RESCAL-ET [13], HOLE [17], HOLE-ET
[13], TransE [2], TransE-ET [13], ConvKB [15], CapsE [16], ETE [13], ConnectE
(E2T)8 [31] and ConnectE(E2T+TRT)9 [31]. The experimental results are shown
in Table 2.

From Table 2, we can see that RACE2T outperforms existing baselines on
FB15kET and YAGO43kET. We attribute these results to the fact that RACE2T
reasonably aggregate the informations of entities and relations in a given entity
neighborhood, and that information about entities and relations helps to infer the
types to which entities belong. Without using the encoder FRGAT, the decoder
CE2T proposed in this paper also achieved good performance, reflecting that the

Table 2. Entity type prediction results. The baseline results are taken from Ref [31].

Dataset FB15KET YAGO43KET

Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

RESCAL [18] 0.19 0.0971 0.1958 0.3758 0.08 0.0424 0.0831 0.1531

RESCAL-ET [13] 0.24 0.1217 0.2792 0.5072 0.09 0.0432 0.0962 0.1940

HOLE [17] 0.22 0.1329 0.2335 0.3816 0.16 0.0902 0.1728 0.2925

HOLE-ET [13] 0.42 0.2940 0.4804 0.6673 0.18 0.1028 0.2013 0.3490

TransE [2] 0.45 0.3151 0.5145 0.7393 0.21 0.1263 0.2324 0.3893

TransE-ET [13] 0.46 0.3356 0.5296 0.7116 0.18 0.0919 0.1941 0.3558

ConvKB [15] 0.45 0.3365 0.5180 0.7462 0.19 0.1136 0.2481 0.3897

CapsE [16] 0.46 0.3461 0.5279 0.7320 0.21 0.1263 0.2498 0.3946

ETE [13] 0.50 0.3851 0.5533 0.7193 0.23 0.1373 0.2628 0.4218

ConnectE(E2T) [31] 0.57 0.4554 0.6231 0.7812 0.24 0.1354 0.2620 0.4451

ConnectE(E2T+TRT) [31] 0.59 0.4955 0.6432 0.7992 0.28 0.1601 0.3085 0.4792

CE2T 0.57 0.4681 0.6354 0.7834 0.29 0.2131 0.3225 0.4472

RACE2T 0.64 0.5607 0.6884 0.8172 0.34 0.2482 0.3762 0.5230

7 https://github.com/GentlebreezeZ/RACE2T.
8 ConnectE (E2T) represents that entity type triples are not used.
9 ConnectE (E2T+TRT) represents that entity type triples are used.

https://github.com/GentlebreezeZ/RACE2T

RACE2T: Knowledge Graph Entity Type Prediction 49

Table 3. 1-1 and 1-N entity type prediction results on FB15KET and YAGO43KET.

1-1

Dataset FB15KET YAGO43KET

Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

ETE 0.57 0.4655 0.6358 0.7596 0.27 0.1958 0.3289 0.4701

ConnectE(E2T) 0.63 0.5396 0.6959 0.8042 0.31 0.1950 0.3382 0.4965

ConnectE(E2T+TRT) 0.64 0.5502 0.7027 0.8146 0.32 0.2062 0.3560 0.5104

CE2T 0.64 0.5436 0.7039 0.8135 0.35 0.2706 0.3876 0.5053

RACE2T 0.71 0.6347 0.7548 0.8620 0.39 0.3091 0.4322 0.5623

1-N

Dataset FB15KET YAGO43KET

Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

ETE 0.48 0.3652 0.5462 0.6971 0.19 0.1188 0.2129 0.3971

ConnectE(E2T) 0.53 0.4201 0.5982 0.7619 0.22 0.1292 0.2493 0.4185

ConnectE(E2T+TRT) 0.54 0.4521 0.6110 0.7712 0.25 0.1501 0.2802 0.4375

CE2T 0.54 0.4378 0.6078 0.7677 0.27 0.1902 0.3001 0.4267

RACE2T 0.61 0.5312 0.6619 0.7996 0.32 0.2298 0.3533 0.4987

improvement of model expression ability can improve the performance of entity
type prediction.

In the knowledge graph, an entity often has multiple entity types (1-N). As
shown in Fig. 1, the type of Chicago can be either City or Film. Since RACE2T
aggregates information in entity neighborhoods, especially information about
relations, hence RACE2T can be suitable for modeling the 1-N case. To ver-
ify that RACE2T can model the 1-N case better, we divided the test sets of
FB15KET and YAGO43KET into two parts, one part is 1-1 and the other part
is 1-N. Then, using ETE [13], ConnectE [31], CE2T, and RACE2T for entity
type prediction, respectively. The experimental results are shown in Table 3.

From Table 3, it is not difficult to see that RACE2T perform better than
ETE [13], ConnectE [31] and CE2T on 1-1 and 1-N. Since RACE2T reasonably
aggregates entity and relation information in entity neighborhoods, and this
information helps RACE2T capture the differences in entities when they cor-
respond to different types. Therefore, RACE2T can model the 1-N case, while
ETE, ConnectE, and CE2T cannot do well.

Table 4. Entity type prediction results on FB15KET and YAGO43KET.

Dataset FB15KET YAGO43KET

Model MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10

GAT+CE2T 0.6102 0.5151 0.6582 0.7939 0.3257 0.2352 0.3589 0.5051

RACE2T(TansE) 0.6212 0.5291 0.6709 0.8030 0.3301 0.2394 0.3651 0.5098

RACE2T(TansH) 0.6196 0.5269 0.6683 0.8020 0.3305 0.2387 0.3647 0.5122

RACE2T(TansD) 0.6195 0.5273 0.6687 0.8029 0.3266 0.2360 0.3603 0.5073

RACE2T(DisMult) 0.6202 0.5280 0.6685 0.8020 0.3308 0.2397 0.3659 0.5115

50 C. Zou et al.

From Tables 2 and 3, we found that: the RACE2T did not perform as well on
YAGO43KET relative to CE2T as they did on FB15KET relative to CE2T. This
phenomenon may be related to the number of different relations connected to the
entities. FB15K used to train RACE2T contains 1345 relations, while YAGO43K
contains only 37 relations, which means that RACE2T has less relation infor-
mation available on YAGO43K, leading to a decrease in RACE2T performance.
More detailed experiments about the above statements will be given in Sect. 4.6.

4.4 Attention Calculation Function Analysis

For a triple (ei, rk, ej), its entity and relation embedding are ei, rk and ej ,
respectively. We choose the scoring function of the following knowledge graph
completion method to calculate the attention between entities:

1) TransE [2]: For ei ∈ R
l, rk ∈ R

l, ej ∈ R
l. Scoring function: f (ei, rk, ej) =

−‖ei + rk − ej‖�2.
2) TransH [23]: For ei ∈ R

l, rk ∈ R
l, ej ∈ R

l, W rk
∈ R

l. Scoring function:
f (ei, rk, ej) = −‖êi + rk − êj‖�2, where êi = ei − WT

rk
eiW rk

, êj = ej −
WT

rk
ejW rk

.
3) TransD [6]: For ei ∈ R

l, rk ∈ R
l, ej ∈ R

l, ep
i ∈ R

l, ep
j ∈ R

l, rp
k ∈ R

l. Scoring

function: f (ei, rk, ej) = −‖êi + rk − êj‖�2, where êi = ei + (ep
i)

T
eir

p
k,

êj = ej +
(
ep

j

)T
ejr

p
k.

4) DisMult [29]: For ei ∈ R
l, rk ∈ R

l, ej ∈ R
l. Scoring function: f (ei, rk, ej) =

eT
i diag (rk) ej .

Take GAT10 [22] as the comparison object, and CE2T as the decoder. For a
more objective comparison, ψ (u,v) = u (the mode used by GAT) is selected
for the combination mode of FRGAT entity and relation embedding vectors,
which means that the information of relations is not aggregated in aggregating
information. The results of entity type prediction are shown in Table 4.

As can be seen from Table 4, the results of entity type prediction for RACE2T
improve about 1% over GAT+CE2T for all evaluation metrics. It indicates that
the way to calculate the attention between entities using the scoring function
of the knowledge graph completion method is slightly better than the tradi-
tional way and illustrates the feasibility of FRGAT. At the same time, using
the scoring function of the knowledge graph completion method to calculate the
attention coefficient will not generate additional space overhead. They directly
use the embedding of entities and relations for calculation, such as TransE [2]
and DisMult [29].

4.5 Combination Mode Analysis

Inspired by the Ref [2,20,29], we choose the following ways to combine the
embedding vectors of entities and relations:
10 https://github.com/Diego999/pyGAT.

https://github.com/Diego999/pyGAT

RACE2T: Knowledge Graph Entity Type Prediction 51

– void: ψ (u,v) = u
– sub: ψ (u,v) = u − v
– mult: ψ (u,v) = u ◦ v
– rotate: ψ (u,v) = [u1 ◦ v1 − u2 ◦ v2;u1 ◦ v2 + u2 ◦ v1]

where ◦ represents Hadamard product, x1 represents the first half of vector x,
x2 represents the second half of vector x, [·; ·] represents the vector connect
operation. The experiment is performed on FB15K and FB15KET, and results
are shown in Table 5.

Table 5. The results of entity type prediction on FB15KET.

f (·, ·, ·) → TransE TransH TransD DisMult

Model ↓ MRR HITS@1 MRR HITS@1 MRR HITS@1 MRR HITS@1

f+RACE2T(void) 0.6212 0.5291 0.6196 0.5269 0.6195 0.5237 0.6202 0.5280

f+RACE2T(sub) 0.6426 0.5579 0.6402 0.5524 0.6367 0.5484 0.6456 0.5607

f+RACE2T(mult) 0.6328 0.5448 0.6312 0.5432 0.6304 0.5427 0.6339 0.5451

f+RACE2T(rotate) 0.6412 0.5546 0.6388 0.5547 0.6352 0.5436 0.6427 0.5462

From Table 5, for the RACE2T model, when the combination of entity
embedding and relation embedding is: ψ (u,v) = u − v, RACE2T achieve the
best performance. For different ψ (·, ·) except for ψ (u,v) = u, the performance
gap of RACE2T is not apparent. From the experimental results of entity type
prediction in Table 2 (CE2T), Table 4 (GAT+CE2T), and Table 5, we found that
using graph networks (for example, GAT) to utilize the neighborhood informa-
tion of the entity can provide the performance of the model substantial improve-
ment. Meanwhile, from the experimental results of RACE2T (sub/mult/rotate)
and RACE2T (void), it can be concluded that integrating the embeddings of
relations into the process of aggregating the neighborhood information of the
entity can further improve the performance of the model, and it is also verified
that the information of relations is helpful to predict the missing entity types of
entities.

4.6 the Number of Different Relations Analysis

Figure 4 shows the distribution of the number of different relations connected by
entities in the FB15K and YAGO43K datasets. Since the relation distribution in
the FB15K dataset is more even than the relation distribution in YAGO43K, this
experiment is carried out on FB15K and FB15KET. The experimental results
are shown in Table 6.

52 C. Zou et al.

(a) FB15K (b) YAGO43K

Fig. 4. Distribution of the number of different relations connected by entities.

As shown in Table 6, the performance of RACE2T is always better than
that of CE2T, which benefits from the utilization of relations between enti-
ties by RACE2T or the information aggregation by RACE2T. Meanwhile, from
the results of CE2T and RACE2T in Table 6, we found that more information
aggregated is not the better. When an entity connects more different relations,
RACE2T aggregates more information about different types of entities and rela-
tions in aggregating information. Aggregating more different types of entity and
relation information may cause the entity to lose the original information and
decrease the performance of RACE2T.

Table 6. The results of entity type prediction on FB15KET.

Distribution
CE2T RACE2T

MRR HITS@1 HITS@3 MRR HITS@1 HITS@3

[0, 5] 0.4786 0.3836 0.5193 0.5189 0.4241 0.5673

[5, 10] 0.5745 0.4777 0.6248 0.6503 0.5691 0.6834

[10, 15] 0.5987 0.4912 0.6550 0.6858 0.6025 0.7196

[15, 20] 0.5899 0.4753 0.6580 0.6744 0.5909 0.7196

[20, 25] 0.5869 0.4703 0.6576 0.6465 0.5525 0.6944

[25, 30] 0.5803 0.4671 0.6437 0.6540 0.5624 0.7013

[30, 40] 0.5782 0.4746 0.6276 0.6323 0.5447 0.6713

[40, 50] 0.5405 0.4437 0.6026 0.5647 0.4794 0.6039

[50,Max] 0.4718 0.3596 0.5369 0.5109 0.4137 0.5640

From Table 6, we can observe that when the number of different relations
connected by the entity is between 5–40, RACE2T improves about 8% higher
than CE2T on MRR, HITS@1, and HITS@3. When the number of different
relations connected by the entity is between 0–5, RACE2T improves about 4%
higher than CE2T on MRR, HITS@1, and HITS@3. As shown in Fig. 4b, the

RACE2T: Knowledge Graph Entity Type Prediction 53

number of different relations connected by entities in YAGO43K is mainly con-
centrated between 0–5, which indirectly leads to RACE2T did not perform as
well on YAGO43KET relative to CE2T as they did on FB15KET relative to
CE2T.

5 Conclusion and Future Work

This work proposes a method for entity type prediction in knowledge graphs
with relational aggregation graph attention network called RACE2T. It includes
an encoder and a decoder. The focus of RACE2T is on utilizing relational infor-
mation when predicting the type of an entity. Therefore, we introduce relational
aggregation graph attention network (FRGAT) as an encoder to aggregate the
information of entities and relations in the entity neighborhood to utilize the
information of relations. Meanwhile, we design a convolutional neural network-
based knowledge graph entity type prediction model as the decoder of this paper,
called: CE2T. Its role is to measure the similarity between entity embedding and
entity type embedding. In addition, we provide various experiments to verify the
validity of our model.

Our future research interest is to apply disentangled representation learning
(learning disentangled representations of entities) to RACE2T, specifically: using
disentangled representation learning for knowledge graph entity type prediction.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (No. 61976032).

References

1. Biswas, R., Sofronova, R., Sack, H., Alam, M.: Cat2type: Wikipedia category
embeddings for entity typing in knowledge graphs. In: K-CAP, pp. 81–88 (2021).
https://doi.org/10.1145/3460210.3493575

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

3. Chen, S., Wang, J., Jiang, F., Lin, C.: Improving entity linking by modeling latent
entity type information. In: AAAI, pp. 7529–7537 (2020)

4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: AAAI, pp. 1811–1818 (2018)

5. Jain, N., Kalo, J.-C., Balke, W.-T., Krestel, R.: Do embeddings actually capture
knowledge graph semantics? In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS,
vol. 12731, pp. 143–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77385-4 9

6. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: ACL, pp. 687–696 (2015). https://doi.org/10.3115/v1/p15-
1067

7. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs:
representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn.
Syst. 1–21 (2021). https://doi.org/10.1109/TNNLS.2021.3070843

https://doi.org/10.1145/3460210.3493575
https://doi.org/10.1007/978-3-030-77385-4_9
https://doi.org/10.1007/978-3-030-77385-4_9
https://doi.org/10.3115/v1/p15-1067
https://doi.org/10.3115/v1/p15-1067
https://doi.org/10.1109/TNNLS.2021.3070843

54 C. Zou et al.

8. Jin, H., Hou, L., Li, J., Dong, T.: Attributed and predictive entity embedding for
fine-grained entity typing in knowledge bases. In: Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, pp. 282–292 (2018)

9. Jin, H., Hou, L., Li, J., Dong, T.: Fine-grained entity typing via hierarchical multi
graph convolutional networks. In: EMNLP, pp. 4968–4977 (2019). https://doi.org/
10.18653/v1/D19-1502

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR, pp.
1–15 (2015)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR, pp. 1–14 (2017)

12. Moon, C., Harenberg, S., Slankas, J., Samatova, N.F.: Learning contextual embed-
dings for knowledge graph completion. In: PACIS, pp. 248–253 (2017)

13. Moon, C., Jones, P., Samatova, N.F.: Learning entity type embeddings for knowl-
edge graph completion. In: CIKM, pp. 2215–2218. ACM (2017)

14. Neelakantan, A., Chang, M.: Inferring missing entity type instances for knowl-
edge base completion: new dataset and methods. In: NAACL, pp. 515–525 (2015).
https://doi.org/10.3115/v1/n15-1054

15. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding
model for knowledge base completion based on convolutional neural network. In:
NAACL, pp. 327–333 (2018). https://doi.org/10.18653/v1/n18-2053

16. Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A capsule
network-based embedding model for knowledge graph completion and search per-
sonalization. In: NAACL, pp. 2180–2189 (2019). https://doi.org/10.18653/v1/n19-
1226

17. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961 (2016)

18. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809–816 (2011)

19. Paulheim, H., Bizer, C.: Type inference on noisy RDF data. In: Alani, H., et al.
(eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3 32

20. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by rela-
tional rotation in complex space. In: ICLR, pp. 1–18 (2019)

21. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-
relational graph convolutional networks. In: ICLR, pp. 1–15 (2020)

22. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR, pp. 1–12 (2018)

23. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

24. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

25. Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hier-
archical types. In: IJCAI, pp. 2965–2971 (2016)

26. Xu, B., Zhang, Y., Liang, J., Xiao, Y., Hwang, S., Wang, W.: Cross-lingual type
inference. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong,
H. (eds.) DASFAA 2016. LNCS, vol. 9642, pp. 447–462. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32025-0 28

27. Yaghoobzadeh, Y., Adel, H., Schütze, H.: Corpus-level fine-grained entity typing.
J. Artif. Intell. Res. 61, 835–862 (2018). https://doi.org/10.1613/jair.5601

https://doi.org/10.18653/v1/D19-1502
https://doi.org/10.18653/v1/D19-1502
https://doi.org/10.3115/v1/n15-1054
https://doi.org/10.18653/v1/n18-2053
https://doi.org/10.18653/v1/n19-1226
https://doi.org/10.18653/v1/n19-1226
https://doi.org/10.1007/978-3-642-41335-3_32
https://doi.org/10.1007/978-3-319-32025-0_28
https://doi.org/10.1613/jair.5601

RACE2T: Knowledge Graph Entity Type Prediction 55

28. Yaghoobzadeh, Y., Schütze, H.: Multi-level representations for fine-grained typ-
ing of knowledge base entities. In: EACL, pp. 578–589 (2017). https://doi.org/10.
18653/v1/e17-1055

29. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR, pp. 1–12 (2015)

30. Zhao, Y., Li, Z., Deng, W., Xie, R., Li, Q.: Learning entity type structured embed-
dings with trustworthiness on noisy knowledge graphs. Knowl. Based Syst. 215,
106630 (2021). https://doi.org/10.1016/j.knosys.2020.106630

31. Zhao, Y., Zhang, A., Xie, R., Liu, K., Wang, X.: Connecting embeddings for
knowledge graph entity typing. In: ACL, pp. 6419–6428 (2020). https://doi.org/
10.18653/v1/2020.acl-main.572

32. Zhu, Q., et al.: Collective multi-type entity alignment between knowledge graphs.
In: WWW, pp. 2241–2252 (2020)

https://doi.org/10.18653/v1/e17-1055
https://doi.org/10.18653/v1/e17-1055
https://doi.org/10.1016/j.knosys.2020.106630
https://doi.org/10.18653/v1/2020.acl-main.572
https://doi.org/10.18653/v1/2020.acl-main.572

Union and Intersection of All
Justifications

Jieying Chen1(B), Yue Ma2, Rafael Peñaloza3, and Hui Yang2

1 SIRIUS, Department of Information, University of Oslo, Oslo, Norway
jieyingc@ifi.uio.no

2 LISN, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
{ma,yang}@lri.fr

3 University of Milano-Bicocca, Milan, Italy
rafael.penaloza@unimib.it

Abstract. We present new algorithms for computing the union and
intersection of all justifications for a given ontological consequence with-
out first computing the set of all justifications. Our goal is to use these
sets to explain the consequences and, if needed, repair them. Through an
empirical evaluation, we show that our approach behaves well in prac-
tice for expressive description logics. In particular, the union of all jus-
tifications can be computed much faster than with existing justification-
enumeration approaches.

Keywords: Justifications · Axiom pinpointing · Ontology Repairs

1 Introduction

It is well known that ontology engineering is a delicate and error-prone task,
which requires automated tools to avoid introducing unexpected or unwanted
consequences. Indeed, as an ontology grows in size it becomes difficult to predict
a priori what effect would introducing or modifying an axiom have over the
represented notions. In these settings, it is not rare for a knowledge engineer to
encounter unexpected consequences from the explicitly stated knowledge. In this
case, the knowledge engineer should try to understand why is this a consequence,
and perhaps how to get rid of it. To achieve this, it is helpful to focus exclusively
on the axioms that are relevant for this consequence.

Axiom pinpointing [35] is the task of identifying the axioms in an ontology
that are required for a consequence to follow. Primarily, its focus is on comput-
ing the class of all justifications: subset-minimal subontologies that entail the
consequence. A dual notion is that of a repair : a subset-maximal subontology
which does not entail the consequence. Justifications provide a way to under-
stand the causes for a consequence, while repairs suggest a way to get rid of it.

This work is partially funded by the Norwegian Research Council via the SIRIUS centre
(Grant Nr.237898) and the BPI-France (PSPC AIDA: 2019-PSPC-09).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 56–73, 2022.
https://doi.org/10.1007/978-3-031-06981-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_4

Union and Intersection of All Justifications 57

Axiom pinpointing methods can be separated into two main classes, commonly
known as black-box and glass-box.

Black-box approaches [24,25,34] use existing reasoners as an oracle, and
require no further modification of the reasoning method. Therefore, these
approaches work for ontologies written in any monotonic logical language
(including expressive DLs such as SROIQ [21]), as long as a reasoner sup-
porting it exists. In their most näıve form, black-box methods check all possible
subsets of the ontology for the desired entailment and compute the justifications
from these results. In reality, many optimisations have been developed to reduce
the number of calls needed, and avoid irrelevant work. Glass-box approaches, on
the other hand, modify a reasoning algorithm to output one or all justifications
directly, from only one call. While the theory for developing glass-box meth-
ods has been developed for different reasoners [6–9,32], in practice not many of
these methods have been implemented, as they require new coding efforts and
(often) deactivating the optimisation techniques that make reasoners practical.
A promising approach, first proposed in [42] is to reduce, through a reasoning
simulation, the axiom pinpointing problem to a related enumeration problem
from a propositional formula, and use state-of-the-art SAT-solving methods to
enumerate all the justifications. This idea has led to effective axiom pinpointing
systems developed primarily for the lightweight DL EL [4]; see [1–3,26,30,31].

The interest of axiom pinpointing goes beyond enumerating justifications.
When the scope is to get rid of an unwanted consequence, one may be interested
in the repairs, or their complement, commonly called diagnoses. Diagnoses can be
derived from justifications via a hitting set computation, and viceversa [8]. More-
over, as there might exist exponentially many justifications (or repairs, or diag-
noses) for a given entailment w.r.t. an ontology, even for ontologies in an inexpres-
sive language such as the DL EL, finding all justifications is not feasible in general.
To alleviate this issue, one may approximate the information through the union
and the intersection of all justifications. Every element in the intersection is a diag-
nosis by itself. From the union, a knowledge engineer has a more precise view on
the problematic instances, and can make a detailed analysis.

Although much work has focused on methods for computing one or all justifi-
cations efficiently, to the best of our knowledge there is little work on computing
their intersection or union without enumerating them first, beyond the approxi-
mations presented in [36,37]. Here, we first propose an algorithm for computing
the intersection of all justifications. This algorithm has the same worst-case
behaviour as the black-box algorithm of computing one justification, avoiding
the worst-case exponential enumeration. Additionally, we present two approaches
to compute the union of all justifications: one is based on the black-box algo-
rithm for finding all justifications and the other approach uses the SAT-based
tool cmMUS. An extended abstract of our paper was published on [16].

The paper is structured as follows. In Sect. 2 we recall relevant definitions
of description logics and propositional logic. Section 3 presents the algorithm
for computing the intersection of all justifications without computing any single
justification, followed by two methods of computing the union of all justifica-
tions in Sect. 4. Afterwards, we explain how to use the union and intersection

58 J. Chen et al.

of all justifications to repair ontologies. Before concluding, an evaluation of our
methods on real-world ontologies is presented in Sect. 6.

2 Preliminaries

We briefly recall the description logic ALCH [5] and the notions of justifications,
repairs and ontology modules.

Let NC and NR disjoint sets of concept-, and role names respectively. The
set of ALC-concepts is built through the grammar rule

C ::=� | ⊥ | A | C � C | C � C | ¬C | ∃r.C | ∀r.C,

where A ∈ NC and r ∈ NR. An ALCH TBox T is a finite set of general concept
inclusions (GCIs) of the form C 	 D and role inclusions r 	 s, where C and
D are ALC concepts and r, s ∈ NR. From now on, we will call the TBox an
ontology, and its elements (GCIs and role inclusions) will be called axioms in
general. The DL EL is the restriction of ALC that does not allow for bottom ⊥,
negations ¬, nor value restrictions ∀.

The semantics of this logic is defined in terms of interpretations. An inter-
pretation is a pair I = (ΔI , ·I) where ΔI is a non-empty domain, and ·I is
the interpretation function, which maps each concept name A ∈ NC to a sub-
set AI ⊆ ΔI , and each role name r ∈ NR to a binary relation rI ⊆ ΔI×ΔI .
The interpretation function is extended to ALC-concepts as usual: (�)I := ΔI ,
(⊥)I := ∅, (¬C)I := ΔI\CI , (C � D)I := CI ∩ DI , (C � D)I := CI ∪ DI ,
(∃r.C)I := {x ∈ ΔI | ∃y ∈ CI : (x, y) ∈ rI}, and (∀r.C)I := {x ∈ ΔI | ∀y ∈
ΔI : (x, y) ∈ rI ⇒ y ∈ CI}.

The interpretation I satisfies C 	 D iff CI ⊆ DI and it satisfies r 	 s iff
rI ⊆ sI . We write I |= α if I satisfies the axiom α. The interpretation I is a
model of an ontology O if I satisfies all axioms in O. An axiom α is entailed by
O, denoted as O |= α, if I |= α for all models I of O. We use |O| to denote the
size of O, i.e., the number of axioms in O. sig(α) is a function that extracts a
set of concept and role names that occur in the GCI α.

We are interested in the notions of justification and repair.

Definition 1 (Justification, repair). Let O be an ontology and α a GCI.

– A justification for O |= α is a subset M ⊆ O such that M |= α and for any
M′ � M, M′ �|= α. Just(O, α) denotes the set of all justifications of α w.r.t.
O.

– A repair for O |= α is a subontology R ⊆ O such that R �|= α, but O′ |= α
for any R � O′ ⊆ O. We denote the set of all repairs as Rep(O, α).

Briefly, a justification is a minimal subset of an ontology that preserves the
conclusion, while a repair is a maximal sub-ontology that does not entail the
consequence.

In the context of error-tolerant reasoning, where the goal is to derive mean-
ingful consequences while avoiding known errors from the ontology, three main
entailment relations have been considered.

Union and Intersection of All Justifications 59

Definition 2 (Brave, cautious and IAR entailments). Let α be a conse-
quence of O and Rep(O, α) be the set of all repairs. A consequence β is:

– bravely entailed by O w.r.t. α if R |= β for some R ∈ Rep(O, α);
– cautiously entailed by O w.r.t. α if R |= β for all R ∈ Rep(O, α);
– IAR entailed by by O w.r.t. α if

⋂
R∈Rep(O,α) R |= β.

In other words, a brave entailment is one which could still hold after repairing
the ontology. Cautious entailment is a stronger notion, requiring that the con-
sequence holds regardless of how the ontology is repaired; thus every cautious
entailment is also a brave one, but the converse is not true. IAR entailments
are those that follow from the intersection of all repairs. Importantly, note that
the intersection of all repairs and the union of all justifications complement each
other. Hence, studying one yields the results for the other.

When dealing with large ontologies, it is useful to consider only a subset
of axioms, which preserves all information about the entailments under consid-
eration. A module is a sub-ontology that preserves some syntactic or semantic
properties w.r.t. a restricted signature Σ. In general, it is hard to compute
minimal modules for expressive ontologies. Still, there exists the notion of a syn-
tactic locality module which can be computed efficiently, even for very expressive
DLs [40]. Lean kernels [27,37] for the DL ALC, and minimal deductive modules
for the DL EL [13,14] usually define a smaller module. An important property of
those modules (syntactic locality modules, lean kernels and minimal deductive
modules) is that they are justification-preserving ; i.e., all the justifications for a
given consequence are contained in them. Due to this property, when computing
justifications, their union, and their intersection, we will first compute such a
module. As it is better understood, and well defined for expressive DLs, in the
following we consider computing only locality-based modules. However, it should
be considered that any justification-preserving module would suffice.

We now consider a propositional language with a finite set of propositional
variables L = {p1, p2, · · · , pn}. A literal is a variable pi or its negation ¬pi. A
clause l1 ∨ l2 ∨ · · · ∨ lk is a disjunction of literals, denoted by ω [11]. A Boolean
formula in conjunctive normal form (CNF) is a conjunction of clauses. A CNF
formula φ is satisfiable iff there exists a truth assignment μL : L → {0, 1} such
that μL satisfies all clauses in φ. We can also consider a CNF formula as a set
of clauses. A subformula φ′ ⊆ φ is a minimally unsatisfiable subformula (MUS)
iff φ′ is unsatisfiable, but for every φ′

1 � φ′ is satisfiable. Note that the notion
of a MUS corresponds to that of a justification where the ontology language is
propositional logic and the consequence under consideration is unsatisfiability.

3 Computing the Intersection of All Justifications

We first study the problem of computing the intersection of all justifications,
which we call the core. Algorithm 1 provides a method for finding this core.
The algorithm is inspired by the known black-box approach for finding justifi-
cations [9,23]. Starting from a justification-preserving module M (in this case,

60 J. Chen et al.

the locality-based module, Line 2), we try to remove one axiom β (Line 4). If
the removal of the axiom β removes the entailment (Line 5), then β belongs to
all justifications (β is sine qua non required for the entailment within M), and
is thus added to the core C (Line 6). It can be shown that Algorithm1 correctly
computes the intersection of all justifications.

Theorem 3. Let O be an ontology and α a GCI. Algorithm1 computes the
intersection of all justifications (core) of O w.r.t. α.

Proof. Let S be the set computed by Algorithm 1, so S = {β | O \ {β} �|= α}
(Line 5–6). Additionally, let C be the core. First, we prove that S ⊆ C. We
assume towards a contradiction that there exists an axiom β such that β ∈ S,
but β �∈ C. As β �∈ C, there exists a justification J of O w.r.t. α such that β �∈ J .
According to Definition 1, O \ {β} |= α, which contradicts to our assumption
that β ∈ S. The other direction C ⊆ S is analogous. Therefore, C = S, that is,
Algorithm 1 computes the core of all justifications of O w.r.t. α.

Algorithm 2, on the other hand, generalises the known algorithm for computing a
single justification, by considering a (fixed) set C that is known to be contained in
all justifications. If C = ∅, the approach works as usual; otherwise, the algorithm
avoids trying to remove any axiom from C. This reduces the number of calls to
the black-box reasoner, potentially decreasing the overall execution time.

The choice for a locality-based module in these algorithms is arbitrary, and
any justification-preserving module would suffice. In particular, we could com-
pute lean kernel [27,37] for ALC ontologies, and minimal subsumption mod-
ules [12,15] for EL ontologies instead, which is typically smaller thus reducing
the number of iterations within the algorithms. However, as it could be quite
expensive to compute such modules, it might not be worthwhile in some cases.

Algorithm 1, like all black-box methods for computing justifications, calls a
standard reasoner |M| times. In terms of computational complexity, computing
the core requires as many computational resources as computing a single justifi-
cation. However, computing one justification might be faster in practice, as the
size of M decreases throughout the execution of Algorithm2. Clearly, if the core
coincides with one justification M, then M is the only justification.

Corollary 4. Let O be an ontology, α a GCI; and let C be the core and J a
justification for O |= α. If C = J , J is the only justification for O |= α.

Algorithm 1. Computing the intersection of all justifications of O w.r.t. α

INPUT: an Ontology O, a conclusion α
1: function Compute-Justification-Core(O, α)
2: C := ∅
3: M := Compute-Locality-Based-Module(O, sig(α))
4: for every axiom β ∈ M do
5: if M \ {β} �|= α then
6: C := C ∪ {β}
7: return C

Union and Intersection of All Justifications 61

Algorithm 2. Using core to compute a single justification of O w.r.t. an conclusion

INPUT: an ontology O, a conclusion α, the core C
1: function Single-Justification(O, α, C)
2: M := Compute-Locality-Based-Module(O, sig(α))
3: for every axiom β ∈ M and β �∈ C do
4: if M \ {β} |= α then
5: M := M \ {β}
6: return M

4 Computing the Union of All Justifications

We now present two algorithms of computing the union of all justifications. The
first algorithm follows a black-box approach that calls a standard reasoner as ora-
cle using the core of justifications computed in the previous section. Importantly,
it is known that no black-box method for computing the union of all justifica-
tions can call an oracle only a polynomial number of times, unless P = NP [38].
Our method is inspired by Reiter’s Hitting Set Tree algorithm [39] and partially
follows the approach originally developed in [23,45] for enumerating all justifica-
tions. For the second algorithm, we reduce the problem of computing the union
of all justifications to the problem of computing the union of MUSes of a proposi-
tional formula. Note that the second algorithm works only for ALCH ontologies,
while the first algorithm can be applied to ontologies with any expressivity, as
long as a reasoner is available.

4.1 Black-Box Algorithm

The black-box algorithm for computing all justifications from [45] was inspired
by the algorithm of computing all minimal hitting sets [39]. Some of the improve-
ments to prune the search space were already proposed in [39]. Our method for
computing the union of all justifications (Algorithm3) works in a similar man-
ner, but with a few key differences. To avoid computing all justifications, we
prune the search space when all remaining justifications are fully contained in
the union computed so far. In addition, we use the core to speed the search.
As the axioms in the core must appear in every justification, we can reduce the
number of calls made to the reasoner, and optimise the single justification com-
putation. Finally, when we organise our search space, we do not need to consider
the axioms in the core.

We now explain Algorithm3 in detail. Given an ontology O, a conclusion α,
and the core C ⊆ O of O w.r.t. α as input, a justification-preserving module M
of O w.r.t. α is extracted from O (Line 2). The justification search tree Ψ is a four-
tuple (V, E ,L, ρ), where V is a finite set of nodes, E ⊆ V ×V is a set of edges, L is
an edge labelling function, mapping every edge to an axiom α ∈ M, and ρ ∈ V is
the root node. We initialise the variable Ψ to represent a justification search tree
for O having only root node ρ. Besides, the variables M ⊆ 2M, containing the
justifications that have been computed so far, and P ⊆ V, containing the already

62 J. Chen et al.

Algorithm 3. Computing the Union of All Justifications w.r.t. a Conclusion α

INPUT: an Ontology O, a conclusion α, the intersection of all Justifications C ⊆ O
1: function Union-of-All-Justifications(O, α, C)
2: M := Compute-Locality-Based-Module(O, sig(α))
3: U := C; Ψ := ({ρ}, ∅, ∅, ρ); Q := [ρ]; P := ∅; M := {∅}
4: while Q �= [] do
5: v := Head(Q), Q := RemoveFirstElement(Q), P := P ∪ {v}
6: Mex := Labels(Path(Ψ, ρ, v))
7: if Is-Path-Redundant(Ψ, ρ, Mex, P) then
8: continue
9: if M \ Mex �|= α then

10: continue
11: if M \ Mex ⊆ U then
12: continue
13: M := ∅
14: if there exists M′ ∈ M such that Mex ∩ M′ = ∅ then
15: M := M′

16: else
17: M := Single-Justification(M \ Mex, α, C)
18: if M = C then
19: return {C}
20: M := M ∪ {M}
21: U := U ∪ M
22: for every β ∈ M \ C do
23: vβ := AddChild(Ψ, v, β)
24: Q := vβ :: Q

25: return U

explored nodes of Ψ , are both initialised with the empty set. The queue Q of
nodes in Ψ that still has to be explored is also set to contain the node ρ as its
only element.

The algorithm then enters a loop (Lines 4–24) that runs while Q is not
empty. The loop extracts the first element v from Q and adds it to P (Line 5).
The axioms that label the edges of the path πv from ρ to v in Ψ are collected in
the set Mex (Line 6). After that, the algorithm checks whether πv is redundant
via the function Is-Path-Redundant(Ψ, ρ,Oex, P). The path πv is redundant iff
there exists an explored node w ∈ P such that (a) the axioms in Oex are exactly
the axioms labelling the edges of the path πw from ρ to w in Ψ , or (b) w is a leaf
node of Ψ and the edges of πw are only labelled with axioms from Oex. Case (a)
corresponds to early path termination in [23,39]: the existence of πw implies that
all possible extensions of πv have already been considered. Case (b) implies that
the axioms labelling the edges of πw lead to the fact that α can not be entailed be
the remaining TBox when removed from M. Therefore, by monotonicity of |=,
we infer that removing Oex from M also has the same consequence implying
that we do not need to explore πv and all its extensions.

Union and Intersection of All Justifications 63

If M\Mex �|= α (Lines 9–10), the current iteration can be terminated imme-
diately as no subset of M\Mex can be a justification of M w.r.t. α. In contrast
to other black-box algorithms for computing justifications, we additionally check
whether M \ Mex is a subset of U . If it is the case, no new axioms belonging to
the union of all justifications can appear in this sub-tree. Hence, the algorithm
does not need to explore it any further. Subsequently, the variable M that will
hold a justification of M \ Mex is initialised with ∅. At this point we can check
if a justification M′ ∈ M has already been computed for which Oex ∩ M′ = ∅
(Lines 14–15) holds, in which case we set M to M′. This optimisation step can
also be found in [23,39] and it allows us to avoid a costly call to the Single-
Justification procedure. Otherwise, in Line 17 we call Single-Justification
on M\Oex to obtain a justification of α w.r.t. M\Oex. We then check whether
M is equal to C (Lines 18–19), in which case the search for additional justifica-
tions can be terminated (recall Corollary 4). Otherwise, the justification M is
added to M in Line 20 and the union of all justifications is updated in Line 21.
Finally, for every β ∈ M \ C, the algorithm extends the tree Ψ in Lines 22–24
by adding a child vα to v, connected by an edge labelled with β. Note that it is
sufficient to take β �∈ C as a set M with C �⊆ M cannot be a justification of O
w.r.t. α. The procedure finishes by returning the set U .

Note that this algorithm only adds justifications to M. For completeness,
one can show that the locality-based module M of O w.r.t. sig(α) contains
all justifications of O w.r.t. α. Moreover, it is easy to see that the proposed
optimisations do not lead to a justification not being computed. Overall, we
obtain the following result.

Theorem 5. Let O be an ontology, α a GCI, and C ⊆ O the core of α w.r.t.
O. The procedure Union-of-All-Justifications computes the union of all
justifications of O w.r.t. α.

Algorithm 3 terminates on any input as the paths in the module search tree Ψ
for O constructed during the execution represent all the permutations of the
axioms in O that are relevant for finding all minimal modules. It is easy to see
that the procedure Union-of-All-Justifications runs in exponential time in
size of O in the worst case.

4.2 MUS Membership Algorithm (MUS-MEM)

It has been well-investigated that one can encode the problem of computing
justifications to the problem of computing MUSes of CNF formula. One first
needs to transfer all axioms and a given conclusion to CNF formulae and then
uses a SAT-solver to compute a MUS. Finally, the corresponding axioms of MUS
is a justification for a given conclusion. For a general overview on how this process
works see [30].

64 J. Chen et al.

Table 1. Inference rules of condor

We now show how to compute the union of all justifications of a GCI by
a membership approach. The idea is to check the membership of each axiom,
i.e., whether it is a member of some justification. We further encode it to the
problem of checking each CNF-formula whether it is a member of some MUS.

The MUS-MEM approach first, as a pre-processing step, computes a CNF
formula φ using the consequence-based reasoner condor [43].1 Afterwards, it
computes the union of all justifications of α ∈ O by checking the membership
for each axiom using the SAT-tool cmMUS [22] over φ. The two steps of our
method is detailed below:

1. Compute CNF formula φ. Let H,K denote (possibly empty) conjunctions
of concepts, and M,N (possibly empty) disjunctions of concepts; condor clas-
sifies the TBox through the inference rules in Table 1. Each inference rule can
be rewritten as a clause. For example, the R⊥

∃ rule can be rewritten to the
clause ¬p1 ∨ ¬p2 ∨ p3 if we denote the GCIs H 	 M � ∃r.K,K 	⊥, and
H 	 M as literals p1, p2, p3, respectively. The CNF formula φ is the conjunc-
tion of all the clauses corresponding to all the applied inference rules during
the classification process [37,42].

2. Check membership of each axiom using cmMUS . Given a CNF for-
mula φ and a subformula φ′ ⊆ φ, the algorithm cmMUS is used to decide
whether there is a MUS φ′′ ⊆ φ with φ′ ∩ φ′′ �= ∅. We set cmMUS(φ, φ′) = 1
if there exists such MUS φ′′ and 0 otherwise. To check membership, we need
to define two objects:
(a) a CNF-formula φO = ∧β∈Opβ , where each literal pβ corresponds to an

axiom β ∈ O, and φα = ¬pα, where α is the given conclusion;
(b) ψα = φ ∧ φO ∧ φα.

1 We restrict to ALCH in this section as condor only accepts ALCH-TBoxes.

Union and Intersection of All Justifications 65

Then we can see the following facts hold: Firstly, ψα is unsatisfiable. More-
over, each MUS ψ′ ⊆ ψα corresponds to a justification of α. Finally, ∀β ∈ O,
cmMUS(ψα, pβ) = 1 iff β belongs to some justifications of α.

An important optimization is based on the fact that only a small number
of clauses in φ are related to the derivation of α. In practice, (i) φ′ ⊆ φ is the
subformula contributing to the derivation of α obtained by tracing back from
α, (ii) φ′

O ⊆ φO is the subformula including only β ∈ O that appears in φ′.
Using ψ′

α = φ′ ∧ φ′
O ∧ φα instead of ψα as the input of algorithm cmMUS can

significantly accelerate the cmMUS algorithm.

Theorem 6. Let O be an ontology and α a GCI. The procedure MUS-MEM
algorithm computes the union of all justifications of O w.r.t. α.

Regarding to the computational complexity of the MUS-MEM algorithm, in
general, the classification of an ALC TBox requires exponential time. Since the
MUS-membership problem is ΣP

2 -complete [28], it follows that this method runs
in exponential time overall.

5 Repairing Ontologies

Similar to justifications, it is common to have multiple repairs for an unwanted
consequence. Instead of treating all the repairs equally, in this section we propose
a notion of optimal repair and provide a method for computing all such optimal
repairs. Therefore, knowledge engineers can be better guided while repairing
erroneous conclusions.

Definition 7 (Optimal Repair). Let O be an ontology, α be a GCI, and
Rep(O, α) be the set of all repairs for O |= α. R ∈ Rep(O, α) is an optimal
repair for O |= α, if |R| ≥ |R′| holds for every R′ ∈ Rep(O, α).

That is, an optimal repair is a repair with the largest cardinality. It is also
important to recall the notion of a hitting set. Given a set of sets S, S is a
minimal hitting set for S if S ∩ s �= ∅ for every s ∈ S. S is a smallest minimal
hitting set if it is of minimal cardinality among all hitting sets. We can compute
the set of all optimal repairs through a hitting set computation [8,29,41].

Proposition 8. Let Just(O, α) be the set of all justifications for the GCI α
w.r.t. the ontology O. If S is the set of all smallest minimal hitting sets for
Just(O, α), then {O \ S | S ∈ S} is the set of all optimal repairs for O |= α.

When the core is not empty, a set consisting of single axiom from this core
is a smallest hitting set for all justifications. We get the following corollary of
Proposition 8, stating how to compute all optimal repairs faster in this case.

Corollary 9. Let O be an ontology, α be a GCI and C be the core for O |= α.
If C �= ∅, then {O\{β} | β ∈ C} is the set of all optimal repairs for O |= α.

It is easy to see that removing the union of all justifications from the given
ontology results in the intersection of all repairs. Therefore, the union of all
justifications can be used as a step towards deducing IAR entailments [36].

66 J. Chen et al.

6 Evaluation

To evaluate the performance of our algorithms in real-world ontologies, we built a
prototypical implementation.2 The black-box algorithm is implemented in Java
and uses the OWLAPI [20] to access ontologies and HermiT [19] as a stan-
dard reasoner. The MUS-membership algorithm (MUS-MEM) is implemented
in Python and calls cmMUS [22] to detect whether a clause is a member of
MUSes. The ontologies used in the evaluation come from the classification task
at the 2014 ORE competition [33]. We selected the ontologies that have less than
10,000 axioms, for a total of 95 ontologies. In the experiments, we computed a
single justification, the core, and the union of all justifications for all atomic con-
cept inclusions that are entailed by the ontologies.An atomic concept inclusion is
the inclusion of the form of A 	 B, with A,B ∈ NC. All experiments ran on two
processors Intel R© Xeon R© E5-2609v2 2.5 GHz, 8 cores, 64Go, Ubuntu 18.04.

Table 2. Statistics of com-
putation time (s) of core (C)
vs. single justification (J)

J C
mean 0.400 0.456

std 3.649 4.273

min 0.001 0.001

25% 0.004 0.001

50% 0.009 0.002

75% 0.023 0.005

max 226.608 341.560

Computation Time of the Core vs. a Single
Justification. In terms of computational complex-
ity, as discussed in Sect. 3, computing the core and
a single justification are equally hard problems. But
the size of the remaining ontology reduces during
the latter process. Intuitively, if O′ ⊆ O, checking
whether a subsumption is satisfied by O′ would be
faster than checking it on O. Therefore, theoretically,
the computation time of the core and a single jus-
tification should be comparable and computing the
core should be slightly easier than computing a sin-
gle justification. In practice, our evaluation justifies
it. Table 2 provides some basic statistics for compar-
ing the time to compute the core against computing
a single justification. We can see from Table 2 that
the mean computation time of the core and a single justification are very simi-
lar, around 0.4s. Generally speaking, computing the core is usually faster than
computing one justification as expected.

To best of our knowledge, there is no existing tools to compute the intersec-
tion of all justifications directly. A näıve algorithm is to compute the intersection
of finding all justifications. Thus, the näıve algorithm is as hard as computing all
justifications, i.e., runs in exponential time in size of O in the worst case. How-
ever, our algorithm runs only in polynomial time in |O| in all cases. Therefore,
we do not compare our algorithm with the näıve algorithm in the evaluation.

Computation Time of the Union of All Justifications. As a benchmark,
we compute all justifications and their union via the OWL API. As the MUS-
MEM algorithm can compute the union of all justifications only for ALCH
ontologies, we divide the ontologies into two categories: (i) ALCH ontologies

2 The implementation is vailable at https://github.com/JieyingChenChen/Intersec
tionAndUnionOfAllJust.

https://github.com/JieyingChenChen/IntersectionAndUnionOfAllJust
https://github.com/JieyingChenChen/IntersectionAndUnionOfAllJust

Union and Intersection of All Justifications 67

Fig. 1. Computation time (s) of the
union for ALCH-ontologies when there
exist several justifications

Fig. 2. Computation time (s) of the
union for ALCH-ontologies when there
exists one justification

Fig. 3. Computation time (s) of the
union for more expressive ontologies
when there exist several justifications

Fig. 4. Computation time (s) of the
union for more expressive ontologies
when there exists one justification

and (ii) with expressivity beyond ALCH. The computation times for the union
of all justifications for ALCH ontologies are shown in Figs. 1 and 2 for ALCH
ontologies with several, or one justification, respectively. Figures 3 and 4 show
the same information for the class of more expressive ontologies. Figures 1, 2, 3
and 4 plot the logarithmic computation time (in the Y-axis) of each test instance
(in the X-axis). Each dot corresponds to computation time of the union by one
of the methods tested. Note that the dots are much denser in Fig. 2 and 4 than
Fig. 1 and 3 due to the fact that there exist more cases that have only one
justification.

We order the conclusions along the X-axis by increasing order of computa-
tion time of MUS-MEM algorithms in Figs. 1 and Fig. 2, and by the black-box
performance in the latter two figures. We observe from these plots that, gen-
erally, the green spots are located lower than the red and blue spots, which
indicates that it took less time for black-box algorithm to compute the union
of all justifications. When there exist several justifications, for more than 78%
cases, MUS-MEM algorithm is faster than the OWLAPI. Detailed statistics of

68 J. Chen et al.

Table 3. Statistics of computation time
(s) of the union when there exist several
justifications for ALCH ontologies

Black-box MUS-MEM OWL API

mean 0.322 0.261 2.781

std 13.707 0.597 26.312

min 0.002 0.017 0.009

25% 0.004 0.069 0.123

50% 0.007 0.113 0.442

75% 0.016 0.259 1.726

max 970.834 10.255 1628.930

Table 4. Statistics of justification num-
ber, size of core (C), a random justifica-
tion (J), and union of justifications (U)

#JUST | C | | J | | U |
mean 3.0 2.3 4.0 4.1

std 3.2 1.7 1.9 3.2

min 2.0 0.0 1.0 1.0

25% 2.0 1.0 1.0 1.0

50% 2.0 2.0 2.0 3.0

75% 3.0 3.0 5.0 6.0

max 92.0 20.0 28.0 32.0

Fig. 5. Relation between #JUST and
computation time of black-box/OWLAPI

Fig. 6. Relation between |C|/|U| and com-
putation time of black-box/OWLAPI

computation time of the union of all justifications when there exist several justi-
fications for ALCH ontologies can be found in Table 3. We noticed that relatively
large size of CNF-formulae (compared with the size of axioms) were generated
in the cases that MUS-MEM algorithm is slower than the OWLAPI. Note that
various numbers of CNF-formulae will be generated when we transform an axiom
to CNF-formulae. Only less than 2% cases that MUS-MEM algorithm is faster
than black-box algorithm.

Interestingly, we can see from Table 3 that the maximum computation time
of the MUS-MEM algorithm is only 10.255 s; much lower than the black-box
algorithm and OWLAPI. Additionally, according to the Table 3, the standard
deviation of computation time of the MUS-MEM algorithm for all cases in Fig. 2
is only 0.597, which is much lower than the Black-box algorithm and OWLAPI.
When we plot the data and visualize the relationship between the number of
all justifications (#JUST) and computation time of the union, we found that it
tends to take longer for black-box algorithm, especially OWLAPI to compute the
union of all justifications when #JUST increases. But the MUS-MEM algorithm
seems to be less sensitive to this factor compared with other approaches.

Union and Intersection of All Justifications 69

Fig. 7. Ratio of |C| to a random |J | (left) and ratio of |C| to |U| (right).

We consider two factors that influence the performance difference of the
black-box algorithm and OWLAPI: the number of justifications and the ratio
of |C|/|U|. The main difference between these two approaches is that the black-
box algorithm uses several strategies to reduce search space. If there exists a
large number of justifications, the search space of OWLAPI approach becomes
very large and the black-box approach may have to traverse several uninfor-
mative branches. Our black-box algorithm only considers the axioms that are
not included in the union and terminates earlier if there are no axioms that
will be included in it, which significantly prunes the search space. Additionally,
the black-box algorithm also uses core to optimise the algorithm. If the ratio
of |C|/|U| is larger, there are less axioms left for checking. In order to further
investigate it, we plot the relations between these two factors and the ratio of
computation time of the black-box algorithm and OWLAPI in Fig. 5 and Fig. 6.
Y-axis represents the ratio of computation time of the black-box algorithm and
OWLAPI in both figures. X-axis represents the number of justifications in Fig. 5
and, in Fig. 6, it represents the ratio of |C|/|U|. We can see that when the number
of justifications increases, in Fig. 5, the ratio of computation time of the black-
box algorithm and OWLAPI decreases, which means that black-box algorithm
become much faster than OWLAPI. Similarly, in Fig. 6, the ratio of computation
time of the two approaches also reduced when the ratio of |C|/|U| increases, which
means that the black-box algorithm has better performance than OWLAPI when
the intersection of the core and the union is larger.

In general, we can conclude that, when available, MUS-MEM tends to per-
form better than a direct use of the OWLAPI. Although in most cases in our
experiments, the MUS-MEM algorithm is slower than black-box algorithm, its
time difference when computing justifications various less. The black-box algo-
rithm can be used for more expressive ontologies and outperforms OWLAPI,
especially when there exists a large number of justifications and the size of the
core is relatively small compared with the union.

Size Comparisons for Justifications, Cores, and Unions of Justifica-
tions. Figure 7 illustrates the ratio of the size of the core to the size of a random

70 J. Chen et al.

justification and to the size of the union of all justifications. In our experiments,
the core for only 2.35% conclusions is empty (magenta part of the charts), which
means that we could use Corollary 9 to compute optimal repairs for 97.65%
(100%-2.35%) of the cases. Moreover, for more than 85% cases, the size of a
justification (|J |) equals to the size of the core (|C|), which indicates that there
exists only one justification (blue part of the charts). When several justifications
exist (the second chart from the left of Fig. 7), the ratio of |C| to a random |J |
falls between 0.5 to 0.75 (yellow part of the charts) for almost half of the cases.
The right-most chart displays the distribution of the ratio of |C| to the size of the
union of all justifications |U| when there exist multiple justifications. The ratio
distributes quite evenly between 0 (not including) to 0.75. Additionally, the core
is empty for only 16% subsumptions even when several justifications exist. See
to Table 4 for the statistics information of the size of the core, the union and a
single justification when multiple justifications exist.

7 Conclusions

We presented algorithms for computing the core (that is, the intersection of all
justifications) and the union of all justifications for a given DL consequence. Our
black-box algorithm is based on repeated calls to a reasoner, and hence apply
for ontologies and consequences of any expressivity, as long as a reasoner exists.
Whilst our MUS-based approach for computing the union of all justifications
depends on the properties of the ALCH consequence-based method implemented
by condor. Still, the approach should be generalisable without major problems
to any language for which consequence-based reasoning methods exists like, for
instance, SROIQ [17,18]. As an application of our work, we study how to find
optimal repairs effectively, through the information provided by the core and the
union of all justifications.

Through an empirical analysis, run over more than 100,000 consequences
from almost a hundred ontologies from the 2014 ORE competition we observe
that our methods behave better in practice than the usual approach through the
OWLAPI. Our experiments also confirm the observation that has already been
made for light-weight ontologies [44], and to a smaller degree in the ontologies
from the BioPortal corpus [10]; namely, that consequences tend to have one,
or only a few, overlapping justifications. We also explored the fact that, in our
experiments, the efficient core computation algorithm could find the optimal
repairs in more than 97% of the test instances: those with non-empty core,
where removing any axiom from it leads to an optimal repair.

It remains to be seen how these results change in the presence of larger
ontologies. In particular, the instances considered had a limited number of jus-
tifications. We expect that the improvements observed would increase as more
justifications are encountered.

Union and Intersection of All Justifications 71

References

1. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient SAT-based tool for debugging EL+ ontologies. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2 32

2. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient axiom pinpointing with
EL2MCS. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI
2015. LNCS (LNAI), vol. 9324, pp. 225–233. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24489-1 17

3. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of horn for-
mulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-24318-4 24

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2010)

6. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reason. 14(1), 149–180 (1995)

7. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. Autom. Reason.
45(2), 91–129 (2010)

8. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

9. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol.
4667, pp. 52–67. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74565-5 7

10. Bail, S.P.: The justificatory structure of OWL ontologies. Ph.D. thesis, University
of Manchester, UK (2013)

11. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving.
Academic Press (2014)

12. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Zooming in on ontologies: minimal
modules and best excerpts. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 173–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 11

13. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Computing minimal projection modules
for ELHr-terminologies. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 355–370. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0 23

14. Chen, J., Ludwig, M., Walther, D.: On computing minimal EL-subsumption mod-
ules. In: Proceedings of the Joint Ontology Workshops 2016 Episode 2: The French
Summer of Ontology co-located with the 9th International Conference on For-
mal Ontology in Information Systems (FOIS 2016). CEUR Workshop Proceedings,
Annecy, France, 6–9 July 2016, vol. 1660. CEUR-WS.org (2016)

15. Chen, J., Ludwig, M., Walther, D.: Computing minimal subsumption modules of
ontologies. In: Proceedings of GCAI 2018, pp. 41–53 (2018)

https://doi.org/10.1007/978-3-319-40970-2_32
https://doi.org/10.1007/978-3-319-24489-1_17
https://doi.org/10.1007/978-3-319-24489-1_17
https://doi.org/10.1007/978-3-319-24318-4_24
https://doi.org/10.1007/978-3-319-24318-4_24
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.1007/978-3-030-19570-0_23
https://doi.org/10.1007/978-3-030-19570-0_23

72 J. Chen et al.

16. Chen, J., Ma, Y., Peñaloza, R., Yang, H.: Union and intersection of all justifi-
cations (extended abstract). In: Proceedings of the 34th International Workshop
on Description Logics, DL 2021. CEUR Workshop Proceedings, vol. 2954. CEUR-
WS.org (2021)

17. Cucala, D.T., Grau, B.C., Horrocks, I.: Consequence-based reasoning for descrip-
tion logics with disjunction, inverse roles, number restrictions, and nominals. In:
Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, pp. 1970–1976. ijcai.org (2018)

18. Cucala, D.T., Grau, B.C., Horrocks, I.: Sequoia: a consequence based reasoner for
SROIQ. In: Simkus, M., Weddell, G.E. (eds.) Proceedings of the 32nd International
Workshop on Description Logics. CEUR Workshop Proceedings, vol. 2373. CEUR-
WS.org (2019)

19. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

20. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

21. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty,
P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings of the Tenth International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 57–67.
AAAI Press (2006)

22. Janota, M., Marques-Silva, J.: cmMUS: a tool for circumscription-based MUS mem-
bership testing. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI),
vol. 6645, pp. 266–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20895-9 30

23. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 20

24. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. J. Web Semant. 3(4), 268–293 (2005)

25. Kalyanpur, A.A.: Debugging and repair of OWL ontologies. Ph.D. thesis (2006)
26. Kazakov, Y., Skočovský, P.: Enumerating justifications using resolution. In:

Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 609–626. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 40

27. Koopmann, P., Chen, J.: Deductive module extraction for expressive description
logics. In: Bessiere, C. (ed.) Proceedings of IJCAI 2020, pp. 1636–1643. ijcai.org
(2020)

28. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

29. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 13

30. Manthey, N., Peñaloza, R., Rudolph, S.: Efficient axiom pinpointing in EL using
sat technology. In: Description Logics (2016)

31. Manthey, N., Peñaloza, R., Rudolph, S.: SATPin: axiom pinpointing for lightweight
description logics through incremental SAT. Künstliche Intell. 34(3), 389–394
(2020)

32. Ozaki, A., Peñaloza, R.: Consequence-based axiom pinpointing. In: Ciucci, D.,
Pasi, G., Vantaggi, B. (eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 181–195.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00461-3 13

https://doi.org/10.1007/978-3-642-20895-9_30
https://doi.org/10.1007/978-3-642-20895-9_30
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-319-94205-6_40
https://doi.org/10.1007/978-3-319-94205-6_40
https://doi.org/10.1007/11499107_13
https://doi.org/10.1007/978-3-030-00461-3_13

Union and Intersection of All Justifications 73

33. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59, 455–
482 (2015)

34. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: Proceedings of
the 14th International Conference on World Wide Web, pp. 633–640 (2005)

35. Peñaloza, R.: Axiom pinpointing. In: Cota, G., Daquino, M., Pozzato, G.L. (eds.)
Applications and Practices in Ontology Design, Extraction, and Reasoning. Studies
on the Semantic Web, vol. 49, pp. 162–177. IOS Press (2020)

36. Peñaloza, R.: Error-tolerance and error management in lightweight description
logics. Künstliche Intell. 34(4), 491–500 (2020)

37. Peñaloza, R., Menćıa, C., Ignatiev, A., Marques-Silva, J.: Lean kernels in descrip-
tion logics. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler,
P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 518–533. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-58068-5 32

38. Penaloza, R., Sertkaya, B.: Understanding the complexity of axiom pinpointing in
lightweight description logics. Artif. Intell. 250, 80–104 (2017)

39. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

40. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proceedings of DL 2009. CEUR Workshop Proceedings, vol. 477.
CEUR-WS.org (2009)

41. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pp. 355–362.
Morgan Kaufmann (2003)

42. Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics
via horn-SAT encoding and conflict analysis. In: Schmidt, R.A. (ed.) CADE 2009.
LNCS (LNAI), vol. 5663, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02959-2 6

43. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn
ontologies. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, 16–22
July 2011, pp. 1093–1098. IJCAI/AAAI (2011)

44. Suntisrivaraporn, B.: Polynomial time reasoning support for design and mainte-
nance of large-scale biomedical ontologies. Ph.D. thesis, Dresden University of
Technology, Germany (2009)

45. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach
to finding all justifications for OWL DL entailments. In: Domingue, J., Anutariya,
C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89704-0 1

https://doi.org/10.1007/978-3-319-58068-5_32
https://doi.org/10.1007/978-3-642-02959-2_6
https://doi.org/10.1007/978-3-642-02959-2_6
https://doi.org/10.1007/978-3-540-89704-0_1

Supervised Knowledge Aggregation
for Knowledge Graph Completion

Patrick Betz(B), Christian Meilicke, and Heiner Stuckenschmidt

University of Mannheim, Mannheim, Germany
{patrick,christian,heiner}@informatik.uni-mannheim.de

Abstract. We explore data-driven rule aggregation based on latent fea-
ture representations in the context of knowledge graph completion. For
a given query and a collection of rules obtained by a symbolic rule learn-
ing system, we propose end-to-end trainable aggregation functions for
combining the rules into a confidence score answering the query. Despite
using latent feature representations for rules, the proposed models remain
fully interpretable in terms of the underlying symbolic approach. While
our models improve the base learner constantly and achieve competitive
results on various benchmark knowledge graphs, we outperform current
state-of-the-art with respect to a biomedical knowledge graph by a sig-
nificant margin. We argue that our approach is in particular well suited
for link prediction tasks dealing with a large multi-relational knowledge
graph with several million triples, while the queries of interest focus on
only one specific target relation.

1 Introduction

Knowledge graphs (KGs) represent structured knowledge in form of (subject,
relation, object) facts. As KGs quite frequently suffer from missing data, the
goal in link prediction or knowledge graph completion (KGC) is to predict new
facts given an incomplete KG. While a vast amount of research is centered around
knowledge graph embedding (KGE) models (e.g., [1,34]), rule-based approaches
remain competitive in terms of performance [33]. They are fully interpretable as
predictions are made by human-understandable symbolic rules and they easily
allow for encoding domain knowledge into the overall model pipeline (e.g., [37]).

KGs are heavily used in the biomedical domain [11,18,25] in conjunction
with general semantic web technologies to provide large linked data sources and
ontologies such as Bio2RDF [2] and Hetionet[16]. These sources can be utilized
for downstream tasks such as predictive diagnosis and processing KGs in the
biomedical domain can differ from general KGC benchmark datasets. While the
KGs may contain a substantial amount of relations, only one particular tar-
get relation might be of interest. The challenge is then to exploit the remain-
ing graph context effectively, for instance, guiding models to exploit long-range
dependencies while only providing supervision for the target relationships. For
example, in the drug repurposing problem on the Hetionet dataset, we seek to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 74–92, 2022.
https://doi.org/10.1007/978-3-031-06981-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_5

Supervised Knowledge Aggregation for Knowledge Graph Completion 75

find treatable diseases for given compounds by answering queries with respect to
the target relationship Compound-treats-Disease. The remaining relations in the
KG such as Compound-binds-Gene or Disease-associates-Gene affect the eval-
uation scheme of the task only by their usefulness in regard to predicting the
target relationship correctly.

KGE models are not interpretable, which is an important aspect in general
and has even higher relevance in the biomedical domain. They have shown to
perform worse when long-range dependencies need to be utilized [19]. Path-based
methods, on the other hand, are specifically tailored towards utilizing graph con-
text that exceeds one-hop neighbourhoods and indeed, the neuro-symbolic model
PoLo [18] is shown to be effective on the Hetionet KG. By using reinforcement
learning agents are trained to perform policy-based walks and are additionally
guided by logical rules. However, the model can only process cyclical rules and
it has been shown empirically that more specific types, i.e., rules containing con-
stants, are necessary for achieving results on-par with state-of-the-art models
[20,21] in the context of KGC.

In this work, we first employ the simple rule learner AnyBURL [20,21]. We
mine knowledge in the form of logical rules from the biomedical KG and find that
a simple aggregation baseline already outperforms the current state-of-the-art.
We then seek to improve the performance further by improving the aggregation
of the mined rules. We formulate the problem as data-driven and aim to learn the
aggregation from the training data. We propose a novel aggregator with a strong
inductive bias, which we call the sparse aggregator, that generalizes the stan-
dard aggregation functions by using latent feature representations. We suggest
to train the sparse aggregator by using black-box optimization [27,29,32] and
directly optimize the mean-rank on the training KG. Furthermore, we propose
a simple scaling scheme to reduce the variance of the gradients which improves
the performance. Finally, we experiment with a more complex model based on
a modified self-attention encoder [10], which we call the dense aggregator.

We find that the sparse aggregator improves the base performance of Any-
BURL in all our experimental settings and outperforms current state-of-the-art
[18] on the biomedical KG. We also present results on three standard KG bench-
marks, where we achieve competitive results. Finally, we demonstrate that the
sparse aggregator remains fully interpretable even though it uses latent feature
representations.1

2 Related Work

A KGE model is specified by a scoring function which outputs raw triple confi-
dences and the models are trained by using likelihood based loss functions such
as cross-entropy. A seminal model in the family of translation based models is
TransE [4]. RESCAL [26] is based on tensor products and is extended by ComplEx
[40] towards expressing asymmetric relations. Many alternative KGE models exist,
for instance based on convolutional neural networks or graph-convolutions [9,41].
1 The project repository and code can be found at this URL.

https://github.com/Nzteb/latent-rules

76 P. Betz et al.

We refer to the studies in [33,46] for a more comprehensive overview. KGE models
achieve strong performances in the field of KGC and are efficient to use, however,
their predictions are in general hard to interpret which can be of specific interest
depending on the respective target domain. This gives rise to symbolic learning
where predictions can be pinned to human-understandable rules.

Symbolic rule learning for larger sized KGs is introduced in [13,14] who pro-
pose to learn closed connected rules and improved over inductive logic program-
ming systems in terms of scalability and performance. This type of rule learning
is outperformed by RuleN [22], the predecessor of the AnyBURL system [20,21],
which achieves results that are competitive to the state-of-the-art in the context
of KGC. More recent approaches focus on differentiable rule learning [7,45] by
representing rules as chained TensorLog [7] operators. An unsupervised approach
based on the rulesets from AnyBURL is proposed in [28]. Rules are clustered
by calculating the Jaccard index for every possible rule pair. Subsequently, the
rules are aggregated using noisy-or aggregation. In the context of multi-modal
KGE models, rules are used as features in [15] where feature weights are trained
jointly in a product-of-experts scoring function consisting of different modalities.

Symbolic representations in form of rules are also used in the context of neuro-
symbolic learning where the logical inference procedure is relaxed into fuzzy-logic
formulations and not only the learning but also the application of rules is made
differentiable. In [12], forward chaining is formulated to be differentiable and
[31] relax backward chaining in Prolog by introducing Neural Theorem Provers
which are further improved towards efficiency and flexibility in [23,24]. Please
note that these models have not yet shown to be scalable towards KGs with a
comparable size as used in this work.

Path-based methods traverse the graph starting from an entity and with
sequential transitions to neighbouring nodes. Transitions are made by agents
guided by stochastic policies which are learned within a reinforcement learning
framework. This is applied to perform triple classification in [44] and extended
towards query answering in MINERVA [8]. Finally, PoLo extends these approaches
by enabling to inject rules learned by an external system [18] or given from domain
knowledge and applies the approach to the drug repurposing problem.

3 Rule-Based Knowledge Graph Completion

3.1 Preliminaries

A KG is a collection of (s, p, o) triples where s and o are entities while p is a
relation. The KG forms a graph with relations represented as directed edges from
s to o. In the context of KGC s is also called the head of the triple and o is called
its tail. Models for KGC are concerned with predicting missing information in
the KG, typically by answering queries of the form (s, p, ?) and (?, p, o). These
queries are answered by scoring a set of candidates which allows to derive a
ranking. Training a model takes place on a training set Ktrain while a validation
set and a test set are used for the evaluation. A common form of evaluating KG
models is by calculating ranking based metrics on the respective evaluation set.

Supervised Knowledge Aggregation for Knowledge Graph Completion 77

The joint mean-rank is the average rank a model assigns to the true candidates
when forming queries (s, p, ?) and (?, p, o) from all triples in the respective
evaluation set. The mean reciprocal rank (MRR) takes the inverse 1

ranki
of the

ranks and therefore lies in [0, 1]. The standard procedure is to filter the rankings
with known triples from the remaining sets before calculating final ranks [4].

3.2 AnyBURL

AnyBURL [21] is a rule learning approach based on sampling paths from a given
knowledge graph. These paths are generalized into rules by replacing constants
with variables. The first edge in the path results into the head of the rule and
the remaining edges yield the body of the rule. As edges in the graph represent
relations a rule is composed of a set of non-grounded or partly grounded triples.
AnyBURL is applicable to large datasets and can mine a large number of rules
within a short period of time. We abstain from a more detailed description of the
learning algorithm and refer to the respective publication. In the following, we
briefly review the most relevant rule types AnyBURL learns and demonstrate
how they are aggregated to create predictions.

Similar to related approaches, AnyBURL learns closed connected rules [14]
also termed cyclic rules [21]. Here cyclic means the head variables X and Y which
are connected by the target relation in the head of the rule are also connected via
an alternative path represented by the body of the rule. These rules exclusively
contain variables and we will give an example from the Hetionet KG in the follow-
ing. Consider the rule CtD(X,Y) ← PCiC(X,A) ∧ PCiC(A,B) ∧ CtD(B, Y).
The rule is mined by AnyBURL and expresses with a certain confidence that a
disease Y might be treated (CtD) with compounds which belong to the same
pharmacological class (PCiC) as other compounds that are known to treat Y.
We define the confidence of a rule as the number of body groundings that lead
to a true prediction divided by the number of all body groundings estimated
on the training data. Further examples for cyclical rules are given by Rule (R1)
and (R2), discussed in Sect. 4.1.

Another rule type is given by acyclic rules with only one variable and con-
stants, i.e., entities in the KG, at the remaining slots. AnyBURL is restricted in
its default setting, which we used in our experiments, to learn rules of this type
with only one body atom. The rule citizen(X,UK) ← bornIn(X,London) is an
example. It expresses that someone born in London is (probably) a UK citizen.

3.3 Knowledge Aggregation

Let us assume we are given a query (s, p, ?),2 a possible candidate answer c, and
the set of rules Rc := {r1, ..., rk} generating c, hence, all the rules that fired
for the candidate. Note that Rc depends on the particular query but we do not
reference this separately for brevity.

The chosen type of rule aggregation defines how the associated rule confi-
dences conf(r1), ..., conf(rk) are aggregated into a score ψ. This score can be
2 All derivations throughout the work are equivalent for the head/subject direction.

78 P. Betz et al.

interpreted as the standalone confidence for the candidate representing a true
answer or it can be used to generate a ranking in regard to multiple candidate
answers to (s, p, ?). The default aggregation in AnyBURL is max-aggregation:

ψMax(c) := max {conf(r1), ..., conf(rk)}. (1)

Potential ties in a ranking are resolved by comparing the respective candidates
by their second strongest rule. Another common aggregation technique, which
usually performs worse, is noisy-or aggregation:

ψNO(c) := 1 −
k∏

i=1

(
1 − conf(ri)

)
. (2)

In terms of restrictiveness, noisy-or and max-aggregation are placed on opposite
ends of the spectrum which can be seen easily by comparing Eqs. (1) and (2).
Whereas only one rule determines the final score in max-aggregation, every single
rule contributes when choosing noisy-or aggregation. The former is based on
the underlying assumption that all rules are fully dependent, while the latter
assumes rules to be mutually independent. Both assumptions are clearly wrong.
Moreover, the score of noisy-or increases in the number of rules fired, e.g., it also
increases when many rules with low confidences are added to the input rule set.
These observation inspire the sparse aggregator presented in Sect. 5.

4 Supervised Knowledge Aggregation

4.1 Challenges

The full version of AnyBURL mines a large number of rules. For example, on the
Hetionet KG it learns more than 40k rules for the target relation. Additionally,
|Rc| can be large, that is, a single candidate for a query might be generated by
hundreds of rules which need to be aggregated. Two main additional characteris-
tics cause the difficulty of the aggregation problem: varying rule set cardinalities
and rule redundancy.

Different Rule Set Cardinalities. As mentioned above the number of rules that
generate a candidate answer, i.e., |Rci | for some candidate ci, can be large.
However, this may depend strongly on the given candidate and it is also possible
that only a few rules fired. This leads to the natural question of how to compare,
for instance, a candidate for which only one strong rule fired to another candidate
which was generated by multiple rules with lower confidences.

Rule Redundancies. Many of the mined rules are dependent in the sense that
they fire for similar reasons. When an aggregation method does not take into
account these redundancies, it will overestimate the final score whenever multiple
similar rules generated a candidate. Let us consider the following two rules:

speaks(A,B) ← lives(A,C) ∧ cityOf(C,D) ∧ hasLanguage(D,B) (R1)
speaks(A,B) ← lives(A,C) ∧ locatedIn(C,D) ∧ hasLanguage(D,B) (R2)

Supervised Knowledge Aggregation for Knowledge Graph Completion 79

While the rules are not identical, they are partly redundant. The second rule
does not provide much more additional evidence if we knew already that the
first rule generated a candidate. Noisy-or aggregation would simply treat both
rules as independent and overestimate the final score, while max-aggregation
would ignore one of the rules which might be the better choice in this example.
However, ignoring all rules except of the strongest rule will underestimate the
final score whenever a candidate is generated by different rules which represent
independent knowledge.

Note that often there is no schema available that contains the knowledge that
cityOf is more specific than locatedIn, nor can this knowledge be derived from
the given knowledge graph which is usually incomplete and noisy. Thus, it is not
possible to filter out redundant rules. Moreover, in many cases the dependencies
are less clear-cut. Think, for example, about replacing the lives relation by the
diedIn relation in Rule (R1) or Rule (R2).

4.2 Supervised Rule Aggregation

We emphasized the challenges of rule aggregation in the last section. The goal of
this work is to investigate if a data-driven view that utilizes supervision on the
training KG can be beneficial for making a step towards solving the problem.
We will introduce a formal perspective in the following paragraph and in the
next section the respective aggregation models will be presented.

Given a KG, Ktrain = {(si, pi, oi)}N
i=1, let Sp be the set of rules that were

mined for relation p, i.e., all rules mined with relation p in the rule head. Let
P(Sp) be the power set. Using the definitions from above, for a query (s, p, ?), one
possible candidate answer c, and the set of rules Rc that generated the candidate,
we have that Rc ∈ P(Sp). For supervised rule aggregation, we seek to learn the
parameters Θ of an aggregation function fΘ with signature fΘ : P(Sp) → R by
minimizing a loss criterion L(Θ) :=

∑
Lqj (Θ) which is the sum of all individual

losses for the queries qj that can be formed from Ktrain.
The aggregation function takes as input the subset of rules Rc that generated

c and outputs a real-valued score which we interpret as the confidence for the
candidate being a true answer. In the definition fΘ is parameterized globally
over relations, however, the question of parameter sharing between relations
is a modeling decision and we will argue that it might be beneficial to not
share parameters. Furthermore, we will in the following sections inject a strong
inductive bias into f by using the rule confidences as an additional input which
we omitted for brevity in the formal treatment above.

5 Latent-Based Aggregation

When viewing the problem as data-driven, a possibility would be to proposition-
alize the data, i.e., define a binary feature for every rule which is one if the rule
fired for a particular candidate and zero otherwise. We could then train a simple
discriminative model on Ktrain. However, this model would not take into account

80 P. Betz et al.

rule dependencies and, more importantly, for many relations such as the target
relation of the Hetionet KG, the number of rules exceeds the number of triples.
Such a model is therefore not applicable as the candidates could be perfectly
separated in the feature space without learning anything useful. Therefore, we
choose an implicit feature representation over an explicit one by encoding rules
with latent representations while assigning a strong inductive bias to our model
in form of the rule confidences.

5.1 Sparse Aggregation

The two aggregation techniques introduced in Sect. 3.3 make two opposing
assumptions which are both permanently violated in the data as we discussed. In
the next paragrahs, we present the sparse aggregator which uses more rules for
the final confidence calculation than max-aggregation but it uses less rules than
noisy-or aggregation while also being able to represent rule redundancies. In fact,
when we set the latent input dimensionality to one, we recover max-aggregation
wheres a larger dimensionality leads to a behavior closer to noisy-or. Further-
more, our formulation enables to learn the parameters on the KG, i.e., we can
utilize the whole training set.

We encode rules with latent feature vectors x ∈ R
d where d is the dimen-

sionality. For a query (s, p, ?), a candidate answer c, and the k rules Rc that
generated the candidate, let xj ∈ R

d be the latent representation of rule rj

and let v ∈ [0, 1]k be the confidence vector of the k rules, i.e., vj = conf(rj).
We first normalize the latent vectors with the SoftMax function such that each
vector sums to one. Subsequently, we multiply the normalized vectors with the
respective rule confidence. Define the normalized vector multiplied with its con-
fidence as

x∗
j := SoftMax(xj) · vj , (3)

where vj ∈ [0, 1] and x∗
j ∈ [0, 1]d. Subsequently, we apply the Max operator over

the rules, that is, row-wise over the columns of the stacked matrix X∗ ∈ [0, 1](d,k)

s := Max(X∗), (4)

where s ∈ [0, 1]d, i.e., s has the same dimensionality as each of the latent input
vectors. It is important to note that only one single rule can contribute to a
single entry of s due to the Max operator. Finally, we calculate the final score ψ
for the candidate c by using the noisy-or product,

ψ(c) := 1 −
d∏

i=1

(1 − si). (5)

The derived expression for ψ can be differentiated approximately with respect
to the latent features by using automatic differentiation frameworks.3 We will
now discuss some important properties of this aggregation function.
3 The common gradient approximation for the Max function is, e.g., ∇max(y1, y2) =

[1, 0] for y1 > y2 and [0, 1] otherwise.

Supervised Knowledge Aggregation for Knowledge Graph Completion 81

At Most d Rules Can Contribute to the Final Score. This follows from the fact
that the Max function is taken over rules, i.e., for every row of X∗ only one
rule is considered and there exist d rows. We mentioned in the previous sections
that hundreds of rules can fire for one candidate, with max-aggregation only
regarding one rule and noisy-or aggregation using all the rules for the final score.
With the sparse aggregator, we can balance this value by setting d accordingly,
for instance, for the Hetionet dataset we set d = 10.

When We Set d = 1, We Recover Simple Max-Aggregation. To see this, for d = 1
we have that x·

j = 1 · vj = conf(rj), therefore, s = max{conf(r1), ..., conf(rk)}
with ψ(c) = 1 − 1 − conf(rmax) = conf(rmax) where rmax is the rule with the
highest confidence. This property is ensured by the use of the SoftMax function
as it normalizes a single value to 1 which would not be the case for alternative
functions such as Sigmoid.

Potentially we can recover noisy-or aggregation by setting d = |Sp|, and
enforcing the matrix of all latent vectors to be the identity matrix, however, the
goal is to learn to select a small strong subset of rules for a particular query. In
the training stage, we aim to learn the latent representations by optimizing a
loss criterion which will be discussed in the next section.

5.2 Optimizing Mean-Rank Using Black-Box Optimization

With the sparse aggregator we can easily represent rule redundancies by assign-
ing similar latent features to redundant rules, reducing their joint influence
on the score. In general, our model is closer to a discrete model than many
machine learning or deep learning models. For instance, the SoftMax normaliza-
tion restricts the updates of any learning algorithm to be a re-distribution of the
rule confidences instead of a clear fitting of the data.

Our choice of supervised machine learning is not for the sake of it. Framing
the model as purely discrete would result in an unfeasible search. For instance,
only restricting the values to lie within {0, 1} (without the SoftMax) would result
in a search space with 2|Sp|·d possible configurations for one relation p.

Fortunately, there exists recent work in machine learning that bridges the
gap between continuous and discrete problems such as combinatorial optimiza-
tion [3,27,29]. It has been demonstrated that these approaches can be applied
to ranking-based metrics as they can be written as combinatorial optimization
problems [32]. Using such a metric suits our problem because the model is not
designed to fit the data tightly. Note that also rules with high confidences can
fire for candidates which do not exist in the KG. A ranking metric can ignore
these possible distortions as soon as the true candidate is ranked relatively high.

To that end, we define the loss criterion L(Θ) on the training data to be the
mean-rank where Θ represents the latent features. For a given query q = (s, p, ?)
on the training data, let ψ be the vector of scores calculated according to Eq. (5)
with ψ(c∗) being the score for the true candidate c∗. The remaining scores belong
to query candidates ci that were generated by at least one rule and (s, p, ci) does
not appear in Ktrain, that is, we exclusively filter with the training set. Note

82 P. Betz et al.

that conceptually these candidates can also be viewed as negative examples.
We treat the maximum number of these negative candidates, sorted according
to their ranking in max-aggregation, as a hyperparameter denoted by top-n.
Moreover, let rk(ψ) be the vector of ranks and define rkc∗ to be the rank of the
true candidate. The mean-rank of the training data is simply the mean of ranks
of the true candidates for the individual queries, therefore, the individual query
loss is Lq(rk;Θ) = rkc∗. For applying gradient-based optimization, we need to
calculate dLq

dΘ . From the chain rule, we obtain

dLq

dΘ
=

dψ

dΘ

dLq

dψ
, (6)

where dψ
dΘ can directly be calculated using auto-differentiation libraries as men-

tioned in the previous section. For dLq

dψ we use black-box differentiation according
to [32] and calculate

dLq

dψ
= − 1

λ

[
rk(ψ) − rk

(
ψ + λ · dLq

drk

)]
, (7)

where dLq

drk is a vector which is one at the entry of the true candidate and zero
otherwise which follows from the definition of the query loss above. In practice
during the forward pass, we obtain the scores ψ for the query and calculate the
ranks. Subsequently, in the backward pass, the scores are perturbed to ψ

′
=

ψ + λ · dLq

drk and the new ranks are calculated leading to (7).
Consider the inner expression rk(ψ)−rk

(
ψ

′
) in Eq. (7) and let us only focus

on the entry of the true candidate. Let’s assume its rank is #50 before and #1
after the perturbation. Then we obtain − 49

λ which is in absolute terms magni-
tudes stronger compared to a case where the true candidate only improved by a
few ranks. We seek to reduce this variance by scaling the gradient in accordance
to the true candidate, in particular we compute

dLq

dψ
= − 1

λ

[
rk(ψ) − rk

(
ψ

′)] 1
rkc∗ − 1

, (8)

that is, we track the rank of the true candiate and scale the gradient with a
proportional factor. This ensures a constant signal strength independent of the
original position, for instance, in the example above we obtain − 49

λ
1

50−1 = − 1
λ .

5.3 Dense Aggregation

In the previous sections, we presented a data-driven perspective on knowledge
aggregation and proposed a model based on latent features which has a strong
inductive bias. We can relax this restriction and exploit the fact that language
model architectures (e.g. [10,17,42]) are well calibrated for processing latent
representations. In particular, we use a self-attention based architecture [10] that
processes the input representations and outputs real-valued query confidences.

Supervised Knowledge Aggregation for Knowledge Graph Completion 83

When dropping positional encodings, self-attention based architectures can be
applied off-the-shelf on item set problems with varying input lengths.

Precisely, we use a slightly modified version of the PyTorch implementation
of the BERT encoder [10]. The latent inputs {x1, ...,xk} are fed into the encoder
receiving the hidden representations {h1, ...,hk} with same dimensionality. The
modification that we implement affects how the self-attention is applied. We sort
the inputs according to the rule confidences and we let the j’th rule only attend
to the j − 1 rules with higher confidence. This reduces the possible distraction
that can be caused from many weak input rules towards the high-confident rules.
For the aggregation, we use simple average pooling on the hidden representations
and feed the resulting vector into a fully connected linear layer which outputs
one final score. The aggregator is termed dense aggregator as every rule in the
input set contributes to the final score.

The model is expensive to train and, on average, it is inferior to the sparse
aggregator in terms of performance although we were not able to explore a large
part of the hyperparameter space due to runtime considerations. The model is
also not practical in more general terms, however, we are merely interested in the
question if this model can learn specific aspects of the data which are hidden from
the other models. To investigate this, we evaluate a joint model of the sparse and
dense aggregators. We tune weights βsparse and βdense = 1−βsparse per relation
and direction on the validation set for discovering potential differences between
the two models. To make sure that these differences are significant, we restrict
βsparse to lie in {0,1}. This setting will be denoted by D+S in the experimental
section. It is not applicable to Hetionet where only one target relation exists.

6 Experiments

In the following we describe experiments for a specific biomedical KG and three
benchmark KGs commonly used in the field of KGC. We are mainly interested
in the question how our learnable aggregation compares to baseline aggregation
functions and to other models that have a similar degree of explainability.

6.1 Datasets

The Hetionet network combines knowledge from a large amount of biomedical
studies into a KG containing 47k typed entities and 2.24 million triples with 24
possible relations [16]. We focus on the task of drug repurposing, i.e., finding new
use cases for existing compounds. In the Hetionet KG this is expressed by answer-
ing queries of the form CtD(X, ?) where the relation CtD means Compound-
treats-Disease. It is discussed in [18] that Hetionet significantly differs from other
benchmark KG’s, for instance exhibiting a higher average node degree. More-
over, while the dataset is of considerable size, the target relationship appears in
only 755 facts which highlights the challenge of exploiting graph context without
having strong supervision. We use the train, valid, and test splits according to
the public documentation of [18].

84 P. Betz et al.

Table 1. Summary statistics.

Dataset Entities Relations Triples

Hetionet 47,031 24 2,250,197

FB15k-237 14,505 237 310,116

WNRR 40,559 11 93,003

CoDEx-M 17,050 51 206,205

We further evaluate our approach on three general benchmark KGs. FB15k-
237 [39] and WNRR [9] are frequently used in the field of KGC and Codex-M
was designed with the goal to be more challenging than previous benchmarks
[36]. For these datasets we use the common train, valid, and test splits. Table 1
shows summary statistics for the KGs.

6.2 Experimental Settings

For the Hetionet KG we mostly focus on the comparisons in [18]. That is, we com-
pare to the interpretable models PoLo [18], MINERVA [8], and pLogicNet [30]
and we also include the KGE results presented in [18] for the models TransE [4],
ComplEx [40], ConvE [9] and RESCAL [26]. Furthermore, we include the Hit-
tER [6] no-context model implementation of the libKGE library for which we
run the hyperparameter search provided by the library with 15 trials. We also
include the RotatE [38] results from the TorchDrug library.

For the remaining KGs we additionally add the rule-based methods
DRUM [35] and Neural-LP [45] if results are available. We abstain from a com-
prehensive comparison against KGE but we include the results from the official
libKGE library and the underlying work about training KGE models [5,34] to
put our approach in the context of strong KGE models trained under a well-
tested and unified codebase. Moreover, the results for HittERnc are based on
[19] and we also add the results of the recent model M2GNN proposed in [43].

For all the datasets, we mine rules on the training splits of the KGs using
AnyBURL and subsequently we learn the aggregation functions on the same
training sets while utilizing the valid sets for hyperparameter search and early
stopping. We train the sparse aggregator on the mean-rank on the training data
using the scaled gradients. The dense aggregator is trained on a standard cross-
entropy loss, i.e., maximizing the likelihood of the training data while using
negative examples. The sparse aggregator does not share parameters between
relations, that is, queries for different relations can be treated independently
and hyperparameters could be searched relation-wise. For the sake of simplicity,
we train the model globally, however, we save checkpoints per epoch and pick
for every relation in head and tail direction the checkpoint that results in the
highest MRR on the valid set. For the Hetionet KG this is not necessary as
only one target relation exists and only tails are predicted. Hyperparameter
configurations and further training details can be found in AppendixA.

Supervised Knowledge Aggregation for Knowledge Graph Completion 85

Table 2. Filtered MRR in tail direction for Hetionet. The results for the learnable aggre-
gators are averages over 5 runs. The first, middle and last part represents embedding-
based models, interpretable models, and the results of this work, respectively.

Approach h@1 h@3 h@10 MRR

TransE [4] 0.099 0.199 0.444 0.205

ComplEx [40] 0.152 0.285 0.470 0.250

ConvE [9] 0.100 0.225 0.318 0.180

RESCAL [26] 0.106 0.166 0.377 0.187

HittERnc 0.316 0.517 0.740 0.453

RotatE 0.185 0.282 0.403 0.257

CompGCN [41] 0.172 0.318 0.543 0.292

pLogicNet [30] 0.225 0.364 0.523 0.333

MINERVA[8] 0.264 0.409 0.593 0.370

PoLo [18] 0.314 0.428 0.609 0.402

PoLo (pruned) 0.337 0.470 0.641 0.430

Max 0.272 0.444 0.642 0.398

Noisy-or 0.377 0.509 0.642 0.472

Dense 0.306 0.514 0.701 0.441

Sparse 0.380 0.525 0.694 0.490

6.3 Results

Table 2 shows results on the test set for the filtered MRR and filtered hits@k in
tail direction for the drug repurposing problem and Table 3 shows results for the
test sets of the joint MRR and joint hits@k on the remaining datasets.

On the Hetionet dataset, the sparse aggregator improves the recent state-
of-the-art [18] of the interpretable models by 4.3, 5.5, 5.3, and 6% points for
the metrics hits@1, hits@3, hits@10, and MRR, respectively. Interestingly, the
noisy-or baseline already outperforms the state-of-the-art by a significant margin.
Noteworthy, the sparse aggregator improves AnyBURL’s max-aggregation by
9.2% points for the MRR and shows improvements of 1.8% points over noisy-or.
The dense aggregator, on the other hand, performs significantly worse except
for the hits@10 metric. Despite outperforming the previous models, it does not
improve over the noisy-or baseline.

For the remaining datasets the sparse aggregator outperforms the inter-
pretable methods and improves over the best AnyBURL baseline (note that
noisy-or performs rather poor on these datasets) in all settings although the
improvement is only marginal for the WNRR dataset. However, improvements
of 2.3% points on FB15k-237 and 2% points on Codex-m are considered to be
quite substantial in the KGC literature. Interestingly, the setting D+S which
is explained in Sect. 5.3 achieves strong results on WNRR and Codex-M. This
suggests that, despite being inferior overall, the dense aggregator captured some
aspects of the data which are hidden from the sparse aggregator. We investigated
this further and found that the dense aggregator is sensitive to negative signals.

86 P. Betz et al.

Table 3. Results for FB15k-237, WNRR and Codex-M for the joint filtered MRR.
The first, middle and last part of the table represents embedding-based models, inter-
pretable models, and the results of this work, respectively. The results for Dense and
Sparse are averages over 3 runs.

FB15k-237 WNRR Codex-M

Approach h@1 h@10 MRR h@1 h@10 MRR h@1 h@10 MRR

TransE 0.221 0.497 0.312 0.053 0.520 0.228 0.223 0.454 0.303

ComplEx 0.253 0.536 0.347 0.438 0.547 0.475 0.262 0.476 0.337

ConvE 0.248 0.521 0.338 0.411 0.505 0.442 0.239 0.464 0.318

RESCAL 0.263 0.541 0.355 0.439 0.517 0.467 0.244 0.456 0.317

HittERnc 0.268 0.549 0.361 0.437 0.531 0.469 0.262 0.486 0.339

RotatE 0.240 0.522 0.333 0.439 0.553 0.478 – – –

M2GNN 0.275 0.565 0.362 0.444 0.572 0.485 – – –

pLogicNet 0.237 0.524 0.332 0.398 0.537 0.441 – – –

MINERVA 0.217 0.456 0.293 0.413 0.513 0.448 – – –

DRUM [35] 0.255 0.516 0.343 0.425 0.586 0.486 – – –

Neural-LP [45] – 0.362 0.240 0.371 0.566 0.435 – – –

Max 0.246 0.506 0.331 0.457 0.572 0.497 0.247 0.450 0.316

Noisy-or 0.247 0.494 0.329 0.391 0.559 0.446 0.218 0.427 0.289

Dense 0.245 0.510 0.335 0.466 0.587 0.507 0.261 0.465 0.331

Sparse 0.266 0.526 0.352 0.459 0.574 0.499 0.266 0.467 0.335

D+S 0.267 0.527 0.354 0.469 0.593 0.511 0.273 0.476 0.342

For instance, when adding rules with low confidences to an input set, the score
of the dense aggregator might decrease. This behavior cannot be expressed by
the sparse aggregator or the presented baselines which might open up interesting
further directions.

Finally, Figs. 1 and 2 compare the sparse aggregator under different training
settings. Figure 1 shows test results for five runs on Hetionet when using the
scaled gradients proposed in Sect. 5 and the default formulation. Training with
the scaled gradients leads to lower variance and higher average performance.
Figure 2 compares mean-rank training with using a standard cross-entropy loss
on Codex-M.

7 Interpretability

In the following we discuss an example for a query where the sparse aggregator
generates a ranking that differs significantly from the ranking suggested by the
rule with the highest confidence. Moreover, in contrast to noisy-or where all
rules that fired contribute to the score, by setting d = 10 our model selects a
compact subset of 10 rules of which we can further pick the ones with the highest
impact. This procedure also resembles how a potential user can interact with the
aggregation system. We use an example with short rules for the sake of simplicity.

Supervised Knowledge Aggregation for Knowledge Graph Completion 87

scaled non-scaled
0.45

0.47

0.49

0.51

M
R
R

ta
il

Fig. 1. MRR in tail direction for five
runs on Hetionet when training under
the scaled/non-scaled gradient.

1 5 10 15 20 25 30

0.3

0.31

0.32

0.33

M
R
R

Fig. 2. Valid MRR per epoch on
Codex-M for Mean-Rank training (�)
and ordinary Cross-Entropy loss (+).

The target query asks for new diseases to which the compound Methotrexate
(DB00563) can be applied. Our method ranks the correct answer systemic lupus
erythematosus first, an autoimmune disease in which the body’s immune system
mistakenly attacks healthy tissue in many parts of the body.

To illustrate this example, we have chosen the eight rules with the highest
confidences and depicted their normalized values for each of the ten dimensions
side by side on the left part of Fig. 3. Different rules can be distinguished by their
color and position within the group of bars that reflects the value of a specific
dimension. Note that the most confident rule that created a candidate for the
query had a confidence of 0.357, while the #1 candidate proposed by our method
received a score of 0.806. This is caused by the fact that the rules that recited
this candidate differ significantly with respect to their latent features. There are
several dimension (in particular 5,6, 8 and 9), where we learned a significantly
higher value for that specific rule compared to all other rules. This means at the
same time that a large fraction of the overall power of this rule is assumed to
be independent from the other rules and increases the overall score. If the rules
had similar values in most of the dimensions, the resulting score would be close
to the score of the maximum strategy.

A domain expert, who wants to understand why a certain candidate is ranked
at #1, is probably interested in a small set of rules that had the highest influence
on the prediction. These are obviously the rules that dominate in some of the
dimensions. To quantify their contribution we computed for each rule the sum
of values over all dimensions taking only those dimension into account where
the rule received the maximal value compared to the other rules. The resulting
scores are depicted on the right part of Fig. 3. This means that rules r229 and
r264 are the most important two rules. Let us take a closer look at these rules
and their meaning:

r229 CtD(X,Disease::DOID:9074) <= CtD(X,Disease::DOID:7148) - If a
compound can be used as treatment for rheumatoid arthritis (DOID:7148), it
might also be applied to treat the disease lupus erythematosus (DOID:9074).

88 P. Betz et al.

0

0.1

0.2

0.3

x∗
1,r x∗

2,r x∗
3,r x∗

4,r x∗
5,r x∗

6,r x∗
7,r x∗

8,r x∗
9,r x∗

10,r

r 1
9
0

r 1
9
1

r 2
2
9

r 2
3
4

r 2
5
6

r 2
6
4 r 3
2
1

r 3
2
7

Fig. 3. Rule features when searching new treatments for Methotrexate.

Since Methotrexate is known to been used for rheumatoid arthritis, lupus
erythematosus is predicted by the rule.

r264 CtD(Compound::DB00563,Y) <= DlA(Y,Anatomy::UBERON:0000043) - If
a disease is diagnosed to affect a tendon (UBERON:0000043), that disease
might be treated with Methotrexate (DB0056). Since Methotrexate is known
to been used in such a context, it is predicted by the rule.

These two rules fire for different reasons. The first rule is based on observing that
two different ailments which both correspond to autoimmune diseases are likely
treatable by the same compound. The second rule focuses on a specific body
part, the tendon, which – if afflicted by a disease – can often be treated with
Methotrexate. In almost all cases tendons are either ruptured (no drug required)
or inflamed which makes them treatable by Methotrexate. Figure 3 shows that our
approach is capable to learn that these two rules are not redundant. It increases
the score of a candidate that is proposed by both rules, which is in our case lupus
erythematosus, a disease which can affect tendons and for which compounds have
been applied that have also been applied to rheumatoid arthritis.

8 Conclusion

We showed empirically that simple rule learning approaches achieve strong
results on the task of drug repurposing. We presented learnable knowledge aggre-
gation in form of latent rule aggregation. To our best knowledge, this is a novel
approach that differs fundamentally from symbolic and latent approaches pro-
posed so far for KGC. In particular, we presented an aggregation function, the
sparse aggregator, which can be learned on the training set and we proposed to
employ black-box optimization. We found empirically that the sparse aggregator
improves over baseline aggregation techniques. It is on-par with standard KGE
methods and is state-of-the-art on the Hetionet dataset, while still maintaining
interpretability. The sparse model learns how to aggregate rules as positive evi-
dence, however, it is not capable to learn that a rule or a combination of rules
makes a prediction less likely. It might thus be beneficial to incorporate negative
evidence into the model which opens up directions for future research.

Supervised Knowledge Aggregation for Knowledge Graph Completion 89

A Experimental Details

A.1 Model Input

On the highest abstraction level, our models take as input a list of rules and
output a real-valued score. More precisely, for a query q = (s, p, ?) (same in head
direction) we collect the top n answer candidates ci proposed by AnyBURL,
that is, the candidates that were generated by at least one rule. For each of
these candidates the respective list of rules defines the model input. Then, the
descriptions of the main text apply. Finally, we obtain a vector of scores and
likewise a ranking in regard to all candidate answers ci. At test time, this ranking
can directly be used for the evaluation. At training time, we distinguish the
true answer/candidate c∗ and the remaining candidates c′ which we filter with
the training set, i.e., we exclude a c′ �= c∗ if a triple (s, p, c′) exists in train.
For a ranking loss we can now calculate the query loss of q as explained in
Sect. 5.2. For some arbitrary loss function such as cross-entropy, c∗ defines the
true candidate and the remaining candidates c′ define the reference candidates
or pseudo negative candidates.

A.2 Hyperparameters

For all the experiments, we use a max top-n = 100, the Adagrad optimizer, and
a batch-size of 256. Training is performed by using early stopping based on the
validation set. LibKGE based configuration files for the experiments are provided
in the supplementary materials.

Sparse Aggregator. The hyperparameters that we are concerned with are
dropout on the latent features, the latent dimension d, and the learning rate
lr. For Hetionet we set d = 10, dropout = 0.15 and lr = 0.9. On Fb15k-237 we
set d = 40, dropout = 0.4, and lr = 0.02. For WNRR we set d = 50, dropout = 0.4
and lr = 0.03. For Codex-m we set d = 40, dropout = 0.4 and lr = 0.02. For all
the experiments we use a value of 5 for lambda when training on the mean-rank
loss.

Dense Aggregator. The dense aggregator follows in its architecture the
PyTorch BERT encoder with the modification as explained in Sect. 5.3. We use
4 heads and 4 layers throughout all the experiments. The feed-forward dimen-
sionality within the encoder is 256. For Hetionet we use d = 20, dropout = 0.15
and lr = 0.01. For the remaining datasets we use d = 56, dropout = 0.15, and
lr = 0.005. We set the maximal number of rules per input list to 50 for the dense
aggregator for all the experiments.

A.3 Rule Sets

The base data for our experiments are the rules learned with AnyBURL. These
are processed in a pre-processing pipeline to generate the inputs for the aggre-
gators as explained above. For all the datasets we exclude AC2 rules and rules

90 P. Betz et al.

with an empty body. This leaves the AnyBURL performance mostly unchanged
but we report newest AnyBURL results reported by the authors.

For WNRR rules are mined for 3600 s and we set the maximum length for
cyclical rules equal to 5 as suggested in the AnyBURL documentation. All the
learned rules are processed for training the models on this dataset. For the
remaining datasets the default AnyBURL parameters are used. Here, we prune
the learned rulesets slightly and only process rules that had at least 5 (10) true
predictions for sparse (dense). On Hetionet rules are learned for 1000 s for dense
and sparse. On Fb15k-237 rules are learned for 3600 (500) s for sparse (dense).
Finally, on Codex-M rules are learend for 1000 (500) s for sparse (dense).

References

1. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge
graph embedding models under a unified framework. IEEE Trans. Pattern Anal.
Mach. Intell., 1–1 (2021). https://doi.org/10.1109/TPAMI.2021.3124805

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform.
41(5), 706–716 (2008)

3. Betz, P., Niepert, M., Minervini, P., Stuckenschmidt, H.: Backpropagating through
Markov logic networks. In: Proceedings of 15th International Workshop on Neural-
Symbolic Learning and Reasoning, vol. 2986, pp. 67–81. CEUR (2021)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Neural Information Processing
Systems (NIPS), pp. 1–9 (2013)

5. Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: LibKGE-a knowl-
edge graph embedding library for reproducible research. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 165–174 (2020)

6. Chen, S., Liu, X., Gao, J., Jiao, J., Zhang, R., Ji, Y.: Hitter: hierarchical trans-
formers for knowledge graph embeddings. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP) (2020)

7. Cohen, W., Yang, F., Mazaitis, K.R.: TensorLog: a probabilistic database imple-
mented using deep-learning infrastructure. J. Artif. Intell. Res. 67, 285–325 (2020)

8. Das, R., et al.: Go for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. arXiv preprint arXiv:1711.05851
(2017)

9. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32, pp. 1811–1818 (2018)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Long and Short Papers), vol. 1, June
2019

11. Dörpinghaus, J., Jacobs, M.: Semantic knowledge graph embeddings for biomed-
ical research: data integration using linked open data. In: SEMANTICS
Posters&Demos (2019)

https://doi.org/10.1109/TPAMI.2021.3124805
http://arxiv.org/abs/1711.05851

Supervised Knowledge Aggregation for Knowledge Graph Completion 91

12. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

13. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE. VLDB J. 24(6), 707–730 (2015)

14. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceedings
of the 22nd International Conference on World Wide Web, pp. 413–422 (2013)

15. Garćıa-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base
representations with latent, relational, and numerical features. UAI (2018)

16. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge priori-
tizes drugs for repurposing. Elife 6, e26726 (2017)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Computa-
tion, vol. 9, pp. 1735–1780. MIT Press (1997)

18. Liu, Y., Hildebrandt, M., Joblin, M., Ringsquandl, M., Raissouni, R., Tresp, V.:
Neural multi-hop reasoning with logical rules on biomedical knowledge graphs. In:
Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 375–391. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77385-4 22

19. Meilicke, C., Betz, P., Stuckenschmidt, H.: Why a naive way to combine symbolic
and latent knowledge base completion works surprisingly well. In: 3rd Conference
on Automated Knowledge Base Construction (2021)

20. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime
bottom up rule learning for knowledge graph completion (2020)

21. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up
rule learning for knowledge graph completion. In: Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence (IJCAI). IJCAI/AAAI Press
(2019)

22. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.:
Fine-grained evaluation of rule- and embedding-based systems for knowledge graph
completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 1

23. Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differen-
tiable reasoning on large knowledge bases and natural language. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5182–5190 (2020)

24. Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., Rocktäschel, T.: Learning
reasoning strategies in end-to-end differentiable proving. In: International Confer-
ence on Machine Learning, pp. 6938–6949. PMLR (2020)

25. Mohamed, S.K., Nounu, A., Nováček, V.: Drug target discovery using knowledge
graph embeddings. In: Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, pp. 11–18 (2019)

26. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th
International Conference on Machine Learning, pp. 809–816. Omnipress (2011)

27. Niepert, M., Minervini, P., Franceschi, L.: Implicit MLE: backpropagating through
discrete exponential family distributions. In: NeurIPS (2021)

28. Ott, S., Graf, L., Agibetov, A., Meilicke, C., Samwald, M.: Scalable and inter-
pretable rule-based link prediction for large heterogeneous knowledge graphs (2020)

29. Pogančić, M.V., Paulus, A., Musil, V., Martius, G., Rolinek, M.: Differentiation of
blackbox combinatorial solvers. In: International Conference on Learning Repre-
sentations (2020)

30. Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning. In: International
Conference on Learning Representations (2020)

https://doi.org/10.1007/978-3-030-77385-4_22
https://doi.org/10.1007/978-3-030-00671-6_1

92 P. Betz et al.

31. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, pp. 3788–3800 (2017)

32. Roĺınek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.:
Optimizing rank-based metrics with blackbox differentiation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7620–7630 (2020)

33. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph
embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov.
Data (TKDD) 15(2), 1–49 (2021)

34. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on
training knowledge graph embeddings. In: International Conference on Learning
Representations (2020)

35. Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end dif-
ferentiable rule mining on knowledge graphs. In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems, NeurIPS 2019, Vancouver, BC, Canada, pp. 15321–15331 (2019)

36. Safavi, T., Koutra, D.: CoDEx: a comprehensive knowledge graph completion
benchmark. In: Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pp. 8328–8350. Association for Computational
Linguistics, November 2020

37. Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recom-
mendation approach for business process modeling. In: La Rosa, M., Sadiq, S.,
Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 328–343. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79382-1 20

38. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by
relational rotation in complex space. In: International Conference on Learning
Representations (2019)

39. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and Their Compositionality, pp. 57–66 (2015)

40. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Balcan, M., Weinberger, K.Q. (eds.) Proceed-
ings of the 33nd International Conference on Machine Learning. JMLR Workshop
and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

41. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-
relational graph convolutional networks. In: International Conference on Learning
Representations (2020)

42. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 6000–6010 (2017)

43. Wang, S., et al.: Mixed-curvature multi-relational graph neural network for knowl-
edge graph completion. In: Proceedings of the Web Conference 2021, pp. 1761–1771
(2021)

44. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

45. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, NeurIPS 2017,
Long Beach, US (2017)

46. Zhang, J., Chen, B., Zhang, L., Ke, X., Ding, H.: Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open 2, 14–35 (2021)

https://doi.org/10.1007/978-3-030-79382-1_20
http://arxiv.org/abs/1707.06690

Expressive Scene Graph Generation
Using Commonsense Knowledge Infusion
for Visual Understanding and Reasoning

Muhammad Jaleed Khan1(B) , John G. Breslin1,2 , and Edward Curry1,2

1 SFI Centre for Research Training in Artificial Intelligence, Data Science Institute,
National University of Ireland, Galway, Galway, Ireland
{m.khan12,john.breslin,edward.curry}@nuigalway.ie

2 Insight SFI Research Centre for Data Analytics, Data Science Institute,
National University of Ireland, Galway, Galway, Ireland

Abstract. Scene graph generation aims to capture the semantic ele-
ments in images by modelling objects and their relationships in a struc-
tured manner, which are essential for visual understanding and reasoning
tasks including image captioning, visual question answering, multime-
dia event processing, visual storytelling and image retrieval. The exist-
ing scene graph generation approaches provide limited performance and
expressiveness for higher-level visual understanding and reasoning. This
challenge can be mitigated by leveraging commonsense knowledge, such
as related facts and background knowledge, about the semantic elements
in scene graphs. In this paper, we propose the infusion of diverse com-
monsense knowledge about the semantic elements in scene graphs to gen-
erate rich and expressive scene graphs using a heterogeneous knowledge
source that contains commonsense knowledge consolidated from seven
different knowledge bases. The graph embeddings of the object nodes
are used to leverage their structural patterns in the knowledge source to
compute similarity metrics for graph refinement and enrichment. We
performed experimental and comparative analysis on the benchmark
Visual Genome dataset, in which the proposed method achieved a higher
recall rate (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) as compared
to the existing state-of-the-art technique (R@K = 25.8, 33.3, 37.8 for
K = 20, 50, 100). The qualitative results of the proposed method in a
downstream task of image generation showed that more realistic images
are generated using the commonsense knowledge-based scene graphs.
These results depict the effectiveness of commonsense knowledge infu-
sion in improving the performance and expressiveness of scene graph
generation for visual understanding and reasoning tasks.

Keywords: scene graph · image representation · commonsense
knowledge · visual reasoning · image generation

This publication has emanated from research conducted with the financial support of
Science Foundation Ireland under Grant number 18/CRT/6223 and 12/RC/2289 P2.
For the purpose of Open Access, the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version arising from this submission.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 93–112, 2022.
https://doi.org/10.1007/978-3-031-06981-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_6&domain=pdf
http://orcid.org/0000-0003-4727-4722
http://orcid.org/0000-0001-5790-050X
http://orcid.org/0000-0001-8236-6433
https://doi.org/10.1007/978-3-031-06981-9_6

94 M. J. Khan et al.

1 Introduction

During the past few years, recent advances in deep learning techniques and
multi-modal approaches have helped in solving several challenging problems in
visual understanding tasks including object detection [57] and visual relationship
detection [14,32,35]. Numerous efforts have been made to effectively capture and
describe the image features and object relationships in a structured and explicit
way. In this direction, Scene Graph Generation (SGG) [3,46,48] has attracted
significant attention due to its capability to capture the detailed semantics of
visual scenes by modelling objects and their relationships in a structured man-
ner. Graph-based structured image representations like scene graphs are used
in a wide range of visual understanding tasks including image reconstruction
[11], image captioning [61], Visual Question Answering (VQA) [22,25], image
retrieval [55], visual storytelling [54] and multimedia event processing [5,20].
The performance of SGG is compromised by challenges including bias and anno-
tation issues in crowd-sourced datasets [7,23]. Several efforts have been made by
researchers in this field to address these challenges by making use of state-of-
the-art approaches, such as counterfactual analysis [48], self-supervised learning
[40] and linguistic supervision [62]. However, there is still a need for significant
improvement in the expressiveness, accuracy and robustness of SGG methods.

In addition to the objects and their relationships in scene graphs, higher-
level visual reasoning for the downstream tasks mentioned in the last paragraph
requires background information about the scene and its constituents to mimic the
cognitive ability of humans to use commonsense reasoning. Leveraging and rea-
soning with commonsense knowledge is quite challenging because of its implicit
nature; it is universally accepted and used by humans in everyday situations but
generally disregarded when we speak or write. Most of the existing SGG meth-
ods use datasets that contain large collections of images along with annotations of
objects, attributes, relationships, scene graphs, etc., such as, Visual Genome (VG)
[23] and VRD [31]. These datasets have limited or no explicit commonsense knowl-
edge, which limits the expressiveness of scene graphs and the higher-level reason-
ing capabilities in the downstream tasks unless commonsense knowledge is infused
from external sources. There are several publicly available sources [21,43,44,50]
that include different forms and notions of commonsense knowledge. Some con-
solidation efforts [9,17] have been made to unify the different sources into a global
commonsense knowledge source to jointly exploit their diverse knowledge and cov-
erage. These consolidated sources have been integrated and used in language pro-
cessing methods [33,58] for improving their robustness and expressiveness. The
consolidated commonsense knowledge sources have not been leveraged for visual
understanding and reasoning yet, however, their capability to provide rich and
diverse background information and relevant facts about the concepts in a scene
can help in improving the performance of SGG and providing rich and expressive
scene representations for downstream reasoning.

Figure 1 shows a motivating example of an image and its commonsense
knowledge-based scene graph representation. The scene graph of the image
contains the relationship triplets (woman, holding, racket) and (woman, on,

Expressive SGG Using Commonsense Knowledge Infusion 95

Fig. 1. A motivating example of a scene graph of an image with commonsense knowl-
edge infusion using CommonSense Knowledge Graph (CSKG). The scene graph (blue)
provides information about the objects and their pairwise relationships in the scene.
The relevant nodes and edges extracted from CSKG (green) complement and enrich
the scene graph by providing the necessary information about the possible spatial prox-
imity of objects relative to each other and any possible interactions between objects,
i.e. (woman, at, tennis court) and (woman, holding, racket), and more importantly the
background information and related facts, i.e. (woman, capableOf, playing tennis) and
(racket, usedFor, playing tennis), which allows higher-level reasoning to deduce “the
woman is playing tennis”. (Color figure online)

tennis court) representing the objects and their pairwise interactions. Though
it is easy and straightforward for us to infer that the woman is playing tennis,
it is challenging for machines to infer that without some external commonsense
knowledge. The relevant nodes and edges extracted from the CommonSense
Knowledge Graph (CSKG) [17] including (woman, capableOf, playing tennis)
and (racket, usedFor, playing tennis) provide the necessary background infor-
mation and facts for higher level reasoning. In this paper, we propose a com-
monsense knowledge-based SGG method that generates scene graph of an image
and infuses the background knowledge and relevant facts about the concepts in
the scene graph from CSKG [17], which is a large consolidated commonsense
knowledge source. Graph embeddings were leveraged to compute the similarity
of object nodes in the graph refinement and enrichment steps because similar
entities tend to have similar vector representations in the embedding space [38].
The commonsense knowledge complements and enriches the scene graph rela-
tionships, which improves the performance of SGG and the expressiveness of
scene graph representations. We evaluated the proposed method on the bench-
mark VG dataset and noted improvement of relationship prediction results for
SGG. The encouraging experimental results depict the potential of commonsense
knowledge in scene graph generation and its promising applications in visual
understanding and reasoning. The main contributions of this paper include:

1. We propose a commonsense knowledge-based scene graph generation app-
roach, which extracts background knowledge and relevant facts from

96 M. J. Khan et al.

commonsense knowledge sources based on graph embeddings and integrates
them in the scene graphs to generate rich and expressive scene graph represen-
tations of images. We employed a heterogeneous knowledge graph [17], con-
taining rich commonsense knowledge consolidated from seven diverse sources,
which has not been investigated for visual understanding and reasoning yet.

2. We performed experimental and comparative analysis (shown in Fig. 4, Fig. 5
and Table 2) on the benchmark Visual Genome dataset using the standard
metric, and showed that the proposed method achieved a higher recall rate
(R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) as compared to the existing
state-of-the-art technique (R@K = 25.8, 33.3, 37.8 for K = 20, 50, 100).

3. We employed image generation as a downstream task of scene graph genera-
tion and showed improved results of image generation from scene graphs after
commonsense knowledge infusion as shown in Fig. 6.

2 Related Work

2.1 Scene Graph Generation

Scene graph generation (SGG) is a challenging research problem and is actively
investigated by researchers in computer vision. In the compositional methods, the
subject, predicate and object are separately detected and aggregated later. Li et
al. [26] used detected objects in an image to generate separate region proposals
for subject, predicate and object; these region proposals are aggregated with
features from a deep neural network (DNN) to reach a triplet prediction. Such
methods are scalable, but they have very limited performance in the case of rare
or unseen relations. The visual phrase models for visual relation detection treat
relation triplets as a single entity. Sadeghi et al. [42] employed DNNs to predict
objects as well as visual phrase or triplets and then refined those predictions
by comparing them to other predictions in the image. Deep relational networks
are also used for visual relation detection, in which the DNN also leverages
the statistical dependency among objects and predicates [6]. The visual phrase
models are less sensitive to the diversity of visual relations as compared to the
compositional models, but they require a greater number of training examples
in datasets with a large vocabulary of objects and predicates.

The more recent scene graph generation and visual relationship detection
methods fuse visual and semantic embeddings in DNNs to detect visual rela-
tions on a large scale. Zhang et al. [67] extract visual features in three branches
each for the subject, predicate and object, with the predicate branch fusing its
features with the subject and object features at a later stage to leverage the
interactions between subject and object for relation detection. During learning,
features extracted from the text space are also embedded as labelling for the
visual features. In a similar approach with improved precision, Peyre et al. [39]
add a visual phrase embedding space during learning to enable analogical rea-
soning for predicting unseen relations and to improve robustness to appearance
variations of visual relations. Tang et al. [48] attempted to address the problem

Expressive SGG Using Commonsense Knowledge Infusion 97

of bias in SGG models due to the unbalanced distribution of relationships in
datasets by leveraging causal inference and total direct effect.

Most of the existing works focus on visual and linguistic patterns in images
while neglecting the background information and related facts about concepts
in images and the structural patterns of scene graph elements in commonsense
knowledge graphs, which have significant potential in understanding and inter-
pretation of visual concepts. Only a few recent works mentioned in the next
subsection explicitly leverage commonsense knowledge graphs for visual under-
standing and reasoning.

Table 1. Commonsense knowledge sources

Knowledge

source

Knowledge type Size Example

ConceptNet

[44]

Text-based knowledge

about everyday objects,

activities, relations, etc.

8M nodes, 36 relations

& 21M edges

(chair, used for, sitting)

Wikidata [50] General taxonomic

knowledge about in-

stances, concepts, rela-

tions etc.

75M objects, 1200 rela-

tions & 900M edges

(eating, subclass of, in-

gestion)

ATOMIC [43] Procedural knowledge

about pre/post condi-

tions of events

0.3M nodes, 9 relations

& 0.877M edges

(PersonX eating din-

ner, xEffect, satisfies

hunger)

Roget [21] Lexical knowledge about

words, relations, etc.

72k words, 2 relations

& 1.4M edges

(motorcycle, synonym,

bike)

FrameNet [2] Lexical knowledge about

frames, roles, relations,

etc.

1.2k frames, 12k roles,

1.9k edges & 13k lexical

units

(cooking creation, has

frame element, pro-

duced food)

Wordnet [36] Lexical knowledge about

words, concepts, rela-

tions, etc.

0.155M words, 10 rela-

tions & 0.176M synsets

(car, has part, air bag)

Visual

Genome

[23]

Visual knowledge about

objects, relations and at-

tributes in images

108k images, 3.8M

nodes, 42k relations,

2.3M edges & 2.8M

attributes

(food, on, plate),

(woman, looking at,

sandwich)

CSKG [17] Consolidated common-

sense knowledge from the

above seven sources

2.16M nodes, 58 rela-

tions, 6M edges

(racket, used for, play-

ing tennis)

2.2 Commonsense Knowledge Sources and Infusion

The acquisition and representation of commonsense knowledge and reasoning
with it have been one of the major challenges in artificial intelligence since the
1960s s [34], which has led the research community to develop and curate several
knowledge sources containing commonsense knowledge in different forms and

98 M. J. Khan et al.

contexts [16]. Some of the popular sources of commonsense knowledge along
with their details are presented in Table 1. Some of these sources, especially
ConceptNet [44], have been used in a few visual understanding and reasoning
techniques. These techniques either extract relevant facts from a source and
embed them in the model at a certain stage [11,37,45,66], or use graph-based
message passing to embed the structural information from the source in the
representations of the model [4,24,56,64]. Chen et al. [4] and Zellers et al. [66]
incorporated commonsense knowledge from dataset statistics by employing pre-
computed frequency priors in their predicate classification models to improve
the performance of SGG. Wan et al. [51] proposed the use of a commonsense
knowledge graph along with the visual features to enhance predicate detection
for detected objects in visual relation detection. Gu et al. [11] retrieve relevant
facts from a single source, i.e. ConceptNet [44] for each object, encode the facts
into its features using recurrent neural networks and an attention mechanism
in SGG. Kan et al. [19] infused commonsense knowledge from ConceptNet for
zero-shot relationship prediction in SGG. The existing approaches mostly infuse
triplets from the knowledge sources and ignore the rich structural information
beyond individual triplets.

The knowledge sources are rich and diverse and cover different domains and
contexts of commonsense knowledge, which can be consolidated to provide a rich
and heterogeneous source of commonsense knowledge and to increase its impact
in the downstream reasoning tasks. Zareian et al. [63] proposed GB-Net, which
links the entities and edges in a scene graph to the corresponding entities and
edges in a commonsense graph extracted from VG, WordNet and ConceptNet,
and iteratively refine the scene graph using graph neural network-based message
passing. Guo et al. [12] employed an instance relation transformer to extract rela-
tional and commonsense knowledge from VG and ConceptNet for SGG. These
are the only SGG approaches that leverage multiple knowledge sources, while a
subset [53] of DBpedia, ConceptNet and WebChild containing knowledge about
visual concepts has been used in VQA [30,56]. The CommonSense Knowledge
Graph (CSKG) [17] is currently the latest and largest consolidated source that
integrates commonsense knowledge from the seven diverse and disjoint sources,
including ConceptNet [44], Wikidata [50], ATOMIC [43], VG [23], Wordnet [36],
Roget [21] and FrameNet [2]. Ma et al. [33] employed CSKG in language mod-
els and achieved the best performance in commonsense question answering by
utilizing the diverse relevant knowledge from CSKG and aligning the knowledge
with the task. To the best of our knowledge, the use and potential of CSKG have
not yet been explored for visual understanding and reasoning tasks.

The knowledge-infusion methods also leverage knowledge graph embeddings,
which are widely adopted in the vector representation of entities and relation-
ships in knowledge graphs [38]. The knowledge graph embeddings capture the
latent properties of the semantics in the KG, due to which similar entities are
represented with similar vectors. The similarity of entities in the vector space

Expressive SGG Using Commonsense Knowledge Infusion 99

is interpreted using vector similarity measures, such as cosine similarity. Knowl-
edge graph embeddings have been used in several link prediction tasks including
visual relationship detection [1] and recommender systems [52].

3 Proposed Method

The proposed commonsense knowledge-based scene graph generation method
employs a DNN-based approach for detecting objects and their pairwise rela-
tionships in an image to generate its scene graph, which is followed by common-
sense knowledge infusion using CSKG [17] for the enrichment of scene graph
with background knowledge and relevant facts in the form of triplets. Figure 2
provides a detailed overview of the proposed method. The proposed method is
built on the SGG toolkit [47].

Following the trend in recent SGG methods [48,49,59,66], we use Faster
RCNN [41] for detecting objects in the images. We use ResNeXt-101-FPN archi-
tecture [29] as the backbone CNN for Faster RCNN. The Faster RCNN takes
an image I as input and provides the object bounding boxes b and object class
labels l of the n detected objects. The feature maps F are also extracted from
the underlying CNN in the Faster RCNN.

{b, l, F} = FasterRCNN(I) (1)

After detecting the objects and extracting the feature maps, the relationships
between object pairs are predicted. RoIAlign [13] is applied to the image regions
I[b], which provides the region features a of each detected object.

a = RoIAlign(I[b]) (2)

For all n objects, Bi-directional Long Short Term Memory (Bi-LSTM) layers
[66] are used to encode a, I[b] and l as the individual visual context features vi.

v = BiLSTM(a, I[b], l) (3)

The individual visual context features of objects are encoded by another set
of Bi-LSTM layers and concatenated into combined pairwise object features
vij |i �= j; i, j = 1, ..., n.

vij = concat(BiLSTM(vi), BiLSTM(vj)) (4)

In the same way, the pairwise object labels (li, lj) are encoded through an
embedding layer to compute the language prior pij . The contextual union fea-
tures uij are extracted by applying RoIAlign to the union regions of pairwise
objects in F .

uij = conv(RoIAlign(F [bi ∪ bj])) (5)

100 M. J. Khan et al.

Fig. 2. The proposed commonsense knowledge-based scene graph generation method

Finally, all the three types of features representing the object pairs are fused
using a summation feature fusion function [8] followed by a softmax function to
predict the relationship class labels rij and the relationship class probabilities
cij .

{rij , cij} = softmax(SUM(vij , uij , pij)) (6)

The scene graph S is formed by linking the pairwise objects and relationships
into a graph structure.

S = {li, rij , lj} (7)

Expressive SGG Using Commonsense Knowledge Infusion 101

Algorithm 1: Graph refinement
Input: S, b
Output: Sr

1 Sr = []
2 for each triplet ∈ S do
3 e1 = cskg emb(triplet[node1])
4 e2 = cskg emb(triplet[node2])
5 b1 = b[triplet[node1]]
6 b2 = b[triplet[node2]]
7 metricsim = cosine sim(e1, e2)
8 metricIoU = compute IoU(b1, b2)
9 if metricsim � τsim ∧ metricIoU � τiou then

10 Sr.append(triplet)

Algorithm 2: Graph enrichment
Input: S, Gcskg

Output: Se

1 Se = S
2 for each node ∈ S do
3 e1 = cskg emb(node)
4 tripletscskg = query(Gcskg, node)
5 tripletscskg = preprocess(tripletscskg)
6 for each triplet ∈ tripletscskg do
7 if node == triplet[node1] then
8 e2 = cskg emb(triplet[node2])

9 else
10 e2 = cskg emb(triplet[node1])

11 s = cosine sim(e1, e2)
12 if s � τ ∧ triplet /∈ Se then
13 Se.append(triplet)

14 Se = postprocess(Se)

In order to infuse relevant triplets representing background knowledge and
related facts from the CSKG [17], we parse the scene graph to a format compati-
ble with the CSKG data model. Since similar entities tend to have similar vector
representations in the embedding space [38], we leverage the graph embeddings
to compute the similarity of nodes for various operations in the graph refinement
and enrichment steps. The scene graph predictions are first refined using Algo-
rithm1 to discard any redundant or irrelevant predictions. The predicted objects
with highly overlapping bounding boxes, similar names, or the same structural
pattern in CSKG indicate the possibility of multiple redundant predictions of
the same object. Such prediction errors are minimized at this stage by discarding

102 M. J. Khan et al.

the object nodes that have a high intersection over union (IoU) of its bounding
box or a high similarity score of CSKG embedding with another object node.

We use the Knowledge Graph Toolkit (KGTK) [15] to query CSKG and
extract triplets from CSKG that include a subject or object node in the pre-
dicted scene graph. After extraction, any duplicate triplets and the triplets with
both nodes similar (e.g. (person, synonym, person) and (chair, similarTo, chair))
are discarded in the preprocessing step because they do not provide any useful
information. Based on the embedding similarity of the object nodes and the
extracted nodes, the extracted nodes with reasonable structural similarity with
the corresponding object nodes are linked via extracted edges in the scene graph.
If an extracted node is already present in the scene graph, the new edge is linked
to the existing node, otherwise, the new node is created and linked in the scene
graph. In postprocessing, the format of the enriched scene graph is adjusted
according to the original scene graph representation so that the enriched scene
graphs can be evaluated for performance comparison or can be used in a down-
stream reasoning task. Since the predicates integrated from VG are expressed
as “LocatedNear” edge type in the CSKG, we replaced the predicates in triplets
extracted from the VG source in CSKG with the most frequent predicate type
between the nodes in the original VG dataset. This post-processing step uses sta-
tistical prior knowledge from VG about the possible predicates between a pair of
objects (nodes) in relationships to further interpret the relationship predicate.
Algorithm 2 gives an overview of the steps in extracting commonsense knowl-
edge from CSKG and integrating it into the scene graph. The thresholds in both
algorithms were set to 0.5 for the experimental evaluation. These thresholds
determine the trade-off between the number and the accuracy of detected and
infused relationships.

4 Experiments and Results

4.1 Experimental Setup

Dataset. We used the commonly used subset [59] of the Visual Genome dataset
containing the most frequent 50 predicate classes and 150 object classes for
training Faster RCNN, SGG model and image generation network. 70% of the
training samples were used for training, out of which 5000 samples were used for
validation during training. The remaining 30% samples were used for evaluation.
The longer dimension of each image was resized to 1024 pixels and the shorter
dimension is adjusted accordingly. We use the pre-trained CSKG embeddings [17]
for computing the similarity of nodes in the graph refinement and enrichment
steps of the proposed approach.

Evaluation Protocol. We used the cross-entropy loss to evaluate the training
performance of the Faster RCNN and SGG models. Mean average precision
(mAP) [10] was used to evaluate the object detection performance of Faster
RCNN. For evaluating the performance of SGG before and after commonsense

Expressive SGG Using Commonsense Knowledge Infusion 103

knowledge infusion, we used the most widely used metric, Recall@K (R@K) [31],
which is defined as the fraction of times the correct relationship is predicted in
the top K confident relationship predictions. We compared the performance of
the proposed method and recent SGG methods using the standard metric and
benchmark dataset. We also analysed some qualitative results of the proposed
method. Additionally, we employed an existing image generation method [18] as
a downstream task of scene graph generation to further evaluate the proposed
method by comparing the results of image generation from scene graphs before
and after commonsense knowledge infusion.

Fig. 3. Training progress plots along with periodic validation checks of the Faster
RCNN and SGG models.

Fig. 4. Comparison of Recall@K of SGG before and after commonsense knowledge
infusion.

104 M. J. Khan et al.

Table 2. Comparison of the proposed method with the existing state-of-the-art SGG
approaches in terms of Recall@K (R@K) on the Visual Genome dataset

SGG method Approach Commonsense

knowledge

source

R@20

(%)

R@50

(%)

R@100

(%)

Proposed

Method

(SGG+CSKG)

Scene graph enrichment

via commonsense

knowledge infusion from

different sources

CSKG [17] 29.89 35.4 39.12

GLAT [65] Transformer-based GNN

for visual commonsense

reasoning

– – – 38.8

Unbiased SGG

[48]

Causal inference and

total direct effect

– 25.8 33.3 37.8

Proposed

Method (SGG

Only)

Scene graph generation

based on fusion of visual

(region and object) and

text features

– 26.1 32.7 36.5

GB-Net [63] Message passing between

scene graphs and

commonsense graph

ConceptNet [44],

WordNet [36],

Visual Genome

[23]

– 29.4 35.1

VCTree [49] Dynamic tree structures

and Bi-dir TreeLSTM

– 22 27.9 31.3

IRT-MSK [12] Instance Relation

Transformer with

Multiple Structured

Knowledge

ConceptNet [44],

Visual Genome

[23]

22.2 27.2 31.2

Neural Motifs

[66]

Stacked Motif Networks – 21.7 27.3 30.5

KERN [4] Knowledge-embedded

routing network

– – 27.1 29.8

COACHER [19] Zero-shot relationship

prediction via

commonsense infusion

ConceptNet [44] 13.42 19.31 22.22

KB-GAN [11] Commonsense and

reconstruction-based

object and phrase

refinement

ConceptNet [44] – 13.65 17.57

FactorizableNet

[27]

Clustering-based graph

factorization

– – 13.06 16.47

MSDN [28] Scene description at

object, phrase and

caption levels

– – 10.72 14.22

Graph RCNN

[60]

RPN followed by

Attention GCN

– – 11.4 13.7

IMP [59] Object and relationship

feature refinement via

message passing

– – 3.44 4.24

Expressive SGG Using Commonsense Knowledge Infusion 105

4.2 Results

Training and Evaluation of Models. We trained the Faster RCNN model
on the images and groundtruth annotations of objects in the Visual Genome
dataset with Stochastic Gradient Descent (SGD) as an optimizer, batch size
of 2 and initial learning rate of 0.002 which was decayed by a factor of 10
after 60k and 80k iterations. We froze the trained Faster RCNN and trained
the whole SGG model on the images and groundtruth annotations of objects
and relationships in the Visual Genome dataset using SGD as an optimizer,
batch size of 4 and initial learning rate of 0.04 which was decayed by a factor
of 10 twice during training when the validation performance stops improving
noticeably. The plots of training loss and validation mAP for object detection
and training loss and R@K for scene graph detection are shown in Fig. 3, which
show a smooth convergence of the models during the training process. The Faster
RCNN model achieved 29.19mAP (using 0.5 IoU threshold), while the SGG
model achieved R@K = 26.1, 32.7, 36.5 for K = 20, 50, 100 on the test set. The
training and evaluation of the SGG model was performed in the Scene Graph
Detection (SGDet) setting.

Evaluation After Commonsense Knowledge Infusion. We repeated test-
ing of the scene graph generation method after adding the proposed com-
monsense knowledge infusion steps and achieved R@K = 29.89, 35.4, 39.12 for
K = 20, 50, 100 on the test set, which is considerably higher than the R@K
values achieved for the scene graph generation without commonsense knowledge
infusion steps, as shown in Fig. 4. The diverse commonsense knowledge inte-
grated into the scene graphs from CSKG includes visual cues about the spatial
proximity of objects in the scene relative to each other and physical interactions
between the objects from the knowledge base of Visual Genome. This helps in
mitigating some missed or wrong predictions made during scene graph genera-
tion and improves the recall rate for relationship prediction.

Comparative Analysis. A detailed comparative analysis of the proposed app-
roach with the existing scene graph generation methods is presented in Table 2.
The proposed method incorporates the latest, largest and most diverse com-
monsense knowledge source from a consolidation of 7 distinct sources, and thus
achieves higher recall score (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) for
SGG on the benchmark Visual Genome dataset as compared to the state-of-the-
art technique (R@K = 25.8, 33.3, 37.8 for K = 20, 50, 100).

Qualitative Results. Some qualitative results of the proposed method on
Visual Genome images are shown in Fig. 5. In addition to the objects and their
pairwise visual relationships, the commonsense knowledge-based scene graphs
contain the background facts about the underlying concepts, additional knowl-
edge about the spatial proximity of objects in the scene relative to each other,
and possible physical interactions between the objects. The useful background

106 M. J. Khan et al.

facts include (person, requires, eating) and (food, usedFor, eating) in Fig. 5(a).
The commonsense relationships about spatial proximity such as (tree, on, street)
in Fig. 5(b) and the commonsense relationships about object interactions such
as (person, holding, surfboard) in Fig. 5(c) complement the scene graph repre-
sentations.

Fig. 5. Some qualitative results of the proposed commonsense knowledge-based scene
graph generation method.

Downstream Task. The rich and heterogeneous scene representations gener-
ated by the proposed method can significantly improve the downstream visual
reasoning tasks including image captioning, image generation, VQA, image
retrieval, visual storytelling and multimedia event processing.

Expressive SGG Using Commonsense Knowledge Infusion 107

Fig. 6. Results of image generation using scene graphs generated by the proposed
method.

We employed an existing image generation method [18] as a downstream task
of scene graph generation to further evaluate the proposed method. We trained
the image generation network on the Visual Genome subset that was used to
train the scene graph generation model. The trained network was used to gener-
ate images from scene graphs before and after commonsense knowledge infusion.
The results of image generation from scene graphs are presented in Fig. 6, which
shows that the commonsense knowledge-based scene graphs generate more real-
istic images in which the semantic concepts in the input scene graph can be more
clearly observed.

108 M. J. Khan et al.

5 Conclusion

The use of commonsense knowledge for expressive and accurate visual under-
standing is inevitable due to its potential in complementing scene representa-
tions by providing necessary information for higher-level reasoning. In this paper,
we propose a commonsense knowledge-based scene graph generation approach,
which enriches the scene graph of an image with background knowledge and rel-
evant facts extracted from CSKG, which is the latest, largest, and most diverse
commonsense knowledge source. In the experimental and comparative analy-
sis on the benchmark Visual Genome dataset, the proposed method achieved
a higher recall rate (R@K = 29.89, 35.4, 39.12 for K = 20, 50, 100) as com-
pared to the existing state-of-the-art technique (R@K = 25.8, 33.3, 37.8 for
K = 20, 50, 100). We further evaluated the proposed method by employing image
generation as a downstream task and showed improved qualitative results of
image generation from scene graphs after commonsense knowledge infusion. The
promising results depict the effectiveness of the rich and heterogeneous common-
sense knowledge-based scene graph representations in improving the expressive-
ness and performance of visual reasoning tasks. In future work, we will inves-
tigate zero-shot and few-shot SGG using consolidated commonsense knowledge
to reduce computational costs and requirement of training data and to allow
the SGG model to predict unseen or rare object and predicate categories. We
will also evaluate the efficacy of the proposed method in downstream reasoning
tasks including multimedia event processing, image captioning, visual question
answering and image retrieval.

References

1. Baier, S., Ma, Y., Tresp, V.: Improving visual relationship detection using semantic
modeling of scene descriptions. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS,
vol. 10587, pp. 53–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 4

2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley framenet project. In: 36th
Annual Meeting of the Association for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics, vol. 1, pp. 86–90 (1998)

3. Chang, X., Ren, P., Xu, P., Li, Z., Chen, X., Hauptmann, A.: Scene graphs: a
survey of generations and applications. arXiv preprint arXiv:2104.01111 (2021)

4. Chen, T., Yu, W., Chen, R., Lin, L.: Knowledge-embedded routing network for
scene graph generation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6163–6171 (2019)

5. Curry, E., Salwala, D., Dhingra, P., Pontes, F.A., Yadav, P.: Multimodal event
processing: a neural-symbolic paradigm for the internet of multimedia things. IEEE
Internet of Things J. https://doi.org/10.1109/JIOT.2022.3143171

6. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3076–3086 (2017)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

https://doi.org/10.1007/978-3-319-68288-4_4
https://doi.org/10.1007/978-3-319-68288-4_4
http://arxiv.org/abs/2104.01111
https://doi.org/10.1109/JIOT.2022.3143171

Expressive SGG Using Commonsense Knowledge Infusion 109

8. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network
fusion for video action recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

9. Gangemi, A., Alam, M., Asprino, L., Presutti, V., Recupero, D.R.: Framester: a
wide coverage linguistic linked data hub. In: Blomqvist, E., Ciancarini, P., Poggi,
F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 239–254. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49004-5 16

10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

11. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with
external knowledge and image reconstruction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1969–1978 (2019)

12. Guo, Y., Song, J., Gao, L., Shen, H.T.: One-shot scene graph generation. In: Pro-
ceedings of the 28th ACM International Conference on Multimedia, pp. 3090–3098
(2020)

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

14. Hung, Z.S., Mallya, A., Lazebnik, S.: Contextual translation embedding for visual
relationship detection and scene graph generation. IEEE Trans. Pattern Anal.
Mach. Intell. 43, 3820–3832 (2020)

15. Ilievski, F., et al.: KGTK: a toolkit for large knowledge graph manipulation and
analysis. In: Pan, J.Z., et al. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 278–293.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8 18

16. Ilievski, F., Oltramari, A., Ma, K., Zhang, B., McGuinness, D.L., Szekely, P.:
Dimensions of commonsense knowledge. arXiv preprint arXiv:2101.04640 (2021)

17. Ilievski, F., Szekely, P., Zhang, B.: CSKG: the commonsense knowledge graph. In:
Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 680–696. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77385-4 41

18. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1219–1228 (2018)

19. Kan, X., Cui, H., Yang, C.: Zero-shot scene graph relation prediction through
commonsense knowledge integration. In: Oliver, N., Pérez-Cruz, F., Kramer, S.,
Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp.
466–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7 29

20. Khan, M.J., Curry, E.: Neuro-symbolic visual reasoning for multimedia event pro-
cessing: overview, prospects and challenges. In: Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge Management (CIKM 2020)
Workshops (2020)

21. Kipfer, B.: Roget’s 21st Century Thesaurus in Dictionary form, 3rd edn. The Philip
Lief Group, New York (2005)

22. Koner, R., Li, H., Hildebrandt, M., Das, D., Tresp, V., Günnemann, S.: Graphhop-
per: multi-hop scene graph reasoning for visual question answering. In: Hotho, A.,
et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 111–127. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88361-4 7

23. Krishna, R., et al.: Visual genome: connecting language and vision using crowd-
sourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

24. Lee, C.W., Fang, W., Yeh, C.K., Wang, Y.C.F.: Multi-label zero-shot learning
with structured knowledge graphs. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)

https://doi.org/10.1007/978-3-319-49004-5_16
https://doi.org/10.1007/978-3-030-62466-8_18
http://arxiv.org/abs/2101.04640
https://doi.org/10.1007/978-3-030-77385-4_41
https://doi.org/10.1007/978-3-030-86520-7_29
https://doi.org/10.1007/978-3-030-88361-4_7

110 M. J. Khan et al.

25. Lee, S., Kim, J.W., Oh, Y., Jeon, J.H.: Visual question answering over scene graph.
In: 2019 First International Conference on Graph Computing (GC), pp. 45–50.
IEEE (2019)

26. Li, Y., Ouyang, W., Wang, X., Tang, X.: VIP-CNN: visual phrase guided con-
volutional neural network. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1347–1356 (2017)

27. Li, Y., Ouyang, W., Zhou, B., Shi, J., Zhang, C., Wang, X.: Factorizable net: an
efficient subgraph-based framework for scene graph generation. In: Proceedings of
the European Conference on Computer Vision (ECCV), pp. 335–351 (2018)

28. Li, Y., Ouyang, W., Zhou, B., Wang, K., Wang, X.: Scene graph generation from
objects, phrases and region captions. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1261–1270 (2017)

29. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125 (2017)

30. Liu, L., Wang, M., He, X., Qing, L., Chen, H.: Fact-based visual question answering
via dual-process system. Knowl.-Based Syst. 107650 (2021)

31. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with
language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46448-0 51

32. Ma, C., Sun, L., Zhong, Z., Huo, Q.: ReLaText: exploiting visual relationships for
arbitrary-shaped scene text detection with graph convolutional networks. Pattern
Recogn. 111, 107684 (2021)

33. Ma, K., Ilievski, F., Francis, J., Bisk, Y., Nyberg, E., Oltramari, A.: Knowledge-
driven data construction for zero-shot evaluation in commonsense question answer-
ing. In: 35th AAAI Conference on Artificial Intelligence (2021)

34. McCarthy, J., et al.: Programs with Common Sense. RLE and MIT Computation
Center (1960)

35. Mi, L., Chen, Z.: Hierarchical graph attention network for visual relationship detec-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 13886–13895 (2020)

36. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

37. Narasimhan, M., Schwing, A.G.: Straight to the facts: learning knowledge base
retrieval for factual visual question answering. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 451–468 (2018)

38. Palmonari, M., Minervini, P.: Knowledge graph embeddings and explainable AI.
In: Knowledge Graphs for Explainable Artificial Intelligence: Foundations, Appli-
cations and Challenges, pp. 49–72. IOS Press, Amsterdam (2020)

39. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting unseen visual relations using
analogies. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1981–1990 (2019)

40. Prakash, A., et al.: Self-supervised real-to-sim scene generation. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 16044–16054
(2021)

41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2016)

42. Sadeghi, M.A., Farhadi, A.: Recognition using visual phrases. In: CVPR 2011, pp.
1745–1752. IEEE (2011)

https://doi.org/10.1007/978-3-319-46448-0_51
https://doi.org/10.1007/978-3-319-46448-0_51

Expressive SGG Using Commonsense Knowledge Infusion 111

43. Sap, M., et al.: Atomic: an atlas of machine commonsense for if-then reasoning.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp.
3027–3035 (2019)

44. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of
general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence,
pp. 4444–4451 (2017)

45. Su, Z., Zhu, C., Dong, Y., Cai, D., Chen, Y., Li, J.: Learning visual knowledge
memory networks for visual question answering. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 7736–7745 (2018)

46. Suhail, M., et al.: Energy-based learning for scene graph generation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13936–13945 (2021)

47. Tang, K.: A scene graph generation codebase in pytorch (2020). https://github.
com/KaihuaTang/Scene-Graph-Benchmark.pytorch

48. Tang, K., Niu, Y., Huang, J., Shi, J., Zhang, H.: Unbiased scene graph generation
from biased training. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3716–3725 (2020)

49. Tang, K., Zhang, H., Wu, B., Luo, W., Liu, W.: Learning to compose dynamic
tree structures for visual contexts. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6619–6628 (2019)

50. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

51. Wan, H., Ou, J., Wang, B., Du, J., Pan, J.Z., Zeng, J.: Iterative visual relationship
detection via commonsense knowledge graph. In: Wang, X., Lisi, F.A., Xiao, G.,
Botoeva, E. (eds.) JIST 2019. LNCS, vol. 12032, pp. 210–225. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41407-8 14

52. Wang, H., Zhang, F., Xie, X., Guo, M.: DKN: deep knowledge-aware network for
news recommendation. In: Proceedings of the 2018 World Wide Web Conference,
pp. 1835–1844 (2018)

53. Wang, P., Wu, Q., Shen, C., Dick, A., Van Den Hengel, A.: FVQA: fact-based visual
question answering. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2413–2427
(2017)

54. Wang, R., Wei, Z., Li, P., Zhang, Q., Huang, X.: Storytelling from an image stream
using scene graphs. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, pp. 9185–9192 (2020)

55. Wang, S., Wang, R., Yao, Z., Shan, S., Chen, X.: Cross-modal scene graph match-
ing for relationship-aware image-text retrieval. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1508–1517 (2020)

56. Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and
knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6857–6866 (2018)

57. Wu, X., Sahoo, D., Hoi, S.C.: Recent advances in deep learning for object detection.
Neurocomputing (2020)

58. Xie, Y., Pu, P.: How commonsense knowledge helps with natural language tasks:
a survey of recent resources and methodologies. arXiv preprint arXiv:2108.04674
(2021)

59. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative mes-
sage passing. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5410–5419 (2017)

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://doi.org/10.1007/978-3-030-41407-8_14
http://arxiv.org/abs/2108.04674

112 M. J. Khan et al.

60. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph gen-
eration. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 670–685 (2018)

61. Yang, X., Zhang, H., Cai, J.: Auto-encoding and distilling scene graphs for image
captioning. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2313–2327 (2022).
https://doi.org/10.1109/TPAMI.2020.3042192

62. Ye, K., Kovashka, A.: Linguistic structures as weak supervision for visual scene
graph generation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8289–8299, June 2021

63. Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate
scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV
2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-58592-1 36

64. Zareian, A., Karaman, S., Chang, S.F.: Weakly supervised visual semantic parsing.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3736–3745 (2020)

65. Zareian, A., Wang, Z., You, H., Chang, S.-F.: Learning visual commonsense for
robust scene graph generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-
M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 642–657. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58592-1 38

66. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing
with global context. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5831–5840 (2018)

67. Zhang, J., Kalantidis, Y., Rohrbach, M., Paluri, M., Elgammal, A., Elhoseiny,
M.: Large-scale visual relationship understanding. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 9185–9194 (2019)

https://doi.org/10.1109/TPAMI.2020.3042192
https://doi.org/10.1007/978-3-030-58592-1_36
https://doi.org/10.1007/978-3-030-58592-1_36
https://doi.org/10.1007/978-3-030-58592-1_38

Impact of the Characteristics
of Multi-source Entity Matching Tasks
on the Performance of Active Learning

Methods

Anna Primpeli(B) and Christian Bizer

Data and Web Science Group, University of Mannheim, Mannheim, Germany
{anna,chris}@informatik.uni-mannheim.de

Abstract. Entity matching aims at identifying records in different data
sources that describe the same real-world entity. Entity matching is the
foundational technique for setting RDF links in the context of the Web of
Data. By applying active learning methods for training entity matchers,
it is possible to reduce the human labeling effort by selecting informa-
tive record pairs for labeling. Although active learning has been exten-
sively studied for the two-data source matching case, it was only recently
applied for the task of matching records in multi-source settings, such
as the Web of Data. A multi-source matching task has certain inherent
characteristics which do not apply for two-source matching tasks and
which can be exploited by the active learning query strategy to further
reduce the labeling effort. In this paper, we propose a set of profiling
dimensions which capture these inherent characteristics of multi-source
matching tasks and study their impact on the performance of different
active learning methods for training entity matchers. To enable our anal-
ysis, we develop ALMSERgen, a multi-source matching task generator
and curate a continuum of 252 matching tasks along the suggested profil-
ing dimensions. We use the generated as well as five benchmark tasks to
compare the performance of three query strategies: a committee-based
strategy, a graph-based strategy, and a strategy that exploits group-
ing signals. Our results show that graph signals are relevant for multi-
source matching tasks involving a large amount of records describing the
same-real world entities with heterogeneous attribute values while using
grouping signals is beneficial if there exists a small number of groups of
matching tasks sharing the same underlying patterns.

Keywords: Entity Resolution · Active Learning · Multi-Source Entity
Matching · Matching Task Profiling

1 Introduction

Entity matching (EM), also known as entity resolution, record linkage, and data
deduplication, is the task of identifying records in one or more sources that refer
to the same real-world entity [4,5]. EM is often treated as a supervised binary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 113–129, 2022.
https://doi.org/10.1007/978-3-031-06981-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_7&domain=pdf
http://orcid.org/0000-0002-1783-2482
http://orcid.org/0000-0003-2367-0237
https://doi.org/10.1007/978-3-031-06981-9_7

114 A. Primpeli and C. Bizer

classification problem for which a labeled set of matching and non-matching
record pairs is used for training [5,6,8]. Manually labeling training sets is expen-
sive. Active learning is a supervised learning paradigm that aims at reducing
the labeling effort by including the human annotator into the learning loop and
iteratively selecting a small informative subset for labeling [29]. The informative
labeled subset is used for training a classification model, to which we will refer
to as learner in the rest of the paper.

Active learning has been extensively researched for matching records between
two sources [3,22,26] while it has been barely applied for the task of matching
records between multiple data sources [11,25]. Multi-source matching scenarios
frequently appear in the context of link discovery [21] for the Web of Data [9].
Multi-source EM tasks have certain inherent characteristics which are different
from the two-source EM tasks and can be exploited as signals by active learning
methods to further reduce the labeling effort [25].

To demonstrate this, we use the example of Fig. 1. The example multi-source
EM task comprises four data sources which contain records describing mobile
phones (Fig. 1a). Combining pairwise the four data sources results in six two-
source EM tasks (Fig. 1b). Given the overlap of entities among the data sources,
the multi-source EM task can be viewed as a correspondence graph in which
edges denote matches (Fig. 1c). Exploiting graph signals, such as graph transi-
tivity, has already been shown to improve the performance of active learning
methods by discovering potentially false negative and false positive record pairs
among the predictions of the learner [25]. For example, if the learner’s predictions
for the record pairs in Fig. 1c are A1-B1:match, A1-D1:match, and D1-B1:non-
match, considering graph transitivity and selecting the pair D1-B1 for annotation
leads to the discovery of the pair D1-B1 as a false negative prediction.

Given the different attribute values of the phone records, different groups of
two-source EM tasks with similar matching patterns arise (Fig. 1d). We consider
a matching pattern as a disjunction of conjunctions of similarity-based features
and threshold values. Exploiting the grouping signals during active learning can
lead to the selection of more informative record pairs for labeling by, for example,
annotating only representative pairs from each group.

However, the degree of graph and grouping signals may vary across different
multi-source tasks and is highly dependent on the profile of the data sources to
be matched. In our work, we explore the impact of the profiling characteristics
of multi-source EM tasks on the performance of active learning methods which
exploit different signals for selecting informative record pairs for labeling. To
do so, we first propose a set of profiling dimensions for describing multi-source
EM tasks. To enable our analysis, we develop ALMSERgen, a multi-source EM
task generator, and generate a continuum of 252 multi-source EM tasks along
the suggested dimensions. We evaluate the following three active learning query
strategies on the generated tasks: 1.HeALER: a state-of-the-art committee-based
query strategy [3], 2. ALMSER: a graph-based query strategy [25], and 3. ALM-
SERgroup: a newly introduced variation of the ALMSER query strategy which
exploits grouping signals. By analyzing our evaluation results, we identify the
best performing active learning query strategies for groups of multi-source EM

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 115

(a) Data sources (b) Two-source tasks

(c) Correspondence graph

(d) Groups of tasks

Fig. 1. Example of a multi-source EM task.

tasks sharing the same characteristics. Finally, we confirm the findings of our
experimental analysis using five benchmark tasks from the related work.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work on active learning for two-source and multi-source matching, as well as on
matching task generators. Section 3 introduces the set of dimensions for profiling
multi-source matching tasks. Section 4 presents the multi-source task generator
ALMSERgen which we use for generating a continuum of multi-source matching
tasks. In Sect. 5, we present the experimental setup and results of our analysis
on both the generated and the benchmark tasks. Finally, Sect. 6 concludes our
paper and summarizes our findings.

2 Related Work

Entity matching (EM) is a central prerequisite for integrating data from multi-
ple sources [4,5,23] as well as for setting RDF links in the context of the Web
of Data [9,21]. There exists a large body of research on supervised and unsu-
pervised multi-source EM [2,27,30], while active learning has been hardly used
in this context [11,25]. Profiling EM tasks [24] and comparing the performance
of different matchers in passive [1,5,15,17] and active learning settings [18] has
been thoroughly studied for the two-source matching scenario. To allow a fair
comparison, a large number of either benchmark [17,18,24] or generated EM
tasks [12,28,33] are used for evaluation. However, to the best of our knowledge,
there exists no work on studying the impact of the profile of multi-source EM
tasks on the performance of different active learning methods.

Data Generators for EM. There exist several data generators for curating
EM tasks for Linked Data [7,12,28] and which have been used for evaluating link
discovery frameworks [1]. Such data generators produce EM tasks with varying

116 A. Primpeli and C. Bizer

degrees of difficulty considering a set of pre-defined dimensions. Hildebrandt et
al. [10] develop a data pollution framework for modifying large-scale two-source
EM tasks. All of the above frameworks inject value errors, such as token or
word modification and deletion as part of the generation or pollution pipeline.
However, existing data generators do not consider multi-source EM task-related
desiderata which we cover in our work.

Active Learning for EM. There is a large body of research on active learning
for two-source EM [3,13,14,16], with recent work turning the focus to deep learn-
ing [14,20]. Active deep learning-based methods rely on transfer learning [14] or
large randomly sampled sets [20] for model initialization and assume a pre-
labeled development set for hyperparameter optimization [14,20]. Contrary to
these methods, we evaluate and compare the performance of active learning
methods that rely on symbolic features and traditional classification models,
involve less annotation effort, and do not rely on a pre-labeled set for model
initialization and optimization.

Meduri et al. [18] compare various symbolic active learning methods for the
two-source EM task and show that random forest classifiers with committee-
and margin-based query strategies achieve fast convergence and close to passive
learning results. However, using a margin-based query strategy is shown to sig-
nificantly underperform the committee-based strategy HeALER [3] in the case
of multi-source EM tasks [25]. In our recent work [25], we proposed ALMSER,
an active learning method for multi-source EM which exploits graph signals for
boosting the query strategy and training the learner [25]. The evaluation results
on five multi-source EM tasks showed that combining both graph-boosted com-
ponents of ALMSER outperforms HeALER while exploiting the graph signals
only as part of the query strategy does not perform better than HeALER for all
tasks. In our current work, we analyze how the profiling characteristics of a multi-
source EM task affect the performance of different query strategies, including
the strategies used by HeALER and ALMSER.

3 Profiling Dimensions for Multi-source EM Tasks

In this section, we define three dimensions for profiling multi-source EM tasks:
entity overlap, value heterogeneity, and value pattern overlap. Below, we present
how each dimension is calculated and discuss its relevance to active learning.

Entity Overlap. The dimension of entity overlap (EO) refers to the ratio of
real-world entities that appear in more than two sources over the entities of the
multi-source task that appear in exactly two or more sources. Transforming the
multi-source task into a correspondence graph with the edges denoting matches
between the nodes-records, the dimension of EO is calculated as |CCsize>2|

|CCsize≥2| , where

CC are the connected components of the correspondence graph. An EO of 0 indi-
cates that all entities are represented by records appearing in a maximum of two
of the data sources while an EO of 1 indicates that all entities are represented by
records in at least three data sources. In the multi-source task of Fig. 1 the EO

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 117

is 1, as both entities appear in all four data sources. We expect a multi-source
task with an EO level of 0 to offer low-quality graph signals. Given that the
maximum size of connected components in that case is two nodes, i.e. records,
no additional information can be extracted from the correspondence graph con-
sidering different graph signals such as graph transitivity [25]. In such settings,
non-graph-based query strategies are expected to overperform graph-based ones.

Value Heterogeneity. The dimension of value heterogeneity (VH) captures
how heterogeneous the identifying attribute values of the records that appear
in different data sources and describe the same real-world entity are. As iden-
tifying attributes, we define the combination of attributes that are useful for
distinguishing real-world entities of a specific domain. The heterogeneity of val-
ues may derive from different surface forms, e.g. iphone 4s phone vs. 4s iphone
as well as spelling errors, e.g. apple vs. applle. We compute VH as the ratio of
entities that are represented by records with dissimilar values in at least one of
their identifying attributes to all entities. In the example of Fig. 1, the VH is
1, as both entities are represented by records with different values either in the
name or in the brand attributes. We expect that multi-source EM tasks with a
low level of VH are easy to solve. Considering that for such tasks the matching
and non-matching pairs are almost perfectly separable, the learner can reach a
high prediction accuracy even with a small number of labeled record pairs. In
contrast, given a task with high VH, we expect that a small number of labeled
record pairs can lead to the overfitting of the learner. In that case, exploiting
the correspondence graph for directing the query strategy to pick record pairs
that are likely falsely predicted by the overfitted learner, can be helpful.

Value Pattern Overlap. The dimension of value pattern overlap (VPO) refers
to the amount of groups of data sources adhering to the same attribute value
patterns. The overlap of value patterns results from similar lexical patterns or
types of spelling errors within the record values of the data sources. For example,
within the e-commerce phone product domain, different e-shops may share one of
the following lexical patterns for representing the names of smartphones: [model]
[model generation] e.g. i-phone 4s or [model] [model generation] [product type],
e.g. i-phone 4s smartphone. Pairs of data sources with overlapping value patterns
can form groups of matching tasks sharing the same matching patterns. We
illustrate this observation with the example of Fig. 1. The data sources A and B of
the multi-source EM task contain the same value pattern for the name attribute
[model] [model generation], while the brand value is in both sources misspelled.
The name attribute values of the data sources C and D adhere to the pattern:
[model] [model generation] [product type]. Consequently, we can consider that
in this example task there exist two groups of data sources adhering to the same
value patterns, i.e. [A, B] and [C, D]. Combining the data sources across the two
groups pairwise, i.e. A-C, A-D, B-C and B-D, results in two source-tasks with
the same matching pattern, while in total three matching patterns emerge for
covering all two-source tasks, as shown in Fig. 1d.

We calculate the value pattern overlap as 1
GV PO

, with GV PO indicating the
number of groups of data sources having the same value pattern. Following the

118 A. Primpeli and C. Bizer

example of Fig. 1 and considering that there exist two groups of data sources
with the same value pattern, the VPO level is computed to be 0.5. A VPO of 1
indicates that all data sources contain records with the same value pattern and
therefore construct pairwise matching tasks with the same underlying match-
ing patterns. On the other hand, a value pattern overlap of 0 indicates that
the records of each data source contain different value patterns and therefore
the pairwise matching tasks contain distinct underlying matching patterns. We
expect those query strategies that can identify groups of matching tasks that
share similar matching patterns and distribute the queries so that all groups are
covered, can outperform query strategies that ignore the grouping information.

It is worth noting that the calculation of the three profiling dimensions
requires knowledge of the actual labels of the record pairs. While this allows
us to analyze the impact of the profile of a multi-source task on the performance
of different active learning methods, it does not enable the upfront selection of
active learning methods, which is out of the scope of our work.

4 ALMSERgen: A Multi-source EM Task Generator

In order to enable the systematic analysis and comparison of active learning
methods applied on multi-source EM tasks with different characteristics, we
develop ALMSERgen, a multi-source EM task generator. ALMSERgen takes
as input a set of records and generates a multi-source EM task by replicating
the input record set and injecting transformations along the three dimensions
explained in Sect. 3. In the following, we present each component of ALMSERgen
along with Fig. 2 which provides an illustrated example of curating a multi-source
EM task given a pre-defined configuration.

Step 1: Complement Initial Set. Depending on the domain and the inte-
gration task at hand, different attributes might be relevant for matching. For
example, for the task of matching phone records, one might consider that the
combination of phone name and phone brand identifies a distinct phone, while in
more fine-grained matching tasks the phone colour might also be important. We
call the set of attributes that is useful for distinguishing real-world entities of a
specific domain, identifying attributes, and they are given as input to ALMSER-
gen. Considering that the input set of records may not contain enough exam-
ples for the identifying attributes to show, ALMSERgen artificially activates the
identifying attributes by replicating 20% of the input records and replacing a
subset of the identifying attribute values with random non-identical values of
the same attribute. The non-identifying attribute values are simply copied from
the original record to the replicated records. In the example of Fig. 2 the input
set contains three records. Given that the identifying attributes are configured
to be name and brand, ALMSERgen generates the additional records 2.iphone
4s - htc and 5.galaxy s21 - apple which represent phone entities different from
the ones that the records 1 and 4 represent.

Step 2: Distribute Records over Sources. Next, the entity overlap level
(EO) of the multi-source task is fixed. Given a pre-defined EO level value ∈ [0, 1],

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 119

Fig. 2. Example of multi-source EM task curation with ALMSERgen.

we iterate over all initial entities (IE) produced in Step 1 and add a subset of
them, the amount of which equals to EO×|IE| to more than two data sources. In
order to decide in how many more than two sources the selected entities should
be added, we follow a power-law distribution, i.e. most entities are contained in
a few sources while a few entities are contained in all sources. Therefore, given
that an entity is selected to be added in more than 2 sources, the probability
that it is added in x data sources, is 1/x, with x > 2. In the illustrated example,
the EO level is set to 0.6, i.e. 60% of the five entities produced in Step 1, are
added to more than two sources: the entity with id 1 which is added in 4 sources
and the entities with ids 2 and 3 which are added in 3 sources.

Steps 3–4: Inject Groups of Patterns. In the next step, the levels of value
pattern overlap (VPO) and value heterogeneity (VH) are fixed. These two dimen-
sions are interwoven, considering that VH defines how many records across all
data sources contain heterogeneous representations for the same real-world entity
and VPO controls the similarity of the value patterns of the records across all
data sources. Given the pre-defined VPO level, ALMSERgen creates groups of
data sources to which the same value pattern will be injected. The same value
pattern is injected in the records of the groups representing a subset of entities,
the amount of which is V H × |IE|, with IE being the initial entities generated
in Step 1 and VH being the value heterogeneity level in the range of [0, 1].

A value pattern comprises of distinct combinations of attributes and value
transformations. ALMSERgen offers the following value transformations, similar
to existing data generators for entity matching [12,28]: 1. Addition of random
characters, 2. Deletion of random characters, 3. Modification of random charac-
ters, 4. Shuffling and modification on word level, 5. Shuffling of words, 6. Addition
of random words, 7. Subtraction of (5/10/20)% of the value, and 8. Addition of
(5/10/20)% of the value. Transformations 1–6 are performed on string attributes,
while transformations 7–8 are applied only on numerical attributes. Finally, for
the transformations 1–4, a level of severity in the range of [0.1, 0.5] is randomly
picked, i.e. maximum of 50% of the characters can be modified or deleted, in
order to ensure that the identity of each entity is not completely altered and

120 A. Primpeli and C. Bizer

remains distinguishable. After this step, the curation of the data sources of the
multi-source setting is completed.

In the example of Fig. 2, the VPO level is set to 0.5 and the VH level is 0.6.
This further implies that the data sources are grouped into two groups of over-
lapping value patterns, G1: A-B and G2: C-D. For each group one combination
of attribute-value transformation is randomly chosen and injected in the records
describing 60% of the entities of Step 1, i.e. the entities with ids 1,3, and 5. The
value pattern injected in the records of G1 is addition of random words. The
value pattern for G2 is deletion of random characters with severity 0.2.

Step 5: Derive Matching and Non-matching Pairs. In the final step,
ALMSERgen derives the complete set of matching pairs considering all pairwise
combinations of replicated records referring to the same real-world entity, e.g.
A1-B1. For deriving hard non-matching pairs, we extract all combinations of
records and their corresponding negative examples injected in Step 1, e.g. A1-
C2. Additionally, we randomly pick easy non-matching record pairs, e.g. A1-C3,
until the ratio of matching to non-matching pairs is 1/3.

5 Experimental Setup and Analysis

In this section, we present the details of our experimental setup, including the
ALMSERgen configuration as well as the active learning setup and query strate-
gies used in our analysis. Next, we present the active learning results on the
generated tasks and discuss our main findings on the performance of different
active learning methods with respect to the profiling characteristics of the tasks.
Finally, we verify our findings using five benchmark tasks from the related work.
The code and tasks used for all experiments are publicly available.1

5.1 Experimental Setup

ALMSERgen Configuration. We provide a set of 1000 deduplicated song
records as input to ALMSERgen. The input data set is a subset of the last.fm
song data set.2 Each song record is described with the following four attributes:
title, release, artist, and country. We configure all of the four attributes as iden-
tifying ones and set the number of curated data sources for each generated
multi-source EM task to 6. We iterate in steps of 0.2 in the range [0.0, 1.0]
for the dimensions of entity overlap (EO) and value pattern overlap (VPO)
and in steps of 0.1 in the range [0.2, 0.8] for the value heterogeneity (VH)
dimension. The defined ranges and steps result in the curation of 252 multi-
source matching tasks. Generating a single task with ALMSERgen takes approx-
imately 50 seconds. Generating the continuum of 252 multi-source tasks requires
3.5 hours on a Linux server with Intel Xeon 2.2 GHz processor.

1 https://github.com/wbsg-uni-mannheim/ALMSER-GEN.
2 http://millionsongdataset.com/lastfm/.

https://github.com/wbsg-uni-mannheim/ALMSER-GEN
http://millionsongdataset.com/lastfm/

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 121

Active Learning Setup. We consider a pool-based active learning setting
and similarity-based features for representing the record pairs, similar to many
related works [3,13,18,25]. In such a setting, a pool of unlabeled record pairs is
available to the active learning query strategy which assesses the informativeness
considering a set of criteria. The most informative record pair is selected, anno-
tated as matching or non-matching and added to the labeled set. The labeled
set is used for training the learner, i.e. a classification model.

We initialize the pool with 70% of the matching and non-matching record
pairs resulting from the final step of ALMSERgen and remove all labels. The
remaining 30% of the record pairs are used as a test set. We allow 200 iterations
for each active learning experiment. The average size of the pool across the 252
multi-source tasks is 11,290 pairs. In each iteration, one record pair of the pool
is selected for annotation, i.e. 200 record pairs (<2% of the complete pool on
average) have been labeled in total by the end of each experimental run. If the
query strategy assigns the maximum informativeness score to more than one
record pair of the pool, one of them is randomly selected for annotation. We use
a random forest classifier as learner and measure the F1 score of its predictions
on the test set after each iteration. We conduct three runs for each multi-source
task and each active learning method. Finally, we report the area under the
mean F1 curve for iterations 50 to 200 on the test set, which we abbreviate with
F1-AUC. F1-AUC is calculated as the definite integral between two points, e.g.
iteration 50 to 200, and is typically used for measuring the overall performance
of an active learning method across multiple iterations [19,31]. A larger area
under the mean F1 curve signifies overall better results in terms of F1 score.

Active Learning Query Strategies. In our experiments, we compare the
performance of three active learning methods which only differ with respect to
the query strategy. In the following, we present the three active learning query
strategies which we compare in our analysis.

HeALER is a committee-based active learning method developed by Chen et
al. [3]. The query strategy of HeALER uses a committee of five heterogeneous
classification models to evaluate the informativeness of all pool record pairs.
In every active learning iteration, each classification model in the committee is
trained on the current labeled set. Next, it is applied on the record pairs of the
pool and votes its predictions, i.e. every record pair in the pool receives five
votes. The record pairs with the maximum disagreement calculated with vote
entropy, are considered to be the most informative.

ALMSER is a graph-based active learning method introduced in our previous
work [25] that is tailored to the multi-source EM task. The query strategy of
ALMSER exploits the correspondence graph of the multi-source matching set-
ting in order to select record pairs that are likely falsely predicted by the learner.
In each active learning iteration, the learner is trained on the current labeled
set and predicts matching or non-matching pseudo-labels for all record pairs
in the pool. The pseudo-labels together with the labeled set are used to con-
struct a correspondence graph, with the edges of the graph denoting matching

122 A. Primpeli and C. Bizer

relations between the nodes-records. A sequence of cleansing steps is applied in
order to remove likely false matching edges. Finally, considering graph transitiv-
ity the pool record pairs are assigned graph-inferred labels. The query strategy
of ALMSER assigns binary informativeness scores to the pool record pairs: 1 if
there is a conflict between the learner and the graph-inferred prediction, other-
wise 0.

While committee-based query strategies like HeALER, aim to select instances
for which the committee of models produces non-confident predictions, the query
strategy of ALMSER uses the correspondence graph to pick instances that are
most likely predicted wrong by the learner. These disagreements between the
graph-inferred labels and the learner pseudo-labels can hint towards matching
patterns that are not covered yet by the learner.

ALMSERgroup. A multi-source matching task can contain groups of two-
source matching tasks sharing the same underlying matching patterns, as
explained in Sect. 3. We hypothesize that exploiting such grouping information
can direct the active learning strategy to select record pairs covering all underly-
ing matching patterns of the complete multi-source task with a smaller amount
of annotations. We illustrate our hypothesis with the example of Fig. 1. The pair-
wise combinations of the four data sources result in six matching tasks which
given the underlying matching patterns can be grouped into three groups, as
shown in Fig. 1d. In such a setting, the active learning query strategy should
distribute the queries for labeling over the tasks A-B, C-D and any of the {A-C,
A-D, B-C, B-D}, as the latter have all the same underlying matching pattern.
However, to the best of our knowledge, none of the existing active learning query
strategies for entity matching exploits such grouping information.

In order to investigate whether the labeling effort can be further reduced
by exploiting such grouping signals, we develop ALMSERgroup, a variation of
the ALMSER query strategy. ALMSERgroup filters the pool to only include
record pairs belonging to matching tasks that are representative of a cluster of
similar matching tasks. We explain below how representative tasks are selected.
In this way, ALMSERgroup avoids picking record pairs for annotation from
similar tasks. During active learning, the ALMSER query strategy is applied
using the reduced pool. In the case of no disagreements between the learner
predictions and the graph-inferred labels among the record pairs of the reduced
pool, HeALER is used as a fallback query strategy.

In order to identify two-source tasks with similar matching patterns in an
unsupervised way, we first compute the task relatedness (TR) between all pairs
of two-source tasks, a metric introduced by Thirumuruganathan et al. [32]. TR
calculates how similar two tasks are by training a logistic regression classifier to
predict the task from which each record pair originates. A high prediction quality
signifies that the two tasks are dissimilar, while a low prediction quality signifies
that the tasks are similar and are expected to have the same underlying matching
patterns. We measure the prediction quality of the classifier using the Matthews
correlation coefficient (MCC) and calculate the TR score as 1 − MCC, similar
to [32]. Given the TR scores of each pairwise combination of two-source tasks,

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 123

(a) Overall results (b) Results of specific settings

Fig. 3. Outperforming AL methods per task. The size of the markers indicates the
F1-AUC difference to the runner-up method.

we cluster them such that the overall mean TR score of all clusters is maximized.
We determine the optimal number of clusters by penalizing the overall mean TR
score with a penalty factor α multiplied by the number of clusters. In this way,
we prefer smaller amounts of clusters over larger ones which results in a smaller
pool of representative record pairs for the query strategy to choose from. Finally,
we identify the most representative two-source tasks of each cluster, considering
their TR to all other tasks of the same cluster, and select only the record pairs
of the representative tasks for initializing the unlabeled pool.

5.2 Analysis of Experimental Results of Generated Tasks

We compare the results of three active learning methods using the HeALER,
ALMSER, and ALMSERgroup query strategies on the 252 generated tasks and
identify which signals are relevant for query selection given the profiling char-
acteristics of the tasks. Throughout our analysis, we use the 2D and 3D scatter
plots of Fig. 3 which indicate the winning active learning method for each gener-
ated task with different colours and markers. The size of the markers shows the
difference of the winning method to the second-best method in terms of F1-AUC
for iterations 50 to 200, i.e. large dots signify clear winners while smaller dots
indicate winning methods that are only slightly better than the runners-up.

Figure 3a shows the overall comparison results of the three active learn-
ing methods on the continuum of the 252 multi-source tasks along the three
dimensions described in Sect. 3: value heterogeneity (VH), value pattern overlap
(VPO), and entity overlap (EO). In 41.6% of the tasks, HeALER is the winning

124 A. Primpeli and C. Bizer

active learning query strategy in terms of F1-AUC, while ALMSER and ALM-
SERgroup outperform for 25.4% and 33% of the tasks respectively. Looking at
the 3D plot of Fig. 3a, we can observe four main patterns which we indicate with
the dotted circled areas. In the following, we discuss the characteristics of each
pattern. We report the best performing active learning methods for the tasks
of every pattern by relating their results to the runner-up active learning meth-
ods. Additionally, we compare them to the upper bound F1 scores achieved in
a passive learning setting with a random forest classifier being trained on the
complete pool of records pairs, which we will refer to as passive F1.

P1 - No clear winner for easy tasks. For all tasks with an entity and
value pattern overlap larger than 0.6 as well as a low value heterogeneity of 0.3
or less, HeALER and ALMSERgroup outperform ALMSER, as shown in the
P1-circled multi-source tasks of Fig. 3a. The average F1-AUC over all tasks of
this pattern is 140.28 for HeALER and 140.70 for ALMSERgroup. However,
the mean F1-AUC difference to the runner-ups is only 0.35 for the settings in
which HeALER outperforms and 0.68 for the settings in which ALMSERgroup
outperforms. This indicates that the best performing methods are not clear
winners as they outperform only marginally the second best method. The mean
passive F1 score for all tasks adhering to this pattern is 0.983 while the mean
F1 of the best performing active learning methods at the final 200th iteration is
0.961. We consider such tasks rather easy to solve as the high overlap of mostly
homogeneous entity records eases the discovery of the few distinct matching
patterns, i.e. selecting one matching record pair for annotation can help the
classifier to learn the underlying pattern of many other record pairs at once.

P2 - Graph signals are helpful for tasks with high value heterogeneity.
In 71.6% of the tasks with a value heterogeneity level larger than 0.5, ALMSER
overperforms with a mean F1-AUC difference of 2.95, given that the value pat-
tern overlap level is 0.6 or below. The mean passive F1 score for all tasks of this
pattern is 0.888 while the mean F1 of the best performing active learning meth-
ods at the final 200th iteration is 0.828. Such tasks are harder to solve as they
contain heterogeneous value representations for a large number of entities, while
the low value pattern overlap level signifies that there exist many different under-
lying matching patterns. Exploiting the signals from the correspondence graph
leads to the faster discovery of all underlying matching patterns in comparison
to committee-based query strategies. However, this observation only holds when
there exists a minimum entity overlap, i.e. EO > 0.0. For multi-source tasks
with EO = 0, i.e. all entities are represented by one record in a maximum of two
data sources, the correspondence graph does not have a rich structure as the
maximum component size is 2. Therefore exploiting graph signals cannot lead to
the selection of informative query candidates. This causes the ALMSER query
strategy to underperform in 88% of the generated tasks with EO = 0.

P3 - Grouping signals are helpful for tasks with low value hetero-
geneity and high value pattern overlap. In 55.5% of the tasks with a value
heterogeneity lower than 0.5 and a value pattern overlap larger than 0.5, ALM-

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 125

SERgroup is the winning active learning strategy with a mean F1-AUC difference
to the runner-up method of 1.52. However, ALMSERgroup does not deliver bet-
ter results over HeALER for multi-source tasks with low value pattern overlap.

We illustrate and further analyze this observation with Fig. 3b depicting the
winning strategies for tasks with a value heterogeneity level of 0.5 or lower and
three different value pattern overlap levels: 0.0, 0.4, and 0.8. We can see that,
for the multi-source matching tasks where the value pattern overlap is 0, i.e. dif-
ferent underlying matching patterns exist in each two-source task of the setting,
HeALER outperforms ALMSERgroup in 66% of the settings. The mean F1-AUC
difference to the runner-up method is 3.30 while for the tasks where ALMSER-
group outperforms the mean F1-AUC difference to the runner-up method is
1.30. With the increase of the value pattern overlap level, we can observe that
the grouping signal starts contributing to the query selection strategy. For VPO
= 0.4, HeALER outperforms in 54% of the tasks with a mean F1-AUC differ-
ence to the runner-up method of 1.93, while the mean F1-AUC difference for
the settings where ALMSERgroup is the best performing query strategy is 2.31.
Finally, ALMSERgroup performs the best in 58.3% of the tasks when the value
pattern overlap level is 0.8 with a mean F1-AUC difference to the second-best
method of 2.26, while HeALER outperforms in 37% of the tasks with a marginal
F1-AUC difference of 0.98.

P4 - Graph and grouping signals are not needed for tasks with low
value heterogeneity and low pattern overlap. In 89.5% of the tasks with
a value heterogeneity of 0.5 or lower, the HeALER and ALMSERgroup query
strategies outperform ALMSER independently from the other two dimensions.
This indicates that graph signals do not contribute in the case of multi-source
tasks with a low value heterogeneity. The F1-AUC difference to the runner-up
methods is 2.26 and 1.71 for HeALER and ALMSERgroup, respectively. In terms
of F1 scores, the tasks of this pattern lie between the results of the tasks in P1
and P2. The mean passive F1 is 0.941 and the mean F1 of the best performing
active learning methods at the 200th iteration, is 0.91.

As already introduced in the analysis of P3, the contribution of grouping sig-
nals is positively related to the value pattern overlap level, i.e. grouping signals
contribute less for tasks with a low value pattern overlap level. More concretely,
we observe that in 67% of the tasks with a value heterogeneity and a value
pattern overlap of 0.5 or lower, ALMSERgroup underperforms the other two
methods. In order to investigate the reasons that grouping signals do not con-
tribute to tasks with a low value pattern overlap, we perform a two-step analysis:
First, we evaluate how representative the metric of task relatedness is for find-
ing groups of two-source matching tasks with similar patterns, and second, we
evaluate to which extent ALMSERgroup selects representative two-source tasks
covering all distinct matching patterns of each multi-source task.

For the first part of our analysis, we calculate the cosine similarity of the
naive transfer learning (NTL) and the task relatedness (RLTD) scores for each
combination of two-source matching tasks of all multi-source tasks. A high naive
transfer learning score between a pair of two-source tasks, e.g. A-B and C-D,

126 A. Primpeli and C. Bizer

indicates they have the same underlying matching patterns, as a model trained
on the record pairs of task A-B, performs well when applied on task C-D. A high
similarity between the NTL scores and the RLTD scores implies that the second
is a good unsupervised approximation of the first and can therefore lead to the
discovery of groups of similar matching tasks. We find that higher VPO levels
lead to the higher similarity of NTL and RLTD scores: for tasks with VPO = 1.0
the similarity of the NTL and RLTD scores is 0.81, while it drops to 0.75 and
0.69, for tasks with VPO = 0.6 and VPO = 0.2, respectively. Therefore, we can
conclude that task relatedness can more efficiently lead to finding and grouping
similar two-source tasks in the case of multi-source EM tasks with high VPO.

For the second part of our analysis, we evaluate in how many of the multi-
source tasks ALMSERgroup selects a sufficient subset of two-source tasks to
query from, i.e. a sufficient subset contains at least one two-source task per
group of tasks with similar matching patterns. Similar to the previous finding,
we observe that ALMSERgroup better identifies sufficient subsets of two-source
tasks to query from for higher VPO levels: ALMSERgroup selects a sufficient
subset of two-source tasks in 100% and 88% of multi-source tasks with VPO = 1.0
and VPO = 0.8, respectively. Additionally, we observe that for high VPO levels
ALMSERgroup achieves a large candidate reduction: for VPO 1.0, ALMSER-
group only selects candidates from a maximum of 4 out of the 15 two-source tasks
in 90% of the multi-source tasks. This further explains why ALMSERgroup gen-
erally outperforms HeALER and ALMSER for tasks with high pattern overlap.
In contrast, with the decrease of the VPO level, it is harder for ALMSERgroup
to identify all relevant two-source tasks to query from. For example, ALMSER-
group only identifies a sufficient subset of two-source tasks for 28% and 14% of
the multi-source tasks with VPO = 0.4 and VPO = 0.2, respectively.

5.3 Analysis of Experimental Results of Benchmark Tasks

In this section, we verify our findings concerning the impact of the profile of
multi-source EM tasks on the performance of the three active learning methods
using the HeALER, ALMSER and ALMSERgroup strategies, on five benchmark
tasks. The benchmark tasks cover the domains music, products, and restaurants
and have been previously been used in the related work [25,27]. The tasks are
described in detail in [25].

Table 1 contains profiling information for the benchmark tasks along the three
profiling dimensions. We compute the value heterogeneity and the entity overlap
as described in Sect. 3. For estimating the value pattern overlap level, we use
the naive transfer learning scores of a random forest classifier for all pairs of
two-source tasks of each benchmark multi-source task and extract the smallest
subset of two-source tasks that best generalizes over all two-source tasks.

We present the active learning results for the five benchmark multi-source
tasks in Table 1 and report the F1-AUC for iterations 50–200, the F1-AUC dif-
ference of the outperforming to the runner-up method as well as the mean F1
scores of three experimental runs for specific active learning snapshots at the

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 127

Table 1. Profile and active learning results of benchmark multi-source EM tasks.

Task VH EO VPO Method F1-AUC F1-AUC diff. F1@85 F1@150 F1@200

computers 0.40 0.44 1.0

HeALER 135.62

1.32

0.893 0.912 0.918

ALMSER 138.96 0.921 0.932 0.937

ALMSERgroup 137.64 0.904 0.931 0.931

computers mut 0.43 0.44 0.8

HeALER 127.66

1.24

0.841 0.850 0.866

ALMSER 128.95 0.824 0.879 0.883

ALMSERgroup 130.19 0.864 0.877 0.883

MusicBrainz 0.19 0.50 0.6

HeALER 140.07

1.70

0.931 0.941 0.945

ALMSER 138.37 0.913 0.930 0.934

ALMSERgroup 137.02 0.888 0.926 0.918

MusicBrainz mut 0.14 0.50 0.4

HeALER 132.43

1.05

0.857 0.895 0.908

ALMSER 131.38 0.868 0.889 0.896

ALMSERgroup 127.19 0.820 0.879 0.888

restaurants 0.14 0.35 0.8

HeALER 138.51

0.30

0.921 0.927 0.937

ALMSER 138.21 0.918 0.923 0.926

ALMSERgroup 137.48 0.913 0.920 0.921

85th, 150th and final 200th iteration. We observe that ALMSER and ALMSER-
group outperform HeALER for the computers and computers mut tasks. The
profiling dimensions of these tasks lie between patterns P2 and P3: graph sig-
nals contribute due to the rather high value heterogeneity (see column VH in
Table 1) while grouping signals contribute due to the high value pattern overlap
(column VPO) level.

In comparison to HeALER, we observe that graph and grouping signals con-
tribute until the 200th iteration while the differences in F1 score of ALMSER
and ALMSERgroup appear only during the earlier iterations. After the 150th
iteration both ALMSER and ALMSERgroup converge to similar results. The
Musicbrainz and MusicBrainz mut tasks verify the pattern P4 of our analysis.
Given the low value heterogeneity and value pattern overlap levels of the tasks,
graph and grouping signals are not helpful for improving the active learning
results over HeALER. Finally, pattern P1 of our analysis is confirmed by the
results of the restaurants task which has a low value heterogeneity and a high
value pattern overlap. Although HeALER outperforms the other two methods for
this task in terms of F1-AUC, the F1-AUC difference to the runner-up method
is only 0.30, indicating that there is no clear winner for the task.

6 Conclusion

This paper explored the impact of the characteristics of multi-source EM tasks
on the performance of three active learning methods which utilize different types
of signals for selecting record pairs for labeling. We based our analysis on a con-
tinuum of 252 generated multi-source matching tasks and additionally verified
our findings using five benchmark tasks. Our findings showed that all methods
perform equally well for easy multi-source EM tasks, characterized by a high
entity overlap and homogeneous attribute values. With the increase of the value

128 A. Primpeli and C. Bizer

heterogeneity of records describing the same entity, group signals were shown
to improve the active learning performance, given that there exist a few groups
of two-source matching tasks sharing the same underlying matching patterns.
Finally, exploiting graph signals as part of the query strategy was shown to
improve the active learning performance for tasks containing large amounts of
matching records with heterogeneous attribute values.

References

1. Achichi, M., Cheatham, M., et al.: Results of the ontology alignment evaluation
initiative 2017. In: Proceedings of OM 2017–12th ISWC Workshop on Ontology
Matching, pp. 61–113 (2017)

2. Bellare, K., Curino, C., Machanavajihala, A., et al.: WOO: a scalable and multi-
tenant platform for continuous knowledge base synthesis. PVLDB 6(11), 1114–1125
(2013)

3. Chen, X., Xu, Y., Broneske, D., Durand, G.C., Zoun, R., Saake, G.: Heteroge-
neous committee-based active learning for entity resolution (HeALER). In: Welzer,
T., Eder, J., Podgorelec, V., Kamǐsalić Latifić, A. (eds.) ADBIS 2019. LNCS,
vol. 11695, pp. 69–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28730-6 5

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications
(2012)

5. Christophides, V., Efthymiou, V., et al.: An overview of end-to-end entity resolu-
tion for big data. ACM Comput. Surv. (CSUR) 53(6), 1–42 (2020)

6. Elmagarmid, A., Ipeirotis, P., et al.: Duplicate record detection: a survey. IEEE
Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

7. Ferrara, A., Montanelli, S., Noessner, J., Stuckenschmidt, H.: Benchmarking
matching applications on the semantic web. In: Antoniou, G., et al. (eds.) ESWC
2011. LNCS, vol. 6644, pp. 108–122. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21064-8 8

8. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In:
Proceedings of VLD, pp. 9–16 (2006)

9. Heath, T., Bizer, C.: Linked Data: Evolving the Web Into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

10. Hildebrandt, K., Panse, F., et al.: Large-scale data pollution with Apache spark.
IEEE Trans. Big Data 6(2), 396–411 (2020)

11. Huang, J., Hu, W., Li, H., Qu, Y.: Automated comparative table generation
for facilitating human intervention in multi-entity resolution. In: Proceedings of
SIGIR, pp. 585–594 (2018)

12. Ioannou, E., Rassadko, N., Velegrakis, Y.: On generating benchmark data for entity
matching. J. Data Semant. 2(1), 37–56 (2013)

13. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. J. Web Semant. 23, 2–15 (2013)

14. Kasai, J., Qian, K., et al.: Low-resource deep entity resolution with transfer and
active learning. In: Proceedings of ACL, pp. 5851–5861 (2019)

15. Konda, P., et al.: Magellan: toward building entity matching management systems
over data science stacks. PVLDB 13, 1581–1584 (2016)

https://doi.org/10.1007/978-3-030-28730-6_5
https://doi.org/10.1007/978-3-030-28730-6_5
https://doi.org/10.1007/978-3-642-21064-8_8
https://doi.org/10.1007/978-3-642-21064-8_8

Impact of the Characteristics of Multi-source EM Tasks on Active Learning 129

16. Konyushkova, K., Raphael, S., Fua, P.: Learning active learning from data. In:
Proceedings of NIPS, p. 4228–4238 (2017)

17. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. VLDB Endow. 3(1–2), 484–493 (2010)

18. Meduri, V., Popa, L., et al.: A comprehensive benchmark framework for active
learning methods in entity matching. In: Proceedings of SIGMOD, pp. 1133–1147
(2020)

19. Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S.: Scaling up crowd-
sourcing to very large datasets: a case for active learning. VLDB Endow. 8(2),
125–136 (2014)

20. Nafa, Y., et al.: Active deep learning on entity resolution by risk sampling. Knowl.-
Based Syst. 236, 107729 (2022)

21. Nentwig, M., Hartung, M., Ngonga Ngomo, A.C., Rahm, E.: A survey of current
link discovery frameworks. Semant. Web 8(3), 419–436 (2017)

22. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30284-8 17

23. Papadakis, G., Ioannou, E., Thanos, E., Palpanas, T.: The four generations of
entity resolution. Synthesis Lect. Data Manage. 16(2), 1–170 (2021)

24. Primpeli, A., Bizer, C.: Profiling entity matching benchmark tasks. In: Proceedings
of CIKM, pp. 3101–3108 (2020)

25. Primpeli, A., Bizer, C.: Graph-boosted active learning for multi-source entity res-
olution. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 182–199.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4 11

26. Qian, K., Popa, L., Sen, P.: Active learning for large-scale entity resolution. In:
Proceedings of CIKM, pp. 1379–1388 (2017)

27. Saeedi, A., Peukert, E., Rahm, E.: Comparative evaluation of distributed clus-
tering schemes for multi-source entity resolution. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 278–293. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 19

28. Saveta, T., Daskalaki, E., Flouris, G., Fundulaki, I., Herschel, M., Ngomo, A.-
C.N.: LANCE: piercing to the heart of instance matching tools. In: ISWC 2015.
LNCS, vol. 9366, pp. 375–391. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25007-6 22

29. Settles, B.: Active Learning: Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers (2012)

30. Shen, W., DeRose, P., Vu, L., et al.: Source-aware entity matching: a compositional
approach. In: Proceedings of ICDE, pp. 196–205 (2007)

31. Sherif, M.A., Dreßler, K., Ngomo, A.C.N.: LIGON-link discovery with noisy ora-
cles. In: Proceedings of Ontology Matching Workshop (ISWC), pp. 48–59 (2020)

32. Thirumuruganathan, S., Parambath, S.A.P., et al.: Reuse and adaptation for entity
resolution through transfer learning. arXiv preprint arXiv:1809.11084 (2018)

33. Ye, Y., Talburt, J.: Generating synthetic data to support entity resolution educa-
tion and research. J. Comput. Sci. Coll. 34(7), 12–19 (2019)

https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-030-88361-4_11
https://doi.org/10.1007/978-3-319-66917-5_19
https://doi.org/10.1007/978-3-319-25007-6_22
https://doi.org/10.1007/978-3-319-25007-6_22
http://arxiv.org/abs/1809.11084

Optimal ABox Repair w.r.t. Static EL
TBoxes: From Quantified ABoxes Back

to ABoxes

Franz Baader , Patrick Koopmann , Francesco Kriegel(B) ,
and Adrian Nuradiansyah

Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,patrick.koopmann,francesco.kriegel,

adrian.nuradiansyah}@tu-dresden.de

Abstract. Errors in Description Logic (DL) ontologies are often
detected when a reasoner computes unwanted consequences. The ques-
tion is then how to repair the ontology such that the unwanted conse-
quences no longer follow, but as many of the other consequences as pos-
sible are preserved. The problem of computing such optimal repairs was
addressed in our previous work in the setting where the data (expressed
by an ABox) may contain errors, but the schema (expressed by an EL
TBox) is assumed to be correct. Actually, we consider a generalization
of ABoxes called quantified ABoxes (qABoxes) both as input for and as
result of the repair process. Using qABoxes for repair allows us to retain
more information, but the disadvantage is that standard DL systems do
not accept qABoxes as input. This raises the question, investigated in
the present paper, whether and how one can obtain optimal repairs if
one restricts the output of the repair process to being ABoxes. In gen-
eral, such optimal ABox repairs need not exist. Our main contribution
is that we show how to decide the existence of optimal ABox repairs in
exponential time, and how to compute all such repairs in case they exist.

1 Introduction

Description Logics (DLs) [2] are a successful family of logic-based knowledge
representation languages, which are employed in various application domains,
but arguably their most prominent success was the adoption of the DL-based
language OWL1 as the standard ontology language for the Semantic Web. A
DL knowledge base (aka ontology) consists of a TBox and an ABox. In the for-
mer, concepts can be used to state terminological constraints as so-called general
concept inclusions (GCIs). For example, the concept ∃parent .(Famous � Rich)
describes individuals that have a parent that is both famous and rich, and the
GCI ∃friend .Famous � Famous states that individuals that have a famous friend
are famous themselves. The expressiveness of a DL depends on which construc-
tors for building concepts are available. The concepts in our example use the
1 https://www.w3.org/OWL/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 130–146, 2022.
https://doi.org/10.1007/978-3-031-06981-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_8&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0003-0219-0330
http://orcid.org/0000-0002-9047-7624
https://www.w3.org/OWL/
https://doi.org/10.1007/978-3-031-06981-9_8

Optimal ABox Repair 131

constructors conjunction (�) and existential restriction (∃r.C), which together
with the top concept (�) are the ones available in the DL EL, to which we restrict
our attention here. While being quite inexpressive, EL is nevertheless frequently
used for building ontologies,2 and it has the advantage over more expressive DLs
that reasoning is polynomial w.r.t. EL ontologies. In the ABox, one can relate
named individuals with concepts and with each other. For example, the con-
cept assertion (∃parent .Rich) (BEN) states that Ben has a rich parent, and the
role assertion friend(BEN , JOHN) says that Ben has John as friend. If concept
assertions are restricted to employing only concept names, like Famous(JOHN),
rather than complex concepts, then the ABox is called simple. DL systems pro-
vide their users with inference services that automatically derive implicit conse-
quences such as instance relationships. For example, given the ABox assertions
and the GCI introduced above, we can derive that Ben is famous, i.e., that the
assertions Famous(BEN) follows from this ontology.

Although DL reasoners are usually sound (i.e., only derive instance relation-
ship that indeed follow from the ontology), a computed consequence may still
be incorrect in the application domain, due to the fact that the modelling of
the domain in the ontology is erroneous. The question is then how to repair the
ontology such that one gets rid of the unwanted consequences, but retains as
many consequences as possible. Classical repair approaches that are based on
removing axioms from the ontology [8,11,15,16,18,19] are not optimal since, by
removing large axioms, one may also lose information that does not contribute
to the unwanted consequence. For example, if the concept assertion for John is
(Famous � Rich)(JOHN) rather than just Famous(JOHN), then to get rid of
the consequence Famous(BEN) we need to remove the whole assertion, and thus
unnecessarily also lose the information that John is rich.

Extending on our previous work in [5,7], we investigated in [3] how to com-
pute optimal repairs in a setting where the ABox may contain errors, but
the TBox is assumed to be a correct EL TBox, and thus remains unchanged.
More precisely, we consider a generalization of ABoxes called quantified ABoxes
(qABoxes) both as input for and as result of the repair process since this allows
us to retain more consequences. Such a qABox is a simple ABox where, how-
ever, some of the individuals are anonymized, which is formally expressed by
existentially quantifying over them. In [3], we introduce two different notions
of repair, depending on which entailment relation between qABoxes is consid-
ered: classical logical entailment or IQ-entailment, where the latter retains as
many instance relationships as possible (but not necessarily answers to conjunc-
tive queries). For the IQ case, we show that optimal IQ-repairs always exist and
can be computed in exponential time. In the worst case, such repairs may be
exponentially large and there may be exponentially many of them. Reusing an
example from the introduction of [3], let us assume that the input ABox con-
tains the information that Ben has a parent, Jerry, that is both rich and famous,
that the TBox contains the GCI Famous � Rich, and that we want to remove
the consequence (∃parent .(Rich � Famous))(BEN). Using the optimized repair

2 For example, the large medical ontology SnomedCT is an EL ontology.

132 F. Baader et al.

approach of [3], we obtain the following qABox as one of the optimal IQ-repairs:
∃{y}.{parent(BEN , y),Rich(y),Famous(JERRY),Rich(JERRY)}.

The advantage of using qABoxes rather than ABoxes for repair is that more
information can be retained (e.g. the fact that Ben has a rich parent). The
disadvantage is that, though anonymized individuals are part of the OWL stan-
dard, DL systems usually do not accept them as input. Thus, the question arises
whether one can also obtain optimal repairs if one restricts the output of the
repair process to being ABoxes. In the above example, the qABox obtained as an
optimal IQ-repair can actually be expressed by an ABox with complex concept
assertions: {(∃parent .Rich)(BEN),Famous(JERRY),Rich(JERRY)}.

However, this is not always the case. As an example, consider the ABox A :=
{parent(BEN , JERRY),Rich(JERRY)} and the TBox T := {∃parent .Rich �
Famous,Famous � ∃friend .Famous,∃friend .Famous � Famous}, which
together imply that Ben is famous. Assume that Ben wants to get rid of this con-
sequence. The repair approach of [3] yields the following qABox as an optimal IQ-
repair: ∃{x, y}.{parent(BEN , x),Rich(JERRY), friend(BEN , y), friend(y, y)}.
This qABox retains the information that Ben has a parent (but not that Jerry
is this parent) and that Ben is the starting point of an infinite friend -chain, i.e.,
Ben belongs to the concepts Cn := (∃friend .)n� for all n ≥ 1. The latter is the
reason why this qABox cannot be expressed by an IQ-equivalent ABox, which in
turn is the reason why there is no optimal ABox repair. The culprit is obviously
the cycle friend(y, y). However, such cycles need not always cause problems. In
fact, if we remove the third GCI ∃friend .Famous � Famous from the TBox,
then the following qABox is an optimal IQ-repair:

∃{x, y}.{parent(BEN , x),Rich(JERRY),
friend(BEN , y), friend(y, y),Famous(y)}.

This qABox can be expressed by an ABox that is IQ-equivalent to it w.r.t.
the given TBox: {(∃parent .�)(BEN),Rich(JERRY), (∃friend .Famous)(BEN)}.
The reason is that, due to the existence of a famous friend of Ben, the GCI
Famous � ∃friend .Famous now yields the infinite friend -chain.

These examples demonstrate that optimal ABox repairs may not always exist,
and that it is not obvious to see when they do. The main contribution of the
present paper is that we show how to decide the existence of optimal ABox
repairs in exponential time, and how to compute all such repairs in case they
exist. There may exist exponentially many such repairs, and each one may in
the worst case be of double-exponential size. Our approach for showing these
results roughly proceeds as follows. First, we observe that classical entailment
between a qABox and an ABox coincides with so-called IRQ-entailment, which
is slightly stronger than IQ-entailment by additionally taking role assertions
between named individuals into account. Then, we show that both the canonical
and the optimized IQ-repairs of [3] cannot only be used to obtain all optimal
IQ-repairs, but also to compute all optimal IRQ-repairs. Subsequently, we intro-
duce the notion of an optimal ABox approximation of a given qABox, and prove
that the set of optimal ABox approximations of all optimal IRQ-repairs yields all

Optimal ABox Repair 133

optimal ABox repairs. A given qABox may not have an optimal ABox approx-
imation, but if it does, then this approximation is unique up to equivalence
and of at most exponential size. Then we investigate the problem of deciding
the existence of optimal ABox approximations. The first step is to transfer the
qABox into a specific form, called pre-approximation, which is saturated w.r.t.
the TBox and consists of the original role assertions between named individuals
and for each named individual a a sub-qABox Ba. We prove that the original
qABox has an optimal ABox approximation iff all the named individuals a have
a most specific concept Ca in Ba w.r.t. the TBox. The optimal ABox approxima-
tion is then obtained by replacing each Ba with Ca(a) in the pre-approximation.
We can then use the results stated in [20] to test the existence of the msc in
polynomial time3 and to generate the at most exponentially large msc. Given
that the optimal IRQ-repairs may be of exponential size, this yields the complex-
ity upper bounds for testing the existence and computing optimal ABox repairs
mentioned above. Due to space constraints, we cannot give complete proofs of
all our results. They can be found in [4].

2 Preliminaries

We start with introducing the DL EL as well as TBoxes and (quantified) ABoxes.
Then we consider the entailment relations relevant for this paper.

The name space available for defining EL concepts and ABox assertions is
given by a signature Σ, which is the disjoint union of sets ΣO, ΣC, and ΣR

of object names, concept names, and role names. Starting with concept names
and the top concept �, EL concepts are defined inductively: if C,D are EL
concepts and r is a role name, then C � D (conjunction) and ∃r.C (existential
restriction) are also EL concepts. An EL general concept inclusion (GCI) is of the
form C � D, an EL concept assertion is of the form C(u), and a role assertion
is of the form r(u, v), where C,D are EL concepts, r ∈ ΣR, and u, v ∈ ΣO. An
EL TBox is a finite set of EL GCIs and an EL ABox is a finite set of EL concept
assertions and role assertions. Such an ABox is called simple if all its concept
assertions are of the form A(u) with A ∈ ΣC. A quantified ABox (qABox) is of
the form ∃X.A where X is a finite subset of ΣO and A is a simple ABox, which
we call the matrix of ∃X.A. We call the elements of X variables and the other
object names occurring in A individuals.4 The set of individual names occurring
in ∃X.A is denoted with ΣI(∃X.A), and the set of all object names (including
the variables) with ΣO(∃X.A).

The semantics of the syntactic entities introduced above can either be defined
directly using interpretations, or by a translation into first-order logic (FO). For
the sake of brevity, we choose the latter approach (see [3] for the former). In the
translation, the elements of ΣO, ΣC, and ΣR are respectively viewed as constant
3 The proof for this polynomiality result in [20] is actually incorrect, but we show how

to correct it.
4 The variables correspond to what we have called anonymized individuals in the

introduction, and the individuals to what we have called named individuals.

134 F. Baader et al.

symbols, unary predicate symbols, and binary predicate symbols. EL concepts
C are inductively translated into FO formulas φC(x) with one free variable x:

– concept A for A ∈ ΣC is translated into A(x) and � into A(x) ∨ ¬A(x) for
an arbitrary A ∈ ΣC;

– if C,D are translated into φC(x) and φD(x), then C � D is translated into
φC(x) ∧ φD(x) and ∃r.C into ∃y.(r(x, y) ∧ φD(y)), where φD(y) is obtained
from φD(x) by replacing the free variable x by a different variable y.

GCIs C � D are translated into sentences φC�D := ∀x.(φC(x) → φD(x)) and
TBoxes T into φT :=

∧
C�D∈T φC�D. Concept assertions C(u) are translated

into φC(u), role assertions r(u, v) stay the same, and ABoxes A are translated
into the conjunction φA of the translations of their assertions. For a quantified
ABox ∃X.A, the elements of X are viewed as first-order variables rather than
constants, and its translation is ∃�x.φA, where �x is the tuple of the variables in
X in arbitrary order.

Let α, β be (q)ABoxes, concept inclusions, or concept assertions (possibly not
both of the same kind), and T an EL TBox. Then we say that α entails β w.r.t.
T (written α |=T β) if the implication (φα ∧ φT) → φβ is valid according to the
semantics of FO. Furthermore, α and β are equivalent w.r.t. T (written α ≡T β),
if α |=T β and β |=T α. In case T = ∅, we will sometimes write |= instead of
|=∅. If ∅ |=T C � D, then we also write C �T D and say that C is subsumed by
D w.r.t. T ; in case T = ∅ we simply say that C is subsumed by D. If ∃X.A |=T

C(a), then a is called an instance of C w.r.t. ∃X.A and T . For ABoxes, the
instance relation is defined analogously. Entailment between qABoxes w.r.t. an
EL TBox is NP-complete, but the subsumption and the instance problem are
polynomial [7].

Note that ABoxes are a special case of qABoxes. For simple ABoxes, this is
the case where X = ∅. For general ABoxes, one can express complex concept
assertions by introducing existentially quantified variables (e.g., {(A�∃r.B)(a)}
is equivalent to ∃{x}.{A(a), r(a, x), B(x)}). For this reason, the entailment rela-
tions defined below for qABoxes are also well-defined for ABoxes.

IQ-Entailment. If one is mainly interested in asking instance queries, i.e., in
what kind of instance relations a qABox entails, then the following weaker form
of entailment can be used [3,7]. We say that the qABox ∃X.A IQ-entails the
qABox ∃Y.B w.r.t. the EL TBox T (written ∃X.A |=T

IQ ∃Y.B) if every concept
assertion C(a) entailed w.r.t. T by the latter is also entailed w.r.t. T by the
former. Whenever we compare two qABoxes ∃X.A and ∃Y.B, we follow [7] and
assume without loss of generality that they are renamed apart, which means that
X is disjoint with ΣO(∃Y.B) and Y is disjoint with ΣO(∃X.A), and we further
assume that the two qABoxes speak about the same set of individual names
ΣI := ΣI(∃X.A) ∪ ΣI(∃Y.B).

For the case of an empty TBox, it was shown in [7] that ∃X.A |=∅
IQ ∃Y.B

iff there is a simulation from ∃Y.B to ∃X.A. A simulation from ∃Y.B to
∃X.A is a relation S ⊆ ΣO(∃Y.B) × ΣO(∃X.A) such that (a, a) ∈ S for each
a ∈ ΣI and, for each (u, v) ∈ S, A(u) ∈ B implies A(v) ∈ A and r(u, u′) ∈ B

Optimal ABox Repair 135

implies that there exists an object v′ ∈ ΣO(∃X.A) such that (u′, v′) ∈ S and
r(v, v′) ∈ A. Since checking the existence of a simulation can be done in poly-
nomial time [10], the simulation characterization of IQ-entailment shows that
IQ-entailment between qABoxes can be decided in polynomial time if T = ∅ [7].

Fig. 1. The IQ-saturation rules from [3].

To extend these results to the case of a non-empty TBox, the notion of an
IQ-saturation is introduced in [3]. The saturation rules given in Fig. 1 add new
variables and assertions to the qABox if the existence of a corresponding element
and the validity of the assertion is implied by the TBox. To be more precise,
for each existential restriction ∃r.C occurring in T , a fresh variable xC not
contained in the initial qABox is introduced. When applying the ∃-rule to an
assertion of the form (∃r.C)(t), this variable is always used for the successor
object. As pointed out in [3], IQ-saturation (i.e., the exhaustive application of
the IQ-saturation rules) terminates in polynomial time and generates a qABox
satTIQ(∃X.A), which can be seen as a qABox representation of what is called the
canonical model in [13, Sect. 5.2]. IQ-entailment for qABoxes w.r.t. an EL TBox
is now characterized in [3] as follows.

Theorem 1 ([3]). Let T be an EL TBox and ∃X.A and ∃Y.B qABoxes. Then
the following statements are equivalent:

– ∃X.A |=T
IQ ∃Y.B,

– satTIQ(∃X.A) |=∅
IQ ∃Y.B,

– there is a simulation from ∃Y.B to satTIQ(∃X.A).

Since the IQ-saturation can be computed in polynomial time, this clearly shows
that IQ-entailment for qABoxes w.r.t. an EL TBox can also be decided in poly-
nomial time.

IRQ-Entailment. If we are not only interested in implied concept assertions, but
also in implied role assertions, then IQ-entailment is not sufficient. Instead, we
must use IRQ-entailment. We say that the qABox ∃X.A IRQ-entails the qABox
∃Y.B w.r.t. the EL TBox T (written ∃X.A |=T

IRQ ∃Y.B) if every concept or role
assertion entailed w.r.t. T by the latter is also entailed w.r.t. T by the former.

136 F. Baader et al.

It is easy to see that a qABox cannot entail a role assertion involving a vari-
able, and it can only entail a role assertion between individuals if its matrix con-
tains this assertion. This yields the following characterization of IRQ-entailment,
which shows that IRQ-entailment can be decided in polynomial time.

Proposition 2. Let T be an EL TBox and ∃X.A and ∃Y.B qABoxes. Then
the following statements are equivalent:

– ∃X.A |=T
IRQ ∃Y.B,

– ∃X.A |=T
IQ ∃Y.B and r(a, b) ∈ B implies r(a, b) ∈ A for all r ∈ ΣR and

a, b ∈ ΣI.

Since ABoxes consist of concept and role assertions, we obtain the following
characterization of entailment between a qABox and an ABox, which implies
that this entailment can be decided in polynomial time.

Proposition 3. Let T be an EL TBox, ∃X.A a qABox, and B an ABox. Then
∃X.A |=T B iff ∃X.A |=T

IRQ B.

3 Optimal ABox Repairs and Approximations

We first introduce the notion of an optimal repair w.r.t. an entailment relation,
and show that the approaches for computing optimal IQ-repairs described in [3]
can also be used to compute optimal IRQ-repairs. Then, we define optimal ABox
approximations and show some useful properties for them. Finally, we introduce
optimal ABox repairs, and describe how optimal ABox approximations can be
used to obtain them from optimal IRQ-repairs.

3.1 Optimal IQ- and IRQ-Repairs

We start by recalling the definition of optimal repairs given in [3], but consider
IRQ as an additional entailment relation.

Definition 4. Let T be an EL TBox and QL ∈ {IRQ, IQ}.

– An EL repair request is a finite set of EL concept assertions.
– Given a qABox ∃X.A and an EL repair request R, a QL-repair of ∃X.A for R

w.r.t. T is a qABox ∃Y.B such that ∃X.A |=T
QL ∃Y.B and ∃Y.B �|=T C(a)

for all C(a) ∈ R.
– Such a repair ∃Y.B is optimal if there is no QL-repair ∃Z.C of ∃X.A for R

w.r.t. T such that ∃Z.C |=T
QL ∃Y.B and ∃Y.B �|=T

QL ∃Z.C.

Two qABoxes are QL-equivalent if they QL-entail each other, and ∃X.A
strictly QL-entails ∃Y.B if ∃X.A |=T

QL ∃Y.B and ∃Y.B �|=T
QL ∃X.A. We say that

a set R of QL-repairs of ∃X.A for R w.r.t. T QL-covers all QL-repairs of ∃X.A
for R w.r.t. T if for every QL-repair ∃Y.B of ∃X.A for R w.r.t. T there exists
an element ∃Z.C of R such that ∃Z.C |=T

QL ∃Y.B. It is easy to see that such

Optimal ABox Repair 137

a covering set R must contain, up to QL-equivalence, all optimal QL-repairs of
∃X.A for R w.r.t. T , and thus one can obtain from it, up to QL-equivalence,
the set of all optimal QL-repairs of ∃X.A for R w.r.t. T by removing elements
that are strictly QL-entailed by another element. Clearly, this set still QL-covers
all QL-repairs of ∃X.A for R w.r.t. T .

In [3], two ways of computing such a covering set for IQ-repairs are described,
the canonical IQ-repairs and the optimized IQ-repairs (see Proposition 8 and
Theorem 14). Since these covering sets are of at most exponential cardinality,
their elements are of at most exponential size, and IQ-entailment can be decided
in polynomial time, this shows that, up to IQ-equivalence, the set of all optimal
IQ-repairs can be computed in exponential time.

The canonical (optimized) IQ-repairs also yield covering sets for the IRQ case.
The reason is basically that the approaches for constructing them introduced
in [3] do not generate new role assertions between individuals and preserve as
many of them as possible, although this is not required for IQ-entailment.

Proposition 5. Let T be an EL TBox, ∃X.A a qABox, and R an EL repair
request. If R is the set of all canonical or all optimized IQ-repairs obtained from
this input according to the definitions in [3], then R is a set of IRQ-repairs of
∃X.A for R w.r.t. T that IRQ-covers all IRQ-repairs of ∃X.A for R w.r.t. T . In
particular, up to IRQ-equivalence, the set of optimal IRQ-repairs can be computed
in exponential time, and it IRQ-covers all IRQ-repairs of ∃X.A for R w.r.t. T .

Note that, though we have the same covering set R in the IQ and in the IRQ
case, the sets of optimal repairs obtained from it by removing strictly entailed
elements need not coincide since different entailment relations are used during
this removal. Since the requirements for IQ entailment are weaker than for IRQ
entailment, it could be that a qABox may be removed from R in the IQ case,
but must be retained in IRQ case. Also notice that the proposition need not hold
for arbitrary IQ-covering sets. Its proof uses properties of the canonical and the
optimized IQ-repairs that need not hold for arbitrary covering sets.

Example 6. Consider the qABox ∃{x}.A for A = {A(a), r(a, x), r(x, x)}, assume
that the TBox is empty, and that the repair request is {A(a)}. An optimal IQ-
repair ∃{x}.A′ can be obtained from this qABox by removing the assertion A(a)
from A, and this is also an optimal IRQ-repair. However, the ABox {r(a, a)} is
also an optimal IQ-repair since it is IQ-equivalent to ∃{x}.A′, but it is not even
an IRQ-repair since it is not IRQ-entailed by ∃{x}.A.

3.2 Optimal ABox Approximations

Given a qABox we are now interested in finding an ABox that approximates it
as closely as possible in the sense that a minimal amount of information is lost.
In the definition below, we use classical entailment. But note that, according to
Proposition 3, this coincides with IRQ-entailment.

138 F. Baader et al.

Definition 7. Given a qABox ∃X.A and an EL TBox T , we call an EL ABox B
an ABox approximation of ∃X.A w.r.t. T if ∃X.A |=T B. The ABox approxi-
mation B of ∃X.A w.r.t. T is optimal if there is no ABox approximation C of
∃X.A w.r.t. T such that C |=T B, but B �|=T C.

Such an optimal ABox approximation need not exist. The qABox ∃{x}.A′

with A′ = {r(a, x), r(x, x)} is an example for this case. In fact, this qABox
entails ((∃r.)n�)(a) for all n ≥ 1, which is not possible for an ABox entailed by
∃{x}.A′ since such an ABox cannot contain role assertions and can contain only
finitely many concept assertions. However, if an optimal ABox approximation
exists, then it is unique up to equivalence. This is an easy consequence of the fact
that the union of two ABox approximations is again an ABox approximation.

Proposition 8. If B1 and B2 are optimal ABox approximations of the qABox
∃X.A w.r.t. the EL TBox T , then B1 and B2 are equivalent w.r.t. T .

Optimal ABox approximations can now be characterized as follows.

Theorem 9. The ABox B is an optimal ABox approximation of ∃X.A w.r.t. T
iff ∃X.A and B are IRQ-equivalent.

Proof. First, assume that ∃X.A and B are IRQ-equivalent w.r.t. T . Then
∃X.A |=T B by Proposition 3, and thus B is an ABox approximation of ∃X.A
w.r.t. T . If C is another ABox approximation of ∃X.A w.r.t. T , then ∃X.A |=T C
by definition, and thus B |=T C due to the assumed IRQ-equivalence. This shows
optimality of B.

Second, assume that B is an optimal ABox approximation of ∃X.A w.r.t. T
that is not IRQ-equivalent with ∃X.A. Then there is either a role assertion that
belongs to A, but not to B, or a concept assertion that is entailed w.r.t. T by
∃X.A, but not by B. Adding this assertion to B yields an ABox B′ that is an
ABox approximation of ∃X.A w.r.t. T . In addition, it satisfies B′ |=T B, but
not B |=T B′, which contradicts the assumed optimality of B. ��

An approach for deciding whether a given qABox has an optimal ABox
approximation, and for computing it in case it exists, will be described in Sect. 4.
But first, we show how optimal ABox approximations can be used to compute
optimal ABox repairs.

3.3 Optimal ABox Repairs

The repair approaches developed in [3] in general yield quantified ABoxes as
output, even if the input is an ABox. We are now interested in producing repairs
that are ABoxes. The approach developed below does not require the input to
be an ABox. It actually assumes that the input is a qABox, which means that
input ABoxes first need to be transformed into equivalent qABoxes.

Optimal ABox Repair 139

Definition 10. Let T be an EL TBox, ∃X.A a qABox, and R an EL repair
request. We call an EL ABox B an ABox repair of ∃X.A for R w.r.t. T if
∃X.A |=T B and B �|=T C(a) for all C(a) ∈ R. The ABox repair B of ∃X.A
for R w.r.t. T is optimal if there is no ABox repair C of ∃X.A for R w.r.t. T
such that C |=T B, but B �|=T C.

Our approach for computing optimal ABox repairs proceeds as follows:
first, we compute the set of all optimal IRQ-repairs of ∃X.A, and then ABox-
approximate the elements of this set. In the following, if we say that R is the set
of optimal IRQ-repairs of a qABox, we mean that, for every optimal IRQ-repair,
R contains one element of its IRQ-equivalence class. Also, for a given qABox
∃Y.B, we define

OappT (∃Y.B) :=
{

{C} for an optimal ABox approx. C of ∃Y.B w.r.t. T ,
∅ if no optimal ABox approx. of ∃Y.B w.r.t. T exists.

Theorem 11. Let ∃X.A be a qABox, T an EL-TBox, R an EL repair request,
and R the set of optimal IRQ-repairs of ∃X.A for R w.r.t. T . Then the set

⋃

∃Y.B∈R

OappT (∃Y.B)

consists of all optimal ABox repairs of ∃X.A for R w.r.t. T up to equivalence.

Proof. First, assume that the ABox C belongs to the union defined in the state-
ment of the theorem. Then ∃X.A |=T

IRQ ∃Y.B |=T C for some qABox ∃Y.B ∈ R
that has C as an optimal ABox approximation. This implies that C does not entail
any of the concept assertions in R (since ∃Y.B does not) and that ∃X.A |=T C.
Thus, C is an ABox repair of ∃X.A for R w.r.t. T . It remains to show that it
is optimal. Assume to the contrary that C′ is an ABox repair of ∃X.A for R
w.r.t. T such that C′ |=T C, but C �|=T C′. Since C and ∃Y.B are IRQ-equivalent
by Theorem 9, this is a contradiction to the fact that ∃Y.B is an optimal IRQ-
repair of ∃X.A for R w.r.t. T since C′ would then be a better IRQ-repair.

Second, assume that the ABox C is an optimal ABox repair of ∃X.A for
R w.r.t. T . Then C is also an IRQ-repair of ∃X.A for R w.r.t. T , and thus
Proposition 5 yields that there is an optimal IRQ-repair ∃Y.B ∈ R such that
∃X.A |=T

IRQ ∃Y.B |=T
IRQ C. We know by Proposition 3 that the second IRQ-

entailment is in fact an entailment, and thus C is an ABox approximation of
∃Y.B. It remains to show that it is optimal. Assume to the contrary that C′ is
an ABox approximation of ∃Y.B such that ∃Y.B |=T C′ |=T C, but C �|=T C′.
But then C′ is an ABox repair of ∃X.A for R w.r.t. T (since ∃Y.B is a repair)
that is better than C, which contradicts our assumption that C is optimal. ��

Once we have developed a method for computing the sets OappT (∃Y.B), this
theorem shows how to compute the set of all optimal ABox repairs of a given
qABox. Such a method will be introduced in the next section. Before doing this,
we want to point out that, in contrast to the set of optimal IRQ-repairs, which
covers all IRQ-repairs, the set of optimal ABox repairs in general does not cover
all ABox repairs.

140 F. Baader et al.

Example 12. Consider the ABox A = {A(a), r(a, b), B(b)}, the TBox T =
{B � ∃r.B,∃r.B � B} and the repair request R = {(A � ∃r.B)(a)}. There
are basically three options for IRQ-repairing A: remove A(a), remove B(b),
or remove r(a, b). Since things implied by the TBox must also be taken into
account, these three options yield the following optimal IRQ-repairs of A for
R w.r.t. T :5 B1 = {r(a, b), B(b)} as well as ∃{x}.Bi for i = 2, 3, where
B2 = {A(a), r(a, b), r(b, x), r(x, x)} and B3 = {A(a), B(b), r(a, x), r(x, x)}. Of
these three, B1 is already an ABox, and thus its own optimal ABox approxi-
mation, whereas the other two have no optimal ABox approximation. However,
they have non-optimal ABox approximations, which are not necessarily covered
by B1. For example, {A(a), r(a, b), (∃r.∃r.�)(b)} is an ABox approximation of
∃{x}.B2 and an ABox repair of A for R w.r.t. T , but since it contains A(a), it
is not entailed by B1.

4 Computing Optimal ABox Approximations

In this section, we assume that ∃X.A is a qABox and T an EL TBox. We will
develop an approach for deciding whether ∃X.A has an optimal ABox approxi-
mation w.r.t. T , which in the affirmative case also yields such an optimal approx-
imation.

The first step is to saturate ∃X.A using the IQ-saturation rules of Fig. 1. In
the following, let satTIQ(∃X.A) denote a (fixed) qABox obtained by applying the
IQ-saturation rules exhaustively to ∃X.A. Note that the size of satTIQ(∃X.A)
is polynomial in the size of the input ∃X.A and T , and that ∃X.A and
satTIQ(∃X.A) are IQ-equivalent w.r.t. T by Theorem 1. In addition, it is easy
to see that these two qABoxes contain the same individuals and the same role
assertions between individuals. Thus, they are even IRQ-equivalent w.r.t. T . As
before, we use ΣI to denote set of individuals of ∃X.A.

In the next step, we transform satTIQ(∃X.A) into a new qABox, called pre-
approximation, whose matrix basically consists of the union of ABoxes Ba for
each a ∈ ΣI, extended with the role assertions between individuals in A. Each
ABox Ba contains a as the only individual name, and further contains a fully
anonymized copy of the saturation satTIQ(∃X.A), which is connected with a by
indispensable role assertions.

Definition 13. We call a role assertion r(a, u) in satTIQ(∃X.A) for a ∈ ΣI indis-
pensable if there is no role assertion r(a, b) for b ∈ ΣI such that there is a
simulation from satTIQ(∃X.A) to itself that contains (u, b).

Since an individual always simulates itself, only role assertion r(a, u) where u is a
variable can be indispensable. We are now ready to define the pre-approximation.

5 The IQ-repairs computed by the approaches in [3] would contain more assertions,
which are however redundant for IRQ-entailment w.r.t. T .

Optimal ABox Repair 141

Definition 14. The pre-approximation pre-approxT
IRQ(∃X.A) of ∃X.A w.r.t. T

is defined as the quantified ABox ∃Y.B, where

Y := {u′ |u is an object name occurring in satTIQ(∃X.A) },

B :=
⋃

{Ba | a is an individual name in ΣI }

∪ { r(a, b) | r(a, b) occurs in satTIQ(∃X.A) where a, b ∈ ΣI },

Ba := {A(a) |A(a) occurs in satTIQ(∃X.A) }
∪ { r(a, u′) | r(a, u) occurs in satTIQ(∃X.A) and is indispensable }
∪ {A(u′) |A(u) occurs in satTIQ(∃X.A) }
∪ { r(u′, v′) | r(u, v) occurs in satTIQ(∃X.A) }.

Obviously, the pre-approximation can be computed in polynomial time. In addi-
tion, it is IRQ-equivalent to satTIQ(∃X.A) [4].

Lemma 15. The qABoxes satTIQ(∃X.A) and pre-approxT
IRQ(∃X.A) are IRQ-

equivalent w.r.t. the empty TBox ∅, and thus also w.r.t. T .

Since we already know that ∃X.A and satTIQ(∃X.A) are IRQ-equivalent
w.r.t. T , this shows that ∃X.A is IRQ-equivalent to its pre-approximation w.r.t.
T . Consequently, an ABox C is an optimal ABox approximation of ∃X.A w.r.t.
T iff it is one of the pre-approximation w.r.t. T .

To test whether pre-approxT
IRQ(∃X.A) has an optimal ABox approximation

w.r.t. T , it is sufficient to check whether, for all a ∈ ΣI, the individual a has a
most specific concept in Ba w.r.t. T .

Definition 16. Let C be an EL ABox, T an EL TBox, and a an individual
name. The EL concept C is a most specific concept (msc) of a in C w.r.t. T if
C |=T C(a) and C |=T D(a) implies C �T D for all EL concepts D.

The most specific concept need not exist, but if it does, then it is unique up
to equivalence w.r.t. T . The ABox C := {r(a, a)} is a simple example where
the msc of a does not exist w.r.t. the empty TBox. In fact, C |= (∃r.)n�(a)
for all n ≥ 1, and it is easy to see that no EL concept can be subsumed by
these infinitely many concepts. Note, however, that C has an optimal ABox
approximation since it is itself an ABox. In this case, the pre-approximation is
{r(a, a)} ∪ Ba where Ba = {r(a′, a′)}. There is no role assertion r(a, a′) since
r(a, a) is not indispensable. While a′ does not have an msc in Ba, this is not
what we are interested in. We want to know whether a has one, and the answer
is “yes” since � is an msc of a in Ba. The problem of testing for the existence
of and computing the msc in EL was investigated in [20], where the following
result is stated.

Proposition 17 ([20]). Let C be an EL ABox, T an EL TBox, and a an indi-
vidual name. It can be decided in polynomial time whether a has a most specific
concept in C w.r.t. T , and if the msc exists, then it can be computed in exponen-
tial time.

142 F. Baader et al.

The main idea underlying the proof of this proposition (rephrased into the setting
of the present paper) is to unravel the IQ-saturation of C w.r.t. T into a concept
Ck an increasing number k of steps, starting from a. After each step, one tests
whether the ABox {Ck(a)} IQ-entails ∃X.C w.r.t. T , where X consists of the
object names in C different from a. In case this test succeeds, the concept Ck

is the msc of a in C w.r.t. T . This yields an effective test for the existence of
the msc since the following can be shown: there is a polynomial p such that the
entailment test succeeds after at most p(|C|, |T |) steps iff the msc exists.

For example, for the ABox C(1) = {r(a, a)} and the TBox T (1) = ∅, the
0-step unraveling is C

(1)
0 = �, the 1-step unraveling is C

(1)
1 = ∃r.�, the two-

step unraveling is C
(1)
2 = ∃r.∃r.�, etc. It is easy to that there is no k such

that the entailment test succeeds. Thus, it does not succeed for k(C(1), T (1)),
which shows that a does not have an msc. If instead we consider the ABox
C(2) = {A(a), r(a, b), s(a, b), r(b, c), s(b, c), B(c)} w.r.t. T (2) = ∅, then the 0-step
unraveling is C

(2)
0 = A, the 1-step unraveling is C

(2)
1 = A � ∃r.� � ∃s.�, the 2-

step unraveling is C
(2)
2 = A�∃r.(∃r.B �∃s.B)�∃s.(∃r.B �∃s.B), and the 3-step

unraveling is identical to C
(2)
2 . The entailment test succeeds for k = 2. It is easy

to see that, whenever the unraveling becomes stable (which happens if no cycle
in the ABox is reachable from a), then the entailment test succeeds. However,
a reachable cycle in the ABox need not prevent the existence of the msc. For
example, the individual a has the msc ∃r.B in C(3) = {r(a, b), r(b, b), B(b)} w.r.t.
T (3) = {B � ∃r.B}.

As sketched until now, this method for deciding the existence of the msc
does not yield a polynomial-time decision procedure. The reason is that, though
the bound k(C, T) on the number of steps is polynomial, the unraveled con-
cepts Ck may become exponential even for k ≤ k(C, T), as can be seen using
an obvious generalization of our example ABox C(2). This problem can be
avoided by employing structure-sharing, which can be realized by represent-
ing the ABoxes {Ck(a)} by IQ-equivalent qABoxes. In our second example, the
ABox {C

(2)
2 (a)} can be represented by the more compact IQ-equivalent qABox

∃{x, y}.{A(a), r(a, x), s(a, x), r(x, y), s(x, y), B(y)} (see the definition of the k-
unraveling in [1] for how such an unraveling with structure sharing can be defined
in general). It is easy to see that the qABoxes representing the ABoxes {Ck(a)}
are of polynomial size. Since IQ-entailment between qABoxes is polynomial, this
yields the polynomiality result stated in the proposition. Note, however, that
the msc obtained this way is still an unraveled concept Ck without structure
sharing, and thus may be of exponential size.

The following theorem shows that existence of the optimal ABox approxima-
tion can be reduced to existence of the msc (see [4] for the proof).

Theorem 18. Let ∃X.A be a qABox with set of individuals ΣI, let T be an
EL TBox, and let Ba for all a ∈ ΣI be the ABoxes introduced in Definition 14.
Then ∃X.A has an optimal ABox approximation w.r.t. T iff, for all individuals

Optimal ABox Repair 143

a ∈ ΣI, the msc of a in Ba w.r.t. T exists. If the latter condition is satisfied and
Ca are these most specific concepts, then the following ABox is an optimal ABox
approximation of ∃X.A w.r.t. T :

{Ca(a) | a ∈ ΣI} ∪ {r(a, b) | r(a, b) occurs in satTIQ(∃X.A) where a, b ∈ ΣI }.

In particular, the existence of an optimal ABox approximation can be tested in
polynomial time and such an optimal approximation can be computed in expo-
nential time if it exists.

5 Computing Optimal ABox Repairs

We can now reap the benefits from the results shown in the previous two sections.
Given a qABox ∃X.A, an EL TBox T , and an EL repair request R, we can com-
pute the set R of optimal IRQ-repairs of ∃X.A for R w.r.t. T in exponential time.
More precisely, by Proposition 5 this set contains at most exponentially many
repairs, each of which has at most exponential size. Theorem 11 then says that
the set of all optimal ABox repairs of ∃X.A for R w.r.t. T (up to equivalence)
consists of the optimal ABox approximations w.r.t. T of those elements of R for
which such an optimal approximation exists. Finally, Theorem 18 shows how to
decide existence of such optimal approximations and how to compute them if
they exist. Since the elements of R are already of exponential size, existence can
be tested in exponential time and the size of the computed approximations is at
most double-exponential.

Theorem 19. Let ∃X.A be a qABox, T an EL-TBox, and R an EL repair
request. Then the existence of an optimal ABox repair of ∃X.A for R w.r.t.
T can be decided in exponential time, and the set of all such repairs can be
computed in double-exponential time. This set contains at most exponentially
many elements, each of which has at most double-exponential size.

If the given qABox does not have an optimal repair or if we are looking for a
repair not covered by an optimal one, our approach can also be used to compute
non-optimal ABox repairs. In fact, consider an optimal IRQ-repair that does not
have an optimal ABox approximation. Then there are individuals a whose msc
in Ba does not exist. Following [17], we can then use the role-depth bounded
msc instead, which is basically obtained by unraveling up to a fixed bound k on
the role-depth (i.e., the maximal nesting of existential restrictions). This way,
we can produce a set of (possibly) non-optimal ABox repairs, which covers all
ABox repairs whose concept assertions satisfy this bound on the role depth.

There are also cases where the existence of the optimal ABox approx-
imation of the optimal IRQ-repairs is guaranteed. In fact, if the qABox is
acyclic and the TBox is cycle-restricted (i.e., there is no concept C such that
C �T ∃r1. · · · ∃rk.C, as defined in [3]), then the optimal IRQ-repairs are acyclic,
which implies that the ABoxes Ba in the pre-approximations are also acyclic.
Consequently, all optimal IRQ-repairs have an optimal ABox approximation. The
following corollary is an easy consequence of this observation.

144 F. Baader et al.

Corollary 20. Let ∃X.A be an acyclic qABox, T a cycle-restricted EL-TBox,
and R an EL repair request. Then the set of optimal ABox repairs of ∃X.A for
R w.r.t. T is non-empty, and it IRQ-covers all ABox repairs of ∃X.A for R
w.r.t. T .

6 Conclusion

Traditional repair approaches for DL-based ontologies, which compute maximal
subsets of the ontology that do not have the unwanted consequences, are syntax-
dependent and thus may remove too many consequences. Recently developed
syntax-independent approaches for repairing DL ABoxes [3,5,7] compute opti-
mal repairs that do not lose consequences unnecessarily, but they have the dis-
advantage that they produce quantified ABoxes rather than traditional ABoxes.
In this paper we show how to overcome this problem by developing methods
for computing optimal repairs that are traditional ABoxes. These methods are
based on the computation of optimal IRQ-repairs, by adapting the approaches
in [3] for computing optimal IQ-repairs, and then optimally approximating these
qABoxes with ABoxes.

A perceived disadvantage of our approach could be that optimal ABox repairs
need not exist, and even if they do, they need not cover all ABox repairs. How-
ever, by Corollary 20 this problem does not occur if the ABox is acyclic and
the TBox is cycle-restricted. To see how often this corollary applies in practice,
we checked the 80 large ontologies used in the experiments in [3]: 62 have cycle-
restricted TBoxes, and of those only 7 have cyclic ABoxes. Thus, our Corollary 20
applies to 55 of the 80 ontologies considered in [3].

Another disadvantage could be the potentially double-exponential size of
optimal ABox repairs. However, the first exponential comes from the compu-
tation of the optimal IQ-repairs, and the experiments in [3] indicate that this
exponential blow-up does not occur in practice if the optimized approach for
computing IQ-repairs is used. We do not yet have experimental results regarding
the possible exponential blow-up due to the computation of ABox approxima-
tions, but would be surprised if this happened often in practice.

What is called “repair” in the DL community is closely related to what is
called “contraction” in the Belief Change community. For classical repairs and
also for the gentle repairs of [6], this connection was investigated in [14]. It
would be interesting to see whether this investigation can be extended to our
optimal ABox repairs. The original intention underlying our repair approach is
that the ontology engineer chooses one of the computed optimal repairs as the
new, repaired ABox. Alternatively, one could try to adapt the different repair
semantics employed in inconsistency-tolerant query answering [9,12] from clas-
sical repairs to our optimal repairs.

Acknowledgements. This work was partially supported by the AI competence center
ScaDS.AI Dresden/Leipzig and the Deutsche Forschungsgemeinschaft (DFG), Grant
430150274, and Grant 389792660 within TRR 248.

Optimal ABox Repair 145

References

1. Baader, F.: A graph-theoretic generalization of the least common subsumer and
the most specific concept in the description logic EL. In: Hromkovič, J., Nagl, M.,
Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 177–188. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30559-0 15

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

3. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Computing optimal
repairs of quantified ABoxes w.r.t. static EL TBoxes. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 309–326. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5 18

4. Baader, F., Koopmann, P., Kriegel, F., Nuradiansyah, A.: Optimal ABox repair
w.r.t. static EL TBoxes: from quantified ABoxes back to ABoxes (extended ver-
sion). LTCS-Report 22–01, Chair of Automata Theory, Institute of Theoretical
Computer Science, Technische Universität Dresden, Dresden, Germany (2022).
https://doi.org/10.25368/2022.65

5. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 323–338. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0 21

6. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona,
30 October–2 November 2018, pp. 319–328. AAAI Press (2018). https://aaai.org/
ocs/index.php/KR/KR18/paper/view/18056

7. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Computing compliant
anonymisations of quantified ABoxes w.r.t. EL policies. In: Pan, J.Z., et al. (eds.)
ISWC 2020. LNCS, vol. 12506, pp. 3–20. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-62419-4 1

8. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the Third International Confer-
ence on Knowledge Representation in Medicine, Phoenix, Arizona, USA, 31 May–2
June 2008. CEUR Workshop Proceedings, vol. 410. CEUR-WS.org (2008). http://
ceur-ws.org/Vol-410/Paper01.pdf

9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885,
pp. 156–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 5

10. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 453–462. IEEE
Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492576

11. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 20

12. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. J. Web Semant. 33, 3–29 (2015).
https://doi.org/10.1016/j.websem.2015.04.002

https://doi.org/10.1007/978-3-540-30559-0_15
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-030-79876-5_18
https://doi.org/10.25368/2022.65
https://doi.org/10.1007/978-3-030-19570-0_21
https://doi.org/10.1007/978-3-030-19570-0_21
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.1007/978-3-030-62419-4_1
http://ceur-ws.org/Vol-410/Paper01.pdf
http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1007/978-3-319-49493-7_5
https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1016/j.websem.2015.04.002

146 F. Baader et al.

13. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symb. Comput. 45(2), 194–228 (2010). https://doi.org/
10.1016/j.jsc.2008.10.007

14. Matos, V.B., Guimarães, R., Santos, Y.D., Wassermann, R.: Pseudo-contractions
as gentle repairs. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F.
(eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp.
385–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7 18

15. Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable ter-
minologies for the description logic ALC. In: Proceedings, The Twenty-First
National Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, 16–20 July 2006, Boston, Mas-
sachusetts, USA, pp. 269–274. AAAI Press (2006). http://www.aaai.org/Library/
AAAI/2006/aaai06-043.php

16. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceed-
ings of the 14th International Conference on World Wide Web, WWW 2005,
Chiba, Japan, 10–14 May 2005. pp. 633–640. ACM (2005). https://doi.org/10.
1145/1060745.1060837

17. Peñaloza, R., Turhan, A.-Y.: A practical approach for computing generalization
inferences in EL. In: Antoniou, G., et al. (eds.) ESWC 2011, Part I. LNCS, vol.
6643, pp. 410–423. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21034-1 28

18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI-03, Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August
2003, pp. 355–362. Morgan Kaufmann (2003). http://ijcai.org/Proceedings/03/
Papers/053.pdf

19. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reason. 39(3), 317–349 (2007). https://doi.org/10.1007/
s10817-007-9076-z

20. Zarrieß, B., Turhan, A.: Most specific generalizations w.r.t. general EL-TBoxes. In:
IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, 3–9 August 2013, pp. 1191–1197. IJCAI/AAAI (2013).
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6709

https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1007/978-3-030-22102-7_18
http://www.aaai.org/Library/AAAI/2006/aaai06-043.php
http://www.aaai.org/Library/AAAI/2006/aaai06-043.php
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1007/978-3-642-21034-1_28
https://doi.org/10.1007/978-3-642-21034-1_28
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
https://doi.org/10.1007/s10817-007-9076-z
https://doi.org/10.1007/s10817-007-9076-z
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6709

Ensemble-Based Fact Classification
with Knowledge Graph Embeddings

Unmesh Joshi(B) and Jacopo Urbani

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
u.n.joshi@vu.nl, jacopo@cs.vu.nl

Abstract. Numerous prior works have shown how we can use Knowledge Graph
Embeddings (KGEs) for ranking unseen facts that are likely to be true. Much less
attention has been given on how to use KGEs for fact classification, i.e., mark
unseen facts either as true or false. In this paper, we tackle this problem with a
new technique that exploits ensemble learning and weak supervision, following
the principle that multiple weak classifiers can make a strong one. Our method
is implemented in a new system called DuEL. DuEL post-processes the ranked
lists produced by the embedding models with multiple classifiers, which include
supervised models like LSTMs, MLPs, and CNNs and unsupervised ones that
consider subgraphs and reachability in the graph. The output of these classifiers
is aggregated using a weakly supervised method that does not need ground truths,
which would be expensive to obtain. Our experiments show that DuEL produces
a more accurate classification than other existing methods, with improvements
up to 72% in terms of F1 score. This suggests that weakly supervised ensemble
learning is a promising technique to perform fact classification with KGEs.

1 Introduction

Knowledge Graphs (KGs) [26] have emerged as the de-facto standard to share large
amounts of factual knowledge on the Web. A fundamental problem that concerns KGs
is link prediction, i.e., the problem of predicting potential missing links in a KG.

Recently, numerous works [25,40] have shown that Knowledge Graph Embed-
dings (KGEs) models can be used to identify the top k completions for link patterns
(e.g., 〈London,capitalOf,?〉). This operation is useful to identify a smaller set of
promising links, but more work is needed for selecting the correct ones. Consider, for
instance, the case of a human KG curator who is searching for missing links. An embed-
ding model can help they to identify the k most promising links, but in practice only a
small fraction of such a subset is indeed correct. To recognize those, an additional eval-
uation is needed, which might be time consuming if it were conducted manually. This
problem would be solved, or at least reduced, if we have a procedure that directly clas-
sifies potential links with a binary true/false label. Such a procedure could be used to
implement a fully automated KG completion pipeline, or at least would lift the burden
of interpreting ranked lists of potential completions off the user.

Surprisingly, performing fact classification with KGEs is a problem that is not
yet well studied. So far, the research on KGEs has primarily focused on the model

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 147–164, 2022.
https://doi.org/10.1007/978-3-031-06981-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_9

148 U. Joshi and J. Urbani

construction, using ranking as the main evaluation metric and leaving the task of mak-
ing fact classification as future work [35,42]. This makes existing KGEs models (e.g.,
TransE [5], ComplEx [38], RotatE [36], RDF2Vec [29]) not suitable in their current
form. So far, the only proposal for performing fact classification with KGEs is to sim-
ply label all the top k completions as correct and all the others as incorrect [35]. In
practice, however, this approach does not work well because not all correct completions
appear in the top ranked positions; thus a small k would affect recall while a large one
would affect precision. Another approach would be to include additional background
knowledge such as ontologies to filter out incorrect links. For instance, if we know
that a property is functional, then at most one of the k completions should be marked
as correct. Unfortunately, such additional knowledge is not always available; thus we
consider the setting where we do not have it.

In general, we can identify two main key challenges for performing fact classifi-
cation using KGEs. First, KGs can be very incomplete and this affects negatively the
accuracy of predictions. Second, it is hard to produce training samples, negative in par-
ticular, because KGs are built under Open World Assumption (OWA), thus potential
links can be either missing or incorrect. One could address this problem by manually
annotating the top k completions, but this is a time consuming operation which may
require human experts.

The two challenges above increase significantly the difficulty of designing a single
procedure, e.g., a supervised classifier, that relies solely on the embeddings to produce
the classification. Fortunately, there is a well-known alternative approach in Machine
Learning called ensemble learning that is designed to address precisely the cases when
we do not have a classifier that is accurate enough. The idea behind ensemble learning
is conceptually simple: instead of focusing on a single classifier, we can use multiple
ones, following the principle that multiple weak classifiers can make a strong one.

Ensemble learning is a technique that has been successfully applied in multiple
domains (e.g., see overview at [47]), but it has never been applied for fact classification
with KGEs. In this paper, we cover this gap with a new ensemble learning method
called DuEL (Dual Embedding-based Link prediction), that is specifically designed for
fact classification with KGEs. With ensemble learning, the challenge is to identify a
suitable set of classifiers and aggregation technique to exploit their predictive power as
much as possible. Next to this, in our context we also need to face the problem that we
lack ground truths to train any supervised classifier and aggregation model.

We address the aforementioned problems as follows. For the selection of a suitable
set of classifiers, we considered state-of-the-art neural architectures, which can be seen
as a natural choice for this type of problems. In particular, we selected three differ-
ent models: an LSTM network [17], a convolutional neural network (CNN) [13], and
a multi-layer perceptron (MLP) [4]. We selected these models because they interpret
the input in different ways (e.g., with an LSTM it is a one-by-one sequence while with
a CNN multiple facts are fed at the same time), hence each of them can capture sig-
nals that the others might miss. To function properly, however, all three models require
ground truths for training, which we do not have. To fix this problem, we created (possi-
bly wrong) training data assuming Closed World Assumption (CWA), which states that
everything that is not in the KG is false by definition. A consequence of this assump-
tion is that the training data might contain many false negatives. Hence, the classifier

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 149

is trained with a bias towards rejecting potential good completions, which favors pre-
cision but harms recall. To mitigate this problem, we include two additional unsuper-
vised classifiers which leverage subgraph embeddings [18] and shared paths in the KG,
respectively. These two classifiers tend to have a higher recall. Therefore, they are a
good complement to the first three classifiers.

For aggregating the classifiers’ outputs, using a supervised classifier is problematic
because we do not have ground truths. An alternative could be to rely on unsupervised
techniques like majority voting. However, such approaches would not consider possible
differences of the classifiers’ accuracies, or latent correlations between them. To exploit
those, we can leverage recent weakly supervised techniques that combine the outputs
of classifiers without ground truths [12,28]. In the literature, these models have been
shown to be very effective for making predictions with noisy data (e.g., see the Snorkel
project [27]). We show here that they are also valuable for performing link prediction,
which is a problem for which they have not been applied yet.

While our solution is conceptually simple, our experiments using multiple embed-
ding models confirmed that DuEL was able to perform a fact classification that is much
more accurate than currently possible, with the major benefit that our solution can be
trained only with the content of the (incomplete) KG and without high-quality manual
annotations. For instance, DuEL outperformed existing methods producing predictions
with an F1 of 0.60 and 0.51 on FB15k237 and DBpedia50 respectively, which are two
well-known benchmarks, with improvements that range between 72% and 24% against
the second best approach.

2 Link Prediction with KGEs

A KG can be seen as a directed labeled (multi)graph K = (V, E ,R) where vertices
in V represent entities and every edge in E denotes a semantic relation labeled with
type r ∈ R. Given h, t ∈ V and r ∈ R, we write 〈h, r, t〉 to indicate the edge from h
to t which is labeled with r, e.g., 〈London,capitalOf,UK〉. Throughout, we often
refer to edges as links. We also introduce the expression link pattern, denoted 〈h, r, ?〉
(〈?, r, t〉), to refer to the set of all links from h (to t) with label r. Finally, we say that e
is a valid completion for 〈h, r, ?〉 (〈?, r, t〉) in K if 〈h, r, e〉 ∈ K (〈e, r, t〉 ∈ K).

We assume that K is incomplete in the sense that some links are missing. This
assumption implies the existence of another KG K ′ = (V, E ′,R) where E ′ ⊃ E is the
set of all true links with a label in R between the entities in V . Our goal is to predict all
and only the links in E ′ \ E .

An embedding is a vector in R
d where d > 0 and an embedding model (or model

for short) is a set of embeddings. Several techniques have been proposed to construct
embedding models that are suitable for link prediction (e.g., [5,7,24,32,36,38,41,44]).
In this paper, we consider three techniques: ComplEx [38], RotatE [36], andTransE [5],
which we selected as examples of factorization models (ComplEx) and translational
models (RotatE, TransE). ComplEx and RotatE are among the techniques that returned
the best performance according to [30] whileTransE is included as it is one of the oldest
and most frequently used techniques.

All three techniques assign a vector of d numbers to every entity in V and every
relation in R, effectively creating models with (|V| + |R|) × d parameters. In the case

150 U. Joshi and J. Urbani

of TransE, the numbers are real, while with RotatE and ComplEx the numbers are
complex. These techniques first define a suitable scoring function for a candidate link
〈h, r, t〉. Then, the models are trained with different loss functions that combine the
scoring functions of true and false links. With TransE, the scoring function is:

ftr(〈h, r, t〉) = ||h+ r − t|| (1)

where ||·|| is the L1 norm, h, r, and t are the vectors associated to h, r, and t respectively
(we follow convention of denoting the embeddings in boldface). With ComplEx, it is:

fco(〈h, r, t〉) = Re(〈r,h, t̄〉) (2)

where 〈·〉 applied to vectors is the generalized dot product, Re(·) is real component,
and ·̄ is the conjugate for complex vectors. With RotatE, it is:

fro = ||h ◦ r − t|| (3)

where ◦ denotes the element-wise product.
In the literature, empirical evaluations have shown that embedding models return

higher scores for true links than for false ones [25,30,40]. This observation suggests
a straightforward way to do link prediction, that is, to rank every entity ti according
to f(〈h, r, ti〉), and consider the k entities with the highest ranks as potential valid
completions. However, accepting indiscriminately all k is likely to yield a low precision
because in practice many of the top k entities are not valid completions. One solution
would be to reduce the k to retain only the most likely completions, but this would
lower the recall since many correct completions will be missed. To improve the both
precision and recall, we are called to critically look at the ranked list of entities and
translate the numerical scores into binary decisions.

3 Our Proposal

Let K be the input KG and K′ be the (unknown) KG with all the true links. DuEL is
designed to predict all the links in K′ with a given label r that either start from or end to
a given entity e. This equals to finding all valid completions for a pattern that is either
of the form 〈?, r, e〉 or 〈e, r, ?〉 in K′. Thus, from now on we will assume that the input
is a link pattern p and an embedding model M of K, while the output is the set of valid
completions for p in K′.

As an example, Fig. 1 gives a graphical overview of the functioning of DuEL with
the pattern p = 〈?,locatedIn,UK〉. The first step consists of computing the top k
ranked entities for p with M , which are not valid completions in K (if they are, then the
links are already known). Let us call E the set of such entities. DuEL considers only the
entities in E, which are the most likely completions, and ignore all others.

Next, DuEL makes a binary decision for every entity e ∈ E, thus establishing the
truth value of links (e.g., if the decision for e = London is positive, then the link
〈London,locatedIn,UK〉 is correct). Each binary decision is a two-step process.
First, multiple classifiers independently label every candidate entity. Then, the labels
are aggregated to formulate a final correct/incorrect prediction.

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 151

Fig. 1. Schematic overview of DuEL

3.1 Classifiers

In principle, DuEL can be configured to use an arbitrary number of classifiers. In gen-
eral, we would like to have some classifiers that complement each other. For instance,
some can learn to make the predictions based on the latent representations of the enti-
ties, and others that more generally consider the structure of K. The classifiers do not
need to be conceptually simple or fast to execute. For our purposes, they can be arbi-
trarily sophisticated as long as they do not require human input. With this desiderata in
mind, we introduce five types of classifiers, C1,. . . ,C5.

The classifiers C1,. . . ,C3 are supervised models. Thus, they require training data.
Unfortunately, obtaining ground truth annotations involves a human intervention, which
can be expensive. To give an idea, deciding whether a link was true often took more than
a minute during the creation of our gold standard. To avoid this problem, we decided to
use the content of K to label the training samples, effectively operating under CWA.

Since this data contains an approximation of the true labels, we train multiple clas-
sifiers hoping that mistakes will be corrected during a collective evaluation. Each clas-
sifier approaches the problem from a different perspective: C1 is a MLP, one of the
most conventional choices for classification; C2 is an LSTM, thus it views the classifi-
cation as a sequence labeling problem; C3 is a CNN, thus it relies on the convolutional
operator to perform a collective prediction of the top-k at once.

The classifiers C4 and C5 are added because they do not rely on supervised models:
C4 relies on ranked lists of subgraph embeddings while C5 considers shared paths
between the entities. Since they do not base their decisions using training data created
under CWA, we expect them to have a higher recall than the first three which should
have instead a higher precision.

For a given set E as input, every classifier returns the set F := {〈e, l〉 | e ∈ E}
where l ∈ {CORRECT,INCORRECT}. We create two classifiers of each type, one for
patterns of the form 〈?, r, t〉 and another for 〈h, r, ?〉. Below, we describe each classifier
in more detail.

152 U. Joshi and J. Urbani

C1 (MLP). MLPs are among the most popular neural architectures used for classifi-
cation. Our MLP network is structured with two dense layers (each with n units) inter-
leaved by two dropout layers (each with rate r) and sigmoid as final activation function.
As input, the network receives the vectors t1, . . . , tk that represents the list of k entities.
Each vector ti is obtained by concatenating three vectors a, b, and c, and the ranking
score of the ith ranked entity. Vectors a, b, and c are created using the embedding
model M . In particular, a and b equal to the embeddings of the entity and relation in
the link pattern, respectively, while c is the embedding mapped to the ith entity in the
ranked list.

For instance, suppose that we want to construct the vector ti that corresponds to the
entity ei, p = 〈?, r, t〉, and M was created with TransE. In this case, a := t, b := r,
and c := ei and the score is ftr(〈ei, r, t〉).

C2 (LSTM). Using an LSTM for classifying the top-k answers entities is not a usual
approach. This is because LSTM is a sequence model and in theory the truth value
of each answer does not depend on the ones that are before or after it. However, we
observed that there are some regularities in the number and positions of true links in
the ranked list. For instance, if p = 〈Ferrary,isA, ?〉, then it is likely that the valid
completions are few and concentrated in the top positions (since typically the number
of classes is limited). However, if p = 〈?,isA,Student〉, then the valid completions
are (probably) many more. These observations hint that the sequence of completions is
a useful asset for making binary predictions.

As input, the LSTM with n hidden units receives a sequence of vectors t1, . . . , tk
that represents the list of k entities. Each ti is constructed in the same manner as done
for C1. Since our task is classification, we add, on top of the LSTM, one extra layer
with n units, followed by a dropout layer with rate r and a final dense layer with a
sigmoid activation function to produce a binary classification.

C3 (CNN). CNN networks are a very popular type of deep neural networks used
primarily for image processing and other types of problems, like sentence classifica-
tion [21], sentiment analys [9], or text ranking [33].

We construct a network with a single 2D convolutional layer, parametrized by a
kernel of size s1 × s1. We chose a 2D layer instead of a 1D layer because with the
former we can model the interactions between the concatenated embeddings. As input,
we provide a 2D matrix obtained by concatenating the t1, . . . , tk vectors. The convolu-
tional layer returns an output with k channels, which is passed to a max pooling layer,
parametrized by another kernel of size s2 × s2 for further down sampling. This layer
returns a 1D vector with k elements, which is post-processed by a sigmoid activation
function such that it returns k binary predictions.

C4 (Subgraph Embeddings). This classifier uses subgraph embeddings, which were
recently introduced by [18]. Subgraphs embeddings are created by aggregating the
embeddings of the entities contained in them, and are meant to quickly provide an
approximate ranking of the top k entities. In this context, subgraphs are defined as set

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 153

of entities that share the same neighbour with edges with the same label. Subgraphs
can be of two types, depending on the direction of the edges to the common neighbour.
Let us recall that K = (V, E). We denote with S〈?,r,t〉 := {h | 〈h, r, t〉 ∈ E} the sub-
graph with all entities with outgoing edges to t which are labeled with r. Analogously,
S〈h,r,?〉 := {t | 〈h, r, t〉 ∈ E} denotes the subgraph with incoming edges from h. Sub-
graph embeddings are constructed by averaging the embeddings of their entities. With
TransE, this equals to

Sl :=

∑
e∈Sl

e
|Sl| (4)

With ComplEx and RotatE, we take the average of the real (Re(·)) and imaginary
(Im(·)) parts, respectively.

Sl := 〈
∑

e∈Sl
Re(e)

|Sl| ,

∑
e∈Sl

Im(e)
|Sl| 〉 (5)

The average embeddings computed by Eqs. 4 and 5 allow us to apply the scoring
function using the subgraph embeddings rather than the embeddings of potential com-
pletions. Once the classifier receives as input p and E, it first ranks all the subgraphs
with the scoring function of M and p. This operation produces a list S = 〈S1, S2, . . .〉
of subgraphs. Then, it retains in S only the top j subgraphs, where j is a threshold value
that is dynamically computed using statistics from K [18].

Finally, the classifier labels every entity e ∈ E as follows. If e appears as a mem-
ber of any subgraph in S, then it is labeled as CORRECT. Otherwise, e is labeled as
INCORRECT. Notice that this classifier, unlike the previous three, does not require a
training phase.

C5 (Shared Paths). The previous four classifiers rely on KG embeddings to make their
predictions. In contrast, this classifier does not use embeddings, but considers instead
shared paths between potential valid completions in K′ (i.e., the entities in E) and any
valid completion in K.

First, let us assume that the input link pattern p is of the form 〈?, r, t〉 (the other case
is analogous). Then, let Pa,b be the set of all paths between a and b in K of maximum
length 2 (note that the direction of the edges is not taken into account). Furthermore,
let Pp = {q | q ∈ Pa,t, 〈a, r, t〉 ∈ K} the set of all paths between t and any valid
completion of p in K. This classifier will label every entity e ∈ E as CORRECT if there
is a path p ∈ Pe,t and another path q ∈ Pp which differ only on the first entity in the
paths. In other words, entity e is marked as CORRECT if it is connected to t with the
same path as one of the valid completions inK. Otherwise, e is labeled as INCORRECT.

3.2 Aggregation

The output of classifiers can be aggregated in several ways. Two techniques which are
often used are Min Voting and Majority Voting. With the first technique, we label an
entity as CORRECT if at least one classifier has labeled it as CORRECT. With the sec-
ond one, we pick the label chosen by the majority of the classifiers (ties are broken

154 U. Joshi and J. Urbani

arbitrarily). A disadvantage of these techniques is that they do not consider latent cor-
relations between the classifiers. To include those, we can use several approaches that
were originally introduced for building machine learning models without using ground
truth annotations [12,28].

The problem of aggregating without ground truths can be modeled as follows. The
input consists of a set data points X . The goal consists of labelling each data point
X ∈ X with a vector Y = [Y1, . . . , Yt]T of t categorical task labels. We assume that
we do not have any ground truth that we can use for training. To recover from the lack
of such data, we consider a set of sources that provide approximate labels for (a subset
of) the t tasks. If they cannot provide a label, then the sources can abstain.

The sources might be potentially correlated and have an unknown accuracy. We can
estimate those considering the observed agreement and disagreement rates of the emit-
ted labels. To this end, we can construct a matrix λ of noisy labels produced by the
sources, and then compute a label model Pµ(Y|λ) where μ is the vector of parameters
that encodes the correlations and accuracies. Then, we can use the label model to output
a single probabilistic label vector Ỹ from the noisy labels of an unseen data point X .
The problem translates into computing the parameters μ. One way consists of estimat-
ing μ from the inverse covariance matrix among the sources [28]. Another approach
consists of breaking down the original problem into a set of smaller problems that con-
siders subsets of three sources. The advantage is that the subproblems have closed-form
solutions, thus the parameters can be computed without iterative solutions [12].

In our context, we have a single task, the categorical task label represents the binary
prediction CORRECT and INCORRECT, the data points are the potential completions
for p (i.e., E), and there are five sources, C1, . . . ,C5. Finally, since one of the strengths
of such methods is to consider that a source might abstain, we slightly change the label-
ing of our classifiers as follows. Instead of predicting either CORRECT or INCORRECT,
we introduce one extra label NEUTRAL. Then, we modify the output of C1, C2, and C3
introducing two threshold values τ1 and τ2. If the output of the sigmoid is lower (higher)
than τ1 (τ2) then the label is INCORRECT (CORRECT). Otherwise, if it is between τ1
and τ2, then it is NEUTRAL.

A problem that arise with our threshold-based approach is that we must find good
values for τ1 and τ2. In practice, we observed that using grid search using a small
held-out validation dataset yields satisfactory performance. For C4 and C5, we replace
INCORRECT with NEUTRAL, thus simulating a prediction under OWA where missing
links are not automatically considered as incorrect.

To aggregate the classifiers’ output, we first compute the label model by applying
the classifiers on every potential completion and use their output to create the label
matrix λ. After computing μ, either exploiting the covariance [28] or the decomposition
in triplets [12], we compute λ for an unlabeled completion e, pass it to the label model
and use the value of the returned Ỹ as the final (binary) label of e.

It is important to note that none of the components in the pipeline of DuEL needs
large volumes of manually annotated data, with a consequent benefit in terms of scala-
bility. The classifiers C4, C5 do not require training, C1, C2, and C3 are trained using
the true links of K, and the training of the label model only considering the provided λ.

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 155

Fig. 2. Statistics, model parameters, and ranges used for grid search

4 Evaluation

KGs. As inputs, we considered datasets commonly used in the related literature. We
selected FB15k237, a subset of Freebase used as benchmark in many works (e.g.,
[18,36,38]), and DBpedia50, a subset of DBpedia used in [30]. We used the param-
eters for the embedding models reported as optimal by [30]. Details are in Fig. 2a. The
embedding models were trained with Adagrad [10] for 1000 epochs.

Below, we set k = 10 (|E|) as default since this is a common threshold used for eval-
uating ranked lists of entities (hit@10). The experiments were performed on a machine
with 64GB RAM and two 8-core CPU 2.4 GHz. The code and other experimental data
is available online1.

Training C1, C2, and C3. These classifiers are trained under CWA using training data
that was automatically generated. Every pattern and list of k completions is a data point
used to train the networks. Since there is a variable number of link patterns of different
types, the number of data points depends on the KG and type of pattern. Figure 2a
reports the size of the training data sets. Training occurred by minimizing the binary
cross entropy with Adam [19] for 10 epochs.

We performed grid search to find the optimal values for n (hidden units), r (dropout
rate), s1 and s2 (kernel sizes), τ1, and τ2 optimizing for the best F1 on the validation
dataset. The ranges considered for the search are reported in Fig. 2b. We observed that
the values n = 100, r = 0.2, s1 = 3, s2 = 2, τ1 = 0.2 and τ2 = 0.6 work well with
the models and KGs.

Gold Standard. To test the performance of DuEL, we cannot rely on the content of
the input KG since it is, by definition, incomplete. In particular, we cannot use a held-
out dataset as it is typically done for evaluating the ranking capabilities of embedding
models because such a dataset would contain only (some) links which we know are
true (and not the ones which we know are false). To perform a more complete evalua-
tion, we created a gold standard with data annotated by humans. We randomly selected

1 https://github.com/karmaresearch/duel.

https://github.com/karmaresearch/duel

156 U. Joshi and J. Urbani

Fig. 3. Details about gold standard

Fig. 4. Screenshot annotation interface

250 and 150 previously unseen link patterns of both types (50/50) for FB15k237 and
DBpedia50 respectively, retaining 50 patterns of each type to construct a small valida-
tion dataset. Then, for every link pattern and embedding model, we manually annotated
the top k = 10 entities that correspond to links that are not in K, consulting exter-
nal sources to verify the correctness of the links. The annotations were performed by
two human annotators who independently annotated the links using a special web inter-
face. Figure 4 reports a screenshot of (part of) the interface. The interface shows, for a
given query, which are the top ranked answers provided by the three embedding mod-
els. Additional links to Google and Wikipedia are provided to help the human annotator
to decide whether a particular answer is correct.

In total, the annotators labeled about 3900 links for FB15k237 and 3600 links for
DBpedia50. Figure 3a reports the rate of CORRECT links in both datasets while Fig. 3b
reports the 10 most popular relations annotated in each dataset. Since the task of the
annotators is to verify whether the fact is true, the degree of subjectivity is low. This is
confirmed by a high Cohen’s score: With FB15k237 is it 0.8137 while with DBpedia50
it is 0.869, which indicate a nearly perfect agreement between the annotators. Notice
that the size of the gold standard is much smaller than the size of training data used to
train the classifiers since the former requires a manual annotation while the latter can be

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 157

Fig. 5. Performance on gold standard (P, R and F1 denote Precision, Recall, F1 scores, respec-
tively). The best results are marked in boldface

automatically computed from the input KG. Also, notice that the ratio of correct links
is fairly low, especially in DBpedia50. With such a low ratio, a supervised classifier
trained with such data can achieve a high accuracy by simply returning always the label
INCORRECT. Our method does not suffer from this problem since the aggregation does
not need ground truths.

4.1 Performance of Link Prediction

Baselines. We consider three external baselines and several alternative approaches to
the default pipeline, yielding a comparison against 10 other methods. The first exter-
nal baseline, which we name RankClassify, is presented by [35] and it is, as far as
we know, the only method that uses embeddings to perform binary predictions. The
technique consists of marking as correct all the answers in the top k positions, where
k is fine tuned upfront on a validation dataset. The second baseline is the state-of-
the-art method proposed by [43]. This method, which we label DeepPath, does not use

158 U. Joshi and J. Urbani

embeddings. Instead, it uses reinforcement learning to learn reasoning paths on the KG.
We configured it to do fact prediction on FB15k237 and mark the top k ranked facts as
correct, similarly as before. The third baseline is the reinforcement learning version of
AnyBURL [22,23], which learns rules bottom-up for link prediction. AnyBURL is exe-
cuted using the default parameters mentioned in the online documentation and trained
for 1000 s. On DBpedia50, we report only the performance with RankClassify as it was
the external baseline with the highest F1.

To compare against more methods, we also apply the five classifiers in isolation.
Finally, we compare our weak supervision approach (with the covariance [28]) denoted
DuEL (M) and with the triplets [12], denoted DuEL (S)) against two unsupervised and
one supervised alternatives. The unsupervised ones are theminority andmajority voting,
which are popular choices. The supervised one is a random forest which uses the scores
of the classifiers as input features and the validation dataset as training labels.

Results. Figure 5 reports the precision, recall, and F1 of the CORRECT predicted links
with our gold standard. We make six main observations.

Observation 1. We observe that DuEL returns the highest F1 in all cases. The improve-
ment is 0.09 (DBpedia50, ComplEx) and 0.01 (FB15k237, RotatE) points better than
the second-best non-DuEL result in the best and worst cases, respectively. If we com-
pare against existing approaches in the literature, then the gain increases to 0.25
(FB15k237, ComplEx) and 0.1 (DBpedia50, ComplEx). We find remarkable that both
DuEL (M) and denoted DuEL (S) achieve superior or comparable performance than the
fully supervised model despite they do not make use of ground truth annotations.

Observation 2. The best performance is obtained with ComplEx, but the differences
with the other models are not large, except for DBpedia50 where TransE does not
perform as well as the others. A lower performance of TransE should be expected since
it is a model that is often outperformed by the other two (e.g., see [30]). In general, we
conclude that our approach generalizes well. Therefore, it can be used with different
embedding models.

Observation 3. If we compare C1,. . . ,C5, then we notice that C1, C2, and C3 mostly
return a higher precision than the other two, as we expected. In contrast, C4 and C5
tend to return a higher recall. In some cases, some classifiers used in isolation returned
remarkable performance. For instance,C2with RotatE and FB15k237 is close to return
the best result. In other cases, the classifiers perform very poorly. For instance, C2 with
TransE and DBpedia50 never returned any positive answers.

Observation 4. There is not a classifier that is clearly outperforming the others, and
they all contribute to improve the performance. To obtain further evidence, we per-
formed an ablation study where we executed DuEL (M) excluding, each time, the labels
of one classifier. Figure 6 reports the obtained F1 during such a study with some rep-
resentative KGs, models, and types of patterns. In this case, if the performance loss
that we get when we remove one classifier is large, then it means that it provided a
significant contribution. We observe that with ComplEx, FB15k237, and 〈?, r, t〉 pat-
terns, C3, C4, and C5 gave the most significant contribution. In contrast, with 〈h, r, ?〉

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 159

Fig. 6. Ablation study where the F1 is computed with all classifiers but one. H refers to per-
formance with patterns of the form 〈?, r, t〉 while T with 〈h, r, ?〉. Other abbreviations: FB =
FB15k237, DB = DBpedia50, Co = ComplEx, Ro = RotatE

patterns,C1 andC2 are more important. These differences highlight the benefit of weak
supervision that takes all classifiers into account.

Observation 5. It is interesting to compare the results of DuEL (M) against the ones
of DuEL (S). Both methods return similar scores, but DuEL (M) has slightly better
performance. Thus, we select it as default choice. However,DuEL (S) has the advantage
that it is much faster. Thus, it is a good alternative for a large-scale deployment or for
context where a timely prediction is needed.

Observation 6. Fact classification appears to be a hard problem. The absolute perfor-
mance of external baselines is low, with F1 scores that range from 0.1 to 0.4. This is
partly due to the fact that these methods were mainly designed for ranking and not
for classifying. The best F1 values that we obtained with DuEL are between 0.5 and
0.6. This is due to the fact that many links are hard to label if we have only the KG
as input. We observed higher F1 values for 〈h, r, ?〉 patterns than for 〈?, r, t〉, which is
expected since there are typically fewer tails than heads. Despite the absolute values
of the F1 are not very high, the relative improvement brought by DuEL is significant.
With DBpedia50 and TransE, DuEL returns an F1 score that is 2.5 times better than
existing techniques but this likely to be due to the low quality of the embedding model.
With better models like ComplEx and RotatE, the relative improvement is still signifi-
cant as it ranges between 72% and 24%. We believe that the performance can be further
improved by including more sources, but this is a topic that deserves a dedicated study.

Hyperparameter Tuning. We show the effect of some parameters on the overall per-
formance. We report the results only with ComplEx and FB15k237 since they are rep-
resentative of the other cases. Figure 7a shows the effect of the number of units in the
networks of C1 and C2 (the tuning that we performed with grid search included more
values than the shown ones). We observe that the impact of this parameter is limited
since the performance does not change significantly. Figure 7b reports the F1 if we set
different τ1 and τ2. In this case, we observe that the performance changes significantly,
and this makes τ1 and τ2 two important parameters. Figure 7c shows the impact of
changing the kernel sizes in C3. We notice that also here the impact is noticeable.

160 U. Joshi and J. Urbani

Finally, Fig. 7d shows how the performance varies if we change the top k con-
sidered completions with FB15k237 and ComplEx. As expected, we observe that the
performance decreases with higher k since the problem becomes harder.

Fig. 7. Figures (a–c): Performance while changing multiple hyperparameters, with ComplEx, and
FB15k237. The best results are marked in boldface. Figure (d): Performance with different k

5 Related Work

Ranking vs. Classifying. The problem that the prevailing evaluation paradigm of KGEs
is based on ranking rather than classifying has been empirically studied in [42] and
in [35]. Both works focus on the analysis of current methods rather than proposing new
ones like ours. Previous work addressed the problem of a ranking-based evaluation by
creating negative samples and measuring the accuracy [34], or with new metrics [42].
In contrast, we use a manually annotated dataset.

Link Prediction on KGs. Links can be predicted also using rules, which can be either
mined from KGs [14,23] or learned with differentiable models [39]. These approaches
propose themselves as alternatives to KGEs for ranking promising set of links. There-
fore, they can be used as additional classifiers within our pipeline.

Another technique for finding new links is logic-based reasoning. In particular, rule-
based reasoning based on Datalog [1] can compute new facts (links) in KGs with bil-
lions of edges [6]. Also, a recent work uses BERT [8] for link prediction [46], leveraging
the labels of the entities, thus the language model. Our work differs from them because
ours does not depend on external knowledge, like rules or language models.

(Knowledge) Graph Embeddings. In our work, we considered three representative
embedding models but there are many more that could be considered. A class of embed-
ding models that has yield good results is the one that employs Graph Neural Networks

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 161

(GNNs) [32]. In principle, our technique could also be used considering the embed-
dings produced by a GNN, but it is interesting, as future work, to study whether it is
possible to exploit the graph-like structure of the GNN to produce more sophisticated
classifiers. Another way to exploiting KGEs for fact classification could rely on a prob-
abilistic interpretation of their scoring function. For instance, [11] has shown that it is
possible to give to DistMult a probabilistic interpretation, which in turn can be used
for producing a binary classification. In this case, we can employ techniques used for
calibrating the probabilities, like the ones presented in [37] and [31] to improve the
accuracy of classification.

If we broad our horizon and consider also different types of graphs, then it is useful
to mention a recent overview of (unlabeled) graph embeddings is given at [15]. An
important task for these techniques consists of classifying the nodes (instead of links),
e.g., [16,20]. To achieve the best results, some techniques use semi supervision [20,45].
We conclude by mentioning that there are several fully supervised techniques for binary
link prediction designed for social networks [2].

6 Conclusion

We addressed the problem of performing (binary) fact classification with KGEs. Exist-
ing KGEs methods were designed and evaluated for link prediction via ranking and
not via classification. There is an emerging consensus that this is an important limi-
tation and that future methods should be evaluated also on classification next to rank-
ing [3,35,42]. To make the problem worse, using KGEs for classification is not trivial
also because embeddings may be too noisy if they are not sufficiently trained and we
lack large volumes of ground truths to train effectively supervised classifiers on top of
them.

Our proposal is the first of its kind. Instead of proposing yet another (embedding)
model, the main novelty of our contribution is to show how we can leverage and com-
bine the power of existing methods following the well-established paradigm of ensem-
ble learning. By aggregating the output of multiple classifiers together, we are able to
correct mistakes that may be due to noisy embeddings. Moreover, the aggregation takes
place in a weakly-supervised manner without using ground truths.

Our experiments confirm the value of our approach. Although the absolute F1 val-
ues show that we have not yet reached human-like levels, the improvement brought
by our method is significant. For instance, with our approach the F1 improved of 72%
against the second best with FB15k237 and ComplEx (0.599 vs 0.348) and of 33%
against the second best with DBpedia50 and RotatE (0.505 vs 0.381). These improve-
ments indicate that ensemble learning methods are promising techniques to implement
fact classification with KGEs.

In practice, we believe that DuEL can be used in several pipelines for knowledge
extractions. For instance, it can be used to further assist human curators to further
populate KGs or to cover the last mile to implement a fully automated end-to-end
embedding-based system for KG completion. In this latter case, more work is needed
in order to further improve the accuracy. One possible extension is to include additional
classifiers, e.g., based on ontological constraints. Alternatively, it is worthwhile to study

162 U. Joshi and J. Urbani

whether we can further reduce a potential bias introduced by training some of our clas-
sifiers under CWA. Another topic for future work could aim at combining the rankings
produced by different embedding models. Moreover, it is interesting to study how we
can include the knowledge that can be extracted from textual corpora, or to investigate
whether we can build classifiers for some specific relations.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley, Read-
ing (1995)

2. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C.
(ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/
10.1007/978-1-4419-8462-3 9

3. van Bakel, R., Aleksiev, T., Daza, D., Alivanistos, D., Cochez, M.: Approximate knowledge
graph query answering: from ranking to binary classification. In: GKR, pp. 107–124 (2021)

4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-

dings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
6. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: a rule

engine for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779,
pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 2

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph
embeddings. In: AAAI, pp. 1811–1818 (2018)

8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional trans-
formers for language understanding. In: NAACL, pp. 4171–4186 (2019)

9. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short
texts. In: COLING, pp. 69–78 (2014)

10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

11. Friedman, T., Van den Broeck, G.: Symbolic querying of vector spaces: probabilistic
databases meets relational embeddings. In: UAI, pp. 1268–1277 (2020)

12. Fu, D.Y., Chen, M.F., Sala, F., Hooper, S.M., Fatahalian, K., Ré, C.: Fast and three-rious:
speeding up weak supervision with triplet methods. In: ICML, pp. 3280–3291 (2020)

13. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition
and Cooperation in Neural Nets. Lecture Notes in Biomathematics, vol. 45, pp. 267–285.
Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9 18

14. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowl-
edge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

15. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey.
Knowl.-Based Syst. 151, 78–94 (2018)

16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD, pp.
855–864 (2016)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

18. Joshi, U., Urbani, J.: Searching for embeddings in a haystack: link prediction on knowledge
graphs with subgraph pruning. In: WWW, pp. 2817–2823 (2020)

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2017)

https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1007/978-1-4419-8462-3_9
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1007/978-3-642-46466-9_18
http://arxiv.org/abs/1412.6980

Ensemble-Based Fact Classification with Knowledge Graph Embeddings 163

20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv:1609.02907 (2017)

21. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classifica-
tion. In: AAAI, pp. 2267–2273 (2015)

22. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up
rule learning for knowledge graph completion. arXiv:2004.04412 (2020)

23. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule
learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

24. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for
knowledge base completion based on convolutional neural network. In: NAACL, pp. 327–
333 (2018)

25. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

26. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge
graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

27. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid training data
creation with weak supervision. VLDB J. 29(2), 709–730 (2020)

28. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., Ré, C.: Training complex models
with multi-task weak supervision. In: AAAI, pp. 4763–4771 (2019)

29. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P.
(ed.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46523-4 30

30. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! On training
knowledge graph embeddings. In: ICLR (2020)

31. Safavi, T., Koutra, D., Meij, E.: Evaluating the calibration of knowledge graph embeddings
for trustworthy link prediction. In: EMNLP, pp. 8308–8321 (2020)

32. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling
relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018.
LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93417-4 38

33. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural
networks. In: SIGIR, pp. 373–382 (2015)

34. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for
knowledge base completion. In: NIPS, pp. 926–934 (2013)

35. Speranskaya, M., Schmitt, M., Roth, B.: Ranking vs. classifying: measuring knowledge base
completion quality. In: AKBC (2020)

36. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational
rotation in complex space. In: ICLR (2019)

37. Tabacof, P., Costabello, L.: Probability calibration for knowledge graph embedding models.
In: ICLR (2019)

38. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for
simple link prediction. In: ICML, pp. 2071–2080 (2016)

39. Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical
rules in knowledge graphs. In: ICLR (2019)

40. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches
and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

41. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In:
IJCAI, pp. 1859–1865 (2015)

42. Wang, Y., Ruffinelli, D., Gemulla, R., Broscheit, S., Meilicke, C.: On evaluating embedding
models for knowledge base completion. In: The 4th Workshop on Representation Learning
for NLP, pp. 104–112 (2019)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2004.04412
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38

164 U. Joshi and J. Urbani

43. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowl-
edge graph reasoning. In: EMNLP, pp. 564–573 (2017)

44. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning
and inference in knowledge bases. In: ICLR (2015)

45. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph
embeddings. In: ICML, pp. 40–48 (2016)

46. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion.
arXiv:1909.03193 (2019)

47. Zhou, Z.H.: Ensemble learning. In: Zhou, Z.H. (ed.) Machine Learning, pp. 181–210.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1967-3 8

http://arxiv.org/abs/1909.03193
https://doi.org/10.1007/978-981-15-1967-3_8

The Problem with XSD Binary Floating
Point Datatypes in RDF

Jan Martin Keil(B) and Merle Gänßinger

Heinz Nixdorf Chair for Distributed Information Systems,
Institute for Computer Science, Friedrich Schiller University Jena,

Jena, Germany
{jan-martin.keil,merle.gaenssinger}@uni-jena.de

Abstract. The XSD binary floating point datatypes are regularly used
for precise numeric values in RDF. However, the use of these datatypes
for knowledge representation can systematically impair the quality of
data and, compared to the XSD decimal datatype, increases the proba-
bility of data processing producing false results. We argue why in most
cases the XSD decimal datatype is better suited to represent numeric
values in RDF. A survey of the actual usage of datatypes on the relevant
subset of the December 2020 Web Data Commons dataset, containing
19 453 060 341 literals from real web data, substantiates the practical rel-
evancy of the described problem: 29%–68% of binary floating point values
are distorted due to the datatype.

Keywords: Data Quality · Datatypes · Floating Point Numbers ·
Knowledge Graphs · Numerical Stability · RDF · XSD

1 Introduction

The Resource Description Framework (RDF) is the fundamental building block
of knowledge graphs and the Semantic Web. In RDF, values are represented as
literals. A literal consists of a lexical form, a datatype, and possibly a language
tag. The RDF standard [1] recommends to use XML Schema Definition Language
(XSD) built-in datatypes [2]. For numeric values, this includes the primitive
types decimal, double and float as well as all variations of integer1 which are
derived from decimal.

The datatype decimal allows the representation of numbers with arbitrary
precision, whereas the datatypes float and double allow the representation of
binary floating point values of limited range and precision [2]. However, in prac-
tice, the binary floating point datatypes are regularly used for precise numeric
values, although the datatype cannot accurately represent these values. For
example, out of nine unit ontologies selected in a comparison study [3], five
ontologies (OM 1, OM 2, QU, QUDT, SWEET) used XSD binary floating point

1 integer, long, int, short, byte, nonNegativeInteger, positiveInteger, unsignedLong,
unsignedInt, unsignedShort, unsignedByte, nonPositiveInteger, and negativeInteger.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 165–182, 2022.
https://doi.org/10.1007/978-3-031-06981-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_10&domain=pdf
http://orcid.org/0000-0002-7733-0193
http://orcid.org/0000-0003-4481-069X
https://doi.org/10.1007/978-3-031-06981-9_10

166 J. M. Keil and M. Gänßinger

values and only two ontologies or knowledge graphs (OBOE, Wikidata) used
xsd:decimal values for unit conversion factors. Even a popular ontology guide-
line [4] and a World Wide Web Consortium (W3C) working group note [5] use
binary floating point datatypes for precise numeric values in examples.

In general, binary floating point numbers are meant to approximate decimal
values in a fixed length binary representation to limit memory consumption and
increase computation speed. In RDF, however, binary floating point numbers are
defined to represent the exact value of the binary representation: Binary floating
point values do not approximate typed decimals, as in programming languages,
but typed decimals are abbreviations for exact binary floating point values. This
causes ambiguity about the intended meaning of numeric values. We show that
29%–68% of the floating point values in real web data are distorted due to the
datatype. With regard to the growing use of RDF for the representation of data,
including research data, this ambiguity is concerning.

Further, the use of binary floating point datatypes for precise numeric values
regularly causes rounding errors in the values actually represented, compared
to typed values provided as decimals. Subsequently, error accumulation may
significantly falsify the result of processing these values. Disasters, such as the
Patriot Missile Failure [6], which resulted in 28 deaths, illustrate the potential
impact of accumulated errors in real world applications. The increasing relevance
of knowledge graphs for real-world applications calls for general awareness of
these issues in the Semantic Web community.

In this paper, we discuss advantages and disadvantages of different numeric
datatypes. We demonstrate the practical relevance of the outlined problem with
a survey of the actual usage of datatypes on the relevant subset of the December
2020 Web Data Commons dataset, containing 19 453 060 341 literals from real
web data. We aim to raise awareness of the implications of datatype selection in
RDF and to enable a more informed choice in the future. This work is structured
as follows: In Sect. 2, we give an overview of relevant standards and related
work, followed by a comparison of the properties of the binary floating point
and decimal datatypes in Sect. 3. In Sect. 4, we discuss the implications of the
datatype properties in different use cases. An approach for automatic problem
detection is outlined in Sect. 5. In Sect. 6, we present a survey on the use of
datatypes in the World Wide Web that demonstrates the practical relevance of
the outlined problem. Finally, we indicate approaches for the general mitigation
of the problem in Sect. 7.

2 Background

Each datatype in RDF consists of a lexical space, a value space, and a lexical-
to-value mapping. This is compatible with datatypes in XSD [1].

Value space: the set of values for a datatype [1,2].
Lexical space: the prescribed set of strings, which the lexical mapping for a

datatype maps to values of that datatype. The members of the lexical space
are lexical representations (lexical forms) of the values to which they
are mapped [1,2].

The Problem with XSD Binary Floating Point Datatypes in RDF 167

Lexical mapping (lexical-to-value mapping): a prescribed relation which
maps from the lexical space of a datatype into its value space [1,2].

RDF reuses the XSD datatypes with only a few exceptions and additions of
non-numeric datatypes [1]. For non-integer numbers, XSD provides the datatypes
decimal, float and double. The XSD datatype decimal (xsd:decimal) repre-
sents a subset of the real numbers [2].

Value space of xsd:decimal: the set of numbers that can be obtained by
dividing an integer by a non-negative power of ten: i

10n with i ∈ Z, n ∈ N0,
precision is not reflected [2].

Lexical space of xsd:decimal: the set of all decimal numbers with or without
a decimal point [2].

Lexical mapping of xsd:decimal: set i according to the decimal digits of
the lexical representation and the leading sign, and set n according to the
position of the period or 0, if the period is omitted. If the sign is omitted,“+”
is assumed [2].

The XSD datatype float (xsd:float) is aligned with the IEEE 32-bit binary
floating point datatype [7]2, the XSD datatype double (xsd:double) is aligned
to the IEEE 64-bit binary floating point datatype [7]. Both represent subsets of
the rational numbers. They only differ in their three defining constants [2].

Value space of xsd:float (xsd:double): the set of the special values pos-
itiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber
and the numbers that can be obtained by multiplying an integer m whose
absolute value is less than 224 (double: 253) with a power of two whose expo-
nent e is an integer between −149 (double: −1074) and 104 (double: 971):
m · 2e [2].

Lexical space of xsd:float (xsd:double): the set of all decimal numbers
with or without a decimal point, numbers in exponential notation, and the
literals INF, +INF, -INF, and NaN [2].

Lexical mapping of xsd:float (xsd:double): set either the according
numeric value (including rounding, if necessary), or the according special
value. An implementation might choose between different rounding variants
that satisfy the requirements of the IEEE specification.

Numbers with a fractional part of infinite length, like the rational number
1
3 = 0.3̄ or the irrational number

√
2 = 1.4142 . . ., are not in the value space of

xsd:float or xsd:double, as a number of finite length multiplied or divided by
two is always a number of finite length again. Consequently, a finite decimal with
sufficient precision can exactly represent every possible numeric value or lexical
representation of an xsd:float or xsd:double, except of the special values
positiveInfinity, negativeInfinity, and notANumber. In contrast, a finite binary
floating point value can not exactly represent every possible decimal value.
2 As the XSD recommendation refers to IEEE 754-2008 version of the standard, we

do not refer to the subsequent IEEE 754-2019 version.

168 J. M. Keil and M. Gänßinger

Some serialization or query languages for RDF provide a shorthand syntax
for numeric literals without explicit datatype specification. In Turtle, TriG and
SPARQL a number without fraction is an xsd:integer, a number with fraction
is an xsd:decimal, and a number in exponential notation is an xsd:double
[8–10]. In JSON-LD a number without fractions is an xsd:integer and a num-
ber with fraction is an xsd:double, to align with the common interpretation
of numbers in JSON [11]. However, this is not necessary to comply with the
JSON specifications [12,13]. The serialization languages RDF/XML, N-Triples,
N-Quads, and RDFa do not provide a shorthand syntax for numeric literals
[14–17]. Other languages for machine-readable annotation of HTML, which are
regularly mapped to RDF, i.e. Microformats3, and Microdata4, do not incorpo-
rate explicit datatypes.

In addition to the core XSD datatypes, a W3C working group note intro-
duces the precisionDecimal datatype [18]. It is aligned to the IEEE decimal
floating-point datatypes [7] and represents a subset of real numbers. It retains
precision and permits the special values positiveZero, negativeZero, positiveIn-
finity, negativeInfinity, and notANumber. Further, it supports exponential nota-
tion. The precision and exponent values of the precisionDecimal datatype are
unbounded, but can be restricted in derived datatypes to comply with an actual
IEEE decimal floating-point datatype. However, even though the RDF standard
permits the use of precisionDecimal, it does not demand its support in com-
pliant implementations [1]. Therefore, RDF frameworks can not be expected to
support precisionDecimal.

Another W3C working group note addresses the selection of proper numeric
datatypes [5]. It identified three relevant use cases of numeric values: count,
measurement, and constant. According to the note, the appropriate datatypes
are (derived datatypes of) xsd:integer for counts, xsd:float or xsd:double
for measurements, and xsd:decimal for constants.

The common vocabulary schema.org5 defines the alternative numeric
datatypes schema:Integer and schema:Float and their super datatype
schema:Number. A usage note restricts the lexical space of schema:Number to
the digits 0 to 9 and at most one full stop. No further restrictions of the lexical
or value space are made. schema:Number is directly in the range of 91 properties
and schema:Integer is directly in the range of 47 properties. schema:Float is
not directly in the range of any property.

The digital representation or computation of numerical values can cause
numerical problems: An overflow error occurs, if a represented value exceeds
the maximum positive or negative value in the value space of a datatype [19].
An underflow error occurs, if a represented value is smaller than the minimum
positive or negative value different from zero in the value space of a datatype
[19]. A rounding error occurs, if a represented value is not in the value space
of a datatype. It is then represented by a nearby value in the value space that

3 https://microformats.org.
4 https://html.spec.whatwg.org/multipage/microdata.html.
5 http://schema.org, current version 13.0.

https://microformats.org
https://html.spec.whatwg.org/multipage/microdata.html
http://schema.org

The Problem with XSD Binary Floating Point Datatypes in RDF 169

Fig. 1. Possible processing paths of numeric literals depending on their datatype.

is determined by a rounding scheme [19]. A cancellation is caused by the sub-
traction of nearly equal values and eliminates leading accurate digits. This will
expose errors in the input values of the subtraction [19]. Error accumulation is
the insidious growth of errors due to the use of a numerically instable sequence
of operations [19].

3 Properties of Binary Floating Point and Decimal
Datatypes in RDF

Binary floating point and decimal datatypes in the context of RDF have indi-
vidual properties, which make them more or less suitable for specific use cases:

xsd:float and xsd:double permit the use of positive and negative infi-
nite values. xsd:decimal supports neither positive nor negative infinite values.

xsd:float and xsd:double permit the exponential notation. Especially
in the case of numbers with many leading or trailing zeros, this is more conve-
nient and less error-prone to read or write for humans. xsd:decimal does not
permit the exponential notation. There is no actual reason for this limitation.
For example, Wikibase6 also accepts exponential notation for xsd:decimal.7

The XML Schema Working Group decided against allowing exponential nota-
tion for xsd:decimal, as the requirement to have a decimal datatype permitting
exponential notation was already met by precisionDecimal [20], which, how-
ever, has been dropped in the later process of the XSD standardization [21]. To
our knowledge, this has not been considered during the RDF standardization.

Figure 1 presents the possible processing paths of numeric literals depending
on their datatype. It shows that only decimal lexical representations can be
6 https://wikiba.se/, SPARQL endpoint example: https://query.wikidata.org.
7 Example: SELECT ("1e-9"^^<http://www.w3.org/2001/XMLSchema#decimal> AS ?d) WHERE {}

https://wikiba.se/
https://query.wikidata.org
https://query.wikidata.org/#SELECT%20%28%221e-9%22%5E%5E%3Chttp://www.w3.org/2001/XMLSchema%23decimal%3E%20AS%20%3Fd%29%20WHERE%20%7B%7D

170 J. M. Keil and M. Gänßinger

used to produce exact result without custom operations. 1© to 8© denote the
mapping operations, cast operations, and calculation operations on values of
different datatypes and will be used as references in the following explanations.

The value spaces of xsd:float and xsd:double only provide partial cov-
erage of the lexical space. Therefore, the lexical mapping (3©) might require
rounding to a possible binary representation and the actual value might slightly
differ from the lexical representation. For example, xsd:float has no exact
binary representation of 0.1 and actually maps it to a slightly higher binary
representation of 0.100 000 001 4..., if using the default roundTiesToEven round-
ing scheme [7]. Depending on the used RDF framework, it might be possible to
preserve the exact value of the lexical representation by implementing a custom
mapping to decimal (2©). However, this causes additional development effort and
introduces non standard compliant behavior. The value space of xsd:decimal
covers all values in the lexical space. Therefore, the lexical mapping (1©) always
provides the exact numeric value described in the lexical representation without
any rounding. All three datatypes, xsd:float, xsd:double, and xsd:decimal,
do not cover the precision reflected by the lexical representation. For exam-
ple, literals with the lexical representations 0.5 and 0.50 are considered equal
although their lexical representations reflect different precision. The only dis-
cussed datatype that preserves the reflected precision is precisionDecimal.

The accuracy of calculations based on xsd:float or xsd:double liter-
als (7©) is limited, as a properly implemented RDF framework will use binary
floating point arithmetic by default. For example, this happens during the exe-
cution of SPARQL queries that include arithmetic functions or aggregations.
Therefore, the calculations might be affected by various numeric problems, i.e.
underflow errors, overflow errors, rounding errors, cancellation, and error accu-
mulation. Calculations based on xsd:decimal literals (6©) will by default use a
decimal arithmetic with arbitrary precision. Thus, they might only be affected by
rounding errors in case of (intermediate) results with a fractional part of infinite
length, as well as accumulations of these rounding errors. This different behavior
is demonstrated in Fig. 2. Depending on the used RDF framework, it might be
possible to cast between the datatypes (4© and 5©). However, a value cast from
binary floating point to decimal (5©) is still affected by the rounding error of the
floating point value caused by the lexical mapping. Subsequent calculations (8©)
will still result in approximate results only. In contrast, the results of calculations
based on a value cast from decimal to floating point (4©) and based on an initial
floating point value (3©) do not differ, if the same rounding method is used. The
SPARQL query in Fig. 2 and the according result provided by Wikibase demon-
strate differing numerical problems of the datatypes. Other SPARQL endpoints,
i.e. Virtuoso 8.38 and Apache Fuseki 5.16.09, provide similar results.

8 https://virtuoso.openlinksw.com/.
9 https://jena.apache.org/.

https://virtuoso.openlinksw.com/
https://jena.apache.org/

The Problem with XSD Binary Floating Point Datatypes in RDF 171

PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema #>
SELECT ?datatype

(xsd:decimal(STRDT("0.1", ?datatype)) AS ?rounded)
(xsd:decimal(STRDT("1", ?datatype) / STRDT("3", ?datatype)) AS

?roundedInfinit)
(xsd:decimal(STRDT("1.0000001", ?datatype) - STRDT("1.0000000",

?datatype)) AS ?cancellation)
(STRDT("1000000000000000000000000000000000000000", ?datatype) * STRDT("1",

?datatype) AS ?overflow)
(STRDT("0.0001", ?datatype) *

STRDT("1", ?datatype) AS ?underflow)
WHERE {VALUES ?datatype {xsd:float xsd:decimal }}

datatype xsd:float xsd:decimal
rounded 0.10000000149011612 0.1
roundedInfinit 0.3333333432674408 0.33333333333333333333
cancellation 0.00000011920928955078125 0.0000001
overflow Infinity 1000000000000000000000000000000000000000
underflow 0.0 0.0001

Fig. 2. Top: A SPARQL query that demonstrates differing numerical problems of
the datatypes xsd:float and xsd:decimal. Bottom: The corresponding query output
(transformed), as on http://query.wikidata.org.

4 Implications for the Selection of Numeric Datatypes

The traditional use case of RDF is knowledge representation. The XSD floating
point datatypes provide two advantages for knowledge representation compared
to xsd:decimal: Firstly, the permitted representation of positive and negative
infinite might be needed in some cases. Secondly, the exponential notation eases
the representation of very large and very small values and reduces the risk of
typing errors due to missing or additional zeros. This would not be an issue in
case of proper user interface support. But popular tools, like WebProtégé and
Protégé Desktop10, do not help the user here. Further, projects that manipulate
their RDF documents under version control using SPARQL UPDATE queries,
custom generation scripts and manual edits do not have such a user interface at
all.

However, in most cases, knowledge concerned with numbers deals with exact
decimal numbers or intervals of decimal values. Intervals are typically described
with two exact decimal numbers, either with a minimum value and a maximum
value (e.g. [0.05, 0.15]) or a value and a measurement uncertainty (e.g. 0.1±0.05)
[22]. The binary floating point datatypes do not allow the accurate representation
of exactly known or defined numbers in many cases. In addition, they entail the
risk to fool data curators into believing that they stated the exact number, as the
lexical representation on first sight appears to be exact. This becomes even more
critical, if xsd:double was used unintentionally due to a shorthand syntax in
Turtle, TriG, SPARQL, or JSON-LD. This way, the use of binary floating point
datatypes produces ambiguity in the data: The intended meaning could be either
the actually represented number in the value space or the verbatim interpretation

10 https://protege.stanford.edu/.

https://query.wikidata.org/#PREFIX%20xsd%3A%20%3Chttp://www.w3.org/2001/XMLSchema%23%3E%0ASELECT%20%3Fdatatype%0A%20%20%28xsd%3Adecimal%28STRDT%28%220.1%22%2C%20%3Fdatatype%29%29%20AS%20%3Frounded%29%0A%20%20%28xsd%3Adecimal%28STRDT%28%221%22%2C%20%3Fdatatype%29%20%2F%20STRDT%28%223%22%2C%20%3Fdatatype%29%29%20AS%20%3FroundedInfinit%29%0A%20%20%28xsd%3Adecimal%28STRDT%28%221.0000001%22%2C%20%3Fdatatype%29%20-%20STRDT%28%221.0000000%22%2C%20%3Fdatatype%29%29%20AS%20%3Fcancellation%29%0A%20%20%28STRDT%28%221000000000000000000000000000000000000000%22%2C%20%3Fdatatype%29%20%2a%20STRDT%28%221%22%2C%20%3Fdatatype%29%20AS%20%3Foverflow%29%0A%20%20%28STRDT%28%220.0001%22%2C%20%3Fdatatype%29%20%2a%20STRDT%28%221%22%2C%20%3Fdatatype%29%20AS%20%3Funderflow%29%0D%0AWHERE%20%7BVALUES%20%3Fdatatype%20%7Bxsd%3Afloat%20xsd%3Adecimal%7D%7D
https://protege.stanford.edu/

172 J. M. Keil and M. Gänßinger

of the lexical representation. This ambiguity counteracts the basic ideas behind
the Semantic Web and Linked Open Data to ease understanding and reuse of
data. Therefore, binary floating point datatypes are not suitable to fulfill the
requirements for knowledge representation.

In consequence, the knowledge cannot be used for exact calculations without
programming overhead. The possible small rounding errors of binary floating
point input values might accumulate to significant errors in calculation results.
Disasters, as the Patriot Missile Failure [6], illustrate the potential impact of
accumulated errors in real world applications.

This contradicts a W3C working group note [5], stating that binary floating
point datatypes are appropriate for measurements. It provided the following
example representation of a measurement in the interval of 73.0 to 73.2:

_:w eg:value "73.1"^^xsd:float .
_:w eg:errorRange "0.1"^^xsd:float .

However, if using the default roundTiesToEven rounding scheme [7], this exam-
ple actually represents a measurement in the interval 72.999 998 472 6... to
73.199 998 475 6..., as 73.1 and 0.1 are not in the value space of xsd:float.11

In consequence, the actual represented error interval does not cover the points
between 73.199 998 475 6... and 73.2. A common solution for this problem is the
use of different rounding schemes for the calculation of the upper and lower
bound of the interval (outward rounding) [23]. Unfortunately, this is not pro-
vided in current RDF frameworks and causes additional programming effort. The
example shows that also in case of measurements binary floating point datatypes
have clear disadvantages compared to xsd:decimal.

Further, the use of binary floating point values in RDF restricts the selection
of the used arithmetic for calculations, as it causes an implementation overhead
for the application of decimal arithmetic with arbitrary precision. It must be
mentioned that calculations using decimal arithmetic with arbitrary precision
probably are significantly slower, compared to calculations using binary floating
point arithmetic with limited precision. Hence, floating point calculations are
better suited for many use cases. However, in certain cases they are not. There-
fore, the selection of an arithmetic must be up to the application, not to the
input data, as applications might widely vary regarding the required accuracy
and the numerical conditioning of the underlying problem.

The same problem arises in use cases that involve the comparison of values,
like instance-based ontology matching or ontology based data validation, because
comparisonvaluesbecomeblurredduetorounding.Forexample, ifusingthedefault
roundTiesToEven rounding scheme, an upper bound of "0.1"^^xsd:float in a
constraint still permits a value of 0.100000001. Thus, the use of binary floating
point datatypes for knowledge representation can systematically impair the quality
of data and increases the probability of false results of data processing.

11 Lexical mappings (roundTiesToEven rounding scheme): 73.1 → 73.099 998 474 1...
and 0.1 → 0.100 000 001 4..., Interval calculations: 73.099 998 474 1... ±
0.100 000 001 4....

The Problem with XSD Binary Floating Point Datatypes in RDF 173

In other use cases, RDF might be used for the exchange of initially binary
floating point values, as computational results or the output of analog-to-digital
converters. If the data to exchange are binary floating point values, the original
value can only contain values with an exact binary representation and corruption
of data with rounding is impossible. Thus, the use of floating point datatypes
for the exchange of computational results is reasonable.

5 Automatic Distortion Detection

The automatic detection of quality issues is key to an effective quality assurance.
Therefore, RDF editors, like Protégé, or evaluation tools, like the OntOlogy Pit-
fall Scanner! [24], would ideally warn data curators, if the use of binary floating
point datatypes would distort numeric values.

A simple test can be implemented by comparing the results of the default
mapping to a binary floating point value (3© in Fig. 1) followed by a cast to
decimal (5© in Fig. 1) and a custom mapping to a decimal value (2© in Fig. 1).
The SPARQL query in Fig. 3 demonstrates the approach.

PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema #>
SELECT

(xsd:decimal (? xsdFloatValue) AS ?xsdFloatSemantic)
(? xsdDecimalValue AS ?xsdDecimalSemantic)
(xsd:decimal (? xsdFloatValue) != ?xsdDecimalValue AS ?distorted)

WHERE {
VALUES ?lexical {"1" "0.1" "0.5"}
BIND(STRDT(?lexical , xsd:float) AS ?xsdFloatValue)
BIND(STRDT(?lexical , xsd:decimal) AS ?xsdDecimalValue)

}

xsdFloatSemantic xsdDecimalSemantic distorted
0.5 0.5 false
0.10000000149011612 0.1 true
1 1 false

Fig. 3. Top: A SPARQL query that demonstrates an approach to detect number dis-
tortion. Bottom: The corresponding query output, as on http://query.wikidata.org.

6 Datatype Usage Survey

To determine the practical relevancy of the described problem, we conducted
a survey of the actual usage of datatypes. The survey is based on the Decem-
ber 2020 edition12 of the Web Data Commons dataset [25]. The Web Data
Commons dataset provides in several N-Quads files the embedded RDF data
of 1.7e9 HTML documents extracted from all 3.4e9 HTML documents contained

12 http://webdatacommons.org/structureddata/#results-2020-1.

https://query.wikidata.org/#PREFIX%20xsd%3A%20%3Chttp://www.w3.org/2001/XMLSchema%23%3E%0ASELECT%0A%20%20%28xsd%3Adecimal%28%3FxsdFloatValue%29%20AS%20%3FxsdFloatSemantic%29%0A%20%20%28%3FxsdDecimalValue%20AS%20%3FxsdDecimalSemantic%29%0A%20%20%28xsd%3Adecimal%28%3FxsdFloatValue%29%20%21%3D%20%3FxsdDecimalValue%20AS%20%3Fdistorted%29%0AWHERE%20%7B%0A%20%20VALUES%20%3Flexical%20%7B%221%22%20%220.1%22%20%220.5%22%7D%0A%20%20BIND%28STRDT%28%3Flexical%2C%20xsd%3Afloat%29%20AS%20%3FxsdFloatValue%29%0A%20%20BIND%28STRDT%28%3Flexical%2C%20xsd%3Adecimal%29%20AS%20%3FxsdDecimalValue%29%0A%7D
http://webdatacommons.org/structureddata/#results-2020-1

174 J. M. Keil and M. Gänßinger

in the September 2020 Common Crawl archive,13 a freely available web crawl
archive. We selected it because of its large size, an expected large proportion of
literals, the uniform access of the whole corpus, its heterogeneous original sources
(15e6 domains), and a good reflection of RDF usage by a wide range of people.
The December 2020 Web Data Commons dataset is divided into data extracted
from embedded JSON-LD, RDFa, Microdata, and several Microformats. We
only considered data from embedded JSON-LD (7.7e8 URLs, 3.2e10 triples) and
RDFa (4.1e8 URLs, 5.9e9 triples), as Microdata and Microformats do not incor-
porate explicit datatypes.

We created a Java program based on Apache Jena to stream and analyze
the relevant parts of the Web Data Commons dataset. The dataset replicates
malformed IRIs or literals as they appeared in the original source. To avoid
parsing failures of whole files due to single malformed statements, each line
was parsed independently and failures were logged separately. Overall, about
4.5e7 failures occurred. The main reasons for failures were malformed IRIs and
illegal character encodings. Transaction mechanisms were used to ensure the
consistency of the resulting dataset in case of temporary failures of involved
systems. Per source type, dataset file, property, and datatype we measured:

1. UnpreciseRepresentableInDouble: the number of lexicals that are in the
lexical space but not in the value space of xsd:double.

2. UnpreciseRepresentableInFloat: the number of lexicals that are in the
lexical space but not in the value space of xsd:float.

3. UsedAsDatatype: the total number of literals with the datatype.
4. UsedAsPropertyRange: the number of statements that specify the

datatype as range of the property.
5. ValidDecimalNotation: the number of lexicals that represent a number

with decimal notation and whose lexical representation is thereby in the lex-
ical space of xsd:decimal, xsd:float, and xsd:double.

6. ValidExponentialNotation: the number of lexicals that represent a num-
ber with exponential notation and whose lexical representation is thereby in
the lexical space of xsd:float, and xsd:double.

7. ValidInfOrNaNNotation: the number of lexicals that equals either INF,
+INF, -INF or NaN and whose lexical representation is thereby in the lexical
space of xsd:float, and xsd:double.

8. ValidIntegerNotation: the number of lexicals that represent an integer
number and whose lexical representation is thereby in the lexical space of
xsd:integer, xsd:decimal, xsd:float, and xsd:double.

Unfortunately, the lexical representation of xsd:double literals from embed-
ded JSON-LD was normalized during the creation of the Web Data Commons
dataset to always use exponential notation with one integer digit and up to
16 fractional digits.14 This is a legal transformation according to the definition
13 https://commoncrawl.org/2020/10/september-2020-crawl-archive-now-available/.
14 https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/main/java/

com/github/jsonldjava/core/RDFDataset.java#L673.

https://commoncrawl.org/2020/10/september-2020-crawl-archive-now-available/
https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/main/java/com/github/jsonldjava/core/RDFDataset.java#L673
https://github.com/jsonld-java/jsonld-java/blob/v0.13.1/core/src/main/java/com/github/jsonldjava/core/RDFDataset.java#L673

The Problem with XSD Binary Floating Point Datatypes in RDF 175

Table 1. The number of datatype occurrences in the Web Data Commons December
2020 dataset from RDFa and embedded JSON-LD sources (Measure 3) in absolute
numbers and relative to the total number of literals in the source type (Measure 3).
Only the top ten, as well as selected further datatypes are shown.

RDFa

Datatype Occurrences (rel)

rdf:langString 3 179 161 585 (.68)

xsd:string 1 305 371 136 (.28)

xsd:dateTime 102 987 223 (.02)

rdf:XMLLiteral 62 337 177 (.01)

xsd:integer 21 547 053 (.00)

xsd:float 1 025 753 (.00)

use:sku 729 858 (.00)

xsd:date 507 454 (.00)

xsd:boolean 348 334 (.00)

schema:Date 246 995 (.00)

xsd:decimal 8288 (.00)

xsd:double 234 (.00)

schema:Number 0 (.00)

schema:Integer 0 (.00)

schema:Float 0 (.00)

Embedded JSON-LD

Datatype Occurrences (rel)

xsd:string 11 277 500 571 (.76)

xsd:integer 2 021 243 795 (.14)

schema:Date 1 313 408 439 (.09)

xsd:double 101 959 406 (.01)

xsd:boolean 26 144 338 (.00)

schema:DateTime 25 002 464 (.00)

rdf:langString 12 934 431 (.00)

xsd:float 90 895 (.00)

xsd:dateTime 12 260 (.00)

rdf:HTML 5785 (.00)

xsd:decimal 1 (.00)

schema:Number 0 (.00)

schema:Integer 0 (.00)

schema:Float 0 (.00)

of xsd:double, as the represented value is preserved. However, this limits the
use of the according Valid... and Unprecise... measures. At the same time, this
demonstrates that the use of xsd:float or xsd:double might easily cause the
loss of information due to legal transformation, if information is only reflected
in the lexical representation.

The resulting dataset consists of a CSV file containing the measurement
results (5.4e7 lines, 0.6 GiB compressed, 11.0 GiB uncompressed). The analysis
was conducted with Python scripts. The tool [26], the resulting dataset [27],
and the analysis scripts [28] are freely available for review and further use under
permissive licenses.

For the analysis, we first applied some data cleaning: Some properties and
datatypes were regularly denoted by IRIs in the http scheme as well as in the
https scheme. To enable proper aggregation, the scheme of all IRIs in the dataset
were unified to http. Further, the omission of namespace definitions in the source
websites causes the occurrence of prefixed names instead of full IRIs. All prefixes
in datatypes that occurred at least for one datatype more than 1000 times and
all prefixes in properties that occurred at least for one property more than 1000
times have been replaced with the actual namespace, if we found a resource
with a matching local name and matching default vocabulary prefix during a
web search or in other used properties or datatypes. Rarer prefixes have not

176 J. M. Keil and M. Gänßinger

Table 2. The number of property occurrences with XSD or schema.org numerical
datatypes in the Web Data Commons December 2020 dataset from RDFa and embed-
ded JSON-LD sources (Measure 3) in absolute numbers and relative to the total number
of numeric literals in the source type (Measure 3). Only the top ten are shown.

RDFa

Property Occurrences (rel)

sioc:num replies 21 391 187 (.95)

gr:hasCurrencyValue 525 491 (.02)

gr:hasMinValue 137 018 (.01)

gr:amountOfThisGood 94 978 (.00)

gr:hasMaxValue 52 772 (.00)

vcard:latitude 49 428 (.00)

vcard:longitude 49 428 (.00)

gr:hasValue 25 800 (.00)

dv:count 24 672 (.00)

dv:price 23 936 (.00)

Embedded JSON-LD

Property Occurrences (rel)

schema:position 893 910 601 (.42)

schema:width 448 036 253 (.21)

schema:height 446 308 779 (.21)

schema:price 71 045 655 (.03)

schema:commentCount 65 723 049 (.03)

schema:ratingValue 26 261 677 (.01)

schema:longitude 17 096 852 (.01)

schema:latitude 17 093 196 (.01)

schema:bestRating 16 333 042 (.01)

schema:userInteractionCount 13 347 182 (.01)

been replaced because of the high effort, the susceptibility to errors caused by
ambiguity, and the lack of significance for the results. Further, we did not clean
other kinds of typos like missing or duplicated # or / after the namespace, as
these errors could also not easily be fixed by applications with, e.g., a maintained
list of widely used prefixes.

Overall, we processed 14 778 325 375 literals from embedded JSON-LD and
4 674 734 966 literals from RDFa. Table 1 shows the number of occurrences of the
most frequent datatypes.15 Table 2 shows the most frequently used properties
that occurred with numerical datatypes from XSD or schema.org. Although the
use of the schema.org numeric datatypes instead of XSD numeric datatypes is
expected by the definition of many schema.org properties, including widely used
properties, like schema:position or schema:price, we found zero occurrences
of schema.org numeric datatypes. The most probable reason is the existence
of shorthand syntaxes for XSD numeric datatypes. In contrast, the usage of
schema.org temporal datatypes schema:Date and schema:DateTime in JSON-
LD exceeds the usage of XSD temporal datatypes by orders of magnitude. This
emphasizes the importance of shorthand syntaxes for the choice of datatypes.

As shown in Table 1, the occurrences of xsd:float in RDFa and xsd:double
in embedded JSON-LD surpass the occurrences of xsd:decimal by orders of

15 Prefixes used for results presentation: dcterms: http://purl.org/dc/terms/, dv:
http://rdf.data-vocabulary.org/#, gr: http://purl.org/goodrelations/v1#,
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#, rev: http://purl.org/

stuff/rev#, schema: http://schema.org/, use: http://search.yahoo.com/sear

chmonkey-datatype/use/, vcard: http://www.w3.org/2006/vcard/ns#, xsd:

http://www.w3.org/2001/XMLSchema#.

The Problem with XSD Binary Floating Point Datatypes in RDF 177

Table 3. The number of property occurrences with xsd:float in RDFa and with
xsd:double in embedded JSON-LD in the Web Data Commons December 2020 dataset
(Measure 3) in absolute numbers and relative to the total number of literals with the
same datatype in the same source type (Measure 3). Only the top ten are shown.

xsd:float in RDFa

Property Occurrences (rel)

gr:hasCurrencyValue 516 256 (.50)

gr:hasMinValue 134 954 (.13)

gr:amountOfThisGood 94 978 (.09)

gr:hasMaxValue 52 772 (.05)

vcard:latitude 49 428 (.05)

vcard:longitude 49 428 (.05)

gr:hasValue 25 800 (.03)

dv:price 23 086 (.02)

dv:average 21 038 (.02)

rev:rating 20 970 (.02)

xsd:double in Embedded JSON-LD

Property Occurrences (rel)

schema:price 49 740 982 (.49)

schema:longitude 17 055 600 (.17)

schema:latitude 17 053 362 (.17)

schema:ratingValue 9 928 412 (.10)

schema:lowPrice 2 240 110 (.02)

schema:highPrice 1 840 080 (.02)

schema:value 1 776 255 (.02)

schema:worstRating 311 374 (.00)

schema:position 240 577 (.00)

schema:minPrice 197 850 (.00)

magnitude. Remarkably, we did find only one single occurrence16 of xsd:decimal
among 14 778 325 375 literals from valid triples in embedded JSON-LD sources in
the whole Web Data Commons December 2020 dataset. Table 3 shows properties
that most frequently occurred with xsd:float in RDFa and with xsd:double in
embedded JSON-LD. We manually classified the top ten properties using their
definitions, if found, and the local names. Based on these figures, at least 62% for
xsd:float in RDFa and 54% for xsd:double in embedded JSON-LD represent
(monetary) amounts, position numbers or single rating values (later refereed to
as T10NIFP literals), which are not initially binary floating point values. At
least 33% for xsd:float in RDFa and 35% for xsd:double in embedded JSON-
LD represent geolocation values, arbitrary quantity values or aggregated values,
which might but do not need to origin from initially binary floating point values.
rev:rating and schema:ratingValue cannot be assigned unambiguously to
these categories. This shows that binary floating point numbers are regularly
used for not initially binary floating point values.

As expected, because embedded RDF is not the proper place for vocabulary
definitions, we found only few cases of property range definitions (Measure 4).
They are limited to 54 unique property-datatype-pairs with two to 153 occur-
rences and for properties from only five different namespaces. This does not allow
to draw further conclusions.

Table 4 shows the number of occurrences of different notations. Except for
xsd:double in embedded JSON-LD, which is affected by normalization, expo-
nential notation is only little used in the binary floating point datatypes. Special

16 https://web.archive.org/web/20200919100939/https://open.nrw/dataset/telefonver
zeichnis-alphabetisch-oktober-2019-odp.

https://web.archive.org/web/20200919100939/https://open.nrw/dataset/telefonverzeichnis-alphabetisch-oktober-2019-odp
https://web.archive.org/web/20200919100939/https://open.nrw/dataset/telefonverzeichnis-alphabetisch-oktober-2019-odp

178 J. M. Keil and M. Gänßinger

Table 4. The number of numeric notations occurrences in the lexical representation
of literals per numeric datatype in the Web Data Commons December 2020 dataset
(Measures 5, 6, 7, 8) in absolute numbers and relative to the total number of literals
with the same datatype (Measure 3). The notation of xsd:double in embedded JSON-
LD was normalized during the dataset generation.

Embedded JSON-LD

Notation

Datatype Integer Decimal Exponential Inf / NaN

xsd:decimal 0 (.00) 1 (1) 0 (.00) 0 (.0)

xsd:double 0 (.00) 0 (.00) 101 959 382 (1) 24 (.0)

xsd:float 35 951 (.40) 24 837 (.27) 4252 (.05) 0 (.0)

xsd:integer 2 021 243 613 (1) 0 (.00) 0 (.00) 0 (.0)

xsd:long 36 (1) 0 (.00) 0 (.00) 0 (.0)

RDFa

Notation

Datatype Integer Decimal Exponential Inf / NaN

xsd:decimal 89 (.01) 7349 (.89) 0 (.00) 0 (.0)

xsd:double 26 (.11) 208 (.89) 0 (.00) 0 (.0)

xsd:float 353 851 (.34) 643 206 (.63) 0 (.00) 4 (.0)

xsd:int 16 751 (.86) 0 (.00) 0 (.00) 0 (.0)

xsd:integer 21 507 446 (1) 38 (.00) 0 (.00) 0 (.0)

xsd:nonNegativeInteger 585 (1) 0 (.00) 0 (.00) 0 (.0)

xsd:positiveInteger 6 (1) 0 (.00) 0 (.00) 0 (.0)

values occurred only in even more rare cases. From that, we conclude that the
notation or needed special values are not the crucial consideration behind using
binary floating point datatypes.

The number of lexical representations that are not precisely representable in
binary floating point datatypes is presented in Table 5. 33% of the represented
xsd:float values in RDFa and 24% in embedded JSON-LD differ from lexical
representations. In embedded JSON-LD the initial lexical representation of 69%
of the xsd:double values must either have contained more then 17 significant
digits or already been differing from the represented value. Referring to the
most common properties used with xsd:double in embedded JSON-LD, shown
in Table 3, the frequent occurrence of values with more then 17 significant digits
is implausible. All together, this shows that 29%–68% of the values with binary
floating point datatype in real web data are distorted due to the datatype.17

17
∑

T10NIFP literals Measures 1&2
∑

xsd:double,xsd:float literals Measure 3
≈ 0.29,

∑
xsd:double,xsd:float literals Measures 1&2
∑

xsd:double,xsd:float literals Measure 3
≈ 0.68.

The Problem with XSD Binary Floating Point Datatypes in RDF 179

Table 5. The number of lexical representation occurrences without exact representa-
tion in the value space of per numeric datatype in the Web Data Commons December
2020 dataset xsd:float and xsd:double (Measures 1, 2) in absolute numbers and rel-
ative to the total number of literals with the same datatype (Measure 3). The notation
of xsd:double in embedded JSON-LD was normalized during the dataset generation.

Embedded JSON-LD RDFa

Unprecise In

Datatype xsd:float xsd:double xsd:float xsd:double

xsd:decimal 0 (.00) 0 (.00) 3087 (.37) 3087 (.37)

xsd:double 69 648 087 (.68) 69 646 819 (.68) 58 (.25) 58 (.25)

xsd:float 21 750 (.24) 21 750 (.24) 339 583 (.33) 338 676 (.33)

xsd:int - - 0 (.00) 0 (.00)

xsd:integer 7 564 635 (.00) 996 (.00) 1492 (.00) 38 (.00)

xsd:long 2 (.06) 0 (.00) - -

xsd:nonNegativeInteger - - 136 (.23) 0 (.00)

xsd:positiveInteger - - 0 (.00) 0 (.00)

7 Conclusion

Binary floating point numbers are meant to approximate decimal values to
reduce memory consumption and increase computation speed. However, in RDF,
decimal representations are used to approximate binary floating point numbers.
This way, the use of XSD binary floating point datatypes in RDF can sys-
tematically impair the quality of data and produces ambiguity in represented
knowledge. Our survey reveals that a considerable proportion of real web data is
distorted due to the datatype. Further, its use restricts the choice of the arith-
metic in standards compliant implementations and can falsify the results of data
processing. This can cause serious impacts in real world applications.

As a second outcome, our survey indicates that shorthand syntaxes for literals
are a major cause for the choice of inappropriate datatypes. We conclude that the
datatypes and shorthand syntaxes in current RDF related standards encourage
the distortion of numeric values. We recommend an overhaul of relevant parts
of the standards to make RDF well suited for numeric data.

A radical solution that requires no update of existing data would be the
deprecation and replacement of xsd:float and xsd:double with an extended
mandatory xsd:decimal datatype in RDF. The extended xsd:decimal
datatype should additionally permit exponential notation and the special val-
ues positiveInfinity, negativeInfinity, and notANumber to cover the whole lexical
space and value space of xsd:float and xsd:double. We recommend to declare
it as default datatype in the different serialization and query languages for num-
bers in decimal and exponential notation. It should also be used for interpre-
tation instead of the deprecated datatypes, if these are used in existing data.
One or several additional new datatypes with hexadecimal lexical representa-

180 J. M. Keil and M. Gänßinger

tions should be used for the actual representation of binary floating point values.
However, this radical solution would make a decision for existing data in favor of
the verbatim interpretation of the lexical representation. Thus, in (presumable
not occurring) cases of an intended representation of e.g. 0.100 000 001 4... with
"0.1"^^xsd:float, existing data would get distorted.

A more cautious mitigation of the problem should tackle the disadvantages
of xsd:decimal: It would be desirable to introduce in RDF mandatory sup-
port for (a) an exponential notation for the decimal datatype, and (b) a deci-
mal datatype that supports infinite values, like precisionDecimal, to eliminate
these disadvantages. Further, binary floating point datatypes should only be
used for numeric values if (a) a representation of infinity is required, or (b) the
original source provides binary floating point values. In general, xsd:decimal
must become the first choice for the representation of numbers. Semantic Web
teaching materials should clearly name the disadvantages of the binary float-
ing point datatypes, shorthand syntaxes should in future prioritize the decimal
datatype, and Semantic Web tools should hint to use xsd:decimal.

Acknowledgments. Many thanks to Alsayed Algergawy, Felicitas Löffler, Samira
Babalou, Sheeba Samuel, Sirko Schindler, Eberhard Zehendner, and the first author’s
supervisor Birgitta König-Ries, as well as 10 anonymous reviewers for very helpful
comments on earlier drafts of this manuscript.

Author contributions. Study conception and design, analysis and interpretation of
results, and draft manuscript preparation were performed by Jan Martin Keil. Data
collection was performed by Merle Gänßinger and Jan Martin Keil. All authors read
and approved the final manuscript.

References

1. W3C RDF Working Group: RDF 1.1 Concepts and Abstract Syntax. W3C Rec-
ommendation. W3C, 25 February 2014. http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/

2. W3C XML Schema Working Group: W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. W3C Recommendation. W3C, 5 April 2012. http://
www.w3.org/TR/2012/REC-xmlschema11-2-20120405/

3. Keil, J.M., Schindler, S.: Comparison and evaluation of ontologies for units of mea-
surement. Semant. Web 10(1), 33–51 (2019). https://doi.org/10.3233/SW-180310

4. Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to cre-
ating your first ontology. Technical report KSL-01-05/SMI-2001-0880. Stan-
ford Knowledge Systems Laboratory and Stanford Medical Informatics,
March 2001. http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-
noy-mcguinness-abstract.html

5. W3C Semantic Web Best Practices and Deployment Working Group: XML Schema
Datatypes in RDF and OWL. W3C Working Group Note. W3C, 14 March 2006.
https://www.w3.org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/

6. Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi
Arabia. Technical report GAO/IMTEC-92-26. General Accounting Office, Informa-
tion Management and Technology Division, 20 p., 4 February 1992. https://www.
gao.gov/products/IMTEC-92-26

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://doi.org/10.3233/SW-180310
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html
https://www.w3.org/TR/2006/NOTE-swbp-xsch-datatypes-20060314/
https://www.gao.gov/products/IMTEC-92-26
https://www.gao.gov/products/IMTEC-92-26

The Problem with XSD Binary Floating Point Datatypes in RDF 181

7. IEEE: IEEE 754–2008 Standard for Floating-Point Arithmetic. Standard 754, 70
p., 29 August 2008. https://doi.org/10.1109/IEEESTD.2008.4610935

8. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 tur-
tle: terse RDF triple language. W3C Recommendation. W3C, 25 February 2014.
https://www.w3.org/TR/2014/REC-turtle-20140225/

9. Bizer, C., Cyganiak, R.: RDF 1.1 TriG: RDF dataset language. W3C Recommenda-
tion. W3C, 25 February 2014. https://www.w3.org/TR/2014/REC-trig-20140225/

10. W3C SPARQL Working Group: SPARQL 1.1 Query Language. W3C Recom-
mendation. W3C, 21 March 2013. https://www.w3.org/TR/2013/REC-sparql11-
query-20130321/

11. Sporny, M., Longley, D., Kellogg, G., et al.: JSON-LD 1.1: a JSON-based Serializa-
tion for Linked Data. W3C Recommendation. W3C, 16 July 2020. https://www.
w3.org/TR/2020/REC-json-ld11-20200716/

12. Bray, T.: The JavaScript Object Notation (JSON) data interchange format. Stan-
dard 8259, 16 p., December 2017. https://doi.org/10.17487/RFC8259

13. ECMA International: ECMA-404, The JSON Data Interchange Format. Standard
(2017). https://ecma-international.org/publications/standards/Ecma-404.htm

14. W3C RDF Working Group: RDF 1.1 XML Syntax. In: Gandon, F., Schreiber, G.
(eds.) W3C Recommendation, 25 February 2014. https://www.w3.org/TR/2014/
REC-rdf-syntax-grammar-20140225/

15. Beckett, D.: RDF 1.1 N-triples: a line-based syntax for an RDF graph. W3C Rec-
ommendation. W3C, 25 February 2014. https://www.w3.org/TR/2014/REC-n-
triples-20140225/

16. W3C RDF Working Group: RDF 1.1 N-quads: a line-based syntax for RDF
datasets. W3C Recommendation. W3C, 25 February 2014. https://www.w3.org/
TR/2014/REC-n-quads-20140225/

17. W3C RDFa Working Group: RDFa Core 1.1 - Third Edition: Syntax and processing
rules for embedding RDF through attributes. W3C Recommendation. W3C, 17
March 2015. https://www.w3.org/TR/2015/REC-rdfa-core-20150317/

18. W3C XML Schema Working Group: An XSD datatype for IEEE floating-point
decimal. W3C Working Group Note. W3C, 9 June 2011. https://www.w3.org/
TR/2011/NOTE-xsd-precisionDecimal-20110609/

19. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn., p. xxvii
+ 663. SIAM (2002). https://doi.org/10.1137/1.9780898718027

20. W3C XML Schema Working Group: RQ-28 Allow scientific notation for decimals
(scientific-notn), 11 February 2006. https://www.w3.org/Bugs/Public/show bug.
cgi?id=2853

21. W3C XML Schema Working Group: W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. W3C Candidate Recommendation. W3C, 21 July
2011. https://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/

22. International Vocabulary of Metrology. Basic and general concepts and associated
terms. JCGM 200:2012 (JCGM 200:2008 with minor corrections). Joint Committee
for Guides in Metrology (2012)

23. Neumaier, A.: Introduction to Numerical Analysis, p. 366. Cambridge University
Press, Cambridge (2012)

24. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: OOPS! (ontology
pitfall scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf.
Syst. 10(2), 7–34 (2014). https://doi.org/10.4018/ijswis.2014040102

25. Meusel, R., Petrovski, P., Bizer, C.: The WebDataCommons microdata, RDFa
and microformat dataset series. In: Mika, P., et al. (eds.) ISWC 2014. LNCS,

https://doi.org/10.1109/IEEESTD.2008.4610935
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-trig-20140225/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://doi.org/10.17487/RFC8259
https://ecma-international.org/publications/standards/Ecma-404.htm
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2014/REC-n-quads-20140225/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2011/NOTE-xsd-precisionDecimal-20110609/
https://www.w3.org/TR/2011/NOTE-xsd-precisionDecimal-20110609/
https://doi.org/10.1137/1.9780898718027
https://www.w3.org/Bugs/Public/show_bug.cgi?id=2853
https://www.w3.org/Bugs/Public/show_bug.cgi?id=2853
https://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/
https://doi.org/10.4018/ijswis.2014040102

182 J. M. Keil and M. Gänßinger

vol. 8796, pp. 277–292. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11964-9 18

26. Gänßinger, M., Keil, J.M.: RDF property and datatype usage scanner v1.0.0
(2021). https://doi.org/10.5281/zenodo.6258887

27. Keil, J.M., Gänßinger, M.: Web data commons (December 2020) property and
datatype usage dataset (2022). https://doi.org/10.5281/zenodo.6205111

28. Keil, J.M.: Web data commons (December 2020) property and datatype usage
analysis scripts (2022). https://doi.org/10.5281/zenodo.6264286

https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.5281/zenodo.6258887
https://doi.org/10.5281/zenodo.6205111
https://doi.org/10.5281/zenodo.6264286

DCWEB-SOBA: Deep Contextual Word
Embeddings-Based Semi-automatic
Ontology Building for Aspect-Based

Sentiment Classification

Roos van Lookeren Campagne, David van Ommen, Mark Rademaker,
Tom Teurlings, and Flavius Frasincar(B)

Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
{471085rl,483808do,467978mr,482163tt}@student.eur.nl,

frasincar@ese.eur.nl

Abstract. In this paper, we propose the use of deep contextualised
word embeddings to semi-automatically build a domain sentiment ontol-
ogy. Compared to previous research, we use deep contextualised word
embeddings to better cope with various meanings of words. A state-of-
the-art hybrid method is used for aspect-based sentiment analysis, called
HAABSA++, to evaluate our obtained ontology on the SemEval-2016
restaurant dataset. We achieve a prediction accuracy of 81.85% for the
hybrid model with our ontology, which outperforms the hybrid model
with other considered ontologies. Furthermore, we find that the ontology
obtained from our proposed domain sentiment ontology builder, called
DCWEB-SOBA, on itself improves the accuracy for the conclusive cases
from 83.04% to 84.52% compared to the ontology builder based on non-
contextual word embeddings, WEB-SOBA.

Keywords: Ontology learning · Contextual word embeddings ·
Aspect-based sentiment analysis · Hybrid method

1 Introduction

Aspect-based sentiment analysis (ABSA) determines the sentiment relating to
the aspects (features) of products or services in (Web) text [15]. ABSA provides
businesses more insight into which specific aspects of a product or service need
to be improved upon [17].

ABSA involves two steps. First, the aspects are identified and categorised
(aspect detection), thereafter the sentiments for the identified aspects are gauged
(sentiment analysis) [17]. In this paper we perform these steps with state-of-the-
art hybrid models for sentiment classification, using benchmark data in which
the aspects are given. These models use a domain sentiment ontology to predict
sentiment. Whenever the ontology reasoner is unable to predict the sentiment,
a neural attention model serves as a backup solution [16,19,20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 183–199, 2022.
https://doi.org/10.1007/978-3-031-06981-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_11&domain=pdf
http://orcid.org/0000-0002-8031-758X
https://doi.org/10.1007/978-3-031-06981-9_11

184 R. van Lookeren Campagne et al.

There are various methods to obtain a domain sentiment ontology. The most
general method is to manually build one [16,17]. Although this method has
good performance, lexicalisations are limited and building the ontology is time-
consuming. Additionally, the ontology is manually constructed for a specific
domain and therefore hard to transfer to another domain. Automatically con-
structed ontologies, suggested by [2], shorten building time, but unsupervised
building results in less accuracy. [22] proposes to semi-automatically build a
domain sentiment ontology from a domain-specific corpus, which could produce
more extensive ontologies in a time-efficient manner. For these ontologies, user
input is required to control the builder on mistakes. [9] extends the work proposed
in [22] by using non-contextual word embeddings instead of word co-occurrence
for ontology building and achieves a higher accuracy in a hybrid model.

The objective of this research is to improve the performance of the sentiment
classification by semi-automatically building a domain sentiment ontology from
a domain-specific sentiment corpus based on deep contextual word embeddings.
These deep contextual word embeddings allow the model to cope with poly-
semy, which is not considered by non-contextual word embeddings. Two forms
of deep contextual word embeddings are BERT [5] and ELMo [13]. Compared to
ELMo, BERT is easily applicable for a wide range of Natural Language Process-
ing (NLP) tasks and can consider both left and right contexts simultaneously,
while ELMo can only take the concatenation of the left and right context repre-
sentations. Unlike other research on contextual word embeddings, our approach
can serve as a refined way of aspect-based sentiment analysis by accounting for
word meanings in context.

We adopt the ontology structure posed in [9] so that our work contributes to
previous research in four ways. First, we use deep contextualised word embed-
dings obtained from BERT to deal with polysemy. Second, our ontology builder
considers adverbs to carry a sentiment. For example, ‘carefully’ conveys a pos-
itive sentiment in the context of ‘carefully prepared’. Additionally, we use an
extra set of BERT word embeddings that are sentiment-aware instead of using
external data sources to make word embeddings sentiment-aware. Last, we select
relevant words for the domain sentiment ontology using a novel threshold func-
tion. These four extensions will allow the ontology to be built time-efficiently
without the cost of losing accuracy. We use the ontology obtained from our
ontology builder in a state-of-the-art hybrid approach for aspect-based senti-
ment analysis (HAABSA++) [19], using LCR-Rot-hop++ as a backup model
to obtain a sentiment when our ontology is inconclusive.

This paper is structured as follows. In Sect. 2, we briefly discuss some related
work, followed by an overview of the used datasets in Sect. 3. In Sect. 4 first, the
structure of the ontology is explained, followed by an explanation of our proposed
approach for building a domain sentiment ontology. The performance of our
proposed solution is evaluated in Sect. 5. Last, in Sect. 6, we draw our conclusions
and provide suggestions for future research.The source code is available from:
https://github.com/RoosVanLookeren/DCWEB-SOBA.

https://github.com/RoosVanLookeren/DCWEB-SOBA

DCWEB-SOBA 185

2 Related Work

In this section, we discuss relevant literature to our work. First, we look into
hybrid approaches for ABSA in Sect. 2.1. Second, different domain sentiment
ontology builders are outlined in Sect. 2.2. Last, in Sect. 2.3, we briefly describe
various deep contextual word embeddings.

2.1 Hybrid Models

The research of [16] is among the first showing that a hybrid approach to
aspect-based sentiment analysis algorithms outperforms other state-of-the-art
approaches. As input for sentiment prediction, [16] proposes to manually con-
struct a domain sentiment ontology. In case the ontology does not specify a
sentiment value for an aspect a Bag-of-Words model trained with a multi-class
Support Vector Machine (SVM) is used to complement the ontology. This work
started more research for optimising the machine learning-based backup models.

[20] introduces a hybrid approach for aspect-based sentiment analysis, called
HAABSA, using the domain sentiment ontology of [16] and a Left-Center-Right
neural network with an iterative rotatory attention mechanism (LCR-Rot-hop)
as a backup method. By iterating the rotary attention mechanism multiple times,
the model focuses better on the relevant sentiment words related to a given
aspect. This results in a better accuracy as the interaction between aspect and
relevant context is better captured.

Following the HAABSA model, [19] introduces HAABSA++, which extends
HAABSA in two directions. First, non-contextual GloVe word embeddings are
replaced by deep contextual word embeddings, BERT [5] and ELMo [13], to
deal with word semantics in the text. Second, the authors introduce hierarchi-
cal attention by adding an extra attention layer to the attention mechanism of
[20], enabling the model to distinguish the importance of the high-level input
sentence representations. The adjustment of the rotatory attention mechanism
to a hierarchical architecture is called LCR-Rot-hop++. This paper shows that
exploiting BERT word embeddings in LCR-Rot-hop++ results in better perfor-
mance compared to ELMo word embeddings and outperforms LCR-Rot-hop.

In our paper we introduce the next evolution of hybrid models by using
deep contextual word-embeddings to build the domain sentiment ontology. We
implement our obtained domain sentiment ontology in HAABSA++ using LCR-
Rot-hop++ as a backup model, due to the proven success of this method [19].

2.2 Ontology Building Approaches

Besides improvements of the backup model in hybrid approaches, research has
been done in refining the first part of hybrid models, more precisely the ontology.
Ideally an ontology is built in a time-efficient manner and is as accurate as
possible for the considered task. However, accuracy and time-efficiency do not
always go hand in hand. Therefore a good ontology needs to be built time-
efficiently while remaining able to predict the sentiments accurately.

186 R. van Lookeren Campagne et al.

One solution for building ontologies is to integrate existing knowledge
resources as proposed by OntoSenticNet 2 [6]. While such an approach is able
to model commonsense sentiment, it provides the Domain concept that can be
used to extend the ontology with domain sentiment representations. For building
domain sentiment representations, often a data-driven approach is used due to
the availability of domain text, which is also the approach pursued here.

To decrease the building time of a domain sentiment ontology, [4,22] suggest
to build a domain sentiment ontology semi-automatically, which requires manual
input of the user to control for possible mistakes made by the ontology builder.
[22] proposes SOBA, in which word co-occurrence is used to deal with word
semantics. Besides word co-occurrence, [4] also employs synsets in an ontology
builder, called SASOBUS, to enable a fair and reliable comparison of words,
while simultaneously capturing their meaning. These two methods give compa-
rable results to the manually constructed ontology, yet a significant reduction in
constructing time is achieved.

Better performance is attained when using non-contextual word embeddings
for the automated part of the domain sentiment ontology building. In this
method, named WEB-SOBA [9], word2vec [12] word embeddings are exploited.
The CBOW model is used, which can detect syntactic and semantic word sim-
ilarities. When the ontology obtained from WEB-SOBA is used in HAABSA,
it performs better than the manually constructed domain sentiment ontology.
WEB-SOBA reduces both computing and user time required to construct the
ontology compared to SOBA and SASOBUS, given that the non-contextual word
embeddings for a specific domain are already made. For this research, we use
the manually constructed ontology, SOBA, and WEB-SOBA as benchmarks.
We do not compare our ontology with SASOBUS as [9] already showed that
WEB-SOBA outperforms SASOBUS on accuracy and time-efficiency.

2.3 Deep Contextual Word Embeddings

Word embeddings are vector word representations. In this paper we make a
clear distinction between non-contextual word embeddings and deep contextual
word embeddings. The difference is that deep contextual word embeddings will
include the context of the word in the representation, while non-contextual word
embeddings will not. This means that while non-contextual word embeddings
(e.g., word2vec or GloVe) have difficulty coping with polysemy, deep contextual
word embeddings (e.g., ELMo or BERT) can capture different meanings of a
single word, as they assign a unique vector per instance of a word in its context.

Recently, two new game-changing types of machine-learning models that cre-
ate deep contextual word embeddings were introduced. These are deep contex-
tual word embeddings, in the sense that they are a function of many internal
layers of the neural model. The first model is ELMo, the model captures infor-
mation about the entire input sentence using multiple bidirectional Long Short-
Term Memory (LSTM) layers. A big advantage of the second model, BERT
[5], is that it can pre-train deep bidirectional vector representations from an
unlabelled text by considering both left and right context simultaneously, while

DCWEB-SOBA 187

ELMo can only take the concatenation of the separate contexts-based represen-
tations. BERT is an open-sourced model and a version of the pre-trained model
trained on a massive dataset is publicly available. Next to that, BERT can effi-
ciently be fine-tuned for a wide range of tasks with only one additional output
layer, this makes BERT applicable in many situations. For our research, we
therefore propose to use BERT to construct deep contextual word embeddings.

3 Data

To build a domain sentiment ontology we need a domain-specific corpus to deter-
mine the domain-specific terms. Earlier built ontologies use a restaurant domain
dataset as domain-specific corpus. We opt to use such a dataset as well since
it simplifies the comparison of our ontology with other ontologies. The dataset
we use is the Yelp Open Dataset, which consists of 8,635,403 reviews of differ-
ent businesses [21]. After filtering out the restaurant reviews, around 4,700,000
reviews of more than 500,000 restaurants remain in the dataset. We use the
BERT base model (uncased), which is trained on the BooksCorpus (800M words)
and Wikipedia (2500M words) [5] to create pre-trained word embeddings for 2000
reviews containing 200.000 unique words due to computational limitations.

When a sentiment word is negated in its context (e.g., ‘not’), the polarity
of this word embedding is reversed. To ensure that the word embedding is only
determined by the correct polarity of the word, we remove the sentences in which
a word from the negation set appears. The set of negation words used is NW
= {‘not’, ‘never’, ‘nothing’, ‘don’t’, ‘doesn’t’, ‘didn’t’, ‘can’t’, ‘wouldn’t’}. In
10.4% of the sentences of the dataset one of these negation words is present.
Consequently, we use 89.6% of the review sentences to create our ontology.

To evaluate the ontology we use the standard dataset from SemEval-2016
Task 5 [14], containing restaurant reviews. The data is divided into a training
set of 1879 sentences and a test set of 650 sentences. Every sentence contains
opinions regarding specific aspects. Each aspect is labelled with a polarity from
the set P = {negative, neutral, positive}. Furthermore, an entity (category) E
(e.g., restaurant, food, service) and attribute A (e.g., prices, quality, general)
pair is attached to each aspect. All implicit aspects are not used in the analysis
because the machine learning method assumes aspects to be explicitly present.

4 Methodology

In this section, we explain the methods used in our ontology builder, to which
we refer as Deep Contextual Word Embedding-Based Semi-Automatic Ontol-
ogy Builder for Aspect-Based Sentiment Analysis (DCWEB-SOBA). First, we
explain which BERT word embeddings we use to detect word semantics in
Sect. 4.1. Thereafter, we discuss the methods used in the four stages of our ontol-
ogy builder. The first stage comprises the construction of the skeletal structure
and the initialisation of the ontology, which is described in Sect. 4.2. Then we
explain the methods used to select the relevant terms in Sect. 4.3 and to classify

188 R. van Lookeren Campagne et al.

sentiment terms in Sect. 4.4. The last stage involves hierarchical clustering of
aspect terms to assign them to ontology classes, explained in Sect. 4.5.

4.1 Word Embeddings

The BERT model [5] has been shown to properly model language and han-
dle different tasks. The model can, after pre-training, be post-trained and fine-
tuned. In this section, we evaluate to what extent the model has to be post-
trained and fine-tuned. We use the dimension reduction method t-SNE for a two-
dimensional visualisation of the word embeddings for the evaluation. Throughout
this research, we run all BERT models on a 2.3 GHz Intel Core i5 CPU with 8
GB RAM in combination with a GPU Tesla V100-SXM2. We use the AdamW
optimiser [8] to update the weights during post-training and fine-tuning, as it has
been proven to be one of the fastest optimisers in training neural networks [11].

Polysemy-Aware Word Embeddings. The pre-trained BERT model is able
to distinguish semantics and polysemous words in our corpus. Figure 1 shows the
word embeddings of the word ‘turkey’ for two different synsets. In half of the
sentences ‘turkey’ is used in the meaning of an animal, denoted by ‘Turkey#A’,
and in the other half of the sentences ‘turkey’ is used in the meaning of country,
denoted by ‘Turkey#B’. It can be seen in the plot that the pre-trained model
can position these words near similar words. For the comparison, we use word
embeddings of ‘pizza’ and ‘Italy’. The pre-trained BERT model can be post-
trained to capture the language characteristics in a corpus. However, we find
that post-training, using 50.000 reviews from the Yelp dataset, results in a worse
separation of the synsets of a word, possibly due to the small size of our domain
corpus, therefore, we choose to use the pre-trained word embeddings for term
selection and aspect term hierarchical clustering.

Fig. 1. Pre-trained BERT word embeddings for aspects ‘turkey’, ‘pizza’, and ‘Italy’:
polysemous words are well-separated.

DCWEB-SOBA 189

Sentiment-Aware Word Embeddings. The pre-trained BERT models posi-
tion sentiment mention word embeddings based on more characteristics than only
their polarity, causing words of a different polarity to be in the same vicinity.
This can cause a problem for the sentiment-based part of our method. Figure 2
shows the representation of the pre-trained word embeddings of negative (black)
and positive (grey) sentiment words. It can be seen that word embeddings do
not separate the sentiment words very well based on polarity.

Fig. 2. Pre-trained BERT word embeddings for sentiment words: positive (+) and
negative (−) words are not well-separated.

The problem can be solved by fine-tuning the pre-trained BERT model on
sentiment classification. The polarity of a sentiment word will determine the
position of the word embedding from the created model. This is done on the
task of classifying reviews as either positive or negative. Each review in the
Yelp dataset is labeled with a star rating between 1 and 5. We treat 4-star
and 5-star reviews as positive reviews (y = 1) and 1-star and 2-star reviews
as negative reviews (y = 0). The binary variable y denotes the label for the
classification task. During fine-tuning, the model learns the sentiment value of
words, and readjusts its word embeddings accordingly. The fine-tuned BERT
model is trained on 100.000 reviews from the Yelp dataset.

Figure 3 shows that the fine-tuned model can better separate words on their
polarity than the pre-trained model, shown in Fig. 2. Therefore we conclude that
these word embeddings are sentiment-aware. In this paper, we refer to fine-tuned
word embeddings when sentiment-aware word embeddings are used and refer to
pre-trained word embeddings when we mention word embeddings.

190 R. van Lookeren Campagne et al.

Fig. 3. Fine-tuned BERT word embeddings for sentiment words without post-training:
positive (+) and negative (−) words are well-separated.

4.2 Skeletal Ontology Building

The structure of the ontology is based on [16], which contains two main classes,
namely SentimentValue and Mention. The first class contains subclasses denot-
ing sentiment. The second class is divided into subclasses distinguishing the part-
of-speech of a term and the aspect. Every relevant term to our domain being a
noun, verb, adjective, or adverb gets placed in, respectively, the Entity, Action,
Property, or Modifier classes. We refer to these subclasses as <Pos>.

Each aspect has the format of CATEGORY#ATTRIBUTE pair. The Mention class
has each category, denoted as <Cat>, and attribute, denoted as <Att>, as sub-
classes, resulting in the aspect subclasses: Restaurant, Location, Food, Drinks,
Prices, Experience, Service, Ambiance, Quality, Style, and Options. The
aspect subclasses are linked through one or multiple aspect properties to corre-
sponding CATEGORY#ATTRIBUTE pairs. Table 1 shows all possible pairs.

Table 1. Combinations of categories and attributes in the ontology.

Categories Attributes

General Prices Quality Style&Options Miscellaneous

Ambience x

Drinks x x x

Experience x

Food x x x

Location x

Service x

Restaurant x x x

DCWEB-SOBA 191

Note, the attribute Style&Options is split through lexical properties into two
separate aspect subclasses, namely Style and Options. We use these repre-
sentations instead of Style&Options as there does not exist a word embed-
ding for Style&Options, which is required in the next steps of the ontology
builder. Furthermore, we have attributes Miscellaneous and General, as these
attributes are too generic, they do not appear as subclasses. Figure 4 presents
an overview of the Mention class structure (subclasses have suffix ‘Mention’
removed to avoid cluttering). Each <Cat/Att><Pos>Mention is a subclass
of <Cat/Att>Mention. For instance, ServiceEntityMention is a subclass of
ServiceMention (<Cat>) and Entity (<Pos>), which in their turn are sub-
classes of Mention. Furthermore, each <Cat/Att><Pos>Mention has two sub-
classes <Cat/Att>Positive<Pos> and <Cat/Att>Negative<Pos>. These
subclasses have Positive or Negative as their parent class.

The SentimentValue class consists of two subclasses, namely Positive and
Negative, which refer to their corresponding sentiment shown in Fig. 5. Neu-
tral sentiments are disregarded in this research. These sentiments are hard
to interpret since they carry inherent ambiguity. We consider three types of
sentiment words. Type-1 sentiment words (generic sentiment) carry only one
polarity irrespective of the context and aspect (e.g., the term ‘bad’ is always
negative). Type-1 sentiment words are assigned to the GenericPositive and
GenericNegative, which are subclasses of Positive and Negative, respectively,
corresponding to their polarity. Furthermore, Type-1 words are also subclasses of
their corresponding part-of-speech classes, called GenericPositive<Pos> and
GenericNegative<Pos>. Next, polarity consistent words that can not be used
for every aspect are Type-2 sentiment words. For example, the word ‘delicious’
is a Type-2 sentiment word only applicable for the aspects ‘food’ and ‘drinks’
and always denotes a positive sentiment. Therefore, ‘delicious’ will appear as
lexicalisation in the classes FoodMention and DrinksMention. Last, the polarity
of Type-3 sentiment words depends on the aspect and context. For instance, in
the context of price the word ‘cheap’ carries positive sentiment, while ‘cheap’
regarding style carries negative sentiment.

User Intervention. We initialise the skeletal structure of the ontology with
some Type-1 sentiment words of different part-of-speeches and various sentiment
polarities (e.g., ‘good’, ‘bad, ‘poorly’, and ‘hate’). This is necessary because these
generic sentiment words are less likely to be extracted in the term selection as
these are not specific to a Mention class. For each generic sentiment word, we
suggest the 15 most similar words to the user, based on the cosine similarity of
the word embeddings. These can be accepted or rejected. In preliminary exper-
iments, we find that adding the 15 closest words results in the best trade-off
between the quality of the accepted words and the class lexical coverage.

Our word embedding model creates a unique vector for each word instance.
For comparisons, however, it is more efficient to limit the comparisons to one
representative vector for a synset of a word. Therefore, we average the vectors
for each instance of an initialised generic sentiment word. Most of the generic

192 R. van Lookeren Campagne et al.

Fig. 4. Mention class structure. Fig. 5. SentimentValue class structure.

sentiment words only have one meaning (i.e., ‘hate’, ‘poorly’, ‘expensive’, ‘excel-
lent’), so for these words we do not lose relevant information.

4.3 Term Selection

The goal of the term selection is to determine the relevant terms for our
domain sentiment ontology. The part-of-speech tagger of Stanford NLP Pro-
cessing Group [18] is used in our research to extract all verbs, nouns, adjectives,
and adverbs from the corpus. In contrast to [9], we consider adverbs as well.
After tagging, we use a pre-defined stopwords list [3] to filter out all stopwords
as those do not contribute to our analysis.

First, we average all word embeddings referring to the same meaning of a
word to improve computation time. This is done by averaging the vectors of the
lexical representations of each aspect in the Mention classes, A = {Restaurant,
Location, Food, Drinks, Price, Experience, Service, Ambiance, Quality,
Style, Options}. In our restaurant domain corpus, these aspects do not have
ambiguous semantics, therefore we can average all corresponding vectors without
losing semantic information.

Second, we calculate for each instance of a word the Mention Class Similarity
(MCS) value using the cosine similarity as follows:

MCSi = max
a∈A

(
vi · va

‖vi‖ · ‖va‖
)
, (4.1)

where vi is the vector of word i in the domain-specific word embedding model
and va is the averaged vector of all lexical representations of the aspect a in the
set A. MCS indicates the Mention class to which the representation of the word
embedding is the closest.

Next, all the word embeddings with an MCS value below a threshold are
eliminated. Words that are allocated to the same Mention class according to

DCWEB-SOBA 193

their MCS have their embeddings averaged and named as word<mention>,
where word is the currently considered word and mention is an element of A.
This averaging procedure is done for MCS values higher than the previous
threshold. A good threshold value is pivotal, as otherwise the average vector will
not accurately represent a cluster for one synset of a word. We find in preliminary
research that a threshold of 0.68 gives a good balance between accuracy and
coverage. We define terms as being the refined words after averaging vectors and
assigning new word names to them.

After the word embeddings are reduced to relevant terms, we can efficiently
determine which terms are suggested to the user. We compute again the MCS
value, as this value can differ after averaging. It is used to determine the order
in which the terms are suggested. In order to suggest the right amount of words
to the user, the MCS values are compared against the threshold value specific
to each of the four part-of-speeches. The threshold function is defined as follows:

TH∗
pos = max

THpos

(
accepted

n + 1

)
, (4.2)

where THpos is the threshold score for a <Pos> class, n is the number of sug-
gested terms, and accepted denotes the number of accepted terms. The value of
TH∗

pos is increasing in the number of accepted terms. We divide by n+1 to avoid
the case of a threshold value of 1. This would happen if we divided by n and the
first and only suggested term is accepted. The effect of the penalty diminishes
for larger n. The threshold will be set to the optimal ratio of accepted terms for
a <Pos> class, denoted by TH∗

pos.

User Intervention. For all accepted terms that are a noun or verb, the user
is asked whether the term is a Sentiment Mention or Aspect Mention. We only
consider adjectives and adverbs to indicate a sentiment, as these words can
describe the Aspect Mention. When a term is a Sentiment Mention, the user is
asked whether it is a Type-1, 2, or 3 Sentiment Mention. For each accepted word,
we add all similar words that have a cosine similarity larger than a threshold
to the ontology as well. Preliminary research results in a threshold of 0.7 which
gives a good balance between accuracy and coverage.

4.4 Sentiment Term Clustering

Now that we have determined the relevant Sentiment Mention terms, we identify
their polarity and class. As the sentiment-aware word embeddings separate the
terms well based on polarity, we can calculate the negative and positive scores
of our Sentiment Mention terms in the following way:

PSi = max
p∈P

(
vi · vp

‖vi‖ · ‖vp‖
)

NSi = max
n∈N

(
vi · vn

‖vi‖ · ‖vn‖
)
, (4.3)

194 R. van Lookeren Campagne et al.

where PS and NS are the positive and negative scores, respectively, for termi.
P and N are a set of, respectively, positive and negative words of different kinds
of sentiment intensity. The set of positive and negative words are, respectively,
P = {‘good’, ‘decent’, ‘great’, ‘tasty’, ‘fantastic’, ‘solid’, ‘yummy’, ‘terrific’} and
N = {‘bad’, ‘awful’, ‘horrible’, ‘terrible’, ‘poor’, ‘lousy’, ‘shitty’, ‘horrid’}. For
each word we use the averaged vectors that are made from the sentiment-aware
word embeddings. Finally, vi denotes the vector of term i, and vp and vn are the
vectors of a term in the positive and negative set, respectively. The largest score
determines the predicted polarity of the word.

User Intervention. For each Sentiment Mention term the user decides whether
the suggested polarity is correct. Type-2 and Type-3 sentiment words are aspect-
specific and can therefore be used in multiple <Cat/Att>Mention classes. To
assign these words to multiple classes, the user is asked to check whether the Sen-
timent Mention term belongs to the <Cat/Att>Mention class to which the term
has the highest cosine similarity. If the user accepts this <Cat/Att>Mention, the
second most similar <Cat/Att>Mention is suggested. This procedure continues
until the user rejects adding a Sentiment Mention term to a <Cat/Att>Mention
class.

4.5 Aspect Term Hierarchical Clustering

In this section, we explain the hierarchical clustering procedure for Aspect Men-
tion terms in two steps. First, the Aspect Mention terms are allocated to their
corresponding cluster of the Mention classes, A = {Restaurant, Location, Food,
Drinks, Price, Experience, Service, Ambiance, Quality, Style, Options}.
This is done by representative clustering based on the cosine similarity between
the vector of a term and a vector of the ‘base’. The ‘base’ is made up of the aver-
aged vectors of the lexical representation of the aspects in the Mention class, in
the same way as previously described in Sect. 4.3.

Next, we create a hierarchy for each cluster in the ‘base’, using agglomerative
hierarchical clustering [1]. Terms start in single clusters and throughout the
clustering process they are merged together. In each iteration, clusters with the
lowest Average Linkage Clustering (ALC) value get merged together. ALC is
determined as follows:

ALC(A,B) =
1

|A| · |B|
∑
a∈A

∑
b∈B

d(a, b), (4.4)

where d(a, b) is the Euclidean distance between vectors a and b, and a is in cluster
A and b is in cluster B. We find by using the ‘elbow’ method that the optimal
depth in our dendogram to create the preferred hierarchy equals 3 subclasses.

User Intervention. After a term is clustered to a ‘base’ cluster, the user
decides whether the term is correctly placed in the Mention class belonging to

DCWEB-SOBA 195

‘base’ cluster by either accepting or rejecting. Whenever a term is rejected, the
user has to specify the correct Mention class. In this way, all terms start in the
right ‘base’ cluster before performing the hierarchical clustering.

5 Evaluation

In this section, we evaluate our ontology on the SemEval-2016 dataset using the
DRANZIERA evaluation protocol “Open” setting [7] against three benchmarks:
the manual constructed ontology [16], SOBA [22], and WEB-SOBA [9]. First, in
Sect. 5.1 we evaluate our ontology against the benchmarks in terms of descrip-
tive characteristics, time-efficiency, accuracy, and conclusiveness. Thereafter in
Sect. 5.2, our ontology is used in a hybrid approach to evaluate the performance
for aspect-sentiment classification. The machine used for the evaluation methods
is a 2.1 GHz Intel Core i3-10110U CPU with 16 GB RAM.

5.1 Ontology Building Results

We consider an ontology as good if it is accurate and conclusive. A model is
conclusive in the case that it is able to make a prediction of the sentiment for
an aspect. The higher the coverage of the domain ontology, the more conclusive
an ontology is. The accuracy indicates the percentage at which this prediction
is correct. Additionally, an ontology should be built time-efficiently.

Table 2 shows that DCWEB-SOBA requires more user time to construct an
ontology than WEB-SOBA, as the user has to consider more suggested words
due to the addition of adverbs and the inclusion of different synsets of a word.
Consequently, more classes and lexicalisations are added to the ontology resulting
in higher coverage of the domain. The overall building time (user and computing
time) of an ontology with DCWEB-SOBA is shorter since the construction of
the fine-tuned BERT model only takes 120 min where the construction of word
embeddings in WEB-SOBA takes 300 min. To summarise, DCWEB-SOBA does
well at balancing the amount of user time and attained coverage compared to
other ontology builders.

Table 2. Comparison statistics for the different ontologies.

Manual SOBA WEB-SOBA DCWEB-SOBA

Classes 365 470 376 539

Lexicalisations 374 1087 348 485

User time (minutes)* 420 90 40 60

Computing time (minutes)** 0 90 30 (+300) 30 (+120)

*User time is the time spent on the user interventions.
**Computing time is the time required to construct the ontology excluding user
time.

196 R. van Lookeren Campagne et al.

Additionally, we evaluate the performance of the ontologies obtained from
the ontology builders on the SemEval-2016 test dataset. Table 3 shows that our
obtained ontology has a fairly high accuracy for its conclusive cases compared
to the other semi-automatically built ontologies, only SOBA performs better.
Furthermore, we can see that our ontology is conclusive in 49.69% of the cases
which is a significant increase from the 35.39% of WEB-SOBA. This indicates
that using deep contextual word embeddings results in a more accurate and more
conclusive ontology than an ontology built with non-contextual word embeddings
like WEB-SOBA.

Table 3. Comparison statistics for the percentage of conclusive cases.

Manual SOBA WEB-SOBA DCWEB-SOBA

Conclusive (%) 61.85 64.62 35.39 49.69

Accuracy for conclusive cases (%) 86.82 85.48 83.04 84.52

5.2 Hybrid Setting Results

Table 4 shows that SOBA performs best on conclusiveness and the accuracy
on these predictions, however, [9] shows that SOBA is outperformed by WEB-
SOBA in the hybrid setting of HAABSA. Therefore, we aim to show that
DCWEB-SOBA can outperform other ontology builders in the state-of-the-art
HAABSA++ setting, first proposed in [19]. For LCR-Rot-hop++, the backup
model in HAABSA++, the following hyperparameters can be used to reproduce
our analysis: the learning rate, the keep probabilities, and the momentum, are
set to 0.001, 0.7, and 0.085, respectively. The model is trained on 150 iterations
on the train SemEval-2016 dataset.

To analyse the overall performance of DCWEB-SOBA in this setting, we
use the weighted average of the accuracy for conclusive and inconclusive cases.
We observe in Table 4 that the ontology builders using word embeddings, WEB-
SOBA and DCWEB-SOBA, reach a lower accuracy for their ontology but a
higher accuracy for its backup model similar to the results in the HAABSA
setting in [9].

Furthermore, the DCWEB-SOBA ontology gives the highest accuracy when
used in HAABSA++ compared to the other ontologies with an accuracy of
81.85%. This indicates that the use of word embeddings is essential for the
HAABSA++ model. DCWEB-SOBA scores better on the accuracies of both
the ontology and backup model than WEB-SOBA, this further emphasises the
importance of deep contextual word embeddings in sentiment classification.

DCWEB-SOBA 197

Table 4. Comparison statistics for each ontology, LCR-Rot-hop++ and the two com-
bined.

Ontology LCR-Rot-hop++ Combined

Conclusiveness Accuracy Accuracy Accuracy

Manual 61.85% 86.82% 72.98% 81.54%

SOBA 64.62% 85.48% 73.91% 81.38%

WEB-SOBA 35.39% 83.04% 78.81% 80.31%

DCWEB-SOBA 49.69% 84.52% 79.20% 81.85%

6 Conclusion

In this research, we propose DCWEB-SOBA to construct a semi-automatically
built ontology using deep contextual word embeddings for aspect-based senti-
ment analysis. We hypothesise that by using deep contextual word embeddings
which can deal with semantics and polysemy, we can improve the performance of
sentiment classification based on its accuracy and conclusiveness. The proposed
methodology makes use of contextual word embeddings at its various steps:
skeletal ontology building, term selection, sentiment term clustering, and aspect
term hierarchical clustering.

DCWEB-SOBA achieves higher accuracy compared to WEB-SOBA when
we measure the sentiment prediction accuracy on conclusive cases. The accu-
racy increases from 83.04% to 84.52%. Additionally, DCWEB-SOBA is able to
predict the sentiment for more aspects as it is conclusive in 49.69% of the cases,
compared to 35.39% for WEB-SOBA. When we use the ontology obtained from
DCWEB-SOBA in a hybrid approach, HAABSA++, we achieve an accuracy of
81.85% which outperforms the other used ontologies. This shows that using deep
contextual word embeddings increases the performance in a hybrid approach for
aspect-based sentiment analysis compared to non-contextual word embeddings.

Our research highlights the importance of the usage of deep contextual word
embeddings in sentiment classification. For future work, we suggest the usage of
Facebook’s RoBERTa, introduced in [10], for creating contextual word embed-
dings. This model has been trained on a dataset more than ten times as large as
BERT and is solely trained on the Masked Language Modeling task. In addition,
RoBERTa makes use of dynamic masking: training by masking different words
for every epoch. These factors make us believe that the usage of RoBERTa in a
hybrid approach to aspect-based sentiment analysis is very promising.

Furthermore, the fine-tuned model can be improved by training on separating
Type-3 sentiment words. This can be done by training the model on data with
aspect ratings instead of review rating. As a consequence, we expect the fine-
tuned model to be trained on less noisy data and result in a model which is able
to cope better with aspect-based sentiment analysis.

198 R. van Lookeren Campagne et al.

References

1. Behnke, L.: (2012). https://github.com/lbehnke/hierarchical-clustering-java
2. Blaschke, C., Valencia, A.: Automatic ontology construction from the literature.

Genome Inform. 13, 201–213 (2002)
3. Bleier, S.: (2000). https://gist.github.com/sebleier/554280
4. Dera, E., Frasincar, F., Schouten, K., Zhuang, L.: SASOBUS: semi-automatic sen-

timent domain ontology building using Synsets. In: Harth, A., et al. (eds.) ESWC
2020. LNCS, vol. 12123, pp. 105–120. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-49461-2 7

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2019), pp. 4171–4186. ACL (2019)

6. Dragoni, M., Donadello, I., Cambria, E.: OntoSenticNet 2: Enhancing reasoning
within sentiment analysis. IEEE Intell. Syst. 37(1) (2022)

7. Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: DRANZIERA: an evaluation
protocol for multi-domain opinion mining. In: 10th International Conference on
Language Resources and Evaluation (LREC 2016), pp. 267–272. ELRA (2016)

8. Gugger, S., Howard, J.: AdamW and super-convergence is now the fastest way to
train neural nets. fast.ai (2018)

9. ten Haaf, F., et al.: WEB-SOBA: word embeddings-based semi-automatic ontology
building for aspect-based sentiment classification. In: Verborgh, R., et al. (eds.)
ESWC 2021. LNCS, vol. 12731, pp. 340–355. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77385-4 20

10. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

11. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th Inter-
national Conference on Learning Representations (ICLR 2019). OpenReview.net
(2019)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: 27th Annual Con-
ference on Neural Information Processing Systems (NIPS 2013), pp. 3111–3119.
Curran Associates (2013)

13. Peters, M.E., et al.: Deep contextualized word representations. In: 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT 2018), pp. 2227–2237. ACL (2018)

14. Pontiki, M., et al.: SemEval-2016 task 5: aspect-based sentiment analysis. In: 10th
International Workshop on Semantic Evaluation (SemEval 2016), pp. 19–30. ACL
(2016)

15. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans.
Knowl. Data Eng. 28(3), 813–830 (2015)

16. Schouten, K., Frasincar, F.: Ontology-driven sentiment analysis of product and
service aspects. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp.
608–623. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 39

17. Schouten, K., Frasincar, F., de Jong, F.: Ontology-enhanced aspect-based sen-
timent analysis. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017.
LNCS, vol. 10360, pp. 302–320. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60131-1 17

https://github.com/lbehnke/hierarchical-clustering-java
https://gist.github.com/sebleier/554280
https://doi.org/10.1007/978-3-030-49461-2_7
https://doi.org/10.1007/978-3-030-49461-2_7
https://doi.org/10.1007/978-3-030-77385-4_20
https://doi.org/10.1007/978-3-030-77385-4_20
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-3-319-93417-4_39
https://doi.org/10.1007/978-3-319-60131-1_17
https://doi.org/10.1007/978-3-319-60131-1_17

DCWEB-SOBA 199

18. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maxi-
mum entropy part-of-speech tagger. In: 2000 Joint SIGDAT Conference on Empir-
ical Methods in Natural Language Processing and Very Large Corpora (EMNLP
2010), pp. 63–70. ACL (2000)

19. Truşcǎ, M.M., Wassenberg, D., Frasincar, F., Dekker, R.: A hybrid approach for
aspect-based sentiment analysis using deep contextual word embeddings and hier-
archical attention. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020.
LNCS, vol. 12128, pp. 365–380. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50578-3 25

20. Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis
using a lexicalized domain ontology and attentional neural models. In: Hitzler,
P., Fernández, M., Janowicz, K., Zaveri, A., Gray, A.J.G., Lopez, V., Haller, A.,
Hammar, K. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21348-0 24

21. Yelp (2019). https://www.yelp.com/dataset
22. Zhuang, L., Schouten, K., Frasincar, F.: SOBA: semi-automated ontology builder

for aspect-based sentiment analysis. J. Web Semant. 60, 100–544 (2020)

https://doi.org/10.1007/978-3-030-50578-3_25
https://doi.org/10.1007/978-3-030-50578-3_25
https://doi.org/10.1007/978-3-030-21348-0_24
https://www.yelp.com/dataset

Never Mind the Semantic Gap: Modular,
Lazy and Safe Loading of RDF Data

Eduard Kamburjan(B), Vidar Norstein Klungre, and Martin Giese

Department of Informatics, University of Oslo, Oslo, Norway
{eduard,vidarkl,martingi}@ifi.uio.no

Abstract. Any attempt at a tight integration between semantic tech-
nologies and object oriented programming will invariably stumble over
the gap between the two underlying object models. We illustrate how
this semantic gap manifests from the point of view of data retrieval with
SPARQL. We present a novel mechanism to load data from RDF knowl-
edge graphs into object-oriented languages that gives static guarantees
about the data access and modularly integrates the mapping between the
program and the RDF view with the class definition in the program. This
allows us to preserve the separation of concerns between the class sys-
tem of RDF (geared towards domain modeling and data), and that of the
program (geared towards typing and code reuse). Loading of RDF can be
performed lazily, when required by the program, based on query-futures
– subqueries that are only evaluated if and when the data is accessed.
We formulate a Liskov principle for the mapping queries to characterize
when they respect the subclass relation. Moreover, we provide tool sup-
port to detect when the user-provided mapping would cause the loading
mechanisms to result in data structures that manifest the semantic gap.

1 Introduction

Motivation. Despite the important role that Semantic Web technologies can play
in modern software applications, their integration with programming languages
remains a challenge. The main challenge is the so-called impedance mismatch [1,
2] or semantic gap [3] between the object model of RDF, geared towards data-
driven tasks, and the object model of programming languages, geared towards
typeability and modularity.

This impedance mismatch for RDF manifests when mapping RDF into the
class system of the program: to load data from an RDF store, one executes some
SPARQL query, manually traverses the results and creates objects on the go
to perform computation later on. This turns data loading into a fragile, work-
intensive and highly error-prone task: (a) There is no type safety mechanism. (b)
The mapping between the OO class and the RDF pattern is not modular—the
retrieving queries quickly grow in size and are overwhelming for the programmer.
(c) While most endpoints support lazy iterators, they do not support lazy data
structures within one answer: If the application is only interested in parts of
the loaded data, but only decides so after the query is formulated (e.g., based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 200–216, 2022.
https://doi.org/10.1007/978-3-031-06981-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_12

Modular, Lazy and Safe Loading of RDF Data 201

on prior answers) it is not possible to postpone loading. (d) Finally, depending
on the data model and retrieving query, one node in the RDF graph may be
mapped to different objects, if it occurs in several answers.

In this work, we investigate lazy, modular and type-safe loading of data from
RDF graphs into an object-oriented (OO) programming language. Instead of
fighting the impedance mismatch, we embrace it and keep it under control: we
clearly describe the structure for which such a mapping can be defined and give
static analyses to warn the programmer about unintuitive effects.

Approach. We solve these challenges by providing tool support to the program-
mer: Our mapping tightly couples OO classes with graph patterns in RDF using
a SPARQL query per OO-class. This query describes how to construct an object
from an RDF graph, it does not establish a perpetual link between RDF nodes
and OO objects. Moving the mapping from the point where the data is used
to the program point where the data structures are defined simplifies modeling
and allows reuse of queries. Reuse, in turn, is critical for maintenance. With-
out reuse, maintenance is aggravated if multiple queries perform similar data
retrieval tasks, but are scattered over the program or dynamically manipulated.

Using the query containment-based typing mechanism presented in [4], we
directly address type safety and include support for OO inheritance: we always
load the most specific class possible and give a static analysis that checks unique-
ness of this class. Furthermore, we give a Liskov principle [5] to statically check
whether the retrieval query of a subclass correctly refines the retrieval query of
the superclass. We give another analysis to inform developers whether multiple
objects constructed during data access correspond to the same RDF node.

Integrating the mapping into the OO class structure enables us to perform
lazy evaluation. Lazy evaluation only retrieves data if the computation indeed
requires it. This is implemented as follows: When loading a class, its query is
automatically executed. If a class has a field of another class type, this second
query is lazily evaluated: The field is initialized with a future [6,7]. A future is a
placeholder that contains the inner SPARQL query that is only evaluated when
the future is explicitly accessed during a computation.

It is crucial to our approach that we do not relate concepts of RDF and OO
to each other directly, i.e., do not enforce a one-to-one correspondence between
OO objects and RDF individuals. Systems that try to close this semantic gap [3]
fail to address the fundamental differences in assumptions and modeling tech-
niques in RDF/OWL and OO, most prominently the open-world assumption
and multiple inheritance. Instead, we embrace the differences in modeling and
give the programmer a systematic and safe way to close the gap specifically for
their application. Thus, our system can be used to both relate the OO and RDF
representation of some objects, but also as a type-safe container to load the
results of queries, where such a relation is not desirable.

We give an informal example in Sect. 2 and preliminaries in Sect. 3. Modular
mappings are described in Sect. 4 and inheritance in Sect. 5. Lazy loading is
introduced in Sect. 6 and evaluated in Sect. 7. Related work is given in Sect. 8.

202 E. Kamburjan et al.

1 List<Nodes> it =
2 query("SELECT * WHERE { ?o :id ?id; :stamp ?stamp; :back ?w1; :front ?w2.
3 ?w1 :wheelId ?wId1; :stamp ?last1. ?w2 :wheelId ?wId2; :stamp ?last2.
4 FILTER(?wId1 != ?wId2}.");
5 Int i = it.next().get("id"); //dynamic cast to Int
6 Bike bike = new Bike(i, ...);

Fig. 1. Dynamic data access with SPARQL.

2 Running Example

Before we formalize our approach, we give an informal example that shows the
targeted application. We do not present advanced features, such as typing and
inheritance here. The example is given in the LMOL language introduced in Sect. 6,
where the exact syntax and runtime semantics are introduced. Consider the
following domain model about bikes and an application that loads all bikes into
its class structure. At a later point, the application will then use the data to
perform some computation on the wheels. This is illustrated in Fig. 1

∃hasWheel.� � Bike back, front � hasWheel � � ∀id.Int
∃id.� � ∃stamp.� � Bike � ∃hasWheel−1. Bike � � ∀stamp.Int

We observe the following: (a) the data access in line 5 requires dynamic
typing, (b) The connection between classes and data is established by a a query
that is not modular w.r.t. nested classes, and (c) we may retrieve too much data:
if the computation on a bike stops after the first wheel, then the second wheel
should be not loaded in the first place. Note that it may not be known at the
time the data is loaded which computations will be performed on it, thus, it is
not always possible to adjust the query. Even when this is the case, it leads to
the situation that several queries are manually optimized versions of the same
data retrieval.

Our idea is twofold: We (1) annotate the class declaration with a SPARQL
query to retrieve instances of the class, and (2) use futures for nested class
structures. The following shows an annotated Wheel class and how to use it.

1 class Wheel anchor ?o
2 (Int wheelId, Int last) //id is the id of the wheel, not the IRI
3 end retrieve SELECT ?wheelId ?last
4 WHERE{ ?o :wheelId ?wheelId; :stamp ?last. }
5 ... List<Wheel> it = load Wheel();

There is no Wheel class declared in the RDF vocabulary – the annotated query
models retrieval. The load statement returns an iterator over all results of the
query (in some preconfigured KB). Note that already here, we introduce a sep-
aration of concerns in the language: data modeling is concentrated on the class,
while computations can be performed with load as an encapsulation mechanism.
Indeed, it is not visible to the programmer what kind of KB access is performed.
The following code block shows the annotation for the Bike class.

Modular, Lazy and Safe Loading of RDF Data 203

1 class Bike anchor ?o(
2 Int id, Int last, //id is the id of the bike, not the IRI
3 link(?o :front ?front) QFut<Wheel> front,
4 link(?o :back ?back) QFut<Wheel> back)
5 end retrieve SELECT ?id ?last WHERE { ?o :id ?id; :stamp ?last. }
6 ...
7 List<Bike> it = load Bike(); Bike bike = it[0];
8 List<Wheel> it = load bike.front;
9 Wheel w = it[0];

The Wheel instances are not described by the query. Their retrieval is already
described in the Wheel class. The link annotation makes their loading lazy: When
the load Bike() statement in line 8 is executed, only the query of Bike is executed.
The fields of the Wheel class are initialized with futures: containers that contain
the delayed query of Wheel. It is only in line 9, when bike.front is accessed, that
the query below is executed. Note that it is enriched with information from the
original query. This is crucial to correctly connect the nodes.

1 SELECT ?wheelId ?last WHERE{ run:obj1 :front ?w1.
2 ?w1 :id ?wheelId; :last ?last. }

The annotations for lazy loading are illustrated in the
figure to the right. The circles denote the parts of a graph
retrieved by a single query and the thick edges are the
link queries between the queries of the single classes. Lazy
KB access aims to (1) make KBs more usable by reducing
the load on the programmer and (2) allow a more flexible
control over data loading by delaying the exploration of
certain parts of the KB. The goal is not to replace all
possible usages of queries and we stress that the lazy loading mechanism subtly
changes the way the KB is accessed in two ways: First, by delaying the query, we
take control away from the query planner and give it to the program. While this
reduces the possibilities to optimize on the query level, it allows the programmer
to be more flexible in its data modeling. Secondly, lazy evaluation may retrieve
too many objects in the first step, as it is not known whether the next query
will succeed or not. For example, the original query above will not return bikes
with only one wheel, while lazy loading will do so and create a Bike object with
one Wheel field evaluating to null. We address this by allowing to flatten the
queries of nested classes to one overall query, but note that this is not possible
for (mutually) recursive class structures.

3 Preliminaries

Semantic Web. We assume that the reader is familiar with the basics of estab-
lished technologies of RDF KBs and SPARQL, and only repeat basic notation.

A knowledge base K = (T ,A) is a pair of a TBox T and an ABox A. We
represent the ABox as a set of triples. A query is denoted as Q(x), where x ranges
over variables. Given a query Q(x), we say that x are its answer variables. The

204 E. Kamburjan et al.

Fig. 2. Surface Syntax. The notation · denotes lists, f ranges over fields, v over
variables, n over literals and C over class names.

query Q may contain non-answer variables as well. If it has two answer variables,
then we say that Q is binary. Given two queries Q1, Q2, we define their conjunction
Q1 ∧ Q2 as the query that returns the intersection of answers to Q1 and Q2. We
say that a query Q1 is contained in another query Q2 over a TBox T under an
entailment regime er, written Q1 �T

er Q2, if for every ABox A each answer to
Q1 over (T ,A) under er is also an answer to Q2 over (T ,A) under er. We say
that two queries are equivalent, written Q1 ≡T

er Q2, if they contain each other.
Furthermore, a query is said to be unsatisfiable under a TBox T if it has no
possible answer under T . Given two binary queries Q1(?a, ?b), Q2(?c, ?d) which
have no variable in common, we define the concatenation Q1(?a, ?b)◦Q2(?c, ?d) =
Q3(?a, ?d) = Q1(?a, ?x) ∧ Q2(?x, ?d). We say that a binary query Q1(?a, ?b) is the
inverse of another binary query Q2(?a, ?b) if Q1(?a, ?b) ≡T

er Q2(?b, ?a).

Programming Model. We use a minimal object-oriented programming language
to illustrate our approach. While the implementation works on a full program-
ming language with methods and additional statements, such as branching or
loops, and the method itself can be adapted on top of any OO language, we
give here only the minimal fragment to focus on the interaction between OO
and RDF in a minimal setting. In this section, we give the basic structure of
the language, while the later sections will extend it with a modular mapping
(Sect. 4), inheritance (Sect. 5), and lazy loading (Sect. 6).

Definition 1 (Syntax). The syntax of our base language is given in Fig. 2.

A program is a set of classes, each defined by a set of fields and a name, and
a main block, which is a sequence of statements. As statements we only consider
assignments to fresh variables and fields, as well as object creation and sequence.
For types we assume at least integers and parametric lists (to store the results
of data loading). Expressions are standard, e[e’] is list access.

The runtime semantics is defined using a standard Structured Operational
Semantics (SOS) [8], i.e., a set of rewrite rules on runtime configurations. A run-
time configuration contains the class table, the created objects and the statement
that remains to execute. A rewrite rule takes a runtime configuration and trans-
forms it by executing the next statement.

Definition 2 (Runtime Semantics). A configuration conf is defined by:

conf ::=
(
K,CT

)
s

(
σ, obs

)
obs ::=obj(X, C, ρ) | obs, obs

Modular, Lazy and Safe Loading of RDF Data 205

where K is a knowledge base, CT is the class table, a map from class names to the
set of their fields, σ is a map from the variables in the main block to the literals
or object identifiers, s is a statement or the special symbol ε for termination,
and obs is a list of created objects. An object obj(X, C, ρ) has an identifier X, a
class C and a store ρ that maps all fields of C to literals or object identifiers. We
say that an object is well-formed if ρ respects the annotated type, i.e., maps each
field to a literal of the fitting data type or to an object of the correct class.

Malformed objects can lead to undefined operations and our type system ensures
statically that they do not occur at runtime.

An SOS-rule has the form conf1 → conf2, optionally with some conditional
premises that have to hold for the rule to be executable. Additionally, the func-
tion �·�σ

obs evaluates an expression to a literal or object identifier, given a certain
local store and a set of objects. We give only the rule for assignment of side-effect
free expressions to local variables here, which we need in the following.

�e�σ
obs = l

(assign-local) (
K,CT

)
T v := e; s

(
σ, obs

)
→

(
K,CT

)
s

(
σ[v �→ l], obs

)

4 Modular Loading

We extend the syntax with annotations that instantiate object instances from
RDF graphs and add a statement to construct and execute the query for a class.

Definition 3 (Syntax of MOL). The syntax of MOL is the one of Definition 1,
with the rule for classes replaced, and the rule for expression extended by the
following, where Q ranges over SPARQL queries and x over SPARQL variables.

Class ::= class C anchor x ([link(Q)]? T f) end retrieve Q rhs ::= . . . | load C()

The class definition now contains a query annotated with retrieve, which maps
graph patterns to object instances. Additionally, it contains an anchor variable,
which must occur in the retrieve query and is used to construct queries for nested
classes. Finally, the link clause of each field of class-type links the graph pattern
of this class with the graph pattern of the class of the field in question.

We write anchorC for the anchor variable of a class, queryC for its retrieve

query and linkC,f for the linking query. We assume the following, easy to
check, syntactical restrictions: (1) queryC has a connected graph pattern con-
taining anchorC and one variable ?vf for each field C.f that has a data-type
(2) linkC,f (anchorC, ?vf) is a binary SPARQL query with a connected graph
pattern. The set of fields f with linking queries in C is denoted cf(C). For our map-
ping, all fields of the class, as well as the fields of objects referred to are mapped
to one query variable. This is not possible in general: for example, consider class

Link anchor ?o (link(?o :next ?x) Link x) end retrieve ?o a :C – there is no bound
on the retrieved object, which can be an arbitrarily long list, so there is no a

206 E. Kamburjan et al.

priori bound on the number on variables for the query. We can identify classes
for which we can construct a finite query as forward-cycle-free in their structure.

A class is forward-cycle-free, if all cycles caused by link clauses between
classes can be resolved by considering one of the clauses as the inverse of the
others. Forward-cycle-freedom is only needed for eager queries.

Definition 4 (Retrieval Trees and Forward-Cycle-Free Classes). Let C
be the set of classes in a program P and G(P) = (C,L) be its retrieval tree with
edges L ⊆ C × Q × C. An edge (C1, Q, C2) is part of L, if C1 has a field of type
C2 or List<C2> with link query Q. Let G(P, C) be the subgraph of G(P) that is
reachable from C.

Given a cycle e1, . . . , en, we say that edge e1 is backwards if Q1 is the inverse
of Q2 ◦ · · · ◦ Qn.1 We say that C is forward-cycle-free if every cycle in G(P, C)
contains a backwards edge that does not originate in C, and removal of all the
backwards edges turns G(P, C) into a directed acyclic graph, and does not make
any node unreachable from C. We denote this graph with R(P, C).

We omit the P parameter if the program is understood. We can now define
the eager queries for forward-cycle-free classes.

Definition 5 (Eager Queries for Forward-Cycle-Free Classes). The
eager query eq(C) of a forward-cycle-free class C is defined as follows. We set

eq(C) = queryC ∧
∧

(f,D)∈cf(C)

(
linkC,f[?vf \ vf,D] ∧ eq(D)[anchorD \ vf,D]

)

where all variables vf,D are fresh, i.e., do not occur anywhere else. Additionally,
we get a set of equalities for the form this.e = x for each backwards edge removed
in R(C), that maps the field of the source of the backlink to the query variable
that is used for the target node of the backwards link.

Example 1. The eager query of class Bike in Sect. 2 results in a query that is
transformed into the one of Fig. 1 by substituting the nested queries. To illustrate
forward-cycle-free classes, consider the following variant of the Wheel class.

1 class Wheel anchor ?o(
2 Int wheelId, Int last,
3 link(?bike :wheel ?o) Bike bike)
4 end retrieve SELECT ?wheelId ?last WHERE{?o :wheelId ?wheelId; :stamp ?last.}

Here, the Wheel class has a link to a Bike instance. However, analyzing the link
clauses, we can see that this is a backwards edge: ?bike is always instantiated
with the anchor of the outer query when loading Bike. Thus, the additional
equalities are this.front.bike =?o and this.back.bike =?o.

1 We assume that we can reorder the cycle so that the potential backwards edge is
always as index 1. We remind that the anchor variable is always the first answer
variable of a link query, so the concatenation is indeed well-defined.

Modular, Lazy and Safe Loading of RDF Data 207

After constructing the query, it remains to show how we construct an object
from a query result. This is done by constructing a store from the variables of the
query that are mapped back to their fields. The construction is straightforward,
but technically intricate. For the sake of readability, we give it in the technical
report [9] and define the signature here.

Definition 6. Let C be a class and RS a set of answers to its eager query. We
denote with rs2ob(RS, C) the objects (cf. Definition 2) created when instantiating
RS.

If neither C nor any class in R(C) has a field of list type, then each answer
rs ∈ RS corresponds to one instantiated object. To define rs2ob(RS, C), we only
need to map back from query variables to the field they are associated with and
apply the equations generated during query construction for all fields that have
no query associated with them. Every class has implicitly a field String uri that
is instantiated with the URI of the node mapped from the anchor variable. We
require that no blank nodes are mapped to anchors.

To connect with the runtime semantics, we add a rule for load statements
that connect query construction and subsequent object instantiation.

Definition 7 (Runtime Semantics). The runtime semantics of MOL is the
one of Definition 2, extended with the following rule:

obs′, X = listOf(obs′′) obs′′ = rs2ob(RS, C) RS = ans(K, eq(C))
(eager)

(K,CT)v := load C(); s(σ, obs) → (K,CT)v := X; s(σ, obs, obs′, obs′′)

The rule executes the query in the first premise. It then creates objects for
all results (obj′′) and stores them in a list via listOf. The listOf function returns
a pair of objects implementing the list (obj′) and the name of the head object
of the list (X). The load statement is then reduced to an assignment of this head
object to the target variable.

We can ensure that all loaded objects are well-formed, i.e., respect the
declared types of their field, by checking whether each query variable respects
each declared type. To do so, we check whether the query restricted to this
variable is contained in the query retrieving all elements of the declared type,
respective its OWL equivalent. The TBox is used to approximate the data stat-
ically. The proof follows directly from the typing theorem for semantically lifted
programs [4].

Theorem 1 (Safety). Let C be a class. Let ϕ = eq(C) be its eager query and
V the set of variables within ϕ that correspond to data-typed fields. If for each
v with data type D, the query containment ϕ(v) �T

er D holds, then each object
created from a result from a KB respecting T of eq(C) is well-formed.

Finally, we investigate the case where one node occurs in different results
and, thus, corresponds to multiple constructed objects. Consider, e.g., the class
class C anchor ?o Int i; retrieve ?o P ?i and the data set o1 P 1. o1 P 2.. This
touches a core aspect of the relation between objects, nodes and queries: is

208 E. Kamburjan et al.

an object a container for the results or is it in a bijective relation with some
RDF-class? Instead of forcing the developer down one of these roads, we can
characterize the situations and provide feedback about the annotated mapping.

Theorem 2 (Bijective Instantiation for Essentially Functional Cla-
sses). A forward-cycle-free class C is essentially functional in a program P ,
if for all paths in R(P, C) starting in C, the concatenation of the labeling queries
is functional, and all data properties of reachable classes are functional.

In the list retrieved from the retrieval query of an essentially functional class,
then there is only one object per node in the answers for the outermost anchor.

The bijection is established for one execution of one query, not globally. As we are
only interested in safe and modular loading, we also do not change the knowledge
graph if the instances are manipulated by the program. Similarly, new objects
created with new are not written into the KB. However, as we will see later, the
combination with semantic lifting [10] allows us to write as well.

5 Inheritance

We have so far neglected a core element of class-oriented programming: inher-
itance. Inheritance is, besides the RDFS meta model that defines rdfs:Class

recursively and uses meta-classes, one of the critical points where OO and OWL
class models diverge. Most programming languages forbid, or at least restrict,
multiple inheritance, especially diamond inheritance, which causes problems for
methods. Consequently, in OO, one object cannot be an element of several classes
which are not subclasses of each other. It is, thus, out of question to try to rec-
oncile the class model of Java-like languages with the class model of OWL. In
this section, we extend our programming language to handle inheritance and
give two static analyses that catch modeling errors in the retrieving queries.

Definition 8 (Syntax of MOL+). The syntax of MOL+ is based on the syntax of
MOL, with the definition of classes in Definition 3 replaced by the following:

Class ::= class C [extends C]? anchor X ([link(R)]? T f) end retrieve Q

The only change of the syntax is the addition of the extends clause. Semantically,
the only change is the generation of the class table CT, which for any class
now also includes the fields of all its superclasses. Thus, query(C) must have the
variable for the fields of all its superclasses as well. If D has a clause extends C,
then we write D ≤ C. For the transitive closure, we write ≤∗.

Retrieval Query. Retrieval for a class that has subclasses must respect these
subclasses and construct the most specific class, not necessarily the general one
written in the program. For example, consider the following program and ABox.

Modular, Lazy and Safe Loading of RDF Data 209

1 class C anchor ?o () end retrieve {?o a :Q}
2 class D anchor ?o extends C (Int j)
3 end retrieve {?o a :Q. ?o :j ?j.}
4 class E anchor ?o extends C (Int k)
5 end retrieve {?o a :Q. ?o :k ?k.}

obj1 a :Q, obj1 :j 1,

obj2 a :Q, obj2 :k 1,

When executing load C(), one would expect that obj1 is loaded as a D
instance, because we can retrieve data for the j field, and, analogously obj2 as a
E instance. Running the C query, however does not detect this – it is necessary to
adapt our expansion of the retrieval query. Intuitively, we run the queries of the
subclasses in OPTIONAL clauses and check during object construction whether
a given subclass can be instantiated, by checking whether all variables belong-
ing to this subclass are instantiated. The idea is to put the additional fields in
optional clauses of the query and check whether they are instantiated. If they
are, one can downcast the created object.

Definition 9 (Runtime Semantics of MOL+). Let C be a class with subclasses
(Di)i∈I . We define the query inheq(C) = query(C) ∧

∧
i∈I OPTIONAL(inheq(Di)).

The object rs2ob+(rs, C) retrieved from a result rs of inheq(C) is constructed as
follows. Let (Ei)i∈J = {E ≤∗ C} be the set of subclasses of C, such that all fields
of Ei correspond to an assigned variable in rs.

rs2ob+(rs, C) = rs2ob(rs, E) for some E ∈ (Ei)i∈J where rs2ob(rs, E) is defined.

The runtime semantics of MOL+ is the one of LMOL, except that every occurrence
of rs2ob is replaced by rs2ob+, and every occurrence of query by inheq.

Two unintuitive effects can occur during the retrieval. First, the object
instantiation is nondeterministic, and second, it may violate behavioral sub-
typing.

Unique Retrieval. Nondeterminism occurs if two optionals corresponding to unre-
lated classes are instantiated. E.g., the ABox {o3 a :Q; :j 1; :k 1.} used
with the above code. Object o3 can be retrieved as both D and E, but in our class
model it is not possible for an object to be both. There are four solutions: (1)
Introduce a new language mechanism that allows objects to have the fields of
two classes without a subtyping relation between them. (2) Define a preference
relation, e.g., say that instantiating D is always preferred over instantiating E.
(3) Retrieve multiple objects, one for each possible instantiation. (4) Take the
least specific class of all possible instantiations, i.e., here: C.

We deem (1) as unpractical as it changes the programming language accord-
ing to a specific use case and therefore counteracting our aim of easy to use
integration of RDF into OO. Similarly, we deem (2) as unpractical as it ques-
tionable if such a preference relation is sensible in many applications. Solution
(3) leads to a one-to-many relation between loaded objects and anchored nodes,
which we consider undesirable. We, thus, use (4), but give a static analysis that
detects the situation where this design decision may play a role: If the conjunc-
tion of the queries for each pair of subclass is unsatisfiable, then the most specific
constructed class is uniquely determined.

210 E. Kamburjan et al.

Theorem 3 (Unique Retrieval). Let C be a class with subclasses (Di)i∈I . If
for all Dj , Dk with j, k ∈ I, j �= k the query query(Dj) ∧ query(Dk) is unsatisfiable,
then the function rs2ob+(rs, C) in Definition 9 is deterministic.

If the check fails, we can precisely give feedback which two clauses overlap and
give the programmer detailed feedback where the mapping between RDF and
the MOL+ class models fails.

Behavioral Subtyping. Given a class C with a direct subclass D, we must relate
their retrieve clauses, such that each retrieved object is also a C object. This is
essentially a case of the Liskov principle [5] of behavioral subtyping: if a prop-
erty ϕ(x) holds for all instances x of class C, then ϕ(y) must also hold for all
instances y of all subclasses of C. In our case, the properties in question are all
data class invariants over the fields of the superclass. For example, consider the
above example again, but with the definition of D changed to the following:

1 class D anchor ?o extends C (Int j) end retrieve ... {?o a :R. ?o :j ?j.}

Here, if :R is not a sub-class of :Q (in the sense of RDF), then running the
query for D will retrieve objects that are not retrieved by the query for C even
when restricted to the fields of C.

The Liskov principle for MOL+ is reducible to query containment. Given a
TBox T , we check, if for all KBs respecting some TBox T and for all classes,
C, D, with D ≤ C, the query of the subclass does not add new instances when
restricted to the fields of the superclass.

Theorem 4 (Behavioral Subtyping for MOL+). Let C, D be two classes D ≤ C
and f̄C is the set of fields in the superclass. If for each such pair of classes the
query containment eq(C)(f̄C) �T eq(D)(f̄C) holds, then

{
rs2ob(rs, C) | rs ∈ ans(K, eq(C))

}
⊆

{
rs2ob(rs, C) | rs ∈ ans(K, eq(D))

}

6 Lazy Loading

We now extend MOL+ to LMOL by introducing a lazy loading mechanism. Lazy
loading splits the eager query into several subqueries, of which some are delayed
and only executed on demand, as has advantages for usability and performance.

First, it gives the programmer very precise control over the used data. Instead
of loading all possible data that may be used, it enables to load data as it is
indeed used. In our running example, it may depend on the data loaded for the
Bike instance whether the front or back wheel must be investigated. This condition
may not be (easily) encodable in the query, or indeed not be known upfront
and depend on user input or data loaded from other sources. For example, the
following program accesses three bikes, but only two wheels: the front wheel of
the second result and the back wheel of the third one.

List<Bike> l := load Bike(); l[0].id; l[1].front.id; l[2].back.id

Modular, Lazy and Safe Loading of RDF Data 211

It is easy to see how in a more complex language one can decide which wheel to
access based on prior data. Lazy loading can thus solve the problem of loading
data that is not required in the application.

Second, lazy loading decouples modeling the data mapping from writing the
query for a specific optimization: the programmer can be more generous in data
modeling, as the specialization to a specific computation occurs at runtime.

Syntactically, we add futures to the types and a statement to resolve them.

Definition 10 (Syntax of LMOL). The syntax of LMOL is the syntax of MOL+ of
Definition 8, with the following extensions for types and right-hand-side expres-
sions:

T ::= . . . | QFut<C> rhs ::= . . . | load e

Intuitively, a future is a delayed expression, in our case a query. We use explicit
futures here [11] that must be explicitly resolved. For resolving, we reuse the load

keyword: a load e expression takes an expression e of QFut<C> type and returns an
expression of List<C> type – the results of executing the delayed query.2 A future
field cannot be a backwards edge.

Next, we augment the runtime with the required elements for futures. Anchor
maps keep track of the variable instantiations of the previously executed queries.

Definition 11 (Runtime Configurations of LMOL and Lazy Queries).
Runtime configurations are extended as follows. Let F be the set of future iden-
tifiers, a subset of the object identifiers, and A the set of anchor map identifiers,
which is disjoint to the set of object identifiers. Let Q range over SPARQL queries
and object identifiers.

conf ::=
(
K,CT

)
s

(
σ, obs?, futs?, acs?

)

futs ::= fut(F, A, Q) | futs futs acs ::=ac(A,A) | acs acs

where A are maps from RDF literals to object identifiers. Additionally, σ and
all stores ρ may map to future identifiers F. The lazy query of a class is defined
analogous to its eager query, except that none of the queries of the fields with
future type are executed. Only the linking queries are executed.

lq(C) = queryC ∧
∧

(f,D)∈cf(C)

(
linkC,f[?vf \ vf,D]

)

Object instantiation is analogous and described in the technical report. The main
differences are that (1) the fields of future type are instantiated with runtime
futures, whose query is the query of the class enhanced with the link query where
the anchor variable is replaced by its instantiation, and that (2) an anchor map is
used as an additional parameter. The anchor map keeps track of all instantiations
2 We refrain from introducing (a) expressions for resolved futures and (b) lazy loading

of the result list. Both is standard and orthogonal to lazy loading within one result.

212 E. Kamburjan et al.

so far. Instantiation for lazy class loading lrs2ob(RS, C) thus takes an answer
set RS and the class C as input and returns a set of objects, a set of futures
and an anchor map. Lazy instantiation for the inner queries, llrs2ob(RS, C,A)
takes additionally an anchor map as input. It returns a set of objects and a set
of futures, as well as a modified anchor map with added bindings.

Definition 12 (Runtime Semantics of LMOL). The rule for load C() is almost
the same as (eager), except that we use lq instead of eq. It is given in the technical
report. The rule for load e is as follows:

�e�σ
obs = F RS = ans(K, Q) obs′, X = listOf(obs′′) obs′′, futs′, acs′ = llrs2ob(RS, C,A)

(lazye)
(K,CT)v := load e; s(σ, obs, futs, fut(F, A, Q), acs,ac(A,A))
→ (K,CT)v := X; s(σ, obs, obs′, obs′′, futs, futs′, acs, acs′)

The rules work analogously: First, the lazy query (either by constructing it
for the class, or by reading it from the future) is executed. Then objects and
futures are instantiated for its results and the anchor map is updated. Finally,
the objects are stored in a list and all created constructs are added to the state.

To be clear, we do not save the result when resolving a future, so a future
might be resolved multiple times. The mechanism to avoid this is straightfor-
ward [6] and would only obfuscate our contribution.

Theorem 5. For forward-cycle-free classes C, such that every class in R(P, C)
has only data-type and list-type fields, MOL+ and LMOL load the same results, i.e.,
if all futures are resolved, then the objects in the list of the first load C() contain
the same elements, except with one fut reference in every list field.

For general classes, LMOL can load more or less data. As an example for more
data, consider that futures can be used to encode streams [12], and thereby load
an unbounded number of objects within one result of the overall query. For less
data, consider a knowledge base where the bike instances have no stored wheels.
Executing the eager query will return no bikes, but executing the lazy query will
return all the bikes, with empty lists for their wheels.

7 Evaluation

The on-going implementation is available as open-source software. LMOL is imple-
mented as an interpreter that takes a LMOL file, and a RDF file for external data
as input. The interpreter, including the experiments described below, is available
under https://github.com/Edkamb/SemanticObjects/tree/lazy.

To assess the runtime overhead and memory consumption caused by delaying
parts of the query through futures, which reduce the possibilities of the DBMS
for query optimization, we run the following experiment. We generate n classes
of the form class Ci(Int fi, Ci+1 next) end with the obvious link and retrieval
query, as well as a lazy version of the same form with fields QFut<Ci+1> next. We
consider two scenarios: scenario 1 uses a dataset with two loadable nodes ai, bi

of each class Ci, with links from ai to ai+1 and bi to bi+1, making two paths of

https://github.com/Edkamb/SemanticObjects/tree/lazy

Modular, Lazy and Safe Loading of RDF Data 213

length n. Scenario 2 has additional links from ai to bi+1 and bi to ai+1, leading
to 2n possible paths. We evaluate how fast it is to load every possible node into
the OO structure and compare three runs for each scenario: one with the eager
query, and two with the lazy query, which uses the delay to remove duplicate
objects based on their URI before running the next query: The first lazy run
accesses only the first class, the second accesses the last class. Figure 3 shows
the results. As expected, there is no performance gain for the simple scenario,
but a considerable one for the one with more interconnected data, especially
when only parts of the data is accessed. For a class chain of n = 18, eager
evaluation requires 18 s, while lazy evaluation with fine-grained control requires
2.6s if only half of the chain is accessed (−85%). For higher n, eager evaluation
runs out of heap space. Memory consumption behaves, as expected, like the time
consumption.

Fig. 3. Runtime comparison of eager loading and lazy loading with fine-grained control.

To confirm that our approach indeed simplifies the design of realistic queries,
we remodeled the queries used to access the Slegge database of Equinor of sub-
surface exploration data [13]. The aim of this is to show that our system enables
reuse and forward-cycle-free classes are not a strong restriction. We remodeled
the 8 SPARQL queries for the main, first information need of Slegge need using
LMOL in a class structure of 21 classes, each corresponding to a reusable pattern or
original query. The code below is a representative excerpt. The eager queries for
WBQ1 and WBQ3 correspond to one of the original Slegge queries, which all retrieve
wellbores based on different criteria. WBQ1 and WBQ3 only differ in restrictions on
the interval, encoded in different classes (SZ13 and DepthSZ). All other parts of
the queries, e.g. the wellbore name, are shared through common superclasses.

1 class WBWithName extends WB anchor ?w (String name)
2 end retrieve "?w a :Wellbore. ?w :name ?name."
3 class WBQ1 extends WBWithName anchor ?w (
4 link("?w :wellboreInterval ?int.") SZ13 int, ..) end ..
5 class WBQ3 extends WBWithName anchor ?w (
6 link("?w :wellboreInterval ?int.") DepthSZ int, ..) end ..

214 E. Kamburjan et al.

8 Related Work

LMOL is implemented on top of the semantic lifting language SMOL. Semantic
lifting [10] also integrates OO and RDF: It exports a program state and allows
to query it then, thus realizing data writes through state change. Consequently,
an RDF graph can be changed in any way using LMOL/SMOL.

LMOL is the first language with modular queries and lazy evaluation for RDF
data. In the following, we discuss other approaches that connect OO program-
ming and RDF data. Frameworks like Apache Jena [14] or RDF4J [15] connect
OO programming and RDF as well, but do not connect the object models.

The impedance mismatch for relational databases has been extensively stud-
ied for several decades [1] and we refer to Ireland [16] for a comprehensive dis-
cussion. It is worth noting that one of the systems to connect OO with relational
databases, the LINQ [17] framework for .Net, has been extended to RDF [18].
LINQ provides its own query language, which is mapped to different storage
endpoints, and provides no safety mechanisms or lazy evaluation. The query is
not modular and provided at the loading statement. For RDF, impedance mis-
match has been explored, starting with Goldman [19] and the Go! language [20].
An in-depth discussion is given in the survey of Baset and Stoffel [3].

The most common approach taken is to relate OWL concepts to OO classes
directly. For example, Leinberger et al. [21] use a special query language to load
RDF data into an OO language by relating OWL concepts to OO types. Their
query language is typable and translates into SPARQL. In contrast, LMOL sup-
ports full SPARQL and does not require the user to learn an additional query
language. Owl2Java [22], Agogo [23] or ActiveRDF [24] are similar approaches,
suffering from the impedance mismatch. They all generate OO classes based
on some RDF schema for a certain target language and establish a direct con-
nection this way, where only certain RDF schemata are allowed. In contrast,
we give a way to detect whether the defined mapping establishes a one-to-one
correspondence in the results of one query (Theorem 2) to help the programmer.

While our approach embraces the semantic gap between OO and RDF object
models, and the approaches so far attempt to bridge it, Eisenberg and Kanza [2]
attempt a unification in a programming model that treats RDF individuals as
program primitives. This essentially imports the RDF object model into the
programming language, and the authors do not discuss typing. Indeed, they
present their approach for Ruby, with a loose object model using dynamic duck
typing.

As for type checking, Seifer et al. [25] give a system where DL concepts are
types and that requires to type check the SPARQL query itself. In contrast, the
entailment-based system we use is more modular: we do not have any restrictions
on the used SPARQL subset. Furthermore, we do not entangle type checking in
the impedance mismatch by mixing concepts and types.

Leinberger [26] gives an extended type system based on SHACL and shape
containment, instead of SPARQL and query containment. That approach focuses
on ensuring the existence of data that is loaded and is neither modular nor
supports lazy evaluation, as the semantic gap is only considered at the interface.

Modular, Lazy and Safe Loading of RDF Data 215

9 Conclusion

We have presented a connection between RDF and OO programming that
maintains and embraces the semantic gap between the underlying inheritance
mechanisms and object models, and allows modular data modeling, data access
and type safety checks. Our approach is the first to explore lazy evaluation of
SPARQL queries within a single answer and the first to formally define a Liskov
principle for a connection of OO and RDF. Our evaluation shows that lazy eval-
uation leads to significant performance gains for loading of complex data.

We plan to generalize our prototype to a static tool for a mainstream pro-
gramming language and increase its expressive power by (1) using a Option<C>
type that maps to optionals in the retrieval query and (2) allowing the load

statement to take an additional parameter that defines additional constraints.

Acknowledgments. This work was supported by the RCN via PeTWIN (294600). The
authors thank Dirk Walther for motivating this work and the anonymous reviewers for
the constructive feedback.

References

1. Copeland, G.P., Maier, D.: Making smalltalk a database system. In: Yormark, B.
(ed.) SIGMOD, pp. 316–325. ACM Press (1984)

2. Eisenberg, V., Kanza, Y.: Ruby on semantic web. In: ICDE, pp. 1324–1327. IEEE
Computer Society (2011)

3. Baset, S., Stoffel, K.: Object-oriented modeling with ontologies around: a survey of
existing approaches. Int. J. Softw. Eng. Knowl. Eng. 28(11–12), 1775–1794 (2018)

4. Kamburjan, E., Kostylev, E.V.: Type checking semantically lifted programs via
query containment under entailment regimes. In: Description Logics, volume 2954
of CEUR Workshop Proceedings. CEUR-WS.org (2021)

5. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

6. Halstead Jr., R.H.: MULTILISP: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

7. Baker, H.G., Hewitt, C.: The incremental garbage collection of processes. In: Low,
J. (ed.) Proceedings of the 1977 Symposium on Artificial Intelligence and Program-
ming Languages, USA, 15–17 August 1977, pp. 55–59. ACM (1977)

8. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60–61 (2004)

9. Kamburjan, E., Klungre, V.N., Giese, M.: Never mind the semantic gap: modu-
lar, lazy and safe loading of RDF data (technical report). Research report 502,
Department of Informatics, University of Oslo, March 2022

10. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Program-
ming and debugging with semantically lifted states. In: Verborgh, R., et al. (eds.)
ESWC 2021. LNCS, vol. 12731, pp. 126–142. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77385-4 8

11. de Boer, F.S., et al.: A survey of active object languages. ACM Comput. Surv.
50(5), 76:1–76:39 (2017)

https://doi.org/10.1007/978-3-030-77385-4_8
https://doi.org/10.1007/978-3-030-77385-4_8

216 E. Kamburjan et al.

12. Azadbakht, K., de Boer, F.S., Bezirgiannis, N., de Vink, E.P.: A formal actor-based
model for streaming the future. Sci. Comput. Program. 186, 102341 (2020)

13. Hovland, D., Kontchakov, R., Skjæveland, M.G., Waaler, A., Zakharyaschev, M.:
Ontology-based data access to Slegge. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10588, pp. 120–129. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68204-4 12

14. Apache Foundation. Apache Jena. https://jena.apache.org/
15. Eclipse Foundation. Eclipse RDF4J. https://rdf4j.org/
16. Ireland, C.J.: Object-relational impedance mismatch: a framework based approach.

Ph.D. thesis, Open University, Milton Keynes, UK (2011)
17. Meijer, E., Beckman, B., Bierman, G.M.: LINQ: reconciling object, relations and

XML in the .net framework. In: SIGMOD, p. 706. ACM (2006)
18. Matthew, A.: LINQtoRDF (2006). https://code.google.com/archive/p/linqtordf/
19. Goldman, N.M.: Ontology-oriented programming: static typing for the inconsistent

programmer. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 850–865. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39718-2 54

20. Clark, K.L., McCabe, F.G.: Ontology oriented programming in go! Appl. Intell.
24(3), 189–204 (2006)

21. Leinberger, M., Scheglmann, S., Lämmel, R., Staab, S., Thimm, M., Viegas, E.:
Semantic web application development with LITEQ. In: Mika, P., et al. (eds.)
ISWC 2014. LNCS, vol. 8797, pp. 212–227. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11915-1 14

22. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic mapping of OWL
ontologies into Java. In: SEKE, pp. 98–103 (2004)

23. Parreiras, F.S., Saathoff, C., Walter, T., Franz, T., Staab, S.: APIs à gogo: auto-
matic generation of ontology APIs. In: ICSC, pp. 342–348. IEEE Computer Society
(2009)

24. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: embedding semantic web data
into object-oriented languages. J. Web Semant. 6(3), 191–202 (2008)

25. Seifer, P., Leinberger, M., Lämmel, R., Staab, S.: Semantic query integration with
reason. Art Sci. Eng. Program. 3(3), 13 (2019)

26. Leinberger, M.: Type-safe programming for the semantic web. Ph.D. thesis, Uni-
versity of Koblenz and Landau, Germany (2021)

https://doi.org/10.1007/978-3-319-68204-4_12
https://doi.org/10.1007/978-3-319-68204-4_12
https://jena.apache.org/
https://rdf4j.org/
https://code.google.com/archive/p/linqtordf/
https://doi.org/10.1007/978-3-540-39718-2_54
https://doi.org/10.1007/978-3-540-39718-2_54
https://doi.org/10.1007/978-3-319-11915-1_14
https://doi.org/10.1007/978-3-319-11915-1_14

Improving Question Answering Quality
Through Language Feature-Based

SPARQL Query Candidate Validation

Aleksandr Gashkov1 , Aleksandr Perevalov2,3 , Maria Eltsova1 ,
and Andreas Both3,4(B)

1 Perm National Research Polytechnic University, Perm, Russia
2 Anhalt University of Applied Sciences, Köthen, Germany
3 Leipzig University of Applied Sciences, Leipzig, Germany

andreas.both@htwk-leipzig.de
4 DATEV eG, Nuremberg, Germany

Abstract. Question Answering systems are on the rise and on their
way to become one of the standard user interfaces. However, in conver-
sational user interfaces, the information quantity needs to be kept low as
users expect a limited number of precise answers (often it is 1) – similar
to human-human communication. The acceptable number of answers in
a result list is a key differentiator from search engines where showing
more answers (10–100) to the user is widely accepted. Hence, the quality
of Question Answering is crucial for the wide acceptance of such sys-
tems. The adaptation of natural-language user interfaces for satisfying
the information needs of humans requires high-quality and not-redundant
answers. However, providing compact and correct answers to the users’
questions is a challenging task. In this paper, we consider a certain class
of Question Answering systems that work over Knowledge Graphs. We
developed a system-agnostic approach for optimizing the ranked lists of
SPARQL query candidates produced by the Knowledge Graph Question
Answering system that are used to retrieve an answer to a given ques-
tion. We call this a SPARQL query validation process. For the evaluation
of our approach, we used two well-known Knowledge Graph Question
Answering benchmarks. Our results show a significant improvement in
the Question Answering quality. As the approach is system-agnostic, it
can be applied to any Knowledge Graph Question Answering system that
produces query candidates.

Keywords: Question Answering over Knowledge Graphs · Query
Validation · Query Candidate Filtering

1 Introduction

The Web has become the major knowledge source for many people worldwide.
While aiming at efficient knowledge modeling and representation, the Semantic

A. Gashkov and A. Perevalov—Shared first authorship–these authors contributed
equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 217–235, 2022.
https://doi.org/10.1007/978-3-031-06981-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_13&domain=pdf
http://orcid.org/0000-0001-6894-2094
http://orcid.org/0000-0002-6803-3357
http://orcid.org/0000-0003-3792-8518
http://orcid.org/0000-0002-9177-5463
https://doi.org/10.1007/978-3-031-06981-9_13

218 A. Gashkov et al.

Fig. 1. General overview of the Query Validation process. The core component is the
Query Validator intended to filter incorrect query candidates.

Web initiative was proposed and is permanently growing. The objective of this
initiative is to make Web data machine-readable and machine-understandable by
describing concepts, entities, and relations between them [6]. Hence, the Seman-
tic Web may be considered as a giant Knowledge Graph (KG). In this regard,
Knowledge Graph Question Answering (KGQA) systems are actively develop-
ing already for more than a decade [14,16]. These systems are bridging the
gap between Linked Data and end-users by transforming natural-language (NL)
questions into structured queries (e.g., represented as SPARQL1) to make the
information accessible using NL requests.

When answering a question, KGQA systems often generate a ranked list of
SPARQL queries that are considered to be capable of retrieving answers to a
given question. Thereafter, a ranked Top-N of the retrieved answers is shown
to the end-users (often N is 1). Thus, a Query Candidate is a SPARQL query
generated by a KGQA system to retrieve data. An Answer Candidate is a result
of a SPARQL Query Candidate execution which is proposed as a possible answer
to a user. In this paper, we propose a Query Validation (QV) process that is
intended to remove all queries that cannot be resolved to a correct answer from
a query candidates list. This helps to reduce the number of incorrect query
candidates (and therefore, answers) in the output and move the correct ones to
the top of the list. In addition, unanswerable questions should be recognized,
and, hence, an empty output should be presented for such questions (s.t., users
are not confronted with incorrect/guessed answers).

The field of Answer Validation (AV) is well-researched for information
retrieval (IR) and IR-based question answering (QA) and many approaches were
proposed in the last decade [1,5,21,22,30,39,47]. However, there is just a very
limited number of studies on AV and QV in the context of KGQA systems (e.g.,
[9,27]).

In this work, we propose a new system-agnostic QV approach that can deter-
mine whether a query candidate produced by a KGQA system is correct or not
without executing the SPARQL query (see Fig. 1). The approach uses a straight-
forward process of converting a query candidate to NL representation and a fine-
tuned classifier [11] to distinguish between correct and incorrect query candidates
and, therefore, the answers. In Fig. 1, the process is visualized. To demonstrate
the efficiency of the proposed QV approach, we utilize several well-known QA

1 https://www.w3.org/TR/rdf-sparql-query/.

https://www.w3.org/TR/rdf-sparql-query/

Improving QA Quality Through Query Candidate Validation 219

quality metrics, such as Precision@k and NDCG@k (Normalized Discounted
Cumulative Gain) [37]. To tackle the dilemma of how to address the difference
between “guessing” answers versus providing an empty result, we introduce a
new integral metric that takes into account correct, incorrect, and also empty
answer sets. In addition, we consider the quality w.r.t. the unanswerable ques-
tions and the influence of our approach on the corresponding results. Given our
experimental results on one KGQA system, QAnswer [12], and two benchmark-
ing datasets, LC-QuAD 2.0 [17] and RuBQ 2.0 [35], we demonstrate that the
QV approach provides a relative improvement of Precision@1 up to 204.6% (see
Table 2) as well as it is improving other metrics significantly. Moreover, the app-
roach enabled us to obtain almost 50% of correct answers for the unanswerable
questions.

To increase the reproducibility of our work, we performed evaluation of exper-
iments with the Gerbil [43] system that provides standardized shareable links to
the experiments for KGQA systems. We provide the links to the Gerbil experi-
ments, source code, and the experimental data2 (our experimental data is also
shared as an RDF Turtle dataset) as an online appendix. This paper is struc-
tured as follows. In the next section, the related work is presented followed by
Sect. 3 which introduces our approach in detail. Section 4 highlights the used QA
system, QV component, datasets and data preparation process. We describe in
Sect. 5 how experiments were processed in general. Section 6 estimates the qual-
ity of the query validator as well as the impact of the QV process on the QA
quality. Section 7 concludes the paper and outlines future work.

2 Related Work

Techniques that tackle the task of validating the answer were applied mainly in
IR-based QA, which we mentioned in Sect. 1. IR-based QA systems are often
required to rank huge amounts of candidate answers [26], e.g., the incorrect
answer candidates in form of textual paragraphs have to be eliminated by the
AV module. In [34], e.g., the AV process is performed on the basis of Expected
Answer Type, Named Entities Presence, and Acronym Checking (only if a ques-
tion is about an acronym). The authors mention that sometimes AV module is
“too strict”, i.e., it removes also correct answers.

However, the AV and QV processes in KGQA are not well investigated in
the research community. Our previous paper [19] describes the novel approach
for improving the QA quality where answer candidates are filtered just by eval-
uating the NL input (i.e., the user’s question) and output (i.e., the system’s
answer), accordingly, it is a system-agnostic approach. Nevertheless, it requires
well-formed NL answers that are hard to compute automatically.

On the other hand, there appeared recently some approaches to semantic
parsing by treating it as a problem of semantic graph generation and re-ranking
[27,31,45,46]. While Yih et al. [45] introduce grounded query graph candidates
using a staged heuristic search algorithm and employs a neural ranking model for
2 https://doi.org/10.6084/m9.figshare.19434515.

https://doi.org/10.6084/m9.figshare.19434515

220 A. Gashkov et al.

scoring and finding the optimal semantic graph, Yu et al. [46] utilize a hierarchi-
cal representation of KG predicates in their neural query graph ranking model.
A local sub-sequence alignment model with cross-attention is presented in [31].
A slot-matching model to rank query graphs for complex KGQA [27] exploits
the inherent structure of query graphs and uses multiple attention scores to
explicitly compare each predicate in a query graph with the NL question.

Another topic which has being attracted more and more attention of the
research community in recent years is the problem of unanswerable questions
[2,20,23,40,44]. However, most of them deal with Machine Reading Comprehen-
sion, not KGQA. Unfortunately, different classifications of unanswerable ques-
tions (e.g., [2,23,24,44]) consider only the situation in which a (not answered)
question has an answer (an answer that is available, but could not be computed
by the QA-system, for any reason) and do not investigate the case when there
exists no answers to a question, e.g., “What is the capital of Mars?”. These
two cases differ fundamentally for the field of QA, therefore, they need differ-
ent approaches to be resolved. However, to distinguish these two cases is not
important for this paper. Instead, we focus on deciding whether an answer (rep-
resented as query candidate) is correct or not. For this reason, we call all these
questions unanswerable questions.

3 Approach

Our approach is based on the general assumption that a SPARQL query is
expressing a question in a formal representation which can be translated back
to an NL text that should be similar to the original question.

In a KGQA system, the generation of a SPARQL query given a ques-
tion can be considered as a translation from NL to the formal language
(cf. Fig. 1). We consider the direct comparison of SPARQL queries and
NL questions as very challenging, especially for SPARQL over Wikidata
[18] because of non-intuitive URIs naming convention, therefore, we con-
vert SPARQL query candidates to a textual representation. For this purpose,
the labels stored in the KG are used to convert all Semantic Web identi-
fiers (e.g., https://www.wikidata.org/entity/Q84) to their textual representa-
tion (e.g., “London”). We call the process of generating an NL representation
verbalization of a SPARQL query.

In our approach we assume that given a NL question, a KGQA system pro-
duces a list of SPARQL query candidates ranked by a relevance score, computed
internally within the system, i.e., the first query candidate will be used to com-
pute the answer to show to an end-user. The goal of our QV approach is to
ensure that incorrect query candidates are filtered while relying only on the
user’s NL question and the computed SPARQL query candidates of the con-
sidered KGQA system. Hence, our QV process is intended to distinguish query
candidates resulting in correct answers from those that would result in incor-
rect answers. Our approach is system-agnostic and does not require executing
the SPARQL queries. In the following subsections, we describe the approach in
detail.

https://www.wikidata.org/entity/Q84

Improving QA Quality Through Query Candidate Validation 221

Fig. 2. An example of a correct SPARQL query candidate (using Wikidata).

3.1 SPARQL Query Candidates Verbalization

To convert SPARQL query candidates to NL answers, we use a straight-forward
process where only the WHERE clause of the SPARQL query is considered. All
entities and predicates are replaced by their labels, e.g., wd:Q5 is replaced by
its English label “human”. All variable names are kept as they are, e.g., ?o1,
?subject, ?answer. It is worth mentioning that any other modifiers (e.g.,
LIMIT, ORDER BY, GROUP BY) in a query are removed in our current approach
and do not influence the final NL representation3. Finally, all the labels are con-
catenated with each other in the order of appearance with the space separator.

Considering the SPARQL query presented in Fig. 2, our process computes
the following NL representation: “John Denver cause of death ?cause John
Denver place of death ?place”. As many property and entity labels used in
a question are often mirrored in its verbalization, our approach is based on the
assumption that the QV classifier will be capable of determining such query
candidate as a correct one (i.e., the user’s question and the query verbalization
are similar).

3.2 Query Validation Process

The intention of the proposed QV process is as follows: given a query candidates
list, we are aiming at excluding as many incorrect query candidates as possible
while not removing the correct ones. Thus, our approach increases the chances
of showing a correct answer to a user of a QA system. In Fig. 3, several different
QV cases are shown. All the incorrect query candidates were removed by the QV
(e.g., in A′) while the correct ones were left untouched (cf. A′′). In an extreme
case, a query candidates list contains only incorrect items (e.g., in D and E).
In this case, the list should become empty after a perfect QV (cf. D′ and D′′).
Likewise, there could be only correct query candidates in the list (not shown in
Fig. 3). In this (unlikely) case, at least one query candidate should be recognized
as correct by the QV.

3 Measuring the impact on the verbalization regarding the QV results would be part
of additional research.

http://www.wikidata.org/entity/Q5

222 A. Gashkov et al.

Fig. 3. An example of query validation process where a KGQA system proposed 6
ranked query candidates (index: 0–5) for each of the 5 questions (A–E).

3.3 Measures of Query Validation Efficiency

Classification Quality of the Query Validator. To measure the quality of
the query validator, we use the following well-known metrics: True Positive Rate
(TPR/Recall), True Negative Rate (TNR), Balanced Accuracy (BA), Precision,
and F1 score. The metrics are calculated in the machine learning setting for
binary classification [33].

Question Answering Quality. To measure the efficiency of QV process, we
need to take into account two types of situations that may occur – (SA) when a
query candidate list generated by a KGQA system for a given question contains
records with at least one correct query candidate, (SB) when a query candi-
date list contains no correct items. In addition, the questions are divided into
answerable and unanswerable.

The most common way to measure QA quality is to take the answers gener-
ated by the first-ranked query candidate and compare them to the gold standard
answers. In this regard, to measure the efficiency of our QV approach, we use
well-known Precision, Recall, and F1 score metrics calculated in the information-
retrieval setting [37]. The metrics are calculated on the answers obtained before
and after QV process. Thereafter, relative improvement is computed.

As our approach influences the whole query candidate list, the other metrics
that take into account ranking order have to be considered. Therefore, we utilize
Precision@k and NDCG@k [37], where k ∈ [1, n] and n is the number of query
candidates provided by the considered KGQA system.

It is reasonable to use the aforementioned metrics only w.r.t. situation SA

(mentioned at the beginning of this paragraph). While considering situation SB ,
we propose the new metric Answer Trustworthiness Score (formally defined in
Eq. 1 in Sect. 6.2). This metric “gives a reward” (bonus) when a correct answer is
shown to a user, and “punishes” (penalty) the score otherwise. In addition, there

Improving QA Quality Through Query Candidate Validation 223

is a special case when the query candidate list is an empty set, although a correct
answer would be available within the considered data. In this situation, the
metric does not reward or punish the score, as it is considered to be an “honest”
response by the QA system to provide a “don’t know the answer” statement (and
not “guess” an answer). However, if after the QV process the empty answer is
presented to a user (instead of “guessing” an answer), the score will be higher as
no punishment will be done. The intuition behind this metric is that no answer
is better than a wrong answer4. Other relevant statistics should be calculated
over all query candidate sets, such as average position of correct/incorrect query
candidates, the average number of correct/incorrect query candidates in a list.

Finally, unanswerable questions have to be considered. For this class of ques-
tions, the expected response is defined as an empty query candidates list.

4 Material and Methods

To validate our approach, we used the state-of-the-art QA system QAnswer
[12,13,15] and two well-known datasets – RuBQ 2.0 [35] and LC-QuAD 2.0 [17].

4.1 The KGQA System QAnswer

Out of many existing QA systems (e.g., DeepPavlov [10], Platypus [32], Deep-
gAnswer [25] etc.), we have chosen QAnswer because of its portability, acces-
sibility [12] and its following features: robustness, multilingualism, support for
multiple KGs (including Wikidata), and it provides high precision and recall [13].
QAnswer also provides an API to ask a question and receive the corresponding
ranked query candidate list (of a maximum of 60 candidates). The limitations
of QAnswer as described in [13] are not essential to this paper.

4.2 Datasets Overview

QA over KGs is a substantial task that matches a user’s question to a query over
a KG to retrieve the correct answer [38]. After several updates of the DBpedia [3]
KG, many well-known datasets (QALD [42], LC-QuAD 1.0 [41], SimpleDBpedi-
aQA [4] etc.) cannot be utilized on its latest version because a QA system com-
piled for the inundated version has stopped returning valid requests. Moreover,
not all datasets (e.g., CSQA [36]) employ SPARQL as a formal representation
(which is a requirement for our work). Some datasets (e.g., VANiLLa [7]) have a
structure that does not enable to retrieve an answer without ambiguity. There-
fore, it was decided to use the RuBQ 2.0 [35] and LC-QuAD 2.0 [17] datasets
for our purpose on this step of our research.

4 Example: Assuming a user asks for the red or green wire to be cut for defusing a
bomb, then a guessed answer by the QA system might have a devastating result in
real life.

224 A. Gashkov et al.

RuBQ 2.0 Dataset. RuBQ 2.0 is the first Russian dataset for QA over Wiki-
data that consists of 2,910 questions of varying complexity, their machine trans-
lations into English without any post-editing, and annotated SPARQL queries,
which are essential for our approach. Here, we only use the English questions.
There are 2,357 unique entities, namely 1,218 in questions and 1,250 in answers,
as well as 242 unique relations in the dataset. RuBQ 2.0 is split into develop-
ment (580) and test (2,330) subsets in such a way to keep a similar distribution
of query types in both subsets. 510 RuBQ 2.0 questions are unanswerable, which
is a new challenge for KGQA systems to make the task more realistic. The fact
that RuBQ 2.0 contains unanswerable questions was a strong incentive to use
them in our evaluation.

We were not able to utilize the RuBQ 2.0 data split to dev/test parts, as
the number of dev samples is too small for fine-tuning our Query Validator. To
obtain the new split, we joined both parts and divided the entire dataset into
new train/test parts in 80/20 split (see Sect. 4.3).

LC-QuAD 2.0 Dataset. LC-QuAD 2.0 (2nd instance of the Large-Scale Com-
plex Question Answering Dataset) with 30,000 questions, their paraphrases, and
their corresponding SPARQL queries is compatible with both Wikidata and
DBpedia 2018 KGs. This dataset has a good variety and reasonable complexity
levels for questions (e.g., multi-fact questions, temporal questions, and questions
that utilize qualifier information). This dataset consists of 21,258 unique entities
and 1,310 unique relations. LC-QuAD 2.0 contains 10 different types of ques-
tions (such as boolean, dual intentions, fact with qualifiers, and others) spread
over 22 unique templates.

4.3 Data Preparation Process

The process of data preparation is analogous for all datasets considered. It con-
sists of the following steps: (1) processing the questions with the KGQA system
in order to get query candidate lists for each of them, (2) executing SPARQL
queries from the candidate lists on Wikidata in order to get the answer sets, (3)
comparing the answer sets from the query candidates with the “gold standard”
answer sets from the dataset in order to determine whether a query candidate is
correct or not5, (4) transforming query candidates to NL (according to Sect. 3.1).
The sample entry of a resulting dataset in the RDF Turtle format6 is presented
in Fig. 4. The dataset is available in the online appendix.

We summarized the information on the prepared data and divided it into 3
groups (cf. Table 1).

5 A query candidate is considered as correct if F1 score(ypred, ytrue) = 1, where ypred
– is the set of answers obtained with query candidate and ytrue is the “gold standard”
answer set.

6 https://www.w3.org/TR/turtle/.

https://www.w3.org/TR/turtle/

Improving QA Quality Through Query Candidate Validation 225

Fig. 4. The sample example from the prepared dataset in RDF Turtle format. Where
fqaac is a local RDF PREFIX.

Fig. 5. Example of RDF Turtle representation of the query validator output.

Table 1. The statistics of the prepared datasets. The training subset is used only
for training and validation of the QV and is not considered in this table. The testing
subset is used only for the KGQA system evaluation. AQ – answerable questions in
the dataset, uAQ – unanswerable questions in the dataset, Group A – questions where
a correct query candidate is at the first position, Group B – questions where a correct
query candidate is not at the first position, Group C – questions with zero correct query
candidates. QC = Ø – questions that were resolved with an empty query candidates
list (not included in Group C).

Dataset # AQ # uAQ # Group A # Group B # Group C # QC = Ø

RuBQ 2.0 480 102 78 85 419 0

LC-QuAD 2.0 6001 0 958 1288 3733 22

4.4 BERT-Based Query Validator

For the QV classifier, we used the BERT model [11]. As the pre-training process
of this model included next sentence prediction task (NSP)7 [11], we intentionally
fine-tune BERT using the same setting. While providing a question text as a first
sentence and a NL representation of a query candidate as the next one, we follow
the assumption that a question and a text representation form a valid pair. To
create the training data for the QV classifier, we used the prepared data as
follows: to each of the textual questions from the training subset, we assigned
one NL representation of a randomly picked query candidate. As the output of
the QV is a real value p, such as {p ∈ R | 0 ≤ p ≤ 1}, we empirically define
a threshold for assigning a particular class label. The target classification label
T = {t−, t+} equals t+ if and only if the assigned query candidate is considered

7 BERT was consciously trained to understand relationships between two consecutive
sentences if the second sentence follows the first one (e.g., “[CLS] the man went to
[MASK] store [SEP] he bought a gallon [MASK] milk [SEP]) because many impor-
tant downstream tasks such as QA and Natural Language Inference (NLI) are based
on understanding the relationship between two sentences” [11].

226 A. Gashkov et al.

as correct to a given question, otherwise, the target label equals t−. The output
of the classifier is represented in the RDF Turtle data as demonstrated in Fig. 5
on page 9.

5 Experimental Setup

We conduct our experiments as follows. In the first step, the Query Validators
QV are trained separately on the corresponding training subsets Di, where D =
{LC-QuAD,RuBQ}, Di ∈ D8. Hence, the a single input of the query validator
QVDi

is a pair (q, a), where q ∈ Di is the question text and a is the query
candidate transformed to NL. To identify a specific question, we will use qDi,k,
where k is the ID of the question in the dataset Di (e.g., a question with id=1
of the RuBQ 2.0 dataset will be represented by qRuBQ,1).

The output of the target label of the query validator is T = {t−, t+}, where
t− corresponds to the incorrect (q, a) pair (i.e., a is incorrect for q), and t+

corresponds to the correct (q, a) pair. We used a balanced distribution (i.e., t−:
50% to t+: 50%). Table 2 presents the training data statistics of our QV models.
The training data is split into two sets for training and validation (67%/33%)
of the query validator.

In the second step, we apply the QVDi
to the outputs of the QAnswer system.

The outputs have been produced by feeding the questions from the test subset of
Di to the KGQA system (see Step (1) in Sect. 4.3). Thus, the output represents
a ranked query candidate list LDi,q produced for a given question q. LDi

is the
set of the query candidate lists for all q ∈ Di (i.e., LRuBQ is referring to all
candidate lists from questions of the RuBQ 2.0 dataset). LRuBQ,q is a specific
query candidate list of the question q ∈ DRuBQ. Consequently, LRuBQ,q,1 is the
query candidate at position 1 from LRuBQ,q), where 0 ≤ |LDi,q| < n (where n is
the maximum number of available candidates in a list of query candidates) and
|LDi

| = |Di|.
After applying the particular QVs (QVRuBQ and QVLC-QuAD) to LRuBQ and

LLC-QuAD respectively, we obtain new filtered lists of query candidates (i.e.,
L̂RuBQ and L̂LC-QuAD). Hence, if the prediction of QVDi

was t−, then a query
candidate is eliminated from LDi,q. As we track the experimental data using
RDF, we are capable of obtaining such information as: position before filtering
(fqaac:hasPositionBeforeFiltering), is correct (fqaac:qaF1Score = 1) for
each LDi,q. Therefore, we calculate a set of metrics for QA quality as proposed
in Sect. 3.3.

6 Evaluation and Analysis

In this section, we describe the evaluation w.r.t. the two steps described in
Sect. 5. First, we evaluated the quality of the QV itself (i.e., binary classification
quality). Secondly, we evaluated the impact of the QV process on the QA quality.
8 The trained Query Validators are available online;

LC-QuAD: https://huggingface.co/perevalov/query-validation-lcquad,
RuBQ: https://huggingface.co/perevalov/query-validation-rubq.

https://huggingface.co/perevalov/query-validation-lcquad
https://huggingface.co/perevalov/query-validation-rubq

Improving QA Quality Through Query Candidate Validation 227

Table 2. Quality metrics of the trained dataset-specific Query Validators.

Query Validator |t−| |t+| TPR (Recall) TNR BA Precision F1 score

QVRuBQ 9040 9040 0.9805 0.8968 0.9386 0.8874 0.9316

QVLC-QuAD 24045 24045 0.9846 0.9854 0.9850 0.9854 0.9849

Table 3. Evaluation of QA quality improvement using the Gerbil system.

Micro Macro

Precision Recall F1 score Precision Recall F1 score

RuBQ 2.0

Before QVRuBQ 0.0456 0.4910 0.0834 0.4531 0.4469 0.4462

After QVRuBQ 0.1389 0.5000 0.2174 0.4594 0.4562 0.4505

Improvement in % 204.61 1.83 160.67 1.39 2.08 0.96

LC-QuAD 2.0

Before QVLC-QuAD 0.1621 0.2984 0.2100 0.5094 0.5191 0.4982

After QVLC-QuAD 0.3561 0.3679 0.3619 0.5341 0.5495 0.5247

Improvement in % 119.68 23.29 72.33 4.85 5.86 5.32

6.1 Answer Validation Classifier Evaluation

In our task the importance of a false negative prediction is higher than a false
positive one. If the only one correct query candidate from LDi,q is eliminated
by the false negative error, it will inevitably lead to 0% of QA quality, which
is not the case for false positive errors. The results regarding the quality of the
QV are presented in Table 2. With these results we prove that it is possible to
obtain comparable classification quality w.r.t. the well-formed query candidate
verbalizations9. The obtained Recall score shows that the classifier is capable of
avoiding many false negative predictions, which matches our requirements. Thus,
even by using our straight-forward query candidate verbalization method (cf.
Sect. 3.1), the trained QV models can distinguish between correct and incorrect
(q, a) pairs.

6.2 Question Answering Quality Improvement

In the following, the complete evaluation process is described. We applied our
QVs to the outputs of the QAnswer system to remove incorrect query candidates
(cf. Table 1). In the following paragraphs, by the term before the QV, we imply
the original results from the QAnswer system (LDi

). The term after QV implies
the results after applying the QV (L̂Di

).

9 In our previous study, we already compared QV’s quality using different query can-
didate verbalization methods [19].

228 A. Gashkov et al.

Pr
ec

is
io

n@
k

va
lu

e

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

before after

RuBQ 2.0

Pr
ec

is
io

n@
k

va
lu

e

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60

before after

LC-QuAD 2

k value

N
D

C
G

@
k

va
lu

e

0.0

0.2

0.4

0.6

10 20 30 40 50 60

before after

k value
N

D
C

G
@

k
va

lu
e

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50 60

before after

Fig. 6. Precision@k, NDCG@k before and after Query Validation process

Improvement of General Question Answering Quality. The standard
metrics for QA systems are based on the computed results of the first element
(i.e., in our evaluation, just the first element of QAnswer’s answer candidate list
is used). We used Gerbil10 [29,43] for calculating automatically Micro/Macro
Precision, Recall and F1 score from our computed data in a comparable and
citable form. As the input of the evaluation, the subset of questions was used
where QAnswer was computing at least one correct answer candidate for a ques-
tion q ∈ Group A ∪ Group B (cf. Table 1). The results in Table 311 show an
improvement of up to 204.61% (micro precision improvement w.r.t. RuBQ 2.0)
while the overall macro quality was improved for both datasets. Hence, our app-
roach is capable of improving the answer quality of QA systems w.r.t. the given
metrics.

Improvement w.r.t. Groups A and B. In this paragraph, we demonstrate
the impact of our approach w.r.t. the whole list of query candidates. To do this,
we also selected LDi,q such that they contain at least one correct query candidate
(i.e., Group A ∪ Group B). Thereafter, we measured Precision@k and NDCG@k,
where k ∈ [1, 60] before and after the QV process. Hence, we show the impact of
our approach w.r.t. the different sizes of LDi,q and not considering only the first
query candidate (i.e., LDi,q,1) as done in the previous paragraph. The results
of calculations are presented in Fig. 6. In the charts, we recognize significant
improvement w.r.t. all k values (e.g., 382% w.r.t. Precision@1 (=NDCG@1) on
10 http://gerbil-qa.aksw.org/gerbil/, version 0.2.3.
11 Our results are available online. LC-QuAD 2.0:

http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080001 and
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080002;
RuBQ 2.0: http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090005 and
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090006.

http://gerbil-qa.aksw.org/gerbil/
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080001
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112080002
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090005
http://gerbil-qa.aksw.org/gerbil/experiment?id=202112090006

Improving QA Quality Through Query Candidate Validation 229

RuBQ 2.0 and 297% on LC-QuAD 2.0 respectively). This tendency is discovered
on both datasets and metrics, thus, showing that the proposed approach is not
a specialized solution for a particular setting. However, this experiment does
not show the impact of our method on the query candidate lists provided by
QAnswer that do not contain correct candidates (i.e., Group C). In the next
subsection, we discuss this aspect in detail.

Improvement w.r.t. Group C. In this paper, we follow the assumption that
no answer is better than a wrong answer (cf. Sect. 3.3). It is driven by the obser-
vation that an incorrect answer might confuse users who would often not be
able to decide if the answer is correct or incorrect. Thus, using our method, we
highlight the possibility that all incorrect query candidates of a question can
be removed from LDi,q. If instead of an incorrect answer produced by a query
candidate, a system should provide an empty answer (i.e., the QA system does
not “guess” but explicitly expresses the missing capabilities to answer the given
question), this will lead to an improved QA quality from users’ perspective. The
“standard” QA metrics (e.g., Precision, NDCG) are not reflecting this behavior.
For example, a QA system that would provide 50% correct answers and 50%
(“guessed”) incorrect answers could have the same scores as a system with 50%
correct results and 50% no answer (i.e., “don’t know the answer”) – which is
not a valid approach from our point of view. To tackle this scenario, we defined
the novel metric Answer Trustworthiness Score (ATS) that takes into account
our initial assumption. If no such metric is used, “guessing an answer” by a QA
system will statistically improve the QA quality. Therefore, we define here the
metric ATS that in particular takes into account the number of questions that
were answered with an empty result:

ATS(Di) =

∑
q∈Di

f(q)
|Di| , where f(q)

⎧
⎪⎨

⎪⎩

+1 if isCorrect(LDi,q,1) = True

0 else if Li,q = Ø
−1 else

(1)

where isCorrect(Li,q,1) = True if and only if for a question d the correct answer
is shown (i.e., for an empty response no answer is shown). The answer is pro-
duced by a query candidate Li,q,1. If an unexpected empty result is shown, then
the second case is triggered. The proposed metric may show a clear improve-
ment regarding unanswerable questions. We propose to the scientific community
to adopt this metric to ensure reasonable QA quality reflection. In addition, we
also analyze such statistics as average correct (j+) and incorrect (j−) query can-
didate position, average number of correct (L+

Di,q
) and incorrect (L−

Di,q
) query

candidates in a list. In Table 4 on page 14 we present the metrics for QA quality
introduced in Sect. 3.3. The results demonstrate a significant difference between
the values before and after QV. The values of the statistics j+ and j− demon-
strate that the positions of the correct and incorrect query candidates were
shifted to the top of the list after QV. The other values of the L+

i,d and L−
i,d

indicate that the numbers of the correct and incorrect query candidates were
decreased after QV. These results are ambiguous, however, the metric proposed

230 A. Gashkov et al.

Table 4. Question answering metrics before and after answer filtering.

metric state RuBQ 2.0 LC-QuAD 2.0

j+
Before QV 16.32 19.63

After QV 9.16 12.93

j−
Before QV 21.98 29.74

After QV 10.28 19.34

L+
Di,q

Before QV 3.12 4.27

After QV 2.55 3.88

L−
Di,q

Before QV 43.49 57.74

After QV 11.95 27.60

ATS(Di)
Before QV -0.31 -0.75

After QV -0.12 -0.71

Table 5. Evaluation of unanswerable questions from RuBQ 2.0 dataset before and
after QV

state # questions

LRuBQ,q = Ø (correct)
Before QV 0

After QV 50

LRuBQ,q �= Ø (incorrect)
Before QV 102

After QV 52

by us is able to disambiguate them. Given our novel metric (ATS(Di)), all the
values are negative. The metric results after QV were improved from −0.75 to
−0.71 for LC-QuAD 2.0 and from −0.31 to −0.12 for RuBQ 2.0 dataset. Negative
values signify that a QA system gives more incorrect answers rather than correct
ones. Thus, the QV process decreased the number of incorrect and increased the
number of correct query candidates, respectively. Hence, the trustworthiness of
the considered system w.r.t. the two analyzed datasets is not good, i.e., users
need to evaluate the results carefully.

Improvement w.r.t. Unanswerable Questions. The unanswerable ques-
tions were intentionally integrated by authors of the RuBQ 2.0 dataset. In this
paragraph, we utilize this subset of questions to see if the proposed approach
improves the performance of the KGQA system regarding unanswerable ques-
tions. The correct response to an unanswerable question q ∈ Di is LDi,q = Ø,
otherwise, the response is incorrect. Such evaluation strategy is also supported
in the original paper [24] of the RuBQ 2.0 authors. Our evaluation results of
the RuBQ 2.0 dataset regarding the contained 102 unanswerable questions are
shown in Table 5. As the QAnswer system’s strategy is to generate a list of
query candidates for any kind of question, none of the results were considered
as correct before QV. After QV, all the query candidates from the respective 50

Improving QA Quality Through Query Candidate Validation 231

lists LRuBQ,q were completely eliminated, and hence 50 unanswerable questions
would have been answered correctly (with an empty answer).

6.3 Discussion and Limitations

We raise several questions for the discussion. Firstly, the validity of our app-
roach is strongly depending on the labels provided by the considered KG. For
the given datasets, it works surprisingly well, however, for a real-world scenario,
additional methods would be required (e.g., integrating synonyms from [28]).
Futhermore, this raises the question if current KGQA benchmarks already rep-
resent the variety of NL questions well enough or would require additional exten-
sions. Secondly, in this work, we consider a query candidate as correct if the F1
score of the expected and computed results is 1. In this regard, the other options
would be to consider a different threshold instead of 1 (e.g., 0.75 or 0.5). The
major point of concern of the strict threshold for the real-valued measure (F1
score) for determining whether a query candidate is correct is that some gold-
standard correct answers sets contain more than one item (e.g., question: “Give
me all post-punk artists”). In this regard, if a query candidate could produce a
query equivalent to “Give me all German post-punk artists”, the result would
be partially correct. Hence, the “is correct” threshold should be adapted according
to the tolerance to the partially correct answers of the evaluation context (i.e.,
in our case, we have zero tolerance to incorrect answers). Thirdly, this evalu-
ation provided in the work may be biased due to the only one KGQA system
was used. Although QAnswer is well-known and used for much research, further
work should cover different KGQA systems as their approaches and capabilities
may vary significantly. Finally, more training techniques of the query validator
should be explored, s.t., the final impact on the QA quality can be increased. At
the moment, there are still additional opportunities for the QV process improve-
ment, considering not only answerable but also unanswerable questions.

7 Conclusions

In this paper, we have proven the impact of our query candidate validation app-
roach. It uses a NL representation of the SPARQL query that is compared by
a trained model with the given question. Our approach takes into account the
verbalized information of concepts, predicates, and instances that are already
defined in a SPARQL query candidate. Hence, we did not create a complete nor
well-formed NL representation of the SPARQL queries. However, the results of
our research show significant QA quality improvements w.r.t. different aspects
that are important for QA systems. In particular, our evaluation includes answer-
able and unanswerable questions as well as it shows that the quality of the query
candidate list can be improved.

As we have shown, our method is capable of improving the quality of QA
systems without knowledge about the implemented approach of a QA system.
Consequently, it might be integrated in the query builder component of QA

232 A. Gashkov et al.

systems, or as a reusable component via the QA framework (e.g., the Qanary
framework [8]) to improve the quality of answers or intermediate candidate lists.
Hence, our main contribution is providing a domain-agnostic method that can be
applied to any knowledge base that provides verbalization (typically available as
predicate rdfs:label), s.t., corresponding KGQA systems increase their quality.

Looking forward, we plan to use different models, verify the presented app-
roach on different systems and benchmarks and check the applicability of the
approach to other languages.

References

1. Abdiansah, A., Azhari, A., Sari, A.K.: Survey on answer validation for Indonesian
question answering system (IQAS). Int. J. Intell. Syst. Appl. 10, 68–78 (2018).
https://doi.org/10.5815/ijisa.2018.04.08

2. Asai, A., Choi, E.: Challenges in information seeking QA: unanswerable questions
and paragraph retrieval. arXiv preprint arXiv:2010.11915 (2020)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC-2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

4. Azmy, M., Shi, P., Lin, J., Ilyas, I.: Farewell freebase: migrating the simpleques-
tions dataset to DBpedia. In: Proceedings of the 27th International Conference on
Computational Linguistics, pp. 2093–2103 (2018)

5. Babych, S., Henn, A., Pawellek, J., Padó, S.: Dependency-based answer validation
for German. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF 2011 Labs and
Workshop, Notebook Papers, 19–22 September 2011, Amsterdam, The Nether-
lands. CEUR Workshop Proceedings, vol. 1177. CEUR-WS.org (2011)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

7. Biswas, D., Dubey, M., Rony, M.R.A.H., Lehmann, J.: VANiLLa: verbalized
answers in natural language at large scale. CoRR abs/2105.11407 (2021)

8. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open question answering systems. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34129-3 38

9. Both, A., Gashkov, A., Eltsova, M.: Similarity detection of natural-language ques-
tions and answers using the VANiLLa dataset. J. Phys: Conf. Ser. 1886(1), 012017
(2021). https://doi.org/10.1088/1742-6596/1886/1/012017

10. Burtsev, M., et al.: DeepPavlov: open-source library for dialogue systems. In: Pro-
ceedings of ACL 2018, System Demonstrations, pp. 122–127. Association for Com-
putational Linguistics, Melbourne (2018)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (Long and Short Papers), vol.
1, pp. 4171–4186. Association for Computational Linguistics, Minneapolis (2019).
https://doi.org/10.18653/v1/N19-1423

https://doi.org/10.5815/ijisa.2018.04.08
http://arxiv.org/abs/2010.11915
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1088/1742-6596/1886/1/012017
https://doi.org/10.18653/v1/N19-1423

Improving QA Quality Through Query Candidate Validation 233

12. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering
system over the semantic web. Semantic Web 11, 421–439 (2020)

13. Diefenbach, D., Giménez-Garćıa, J., Both, A., Singh, K., Maret, P.: QAnswer KG:
designing a portable question answering system over RDF data. In: Harth, A.,
Kirrane, S., Ngonga Ngomo, A.-C., Paulheim, H., Rula, A., Gentile, A.L., Haase,
P., Cochez, M. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 429–445. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-49461-2 25

14. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question
answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569
(2017). https://doi.org/10.1007/s10115-017-1100-y

15. Diefenbach, D., Migliatti, P.H., Qawasmeh, O., Lully, V., Singh, K., Maret, P.:
QAnswer: a question answering prototype bridging the gap between a considerable
part of the LOD cloud and end-users. In: Liu, L., et al. (eds.) The World Wide
Web Conference, WWW 2019, San Francisco, May 13–17, 2019, pp. 3507–3510.
ACM (2019). https://doi.org/10.1145/3308558.3314124

16. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems
over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2019). https://
doi.org/10.1007/s10844-019-00584-7

17. Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: LC-QuAD 2.0: a large
dataset for complex question answering over Wikidata and DBpedia. In: Ghi-
dini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J.,
Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 69–78.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 5

18. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing
Wikidata to the linked data web. In: Mika, P., Tudorache, T., Bernstein, A., Welty,
C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11964-9 4

19. Gashkov, A., Perevalov, A., Eltsova, M., Both, A.: Improving the question answer-
ing quality using answer candidate filtering based on natural-language features. In:
16th International Conference on Intelligent Systems and Knowledge Engineering
(ISKE 2021) (2021)

20. Godin, F., Kumar, A., Mittal, A.: Learning when not to answer: a ternary reward
structure for reinforcement learning based question answering. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (Industry Papers), Vol. 2, pp.
122–129. Association for Computational Linguistics, Minneapolis (2019). https://
doi.org/10.18653/v1/N19-2016

21. Gómez-Adorno, H., Pinto, D., Vilariño, D.: A question answering system for
reading comprehension tests. In: Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F.,
Rodŕıguez, J.S., di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 354–363.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38989-4 36

22. Grappy, A., Grau, B., Falco, M., Ligozat, A., Robba, I., Vilnat, A.: Selecting
answers to questions from web documents by a robust validation process. In: 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, vol. 1, pp. 55–62 (2011). https://doi.org/10.1109/WI-IAT.2011.
210

23. Hu, M., Wei, F., Peng, Y., Huang, Z., Yang, N., Li, D.: Read+verify: machine
reading comprehension with unanswerable questions. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 6529–6537 (2019)

https://doi.org/10.1007/978-3-030-49461-2_25
https://doi.org/10.1007/s10115-017-1100-y
https://doi.org/10.1145/3308558.3314124
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.18653/v1/N19-2016
https://doi.org/10.18653/v1/N19-2016
https://doi.org/10.1007/978-3-642-38989-4_36
https://doi.org/10.1109/WI-IAT.2011.210
https://doi.org/10.1109/WI-IAT.2011.210

234 A. Gashkov et al.

24. Korablinov, V., Braslavski, P.: RuBQ: a Russian dataset for question answering
over Wikidata. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B.,
Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp.
97–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8 7

25. Lin, Y., Zhang, M., Zhang, R., Zou, L.: Deep-gAnswer: a knowledge based question
answering system. In: U, L.H., Spaniol, M., Sakurai, Y., Chen, J. (eds.) APWeb-
WAIM 2021. LNCS, vol. 12859, pp. 434–439. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-85899-5 33

26. Magnini, B., Negri, M., Prevete, R., Tanev, H.: Is it the right answer? Exploiting
web redundancy for answer validation. In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, pp. 425–432. Association for
Computational Linguistics, Philadelphia (2002). https://doi.org/10.3115/1073083.
1073154

27. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A.,
Lehmann, J.: Learning to rank query graphs for complex question answering over
knowledge graphs. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz,
I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol.
11778, pp. 487–504. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30793-6 28

28. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press (1998)
29. Napolitano, G., Usbeck, R., Ngomo, A.-C.N.: The scalable question answering

over linked data (SQA) challenge 2018. In: Buscaldi, D., Gangemi, A., Reforgiato
Recupero, D. (eds.) SemWebEval 2018. CCIS, vol. 927, pp. 69–75. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00072-1 6

30. Pakray, P., Barman, U., Bandyopadhyay, S., Gelbukh, A.: Semantic answer valida-
tion using universal networking language. Int. J. Comput. Sci. Inf. Technol. 3(4),
4927–4932 (2012)

31. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention
model for natural language inference. In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 2249–2255. Association
for Computational Linguistics (2016)

32. Pellissier Tanon, T., de Assunção, M.D., Caron, E., Suchanek, F.M.: Demoing
Platypus – a multilingual question answering platform for Wikidata. In: Gangemi,
A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 111–116. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98192-5 21

33. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

34. Rodrigo, A., Pérez-Iglesias, J., Peñas, A., Garrido, G., Araujo, L.: A question
answering system based on information retrieval and validation. In: CLEF 2010
LABs and Workshops, Notebook Papers (2010)

35. Rybin, I., Korablinov, V., Efimov, P., Braslavski, P.: RuBQ 2.0: an innovated
Russian question answering dataset. In: Verborgh, R., Hose, K., Paulheim, H.,
Champin, P.-A., Maleshkova, M., Corcho, O., Ristoski, P., Alam, M. (eds.) ESWC
2021. LNCS, vol. 12731, pp. 532–547. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77385-4 32

36. Saha, A., Pahuja, V., Khapra, M.M., Sankaranarayanan, K., Chandar, S.: Complex
sequential question answering: towards learning to converse over linked question
answer pairs with a knowledge graph. In: Thirty-Second AAAI Conference on
Artificial Intelligence (2018)

37. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

https://doi.org/10.1007/978-3-030-62466-8_7
https://doi.org/10.1007/978-3-030-85899-5_33
https://doi.org/10.1007/978-3-030-85899-5_33
https://doi.org/10.3115/1073083.1073154
https://doi.org/10.3115/1073083.1073154
https://doi.org/10.1007/978-3-030-30793-6_28
https://doi.org/10.1007/978-3-030-30793-6_28
https://doi.org/10.1007/978-3-030-00072-1_6
https://doi.org/10.1007/978-3-319-98192-5_21
https://doi.org/10.1007/978-3-030-77385-4_32
https://doi.org/10.1007/978-3-030-77385-4_32

Improving QA Quality Through Query Candidate Validation 235

38. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems
together. In: Proceedings of the 2018 World Wide Web Conference, pp. 1247–1256
(2018)

39. Solovyev, A.: Dependency-based algorithms for answer validation task in Russian
question answering. In: Gurevych, I., Biemann, C., Zesch, T. (eds.) GSCL 2013.
LNCS (LNAI), vol. 8105, pp. 199–212. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40722-2 20

40. Tan, C., Wei, F., Zhou, Q., Yang, N., Lv, W., Zhou, M.: I know there is no answer:
modeling answer validation for machine reading comprehension. In: Zhang, M.,
Ng, V., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2018. LNCS (LNAI), vol. 11108,
pp. 85–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99495-6 8

41. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for
complex question answering over knowledge graphs. In: d’Amato, C., Fernandez,
M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J.
(eds.) ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68204-4 22

42. Usbeck, R., Gusmita, R.H., Ngomo, A.N., Saleem, M.: 9th challenge on question
answering over linked data (QALD-9). In: Joint proceedings of the 4th Workshop on
Semantic Deep Learning (SemDeep-4) and NLIWoD4: Natural Language Interfaces
for the Web of Data (NLIWOD-4) and 9th Question Answering over Linked Data
challenge (QALD-9) co-located with 17th International Semantic Web Conference
(ISWC 2018), Monterey, 8th–9th October 2018, pp. 58–64 (2018)

43. Usbeck, R., et al.: GERBIL - general entity annotation benchmark framework. In:
24th WWW Conference (2015)

44. Yen, A.Z., Huang, H.H., Chen, H.H.: Unanswerable question correction in question
answering over personal knowledge base. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 14266–14275 (2021)

45. Yih, S.W., Chang, M.W., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: Proceedings of the Joint
Conference of the 53rd Annual Meeting of the ACL and the 7th International Joint
Conference on Natural Language Processing of the AFNLP (2015)

46. Yu, M., Yin, W., Hasan, K.S., Santos, C.D., Xiang, B., Zhou, B.: Improved neural
relation detection for knowledge base question answering. In: Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Long Papers),
Vol. 1, pp. 1321–1331. Association for Computational Linguistics (2017)

47. Zamanov, I., Kraeva, M., Hateva, N., Yovcheva, I., Nikolova, I., Angelova, G.:
Voltron: a hybrid system for answer validation based on lexical and distance fea-
tures. In: Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015). pp. 242–246. Association for Computational Linguistics, Denver
(2015). https://doi.org/10.18653/v1/S15-2043

https://doi.org/10.1007/978-3-642-40722-2_20
https://doi.org/10.1007/978-3-642-40722-2_20
https://doi.org/10.1007/978-3-319-99495-6_8
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.18653/v1/S15-2043

Learning Concept Lengths Accelerates Concept
Learning in ALC

N’Dah Jean Kouagou(B) , Stefan Heindorf , Caglar Demir ,
and Axel-Cyrille Ngonga Ngomo

Paderborn University, Paderborn, Germany
nkouagou@mail.uni-paderborn.de, heindorf@uni-paderborn.de,

{caglar.demir,axel.ngonga}@upb.de

Abstract. Concept learning approaches based on refinement operators explore
partially ordered solution spaces to compute concepts, which are used as binary
classification models for individuals. However, the number of concepts explored
by these approaches can grow to the millions for complex learning problems.
This often leads to impractical runtimes. We propose to alleviate this problem
by predicting the length of target concepts before the exploration of the solution
space. By these means, we can prune the search space during concept learning.
To achieve this goal, we compare four neural architectures and evaluate them on
four benchmarks. Our evaluation results suggest that recurrent neural network
architectures perform best at concept length prediction with a macro F-measure
ranging from 38% to 92%. We then extend the CELOE algorithm, which learns
ALC concepts, with our concept length predictor. Our extension yields the algo-
rithm CLIP. In our experiments, CLIP is at least 7.5× faster than other state-of-
the-art concept learning algorithms for ALC—including CELOE—and achieves
significant improvements in the F-measure of the concepts learned on 3 out of 4
datasets. For reproducibility, we provide our implementation in the public GitHub
repository at https://github.com/dice-group/LearnALCLengths.

Keywords: Concept learning · Concept length · Structured machine learning ·
Description logic · Learning from examples · Prediction of concept lengths

1 Introduction

Knowledge bases have recently become indispensable in a number of applications
driven by machine learning [12]. For instance, the Gene Ontology (GO) [1,9], Drug-
Bank [36], and the Global Network of Biomedical Relationships (GNBR) [27] are
actively being used to find treatments for certain diseases [17,25]. We consider the
supervised machine learning task of concept learning1 [24] on knowledge bases in the
description logic (DL) ALC (attributive language with complements) [32]. We focus on
approaches based on refinement operators [3,13,24,28,29].

Recent works on concept learning over DLs [5,14,28] indicate that approaches
based on refinement operators often fail to achieve practical runtimes on large real-
world knowledge bases, which often contain millions of individuals and concepts with

1 Also called class expression learning (CEL) [13]. See Sect. 2 for a formal definition.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 236–252, 2022.
https://doi.org/10.1007/978-3-031-06981-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_14&domain=pdf
http://orcid.org/0000-0002-4217-897X
http://orcid.org/0000-0002-4525-6865
http://orcid.org/0000-0001-8970-3850
http://orcid.org/0000-0001-7112-3516
https://github.com/dice-group/LearnALCLengths
https://doi.org/10.1007/978-3-031-06981-9_14

Learning Concept Lengths Accelerates Concept Learning in ALC 237

billions of assertions. As noted by Rizzo et al. [28], this is partially due to the size of
the search space that needs to be explored to detect relevant concepts. In this paper, we
accelerate concept learning by predicting the length of the target concept in advance.
By these means, we can prune the search space traversed by a refinement operator
and therewith reduce the overall runtime of the concept learning process. To quantify
our runtime improvement, we compare our new algorithm—dubbed CLIP—against the
state-of-the-art approaches CELOE [23], OCEL [24], and ELTL [7]. The price for our
runtime improvement is paid in the prior training of the concept length predictor. There-
fore, we also show that the prediction of concept lengths can be carried out using rather
simple neural architectures.

To the best of our knowledge, no similar work has been carried out before. Hence,
we hope that our findings will serve as a foundation for more investigations in this
direction. In a nutshell, our contributions are as follows:

1. We design different neural network architectures for learning concept lengths.
2. We implement a length-based refinement operator to generate training data.
3. We integrate our concept length predictors into the CELOE algorithm, resulting in

a new algorithm that we call CLIP. We show that CLIP achieves state-of-the-art
performance in terms of F-measure while outperforming the state of the art in terms
of runtime.

The remainder of the paper is organized as follows: In Sect. 2, we give a brief
overview of the required background in DL, concept learning, knowledge graph embed-
dings, and refinement operators for DLs. We also present the notation and terminology
used in the rest of the paper. Section 3 presents related work on concept learning using
refinement operators. In Sects. 4 and 5, we describe our new approach for concept learn-
ing in ALC. Our results on different knowledge bases are presented in Sect. 6. Section 7
draws conclusions from our findings and introduces new directions for future work.

2 Background

In this section, we present the background on description logics, concept learning,
refinement operators, and knowledge graph embeddings. We also introduce the nota-
tion and terminology used throughout the paper.

Description Logics. Description logics [2] are a family of languages for knowledge
representation. While there are more powerful variants of description logics [2,20], we
focus on the description logic ALC (Attributive Language with Complement) because
it is the simplest closed description logic with respect to propositional logics. Its basic
components are concept names (e.g., Teacher , Human), role names (e.g., hasChild ,
bornIn) and individuals (e.g., Mike, Jack). Table 1 introduces the syntax and semantics
of ALC (see [24] for more details). In ALC, concept lengths are defined recursively [24]

1. length(A) = length(�) = length(⊥) = 1, for all atomic concepts A
2. length(¬C) = 1 + length(C), for all concepts C
3. length(∃ r.C) = length(∀ r.C) = 2 + length(C), for all concepts C
4. length(C � D) = length(C � D) = 1+ length(C) + length(D), for all concepts

C and D.

238 N. J. Kouagou et al.

Table 1. ALC syntax and semantics. I stands for an interpretation, ΔI for its domain.

Construct Syntax Semantics

Atomic concept A AI ⊆ ΔI

Atomic role r rI ⊆ ΔI × ΔI

Top concept � ΔI

Bottom concept ⊥ ∅
Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Negation ¬C ΔI \ CI

Existential restriction ∃ r.C {aI/∃ bI ∈ CI , (aI , bI) ∈ rI}
Universal restriction ∀ r.C {aI/∀ bI , (aI , bI) ∈ rI ⇒ bI ∈ CI}

The pair K = (TBox ,ABox) denotes an ALC knowledge base. The TBox contains
statements of the form C � D or C ≡ D, where C and D are concepts. The ABox
consists of statements of the form C(a) and R(a, b), where C is a concept, R is a role,
and a, b are individuals. NC and NR are the sets of concept names and role names in K,
respectively. KI stands for the set of all individuals in K. |.| denotes the cardinality
function, that is, a function that takes a set as input and returns the number of elements
in the set. Given a concept C, we denote the set of all instances of C by CP . CN stands
for the set of all individuals that are not instances of C.

Concept Learning. We recall the definition introduced by [24].

Definition 1. Let K, T , P , and N be a knowledge base, a target concept, and sets of
positive and negative examples from KI , respectively. The learning problem is to find a
concept C such that T does not occur in C, and for K′ = K ∪ {T ≡ C}, we have that
K′ |= P and K′ �|=N .

Since such a concept C does not always exist, we target an approximate definition in
this work.

Definition 2. Given a knowledge base K, a set of positive examples P , and a set of
negative examples N , the learning problem is to find a concept C which maximizes the
F-measure F , where F is defined by F = 2 × Precision×Recall

Precision+Recall , with Precision =
|CP∩P |

|CP∩P |+|CP∩N | and Recall = |CP∩P |
|CP∩P |+|CN ∩P | .

Note that in the above definition, CN and CP depend on both the concept C and the
learning problem. Following [24], we use the closed-world assumption (CWA) to com-
pute CP and CN : every individual that cannot be inferred to be an element of CP is
considered to be in CN . In this work, we are interested in finding such a concept C by
using refinement operators (see the following subsection). The found concept C might
not be unique for a learning problem.

Learning Concept Lengths Accelerates Concept Learning in ALC 239

Refinement Operators.

Definition 3. A quasi-ordering � is a reflexive and transitive binary relation. Let
(S,�) be a quasi-ordered space. A downward (upward) refinement operator on S is
a mapping ρ : S → 2S such that for all C ∈ S, C ′ ∈ ρ(C) implies C ′ � C (C � C ′).

Example 1. Let K = (TBox ,ABox) be a knowledge base, with

TBox = {Female � Human,Mother � Female,Human � ¬Car};
ABox = {Female(Anna),Mother(Kate),Car(Venza), hasChild(Jack ,Paul)}.

Assume the sets of concept names NC and role names NR in K are given by:

NC = {Car ,Female,Human,Mother ,Parent};
NR = {hasChild ,manufacturedBy ,marriedTo}.

Let C be the set of all ALC concept expressions [30] that can be constructed from
NC and NR (note that C is infinite and every concept name is a concept expression).
Consider the mapping ρ : C → 2C defined by: ρ(C) = {C ′ ∈ C|C ′ � C,C ′ �= C}
for all C ∈ C. ρ is clearly a downward refinement operator and we have for example,

– {Female,Mother ,Female � Mother} ⊆ ρ(Human);
– {∃ marriedTo.Mother ,∀ marriedTo.Female} ⊆ ρ(∃ marriedTo.(¬Car)).

Refinement operators can have a number of important properties which we do not
discuss in this paper (for further details, we refer the reader to [24]). In the context
of concept learning, these properties can be exploited to optimize the traversal of the
concept space in search of a target concept.

Knowledge Graph Embeddings. The ABox of a knowledge base in ALC can be
regarded as a knowledge graph [16] (see also Sect. 4). A knowledge graph embedding
function typically maps a knowledge graph to a continuous vector space to facilitate
downstream tasks such as link prediction and knowledge graph completion [10,33]. We
exploit knowledge graph embeddings to improve concept learning in DLs. Knowledge
graph embedding approaches can be subdivided into two categories: the first category of
approaches uses only facts in the knowledge graph [6,26,35], and the second category
of approaches takes into account additional information about entities and relations,
such as textual descriptions [34,37]. Both approaches typically initialize each entity
and relation with a random vector, matrix, or tensor. Then, a scoring function is defined
to learn embeddings so that facts observed in the knowledge graph receive high scores,
while unobserved facts receive low scores. It can also happen that unobserved facts
receive a high score, for instance, if a fact is supposed to hold but it is not observed in
the knowledge graph, or if it is a logical implication of the learned patterns. For more
details, we refer the reader to the surveys [10,33]. In this work, we use the Convolu-
tional Complex Embedding Model (ConEx) [11], which has been shown to produce
state-of-the-art results with fewer trainable parameters.

240 N. J. Kouagou et al.

3 Related Work

Lehmann and Hitzler [24] investigated concept learning using refinement operators by
studying combinations of possible refinement operator properties and designed their
own refinement operator in ALC. Their approach proved to be competitive in accuracy
with (and in some cases, superior to) the state-of-the-art, namely inductive logic pro-
grams. Badea and Nienhuys-Cheng [3] worked on a similar topic in the DL ALER.
The evaluation of their approach on real ontologies from different domains showed
promising results, but it had the disadvantage of depending on the instance data.

DL-Learner [21] is the most mature framework for concept learning. CELOE [23],
OCEL [22], and ELTL [7] are algorithms implemented in DL-Learner. CELOE is an
extension of OCEL that uses the same refinement operator but with a different heuristic
function. It is considered the best algorithm in DL-Learner to date. The algorithm uses
a soft syntactic bias in its heuristic function that balances between predictive perfor-
mance and short, readable concepts. In this work, we opt for a hard syntactic bias that
constrains our algorithm to generate expressions shorter than a given threshold. ELTL is
designed for the simple description logic EL. Despite its usefulness, DL-Learner suffers
from performance issues in certain scenarios [cf. 14,31].

DL-FOIL [13,29] is another concept learning algorithm that uses refinement oper-
ators and progressively constructs the solution as a disjunction of partial descriptions.
Each partial description covers a part of the positive examples and rules out as many
negative/uncertain-membership examples as possible. DL-FOCL1–3 [28] are variants
of DL-FOIL that employ meta-heuristics to help reduce the search space. The first
release of DL-FOCL, also known as DL-FOCL1, is essentially based on omission rates:
to check if further iterations are required, DL-FOCL1 compares the score of the cur-
rent concept definition with that of the best concept obtained at that stage. DL-FOCL2
employs a look-ahead strategy by assessing the quality of the next possible refinements
of the current partial description. Finally, DL-FOCL3 attempts to solve the myopia
problem in DL-FOIL by introducing a local memory, used to avoid reconsidering sub-
optimal choices previously made. EvoLearner [14] is a concept learner based on evolu-
tionary algorithms. In contrast, we propose to learn concept lengths from positive and
negative examples to boost the performance of concept learners.

4 Concept Length Prediction

In this section, we address the following learning problem: Given a knowledge base K,
a set of positive examples P and negative examples N , predict the length of the shortest
concept C that is a solution to the learning problem defined by K, P , and N according
to Definition 2. To achieve this goal, we devise a generator that creates training data
for our prediction algorithm based solely on K and a user-given number of learning
problems to use at training time.

4.1 Training Data for Length Prediction

Data Generation. Given a knowledge base, the construction of training data (concepts
with their positive and negative examples) is carried out as follows:

Learning Concept Lengths Accelerates Concept Learning in ALC 241

1. Generate concepts of various lengths using the length-based refinement operator
described in Algorithm 1 and 2. In this process, short concepts are preferred over
long concepts, i.e., when two concepts have the same set of instances, the longest
concept is left out.

2. Compute the sets CN and CP for each generated concept C.
3. Define a hyper-parameter N ∈ [1, |KI |] that represents the total number of positive

and negative examples we want to use per learning problem.
4. Sample positive and negative examples as follows:

• If |CP | ≥ N
2 and |CN | ≥ N

2 , then we randomly sample N
2 individuals from

each of the two sets CP and CN .
• Otherwise, we take all individuals in the minority set and sample the remaining

number of individuals from the other set.

Training Data Features. A knowledge graph is commonly defined as G ⊆ E ×R×E ,
where E is a set of entities and R is a set of relations. We convert a given knowledge
base K into a knowledge graph by converting ABox statements of the form R(a, b) into
(a,R, b). Statements of the form C(a) are converted into (a,rdf:type, C). In our
experimental data, the TBoxes contained only subsumptions C � D between atomic
concepts C and D, which were converted into triples (C,rdfs:subClassOf,D).
Hence, in our experiments, E ⊆ NC ∪ KI and R = NR ∪ {rdfs:subClassOf}.

The resulting knowledge graph is then embedded into a continuous vector space
to serve for the prediction of concept lengths. On the vector representation of entities,
we create an extra dimension at the end of the entries, where we insert +1 for positive
examples and −1 for negative examples. Formally, we define an injective function fC
for each target concept C

fC : Rd −→ R
d+1

x = (x1, . . . , xd) �−→
{
(x1, . . . , xd, 1) if ent(x) ∈ CP ,

(x1, . . . , xd,−1) otherwise,
(1)

where d is the dimension of the embedding space, and ent(x) is the entity whose
embedding is x. Thus, a data point in the training, validation, and test datasets is a tuple
(MC , length(C)), where MC is a matrix of shape N× (d+1) constructed by concate-
nating the embeddings of positive examples followed by those of negative examples.
Formally, assume n1 and n2 are the numbers of positive and negative examples for
C, respectively. Further, assume that the embedding vectors of positive examples are
x(i), i = 1 . . . , n1 and those of negative examples are x(i), i = n1+1, . . . , n1+n2 =
N. Then, the i − th row of MC is given by

MC [i, :] =

{
(x(i)

1 , . . . , x
(i)
d , 1) if 1 ≤ i ≤ n1,

(x(i)
1 , . . . , x

(i)
d ,−1) if n1 + 1 ≤ i ≤ n1 + n2 = N.

(2)

We view the prediction of concept lengths as a classification problem with classes
0, 1, . . . , L, where L is the length of the longest concept in the training dataset. As
shown in Table 2, the concept length distribution can be imbalanced. To prevent concept

242 N. J. Kouagou et al.

Table 2. Number of concepts per length in the training, validation, and test datasets for the four
knowledge bases considered

Length Carcinogenesis Mutagenesis Semantic Bible Vicodi

Train Val. Test Train Val. Test Train Val. Test Train Val. Test

3 3,647 405 1,013 1,038 115 288 487 54 135 3,952 439 1,098

5 782 87 217 1,156 129 321 546 61 152 2,498 278 694

6 0 0 0 0 0 0 162 18 45 335 37 93

7 1,143 127 318 1,310 146 364 104 12 29 3,597 400 999

8 0 0 0 0 0 0 0 0 0 747 83 207

9 0 0 0 0 0 0 73 8 21 0 0 0

11 0 0 0 0 0 0 41 5 11 0 0 0

length predictors from overfitting on the majority classes, we used the weighted cross-
entropy loss

Lw(ȳ, y) = − 1
bs

bs∑
i=1

L∑
k=1

wk1(k, yi) log(ȳi
k), (3)

where bs is the batch size, ȳ is the batch matrix of predicted probabilities (or scores),
y is the batch vector of targets, w is a weight vector, and 1 is the indicator function.
The weight vector is defined by: wk = 1/

√
[k], where [k] is the number of concepts

of length k in the training dataset. Table 2 provides details on the training, validation,
and test datasets for each of the four knowledge bases. Though the maximal length
for the generation of concepts was fixed to 15, many long concepts were equivalent
to shorter concepts. As a result, they were removed from the training dataset and the
longest remaining are of length 11 (see Table 2).

4.2 Concept Length Predictors

We consider four neural network architectures: Long Short-Term Memory (LSTM)
[15], Gated Recurrent Unit (GRU) [8], Multi-Layer Perceptron (MLP), and Convolu-
tional Neural Network (CNN). Recurrent neural networks (LSTM, GRU) take as input
a sequence of embeddings of the positive and negative examples (all positive examples
followed by all negative examples). The CNN model takes the same input as recurrent
networks and views it as an image with a single channel. In contrast, the MLP model
inputs the average embeddings of a set of positive and negative examples. The imple-
mentation details and the hyper-parameter setting for each of the networks are given in
Sect. 6.1.

5 Concept Learner with Integrated Length Prediction (CLIP)

The intuition behind CLIP is that if we have a reliable concept length predictor, then
our concept learner only needs to test concepts of length up to the predicted length.
Figure 1 illustrates CLIP’s exploration strategy.

Learning Concept Lengths Accelerates Concept Learning in ALC 243

Fig. 1. CLIP search tree when the predicted length is 5. After each refinement, CLIP discards all
concepts whose length is larger than the set threshold.

Refinements that exceed the predicted length are ignored during the search. In the
figure, the concept Person � (∀ attendsSome.(Workshop � Conference))
is of length 7 and is therefore neither tested nor added to the search tree.

Remark 1. For concept length prediction during concept learning, we sample n1 pos-
itive examples and n2 negative examples from the considered learning problem such
that n1 + n2 = N, as described in Sect. 4.2 (4).

We implemented the intuition behind CLIP by extending CELOE’s refinement operator.
Our refinement operator differs from CELOE’s in how it refines atomic concepts (see
Algorithms 1 and 2). For example, it considers all refinements A′ � A of an atomic con-
cept A whereas CELOE’s refinement operator only considers A′ � A such that there is
no A′′ with A′ � A′′ � A. Omitting this expensive check allows more concepts to be
tested in the same amount of time. In the following, we describe our method for refining
atomic concepts and refer the reader to [23,24] for details on CELOE. In Algorithms 1
and 2, the hyper-parameters max length , k, and construct frac control the refinement
operator: max length specifies how long the refinements can become (Algorithm 2,
lines 8, 11, 13); k controls the number of fillers sampled without replacement for univer-
sal and existential restrictions (Algorithm 1, line 7); construct frac ∈ (0, 1] specifies
the fraction of constructs to be sampled (Algorithm 2, lines 1–3).

Given a knowledge base K, the refinement of an atomic concept A is carried
out as follows: (1) obtain the subconcepts subs of A in K; (2) compute the nega-
tions neg subs of all subconcepts of A; (3) construct existential and universal role
restrictions where the fillers are in the set made of �,⊥, A, and sample k elements
from each of the sets subs and neg subs; (4) obtain the union constructs of subs ,
neg subs , and restrictions , and finally (5) Algorithm 2 returns the refinements as inter-
sections or unions of the subs and constructs computed before, with the generated
refinements having length at most max length . The refinement operator is designed to
yield numerous meaningful downward refinements from a single atomic concept.

244 N. J. Kouagou et al.

Algorithm 1. Function REFINEHELPER

Input: Knowledge base K, atomic concept A
Hyper-parameters: Number of subconcepts to be sampled: k, default 5
Output: Subconcepts, negated subconcepts and restrictions of A

1: subs ← SUBCONCEPTSK(A) # Subconcepts of A in K
2: neg subs ← {¬C|C ∈ subs}
3: restrictions ← {}
4: if |subs| < k then
5: fillers ← {�, ⊥, A}
6: else
7: fillers ← {�, ⊥, A} ∪ RANDSAMPLE(subs, n = k) ∪ RANDSAMPLE(neg subs, n = k)
8: end if
9: for C in fillers do

10: for R in role names of K do
11: restrictions ← restrictions ∪ {∃ R.C}
12: restrictions ← restrictions ∪ {∀ R.C}
13: end for
14: end for
15: constructs ← subs ∪ neg subs ∪ restrictions
16: return constructs

Algorithm 2. Function REFINEATOMICCONCEPT

Input: Knowledge base K, atomic concept A
Hyper-parameters: Fraction of constructs to be sampled: construct frac ∈ (0, 1], default 0.8;

max concept length to be generated: max length , default 15
Output: Set of concepts {C1, . . . , Cn} which are refinements of A

1: constructs = REFINEHELPER(K, A)
2: m ← �construct frac × SIZEOF(constructs)� # Integer part function
3: constructs ← RANDSAMPLE(constructs, n = m) # Sample without replacement
4: subs ← SUBCONCEPTSK(A) # Subconcepts of A in K
5: result ← subs # All subconcepts are of length 1
6: for S1 in subs do
7: for S2 in constructs do
8: if S1 �= S2 and length(S1 � S2) ≤ max length then
9: result ← result ∪ {S1 � S2}

10: end if
11: if S1 �= S2 and S2 ∈ subs and length(S1 � S2) ≤ max length then
12: result ← result ∪ {S1 � S2}
13: else if S1 �= S2 and length((S1 � S2) � A) ≤ max length then
14: result ← result ∪ {(S1 � S2) � A} # All refinements are downward refinements
15: end if
16: end for
17: end for
18: return result

Learning Concept Lengths Accelerates Concept Learning in ALC 245

Table 3. Overview of benchmark datasets

Dataset |Individuals| |At. Concepts| |Obj. Prop.| |Data Prop.| |TBox | |ABox |
Carcinogenesis 22,372 142 4 15 138 96,757

Mutagenesis 14,145 86 5 6 82 61,965

Semantic Bible 724 48 29 9 51 3,211

Vicodi 33,238 194 10 2 193 149,634

6 Evaluation

Datasets. We used four datasets for our experiments: Carcinogenesis, Mutagenesis,
Semantic Bible, and Vicodi. All datasets are available in our GitHub repository and
described in Table 3. We conducted two sets of experiments. First, we wanted to know
which neural architecture performs best at predicting concept lengths. Second, we
assessed CLIP’s performance w.r.t. its runtime and F-measure when compared with the
state-of-the-art refinement approaches dubbed CELOE, OCEL, ELTL, and DL-Foil.

Hardware. The training of our concept length learners was carried out on a single
11 GB memory NVIDIA K80 GPU with 4 Intel Xeon E5-2670 CPUs at 2.60 GHz, and
24 GB RAM. During concept learning with CELOE, OCEL, ELTL, and CLIP, we used
an 8-core Intel Xeon E5-2695 at 2.30 GHz, and 16 GB RAM to ensure a fair compari-
son.

6.1 Concept Length Prediction

Hyper-parameter Optimization. In our preliminary experiments on all four knowl-
edge bases, we used a random search [4] to select fitting hyper-parameters (as sum-
marized in Table 4). Our experiments suggest that choosing two layers for the recurrent
neural networks (LSTM, GRU) is the best choice in terms of computation cost and clas-
sification accuracy. In addition, two linear layers, batch normalization, and dropout lay-
ers are used to increase the performance. The CNN model consists of two convolution
layers, two linear layers, two dropout layers, and a batch normalization layer. Finally,
we chose 4 layers for the MLP model with batch normalization and dropout layers. The
Rectified Linear Unit (ReLU) is used in the intermediate layers of all models, whereas
the sigmoid function is used in the output layers.

We ran the experiments in a 10-fold cross-validation setting with ten repetitions.
Table 4 gives an overview of the hyper-parameter settings on each of the four knowledge
bases considered. The number of epochs was set based on the training speed and the
performance of the validation dataset. For example, on the Carcinogenesis knowledge
base, most length predictors are able to reach 90% accuracy with just 50 epochs, which
suggests that more epochs would probably lead to overfitting. Adam optimizer [18]
is used to train the length predictors. We varied the number of examples N between
200 and 1000, and the embedding dimension d from 10 to 100, but we finally chose
N = min(1000, |KI |

2) and d = 40 as best values for both classification accuracy and
computation cost on the four datasets considered.

246 N. J. Kouagou et al.

Table 4. Hyper-parameter setting

Dataset |Epochs| lr d Batch Size N

Carcinogenesis 50 0.003 40 512 1,000

Mutagenesis 100 0.003 40 512 1,000

Semantic Bible 200 0.003 40 256 362

Vicodi 50 0.003 40 512 1,000

Table 5. Model size and training time

Model Carcinogenesis Mutagenesis

|Parameters| Train. Time (s) |Parameters| Train. Time (s)

LSTM 160,208 188.42 160,208 228.13

GRU 125,708 191.16 125,708 228.68

CNN 838,968 16.77 838,248 44.74

MLP 61,681 10.04 61,681 14.29

Model Semantic Bible Vicodi

|Parameters| Train. Time (s) |Parameters| Train. Time (s)

LSTM 161,012 196.20 160,409 362.28

GRU 125,512 197.86 125,909 367.55

CNN 96,684 18.43 839,377 71.95

MLP 61,933 9.56 61,744 24.61

Results. Table 5 shows the number of parameters and training time of LSTM, GRU,
CNN, and MLP architectures on each of the datasets. From the table, we can observe
that our concept length predictors can be trained in less than an hour and be used for
efficient concept learning on corresponding knowledge bases.

In Fig. 2, we show the training curves for each model on all datasets. We can observe
a decreasing loss on all knowledge bases (see Fig. 2b), which suggests that the models
were able to learn. Moreover, the Gated Recurrent Unit (GRU) model outperforms the
other models on all datasets, see Fig. 2c and Table 6. The input to the MLP model is the
average of the embeddings of the positive and negative examples for a concept. This
may have caused loss of information in the inputs. As shown in Fig. 2a, MLP curves
tend to saturate in the early stages of training. We also assessed the element-wise mul-
tiplication of the embeddings and obtained similar results. However, as reflected in
Table 6, all our proposed architectures outperform a random model that knows the dis-
tribution of the lengths of concepts in the training dataset. A modified version of MLP
where the embedding of each example is processed independently before averaging the
final output (no interaction) yielded even poorer results. This suggests that the full inter-
action between examples is the main factor in the increased performance of recurrent
neural networks.

Learning Concept Lengths Accelerates Concept Learning in ALC 247

Fig. 2. Training and validation curves

248 N. J. Kouagou et al.

Table 6. Effectiveness of concept length prediction. RM is a random model that makes predictions
according to the length distribution in the training dataset, and F1 is the macro F-measure.

Metric Carcinogenesis Mutagenesis

LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc 0.89 0.96 0.97 0.80 0.48 0.83 0.97 0.98 0.68 0.33

Val. Acc. 0.76 0.93 0.82 0.77 0.48 0.70 0.82 0.71 0.65 0.35

Test Acc. 0.92 0.95 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33

Test F1 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32

Metric Semantic Bible Vicodi

LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc 0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28

Val. Acc. 0.49 0.58 0.44 0.46 0.26 0.55 0.77 0.70 0.64 0.30

Test Acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29

Test F1 0.27 0.38 0.20 0.22 0.16 0.45 0.50 0.45 0.38 0.20

Table 6 compares our chosen neural network architectures and a random model on
the Carcinogenesis, Vicodi, Mutagenesis, and Semantic Bible knowledge bases. From
the table, it appears that recurrent neural network models (GRU, LSTM) outperform the
other two models (CNN and MLP) on three out of four datasets, with the only exception
that the LSTM model slightly dropped in performance on Vicodi compared to CNN.

While the CNN model tends to overfit on all knowledge bases, the MLP model is
unable to extract meaningful information from the average embeddings. On the Seman-
tic Bible knowledge base, which appears to be the smallest dataset, all our proposed
networks performed less well than expected. This suggests that our learning approach
is more suitable for large knowledge bases. Nonetheless, all our proposed models are
clearly better than a distribution-aware random model with a minimum performance
(macro F1 score) difference on average between 21.25% (MLP) and 41% (GRU).

6.2 Concept Learning

Experimental Settings. The maximal runtime is set to 2 min per learning problem.2

For all knowledge bases, we generate 100 random learning problems by (1) creating
random ALC concepts C of maximal length 15, (2) computing the sets of instances
CP and CN , (3) providing CP and CN to each of the approaches, and (4) measuring
the accuracy, the F-measure, the runtime, and the length of the best solution generated
within the set timeout. We ran all approaches on the same hardware (see Sect. 6). CLIP
was configured to use our best concept length predictor (GRU). Note that a predictor
is trained for each dataset (see Table 2). Also note that we add the ELTL algorithm—a

2 The implementations of OCEL and ELTL in the DL-Learner framework, which we used for
our experiments, fail to consider the set threshold accurately. Hence, Table 7 contains values
larger than 2 min for these two algorithms.

Learning Concept Lengths Accelerates Concept Learning in ALC 249

Table 7. Performance of CLIP compared with CELOE, OCEL, and ELTL on 100 learning prob-
lems per knowledge base. The presence of an asterisk indicates that the performance difference is
significant between CLIP and the best between CELOE and OCEL. The upward arrow (↑) indi-
cates that the higher is better, whereas the downward arrow (↓) indicates the opposite. All results
are average results per knowledge base. The average time is in minutes. ELTL is shown in gray
since it learns concepts in EL instead of ALC as the others do.

concept learner for the DL EL—to investigate whether our randomly generated con-
cepts are equivalent to concepts in a simpler description logic.

Results. Table 7 presents a comparison of the results achieved by CLIP, CELOE,
OCEL, and ELTL; results are formatted mean± standard deviation. Note that the table
does not contain DL-FOIL because it could not solve the learning problems that we
considered. For instance, the first learning problem on the Semantic Bible knowledge
base targets SonOfGod � (∃ locationOf.StateOrProvince). Here, DL-FOIL

was stuck on the refinement of GeographicLocation with over 5 × 103 unsuc-
cessful trials. Similar scenarios were observed on other datasets. We also tried running
DL-FOCL, but it was not possible using the documentation provided.

Our results suggest that CLIP outperforms the other three algorithms in F1 and in
runtime on most datasets. The ELTL algorithm appears to be faster than CELOE and
OCEL but slower than CLIP. However, its runtime performance stems from the fact
that it detects concepts in the DL EL. Since some of our learning problems can only

250 N. J. Kouagou et al.

be solved in ALC or a more expressive DL, ELTL performs poorly in F1 score on all
datasets. This result suggests that we do not generate trivial problems.

We used a Wilcoxon Rank Sum test to check whether the difference in performance
between CLIP, CELOE, and OCEL was significant. Significant differences are marked
with an asterisk. The null hypothesis for our test was as follows: “the two distributions
that we compare are the same”. The significance level was α = 0.05. The performance
differences in F1 between CLIP and the other algorithms are significant on 3 out of 4
datasets.3 With respect to runtimes, we significantly outperform all other algorithms on
all datasets. Large time differences correspond to scenarios where CLIP detects short
solution concepts while other algorithms explore longer concepts. Low time differences
correspond to either simple learning problems, where all algorithms find a solution in a
short period of time, or complex learning problems where CLIP explores long concepts
as other algorithms.

The average runtimes of CELOE, OCEL, and CLIP across all datasets are 0.85,
8.08, and 0.1 min, respectively. Given that the average training time of the length pre-
dictor GRU is 4.10 min, we can conjecture the following: (1) the expected number of
learning problems from which CLIP should be preferred over CELOE is 5, and (2)
CLIP should be preferred over OCEL for any number of learning problems.

7 Conclusion and Future Work

We investigated the prediction of concept lengths in the description logic ALC, to speed
up the concept learning process using refinement operators. To this end, four neural
network architectures were evaluated on four benchmark knowledge bases. The evalu-
ation results suggest that all of our proposed models are superior to a random model,
with recurrent neural networks performing best at this task. We showed that integrating
our concept length predictors into a concept learner can reduce the search space and
improve the runtime and the quality (F-measure) of solution concepts.

Even though our proposed learning approach was very efficient when dealing with
concepts of length up to 11 (in ALC), its behavior is not guaranteed when longer con-
cepts are considered. Moreover, the use of generic embedding techniques might lead to
suboptimal results. In future work, we plan to jointly learn the embeddings of a given
knowledge graph and the lengths of its complex (long) concepts. We will also explore
further network architectures such as multi-set convolutional networks [38] and neural
class expression synthesis [19].

Acknowledgements. This work is part of a project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 860801. This work has been supported by the German Federal Ministry of
Education and Research (BMBF) within the project DAIKIRI under the grant no 01IS19085B and
by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) within the
project RAKI under the grant no 01MD19012B. The authors gratefully acknowledge the funding
of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2).

3 Note that we ran OCEL with its default settings and F1 scores are not available.

Learning Concept Lengths Accelerates Concept Learning in ALC 251

References

1. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1),
25–29 (2000)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, Cambridge (2003)

3. Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens,
J., Frisch, A. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44960-4 3

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn.
Res. 13(2) (2012)

5. Bin, S., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C.: Towards SPARQL-based induc-
tion for large-scale RDF data sets. In: ECAI 2016, pp. 1551–1552, IOS Press (2016)

6. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for
learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2013). https://doi.org/10.
1007/s10994-013-5363-6

7. Bühmann, L., Lehmann, J., Westphal, P.: DL-Learner—a framework for inductive learning
on the Semantic Web. J. Web Semant. 39, 15–24 (2016)

8. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078 (2014)

9. Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res. 32(suppl1), D258–D261 (2004)

10. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding:
approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

11. Demir, C., Ngomo, A.C.N.: Convolutional complex knowledge graph embeddings. arXiv
preprint arXiv:2008.03130 (2020)

12. Deshpande, O., et al.: Building, maintaining, and using knowledge bases: a report from the
trenches. In: Proceedings of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1209–1220 (2013)

13. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In:
Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85928-4 12

14. Heindorf, S., et al.: EvoLearner: Learning description logics with evolutionary algorithms.
In: Proceedings of the ACM Web Conference (2022)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

16. Hogan, A., et al.: Knowledge graphs. Synth. Lect. Data Semant. Knowl. 12(2), 1–257 (2021)
17. Ioannidis, V.N., et al.: DRKG-drug repurposing knowledge graph for COVID-19 (2020)
18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
19. Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Neural class expression synthesis.

CoRR abs/2111.08486 (2021)
20. Krötzsch, M., Simancik, F., Horrocks, I.: A description logic primer. CoRR abs/1201.4089

(2012)
21. Lehmann, J.: DL-Learner: learning concepts in description logics. J. Mach. Learn. Res. 10,

2639–2642 (2009)
22. Lehmann, J.: Learning OWL Class Expressions, vol. 22. IOS Press (2010)
23. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engi-

neering. J. Web Semant. 9(1), 71–81 (2011)

https://doi.org/10.1007/3-540-44960-4_3
https://doi.org/10.1007/s10994-013-5363-6
https://doi.org/10.1007/s10994-013-5363-6
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/2008.03130
https://doi.org/10.1007/978-3-540-85928-4_12
http://arxiv.org/abs/1412.6980

252 N. J. Kouagou et al.

24. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators.
Mach. Learn. 78(1–2), 203 (2010)

25. MacLean, F.: Knowledge graphs and their applications in drug discovery. Expert Opin. Drug
Discov. 16(9), 1057–1069 (2021)

26. Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning for linked
data. In: Proceedings of the 21st international conference on World Wide Web, pp. 271–280
(2012)

27. Percha, B., Altman, R.B.: A global network of biomedical relationships derived from text.
Bioinformatics 34(15), 2614–2624 (2018)

28. Rizzo, G., Fanizzi, N., d’Amato, C.: Class expression induction as concept space exploration:
from DL-Foil to DL-Focl. Future Gener. Comput. Syst. 108, 256–272 (2020)

29. Rizzo, G., Fanizzi, N., d’Amato, C., Esposito, F.: A framework for tackling myopia in con-
cept learning on the web of data. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y.
(eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 338–354. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03667-6 22

30. Rudolph, S.: Foundations of description logics. In: Polleres, A., d’Amato, C., Arenas, M.,
Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011.
LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23032-5 2

31. Sarker, M.K., Hitzler, P.: Efficient concept induction for description logics. In: AAAI, pp.
3036–3043 (2019)

32. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif.
Intell. 48(1), 1–26 (1991)

33. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches
and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

34. Wang, Z., Li, J., Liu, Z., Tang, J.: Text-enhanced representation learning for knowledge
graph. In: Proceedings of International Joint Conference on Artificial Intelligent (IJCAI),
pp. 4–17 (2016)

35. Weston, J., Bordes, A., Yakhnenko, O., Usunier, N.: Connecting language and knowledge
bases with embedding models for relation extraction. arXiv preprint arXiv:1307.7973 (2013)

36. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 46(D1), D1074–D1082 (2018)

37. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with
entity descriptions. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

38. Zaheer, M., Kottur, S., Ravanbakhsh, S., Póczos, B., Salakhutdinov, R., Smola, A.J.: Deep
sets. In: NIPS, pp. 3391–3401 (2017)

https://doi.org/10.1007/978-3-030-03667-6_22
https://doi.org/10.1007/978-3-030-03667-6_22
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-642-23032-5_2
http://arxiv.org/abs/1307.7973

Dihedron Algebraic Embeddings
for Spatio-Temporal Knowledge Graph

Completion

Mojtaba Nayyeri1,5, Sahar Vahdati2, Md Tansen Khan1(B), Mirza Mohtashim Alam2,
Lisa Wenige2, Andreas Behrend3, and Jens Lehmann1,4

1 University of Bonn, Bonn, Germany
nayyeri@cs.uni-bonn.de, s6mmkhan@uni-bonn.de

2 Institute for Applied Informatics (InfAI), Dresden, Germany
{vahdati,alam,wenige}@infai.org

3 Institute for Telecommunications (INT), TH Köln, Cologne, Germany
andreas.behrend@th-koeln.de
4 Fraunhofer IAIS, Dresden, Germany

jens.lehmann@iais.fraunhofer.de
5 University of Stuttgart, Stuttgart, Germany

Abstract. Many knowledge graphs (KG) contain spatial and temporal informa-
tion. Most KG embedding models follow triple-based representation and often
neglect the simultaneous consideration of the spatial and temporal aspects. Encod-
ing such higher dimensional knowledge necessitates the consideration of true
algebraic and geometric aspects. Hypercomplex algebra provides the foundation
of a well defined mathematical system among which the Dihedron algebra with its
rich framework is suitable to handle multidimensional knowledge. In this paper,
we propose an embedding model that uses Dihedron algebra for learning such spa-
tial and temporal aspects. The evaluation results show that our model performs
significantly better than other adapted models.

Keywords: Knowledge graph · Embedding · Spatio-temporal

1 Introduction

Large cross-domain Knowledge Graphs (KGs), such as DBpedia [15] and Wiki-
data [27], leverage a triple representation of facts in the form of (h, r, t) where h, t
and r refer to head and tail entities and the relation respectively. Despite the availabil-
ity of huge amounts of such data, one of the major challenges is the impossibility of
capturing all (true) facts of the target domain. Thus, sparsity and incompleteness are
major problems of KGs. The objective of KG completion is to generate true triples that
are not explicitly given in the KG. For example, the query (PrinceWilliam,met, ?),
with an unknown tail as “?”, means “With whom did Prince William meet?” for
which h = V olodymyrZelensky is a possible answer. This leads to predict the
(PrinceWilliam,met, V olodymyrZelensky) triple.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 253–269, 2022.
https://doi.org/10.1007/978-3-031-06981-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_15

254 M. Nayyeri et al.

Knowledge Graph Embedding (KGE) models have shown high performance for
KG completion. A KGE model usually maps the entities and relations into a d
dimensional vector space (e.g. Rd). The plausibility of a triple (h, r, t) is measured
via a score function f(h, r, t). In this way, a KGE model performs the KG com-
pletion task by replacing the potential entities or relations in incomplete triple pat-
terns. After measuring the plausibility, the triples with high scores are regarded to
be likely true and can be added to the KG for completing it or undergoing further
human inspection. This is a widely used approach for major KGE models that are only
designed for triple-based KGs. However, important semantic aspects of some facts are
neglected when not considering Spatio-temporal aspects. For example, for the triple
(PrinceWilliam,met, V olodymyrZelensky) it would be highly relevant to know
the location and time of the meeting. We found that at least 13% of the resources in
DBpedia fall into this category where triples are connected to additional information
via time, location, or both.

Fig. 1. Spatio-temporal treated by KGEs.

However, the existing KGE models often
only consume triples and are not capable of
exploiting the additional spatial and temporal
dimension of facts. Recent attempts in temporal
knowledge graph embeddings advance consider-
ation of temporal aspects [31], but do not con-
sider spatial information. In those models, facts
are then represented as quadruples (h, r, t, τ)
where τ is the temporal information. Therefore,
the respective models are capable to complete
quadruples of the form (?, r, t, τ), (h, ?, t, τ)
or (h, r, ?, τ), (h, r, t, ?). However, none of the
current models can directly consider spatial
information. Spatio-temporal facts can be rep-
resented as a quintuple (h, r, t, l, τ) where l
reflects the location information (spatial). Such
quintuples, e.g. (PrinceWilliam,met, V olodymyrZelensky, 2020, UK), can simul-
taneously associate time and space information to a given fact. As shown in Fig. 1 time
and location are excluded from most current KGE models and thus potentially valuable
Spatio-temporal information remains unused for completion tasks. This might in turn
reduce the performance as well as the meaningfulness and interpretability of machine
learning results. Therefore, we propose a family of KGE models to fully exploit the spa-
tial and temporal information for KG completion. We specifically take advantage of the
4D algebra of hypercomplex vectors to complete a quintuple representation in the form
(?, r, t, l, τ), (h, ?, t, l, τ), (h, r, ?, l, τ), (h, r, t, ?, τ) or (h, r, t, l, ?). This is especially
suitable because for each incomplete quintuple, four of the five elements are always
present. All of these four elements (entity (h or t), relation r, location l, time τ) are
assumed to be mutually independent which will be represented by 4 orthogonal bases.
In this work, we employ the Dihedron algebra, which is a rich 4D algebra of hyper-
complex spaces and provides a well-suited theoretical foundation for the embedding
of quintuples considering time and location aspects. Our contributions are as follows:
We present a) a family of novel KGE models using Dihedron algebra to capture Spatio-

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 255

temporal information, b) a technique that allows existing KGE models to be adapted to
include Spatio-temporal information, c) a geometric interpretation of the used algebra
for the problem of encoding Spatio-temporal information, d) several Spatio-temporal
KGs (ST-KGs) derived from YAGO3K, DBpedia34K, and WikiData53K.

2 Related Work

Static Knowledge Graph Embedding Most existing KGE models learn over KGs con-
taining triples of the form (h, r, t). One of the primary KGE models is TransE [2]. For
a given positive triple, TransE represents a relation r as translation from head to tail
i.e. h + r = t where h, r, t are embedding vectors of head, relation and tail. In order
to address the limitations of TransE in encoding various relational patterns such as sym-
metry, transitivity etc., several variants of TransE have been proposed such as TransH
[28], TransR [18], TransD [8] etc. In RotatE, each relation is represented as a rotation
in the complex space. Due to algebraic characteristics of rotation, e.g. a) every rota-
tion matrix has a unique inverse, b) composition of two rotation matrices is a rotation
matrix, this model can encode various relational patterns such as inversion and com-
position [24]. The ComplEx model embeds KGs into a complex vector space which
together with N3 regularization as in ComplEx-N3, has become one of the state of
the art KGE models [13,26]. ComplEx and ComplEx-N3 efficiently model symmetric
and anti-symmetric patterns. QuatE extends ComplEx to Quaternion vector represen-
tation and obtains state-of-the-art results on link prediction over static KGs when it is
combined with N3 regularization i.e. QuatE-N3 [33]. The matrix representation from
Dihedral groups [30] has been used for modeling each relation of a KG to represent var-
ious patterns such as skew-symmetric, inversion, and composition in static KGs. There
are several other static KGE models that can be found in [3,9,17,21].

Temporal Knowledge Graph Embedding Temporal Knowledge Graph Embedding
(TKGE) models focus on dynamic KGs with an additional temporal part. In this way,
triple-based representation is formed as quadruple. Most of the early TKGE models have
been built on top of the already existing KGEs. The HyTE [4] model is one of the early
TKGEs that first projects the head, relation, and tail embeddings to the space of the
timestamp. Furthermore, for the final scoring of the newly predicted facts, it employs
TransE on the projected embeddings. There are several other TKGEs which have been
proposed as extensions of TransE such as TTransE [14] and TA-TransE [6]. HyTE and
other extensions do not consider any hypercomplex algebraic aspects that could let the
model cover the spatial information beside the temporal ones. The other state of the art
model among TKGEs is the ConT model that is an extension of the Tucker [1] KGE.
There are also several extensions of DisMult [32] that were proposed for encoding of
temporal KGs such as TDistMult [19] and TA-DistMult [6]. These models are based
on recurrent neural network (RNNs) that captures the entity embeddings for head and
tail parts. RE-NET is another RNN-based TKGE that captures pair-wise knowledge in
the form of (head, relation) or (tail, relation) by using specific patterns from the histor-
ical information between entities [10]. However, none of these extensions exploits the
algebraic aspects of the embedding models or attempts to consider the spatial aspects.

256 M. Nayyeri et al.

Another issue of these models is that all of them inherit the problems of the underly-
ing base models on top of which they are extended. For example, the TKGEs that were
built on top of TransE suffer from encoding of certain relational patterns. The TeRo
model [31] has been recently proposed to overcome such problems of the already exist-
ing TKGEs on inference of relational patterns. Although TeRo solves the limitation of
other models to some extend, it does not leverage the characteristics of hypercomplex
spaces, also does not target ST-KGs. The TComplEx model [12] is temporal version of
ComplEx-N3, that obtained state-of-the art performance on link prediction over tempo-
ral KGs.

Other Works related to Spatio-Temporal In our work, a spatio-temporal context is
denoted as a combination of a location as cities or countries and a time slot with the gran-
ularity of year, e.g., Spain, 1982. It shall be noted that in other domains, the term “spatial”
also refers to the detailed geographical aspects of locations either with satellite infor-
mation or geo-coordinates information. There are different tracks of interdisciplinary
research related to the later meaning of spatial data such as geospatial artificial intel-
ligence (GeoAI) combining geography, earth science and artificial intelligence which
are not directly in the scope of our work [7,16,22]. In [34], a general framework for
analysing multi-source spatio-temporal data is given. Although, this approach is based
on KGEs, the meaning of spatial data lies in the urban data, land maps and satellite data.

3 Dihedron Algebra

Dihedron is a hypercomplex number system, extending complex number to 4D
space. The space is denoted by D. A Dihedron number d = xr1 + xii +
xjj + xkk ∈ D includes one real part xr and three imaginary parts xii,

xjj, xkk, where the bases are 1 =
[
1 0
0 1

]
, i =

[
0 1
1̄ 0

]
, j =

[
0 1
1 0

]
,k =

[
1 0
0 1̄

]
,

ā = −a, and the following equations hold i2 = 1̄, j2 = 1, k2 = 1, ij = k,
ij = k, jk = ī, ki = j, ji = k̄, kj = i, and ik = j̄. Some other mathematical
representations and operations are as follows:

Dihedron Matrix Representation A Dihedron number d ∈ D can be represented as the
following matrix form

q = xr1+ xii + xjj + xkk =
[
xr + xk xi + xj

x̄i + xj xr + x̄k

]
≡ (xr, xi, xj , xk) ≡

xr + vq, vq = (xi, xj , xk) ∈ R
3d q ∈ D.

Dihedron Product The Dihedron product (denoted by ⊗) between two Dihedron num-
bers qx, qy ∈ D is defined as follows

qz = zr1+ vqz = qx ⊗ qy = (xr1+ vqx) ⊗ (yr1+ vqy)
= (xryr − 〈vqx , vqy 〉)1+ (xrvqy + yrvqx) + vqx × vqy ,

(1)

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 257

where 〈vqx , vqy 〉 = xiyi − xjyj − xkyk, vqx × vqy =

⎡
⎣−xjyk + xkyj

xkyi − xiyk
xiyj − xyyi

⎤
⎦ .

The product incorporates all element factors into computation. We will explain the
advantage of this product in modeling spatio-temporal data in the next section.

4 Proposed Approach

Here, we introduce the proposed approach dubbed ST-NewDE based on Dihedron Alge-
bra. Let us assume the following fact “Prince William met Volodymyr Zelensky in UK in
2020.” that contains five parts namely subject (Prince William), relation (meet), object
(Volodymyr Zelensky), adverb of place (UK), and adverb of time (2020) . Incomplete-
ness occurs when one of the parts is missing at a time. In a ST-KG, those could be
seen as a quintuple in the form (?, r, t, l, τ), (h, ?, t, l, τ), (h, r, ?, l, τ), (h, r, t, ?, τ) or
(h, r, t, l, ?). One efficient way towards completing such a KG is to represent such
spatio-temporal queries in the vector space where four elements are embedded sepa-
rately in a real vector space. Then, each of those four parts are combined to build up
the query representation as 4D hypercomplex vectors. To complete the missing part ?,
we employ a rich 4D algebra of hypercomplex space named Dihedron that is used to
measure the similarity of the query and the plausible answers (i.e. possible entities for
object), while capturing the mutual correlation between each pair elements.

Spatio-Temporal KG Let us have a spatio-temporal KG K = {(h, r, t, l, τ)| h, t ∈
E , r ∈ R, l ∈ L, τ ∈ T }, where E ,R,L, T are entity, relation, location and time
dictionaries respectively.

Embedding Space Each entity (e = h, t), relation (r), location (l) and time (τ) are
embedded into d dimensional real vector space, shown in bold i.e. e, r, l, τ ∈ R

d. Note
that an entity (e ∈ E) plays both roles of subject (head h) or object (tail t) in a quintuple.
If an entity is in the subject role, the embedding is shown as h (t for subject role).
Incomplete Quintuples and Answers Given a quintuple {(h, r, t, l, τ), we split it into
two parts: incomplete quintuples (IQ) and answer (A) as shown in Table 1. In this way,

Table 1. Incomplete quintuples and their answers in spatio-temporal knowledge graphs.

IQ (?, r, t, l, τ) (h, ?, t, l, τ) (h, r, ?, l, τ) (h, r, t, ?, τ) (h, r, t, l, ?)

A h r t l τ

each incomplete quintuple contains four fixed parts. Because 4D spaces contain four
mutually orthogonal bases, they are the most suitable algebraic representation for such
quintuples with four fixed parts. Among 4D spaces, Dihedron and Quaternion are two
of the main and well-defined hypercomplex algebras [23,29]. Dihedron representation
covers a wider range of geometric shapes than the Quaternion in the 4D vector space.
Consequently, it is more expressive and thus better suited for encoding the complex
spatio-temporal incomplete quintuples in the 4D space. Figure 2 illustrates the flexibility

258 M. Nayyeri et al.

of Dihedron over Quaternion in a 4D vector space. From the geometric view point,
Dihedron algebra represents various hyperboloid models (two-sheet, one-sheet) as well
as conic surfaces and spheres. In this regard, we consider Dihedron algebra as a true
(well-suited) algebra for modeling complex spatio-temporal incomplete quintuples.

Fig. 2. Illustration of (a) Complex plane; (b) Quaternion space; (c) Dihedrons space.

Dihedron Representation of Incomplete Quintuples: We represent a 4D spatio-
temporal query (incomplete quintuples) of the form (h, r, ?, l, τ) as a d×4D vector in
a Dihedron space D

d i.e. q = h1 + ri + lj + τk, where q is the generalization of
complex numbers with three imaginary units i, j, k, and also we have h, r, l, τ ∈ R

d.
We specifically focus on Dihedron algebra where the detailed description was intro-
duced in previous section. Therefore, a Dihedron query is represented as follows

q = h1 + ri + lj + τk =
[
h + τ r + l
r̄ + l h + τ̄

]
≡ (h, r, l, τ) ≡

h + vq , vq = (r, l, τ) ∈ R
3d, q ∈ D

d.

Object Dihedron Completion of Quintuples: Here we show how the answers to the
above incomplete quintuples are computed by a KGE using Dihedron algebra. Let t
e.g. Volodymyr Zelensky be the answer of an incomplete quintuple (h, r, ?, l.τ) for a
query e.g. Whom Prince William (h) did meet (r) in 2020 (τ) in UK (l)?. In order to
complete the quintuple in the vector space, the similarity of the query (q) and its given
answer (t) is maximized. Here we use the Dihedron product (⊗) between the query
q and its answer t representations. Note that while the query q lies on the Dihedron
space, its answer t = e lies on the real space. To match these two representations
on the same space, we add three real auxiliary (tx, ty , tz) vectors to tail embedding
i.e. t = e1 + vt, vt = txi + ty j + tzk. Using two representations for an entity e
according to its role (head h = e or tail t = e1 + vt) enables our model to differenti-
ate between each roles. Such representations facilitate efficient capturing of the natural
role of entities per each triple for the underlying KG. After matching the spaces, now,
we can apply the Dihedron product to measure the plausibility of tail t to be the answer
of the query q. This leads us to define the score function as

S(q, t) = −‖s1 + vs‖, (2)

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 259

where
s1 + vs = q ⊗ t = (h1 + vq) ⊗ (e1 + vt), (3)

s = h.e − vq .vt , vs = hvt + evq + vq × vt , vq .vt = rtx − lty − τtz ,

vq × vt =

⎡
⎣−ltz + τty

τ tx − rtz

rty − ltx

⎤
⎦ .

(4)

The advantage of Eq. 2 is its efficiency in memory and time due to representing query
and answer separately in Dihedron space while to compute the query, no mathematical
operation (e.g., addition/subtraction/multiplication) are used. All operations are done in
the query answering phase which reduces the complexity significantly.

Subject Dihedron Completion of Quintuples: The previous formulation for incom-
plete quintuple representation and their corresponding answers was used when tail
(object) was queried i.e. (h, r, ?, l, t). Here we present our formulation for an incom-
plete quintuple and its answer where the head (subject) is queried i.e. (?, r, t, l, τ).
Let us assume that, the example question is Who met with Volodymyr Zelensky in
UK in 2020? and the answer is Barack Obama. We first use the common approach
from [13] of augmentation on the KG by adding reverse relations (here reverse quintu-
ples) (t, r−1, h, l, τ) for each quintuple (h, r, t, l, τ) present in the KG (train set). During
testing, we use the reverse quintuple as following q = t 1 + r−1i + lj + τk, and the
answer for this Dihedron representation is the following h where entity is attached with
three auxiliary vectors i.e., h = e1 + hxi + hyj + hzk. In this way, we preserve
the basis of entity (1), relation (verb) (i), adverb of location (j) and adverb of time (k)
regardless of head (subject) or tail (object) Incomplete Quintuples.

Mathematical Interpretation We highlight the advantages of our formulation from
various mathematical view points namely Spatio-temporal coordinate representation,
Capturing Spatio-temporal and Relational Correlations and Geometric Interpretation.
Spatio-temporal Coordinate. We represent a query with q = h1 + ri + lj + τk =
h1 + vq , vq = (r, l, τ) ∈ R

3d, q ∈ D
d. In this representation, we assign distinct

coordinate bases to each of the distinct quintuple elements i.e. h, r, l, τ (i, j, k in Fig. 2
part (c)). This is consistent with the nature of KGs where entity, relation, location and
time are four distinct components. It is noteworthy that the orthogonality of bases in
Dihedron space is related to the position of elements of a quintuple pattern which affects
the order of the elements in 4D Dihedron space corresponding to 1, i, j, k, and it is not
related to the embedding vectors h, r, τ, l. In addition, this representation enables the
head entity (h) to move towards the tail entity (t), by using the vector vq. In order
to determine the direction of movement, the vq vector is not only dependent on the
relation, but also on the location and time adverbs.

Capturing Spatio-Temporal and Relational Correlations While entity, relation, loca-
tion and time are considered as orthogonal bases in the Dihedron space, the correlation
between i) head entity-(relation, location, time) (hvt), ii) tail entity-(relation, location,
time) (evq), iii) head-tail entity (he), iv) relation-location rty , v) relation-time (rtz),
vi) location-time (ltz), vii) location-relation (ltx), viii) time-relation (τtx), etc. are
involved in final score calculation. Such comprehensive correlation capturing is enabled

260 M. Nayyeri et al.

by properly formulating the query and the answer and efficiently using the Dihedron
product in score calculation (see Eq. 2, 3, 4).

Geometric Interpretation (Two/Three Dimensional Subalgebras of D) Without
loss of generality, let d = 1 be the length of a Dihedron h1 + ri + lj + τk is
h2 + r2 − l2 − τ2 = c where c is a constant value. This representation is rich in
terms of geometry and covers the following geometric objects (see part (c) of Fig. 2):

i Circle: Let us fix (−l2 − τ2) in h2 + r2 − l2 − τ2 = c to a constant v alue as
−c21. We then have a circle of the form h2 + r2 = c2, c2 = c + c21.

ii Two Sheet Hyperboloid: Let us then fix h2 to a constant value c22. Therefore,
r2 − l2 − τ2 = c − c22. If c − c22 < 0, then the object is one sheet Hyperboloid.

iii One Sheet Hyperboloid: In the previous representation, if c − c22 > 0, the object is
two sheet Hyperboloid.

iv Conical Surface: Following the above definition for r2 − l2 − τ2 = c, if c−c22 =
0, then the object is then conical surfaces.

Regarding the mentioned advantages, our proposed model is capable of efficiently
embedding the spatio-temporal KGs into a well-suited geometric space. For the other
incomplete quintuples (h, r, t, ?, τ), (h, r, t, l, ?) that were not discussed here, the same
approach is followed. We add the potential location or time of the query part in the
Eq. 4 and then compute the score using Eq. 2. If the resulted score is high, the selected
location or time leads to a plausible quintuple.

5 Experiments

Here, we provide evaluation of our model against the adapted models for ST KGs. Base-
line Models. We compare our model with several baselines and state-of-the-art KGE
models. Overall, there are three categories of KGE models selected for comparison.
Static KGE Models. Many KGE models learn over triples. The TransE [2] model has
been widely used as baseline for KGEs. Although this model is simple, it obtained high
performance in link prediction task on several benchmark KGs. RotatE [24] is another
model that uses self-adversarial negative sampling that led to obtain state-of-the art per-
formance on the distance based class of embeddings (i.e. the models that use distance
function in their score functions). In order to have a fair comparison, we train this model
without using self-adversarial negative sampling (in same setting as ours). The ComplEx
model trained with N3 regularization [13] got state-of-the-art performance in most of
the used static KGs. To have a fair comparison, we trained all the models (including our
models and their competitors) using N3 regularization. QuatE [33] took the advantage
of the Quaternion space and obtained state-of the-art performance with N3 regulariza-
tion. Temporal KGE Models. There is less research on the topic of temporal KGEs in
comparison to the work done on static KGEs. However, there are several strong baseline
methods for temporal KGEs. Similar to ComplEx-N3, temporal version of this model
obtained state-of-the art performance on link prediction over temporal KGs. Therefore,
we chose TComplEx [12] that was trained with N3 regularization, as a competitor. For
other models, we extended the three state of the art KGE models (TransE, RotatE,
and QuatE) in terms of capability of encoding temporal aspects. Therefore, T-TransE,

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 261

T-RotatE and T-QuatE are our extension over existing static KGE models for temporal
embedding. The formulation of the models are specified in the Table 2.

Spatio-Temporal KGE Models We are not aware of any knowledge graph embed-
ding model over spatio-temporal KGs (ST KGs). Therefore, we extended the formula-
tion of the above-mentioned static and temporal KGE models to learn over ST KGs.
ST-TransE, ST-RotatE, ST-ComplEx, ST-QuatE are the resulting models. Their charac-
teristics and formulations are included in Table 2.

Table 2. Specification of baseline and state of the art KGE models.“Ours” denote our proposed
models which are mostly extensions of already existing models for temporal and ST-KG embed-
dings. DyHE, T-DyHE and ST-DyHE are models we propose for the ablation study on the effect
of translation and rotation in Dihedron space for static, temporal and spatio-temporal KGEs. Note
that r1, r2 are Dihedron rotation and translation vectors. The symbols ◦, ⊗H and ⊗D denote the
complex, Hamilton and Dihedron products, respectively. Re(.) refers to the real part of complex
numbers. (T-L) refer to time and location. r1,2 = r1 + r2

Model (T-L) Score function Pattern Embeddings

TransE [2] (✗-✗) −‖q − t‖ q = h + r q, h, r, t ∈ R
d

T-TransE (ours) (�-✗) −‖q − t‖ q = h + r + τ q, h, r, t, τ ∈ R
d

ST-TransE (ours) (�-�) −‖q − t‖ q = h + r + l + τ q, h, r, t, τ, l ∈ R
d

RotatE [24] (✗-✗) ‖q − t‖ q = h ◦ r q, h, r, t ∈ C
d

T-RotatE (ours) (�-✗) −‖q − t‖ q = h ◦ r ◦ τ q, h, r, t, τ ∈ C
d

ST-RotatE (ours) (�-�) −‖q − t‖ q = h ◦ r ◦ l ◦ τ q, h, r, t, τ, l ∈ C
d

ComplEx [26] (✗-✗) Re(q × t̄) q = h × r q, h, r, t ∈ C
d

T-ComplEx [12] (�-✗) Re(q × t̄) q = h × r × τ q, h, r, t, τ ∈ C
d

ST-ComplEx (�-�) Re(q × t̄) q = h × r × l × τ q, h, r, t, l, τ ∈ C
d

QuatE [33] (✗-✗) Re(q ⊗H t̄) q = h ⊗H r q, h, r, t ∈ Q
d

T-QuatE (ours) (�-✗) Re(q ⊗H t̄) q = h ⊗H r ⊗H τ q, h, r, t, τ ∈ Q
d

ST-QuatE (ours) (�-�) Re(q ⊗H t̄) q = h ⊗H r ⊗H l ⊗H τ q, h, r, t, l, τ ∈ Q
d

DyHE (ours) (✗-✗) −‖q − t‖ q = h ⊗D r1,2 q, h, r1,2, t ∈ D
d

T-DyHE (ours) (�-✗) −‖q − t‖ q = h ⊗D r1,2 + τ q, h, r1,2, t, τ ∈ D
d

ST-DyHE (ours) (�-�) −‖q − t‖ q = h ⊗D r1,2 + τ + l q, h, r1,2, t, l, τ ∈ D
d

Spatio-Temporal Knowledge Graphs We constructed three spatio-temporal KGs. The
distribution shown in Fig. 3 depicts that temporal aspects mostly appear after year 1900.
Former to this time, there is a steady number of temporal information.

We formed quintuples from YAGO [25] dataset namely YAGO3K by extracting
triples with time and location information. Our initial analysis suggested that spatio-
temporal information is connected to specific relations (i.e., wroteMusicFor, created).
We have worked with YAGO3-10 [20] used in ConvE [5]. The training set of YAGO3-
10 has 107,9040 triples. After extraction of time and location, we ended up with a total
number of 9734 quintuples with 3619 entities, 8 relations, 422 locations and 195 time.
We also constructed quintuples from DBpedia and Wikidata using dedicated SPARQL
queries on the respective public SPARQL endpoints. The datasets are named DBpe-
dia34K & WikiData53K. We utilize the DBpedia release of January 2021 which contains

262 M. Nayyeri et al.

more than 900 million triples1 and the Wikidata release of April 2021 which contains
more than 1.26 billion statements.2. In the case of DBpedia, it can be assumed that at least
13% of the resources have temporal and/or spatial references. For Wikidata a comparable
figure could not be determined because the number of resources in the knowledge base
is much higher. Despite the timeout errors, it is safe to say that spatio-temporal informa-
tion is abundant in both of the resources since we were able to extract a high number of
representative triples From DBpedia, we queried more than 82,000 quintuples compris-
ing information on multimedia items (books, music and movies), space missions, battles
or buildings. Similar to the DBpedia dataset, the Wikidata dataset also contains a high
number of quintuples (approx. 103,000). Overall, we gained 53849 number of entities,
and 8 relations from WikiData where 296 different locations is present in the data and
627 different time information. For the obtained dataset from DBpedia, we have 34604
entities and 7 relations with 5687 different locations and 896 time information.

Evaluation Metrics We use common metrics namely Mean Reciprocal Rank (MRR)
and Hits@k(k=1,3,10) for the evaluations. Here we explain each of the metrics. Given
a set of test quintuple of the form (h, r, t, l, τ), we first remove the head entity and
generate a query in the form of (?, r, t, l, τ). We then replace ? with all entities e′ in
the KG to generate ne number of quintuples (e′, r, t, l, τ), where ne is the number of
entities in the KG. We compute the score of each triple, and sort them to return the rank
of the original triple (h, r, t, l, τ). We denote the left rank by rl. With a similar proce-
dure, the right rank rr is computed by completion of the right query (h, r, ?, l, τ). The
average rank for the ith quintuple is computed by rai = rl+rr

2 . MRR is computed by
taking the average of the reciprocals from the ranks in the testing triples i.e.

∑nt

i=1
1
rai

where nt is the number of testing triples. Hits@k is the percentage of testing triples
that are ranked lower than k. For static and temporal KGE models, we used the follow-
ing queries (?, r, t), (h, r, ?) and (?, r, t, τ), (h, r, ?, τ) and present their ranking in the
Table 3. We additionally report the evaluation results on time and location completion
in the Table 4.

Evaluation Results We implemented3 all models using the Pytorch library. We used
full-cross entropy loss [26] with N3 regularization [13] for training each of the models.

Hyperparameter settings: A wide array of testing has been done based on searching
hyperparameters. The hyperparameters for which we achieved the best results are pro-
vided in Table 5. Throughout the experiments the Adam [11] optimizer has performed
well and is thus used majorly. The hyperparameters mentioned in Table 5 are provided
as d-dimension, B-Batch size, LR-Learning rate and R-regularization parameters.

In Table 6, we provide a selected list of incomplete quintuples that were used for
an ablation study between the models. As can be seen, the results on predicted answers
for each incomplete quintuple are fully correct by our proposed model where ComplEx
and ST-ComplEx were not capable of correct predictions. When the query is about
incompleteness of head or tail, we compared it to the ComplEx model as otherwise it

1 https://www.dbpedia.org/resources/latest-core/.
2 https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements?orgId=1&

refresh=30m.
3 https://github.com/mojtabanayyeri/Spatio-temporal-KGEs.

https://www.dbpedia.org/resources/latest-core/
https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements?orgId=1&refresh=30m
https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements?orgId=1&refresh=30m
https://github.com/mojtabanayyeri/Spatio-temporal-KGEs

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 263

Table 3. Head/Tail completion results. Models without prefix consume triples. Models with “T”
as prefix consume quadruples (triple plus time). Models with “ST” as prefix consume quintuple
(triple plus location and time). The best results are written bold.

YAGO3K DBpedia34K WikiData53K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TransE 0.561 0.496 0.689 0.454 0.415 0.519 0.245 0.152 0.451

T-TransE 0.709 0.676 0.779 0.501 0.475 0.544 0.396 0.337 0.538

ST-TransE 0.705 0.670 0.775 0.500 0.451 0.577 0.565 0.546 0.599

RotatE 0.564 0.503 0.688 0.461 0.425 0.521 0.246 0.153 0.458

T-RotatE 0.700 0.679 0.736 0.505 0.487 0.534 0.356 0.283 0.525

ST-RotatE 0.682 0.668 0.702 0.428 0.412 0.455 0.523 0.486 0.588

ComplEx 0.562 0.501 0.686 0.462 0.427 0.523 0.250 0.154 0.464

T-ComplEx 0.702 0.674 0.753 0.500 0.482 0.529 0.376 0.306 0.539

ST-ComplEx 0.689 0.668 0.727 0.450 0.424 0.497 0.532 0.495 0.594

QuatE 0.564 0.503 0.685 0.460 0.425 0.519 0.249 0.156 0.459

T-QuatE 0.694 0.675 0.722 0.500 0.481 0.531 0.358 0.285 0.525

ST-QuatE 0.690 0.675 0.714 0.502 0.485 0.528 0.515 0.478 0.576

DyHE 0.563 0.503 0.684 0.460 0.426 0.518 0.243 0.152 0.448

T-DyHE 0.715 0.684 0.775 0.516 0.487 0.564 0.377 0.318 0.517

ST-DyHE 0.704 0.665 0.779 0.485 0.427 0.583 0.568 0.550 0.599

ST-NewDE 0.708 0.682 0.758 0.536 0.500 0.598 0.572 0.556 0.603

Table 4. Location/Time completion results. The best results are written bold.

Location Completion (h, r, t, ?, τ)

YAGO3K DBpedia34K WikiData53K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

ST-TransE 0.349 0.083 0.903 0.245 0.045 0.633 0.321 0.008 0.838

ST-NewDE 0.352 0.114 0.920 0.354 0.094 0.797 0.582 0.231 0.970

Time Completion (h, r, t, l, ?)

YAGO3K DBpedia34K WikiData53K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

ST-TransE 0.249 0.024 0.620 0.271 0.082 0.571 0.075 0.006 0.198

ST-NewDE 0.580 0.241 0.958 0.432 0.151 0.792 0.162 0.020 0.514

Fig. 3. Distribution of temporal information in YAGO3K and WikiData53K.

264 M. Nayyeri et al.

Table 5. Hyperparameter settings. Models without prefix consume triples. In this Table d = emb
dimension, B = Batch size, LR = Learning rate, R = regularization parameter.

YAGO3K DBpedia34K WikiData53K

d B LR R d B LR R d B LR R

TransE 100 100 0.001 10e-11 100 100 0.001 0.001 100 100 0.001 10e-11

T-TransE 100 100 0.001 0.01 100 100 0.001 0.01 100 100 0.001 0

ST-TransE 100 100 0.001 0 100 100 0.001 0.001 100 100 0.001 0.001

RotatE 100 100 0.001 0.1 100 100 0.001 0.1 100 100 0.001 0.001

T-RotatE 100 100 0.001 0.01 100 100 0.001 0.1 100 100 0.001 0.001

ST-RotatE 100 100 0.001 0.1 100 100 0.001 0.1 100 100 0.001 0

ComplEx 100 100 0.001 0.01 100 100 0.001 0.01 100 100 0.001 10e-11

T-ComplEx 100 100 0.001 0.01 100 100 0.001 0.1 100 100 0.001 0.001

ST-ComplEx 100 100 0.001 0.001 100 100 0.001 0 100 100 0.001 0.001

QuatE 100 100 0.001 0.1 100 100 0.001 0.01 100 100 0.001 0.01

T-QuatE 100 100 0.001 0.001 100 100 0.001 0.1 100 100 0.001 0.001

ST-QuatE 100 100 0.001 0.01 100 100 0.001 0 100 100 0.001 0.001

DyHE 100 100 0.001 0.01 100 100 0.001 0.1 100 100 0.001 0.1

T-DyHE 100 100 0.001 0.01 100 100 0.001 0.1 100 100 0.001 0.1

ST-DyHE 100 100 0.001 0 100 100 0.001 0.1 100 100 0.001 0.01

ST-NewDE 100 100 0.001 0.001 100 100 0.001 0.001 100 100 0.001 0

Table 6. Example of ablation study results on predicted answers for incomplete quintuples over
three datasets of YAGO3K, DBpedia34K, and WikiData53K. The correct objects are written
bold.

Dataset Query on head or tail parts ST-NewDE ComplEx

WikiData53K (Philip Guston, creatorOf, ?, United States, 1972) Late Afternoon Jules Olitski

DBpedia34K (Santiago Calatrava, architectOf, ?, Maroussi, 1982) Olympic Stadium (Athens) SoFi Stadium

YAGO3K (?, created, Ulysses (movie), Italy, 1955) Ennio de Concini Lasse Hallstroem

Dataset Query on location or time parts ST-NewDE ST-ComplEx

WikiData53K (Edward Witten, awardReceived, Alan T. Waterman Award, ?, 1982) United States Spain

DBpedia34K (Nikolai Nekrasov, authorOf, Korobeiniki (poem), ?, 1861) Russia Serbia

YAGO3K (Richard Harvey, wroteMusicFor, Animal Farm (movie), United States, ?) 1999 2010

does not consume spatial or temporal parts. For the queries about the spatial or temporal
parts, we compared our model ST-NewDE against ST-ComplEx. In all of the studied
cases, the ST-NewDE model predicts the correct matches.

Result Analysis: Regarding Table 3, for YAGO3K in terms of MRR and Hits@1 our
model T-DyHE performed better than others by achieving MRR and Hits@1 scores
of 0.715 and 0.684 respectively. Our other model ST-NewDE achieved a very similar
score (0.682). By observing the results on DBpedia34K, it can be stated that, our model
T-DyHE performed better by achieving higher MRR (0.516) and Hits@1 (0.487). ST-
NewDE performed even better and outperformed others in terms of these two metrics
by achieving MRR score of 0.500. In terms of Hits@10 ST-NewDE outperformed the
other state of the art models by scoring 0.598 Hits@10. ST-DyHE and ST-NewDE also

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 265

Fig. 4. Entity clustering w.r.t time. Fig. 5. Time clustering w.r.t year.

Fig. 6. Effect of d on ST-NewDE. Fig. 7. Effect of R on ST-NewDE.

outperformed other models by achieving better accuracy in terms of MRR, Hits@1 and
Hits@10. In case of our models, the best performing accuracy are marked in bold. In
case of other models we have highlighted the better scores by underlining. Overall, in
most of the cases, considering temporal part improves the performance of the triple-
based models. In other words, for the queries of the form (h, r, ?), (?, r, t), adding tem-
poral information leads to a more accurate prediction. Similarly, adding the spatial and
temporal information simultaneously, improves the accuracy of head or tail prediction
even higher than other results (in most of the cases). In addition, this shows the way
that time and location information is formulated in a model, has a direct impact on
the results. Embedding temporal and spatial information in Dihedron space obtains a
higher performance than Quaternion space, although both spaces are 4D. For exam-
ple, on WikiData53K, ST-DyHE outperformed ST-QuatE (e.g. 0.515 vs 0.568 Hits@1).
Moreover, in Dihedron space, ST-NewDE outperforms ST-DyHE in most of the cases.
This is due to a more elegant formulation in the same space (Dihedron). While com-
bining various transformations such as translation/rotation in Dihedron space (DyHE)
obtains a higher performance than other models and spaces, our main formulation (ST-
NewDE) obtains the highest accuracy in most cases. This confirms that the inclusion of
all four parts namely entity (head and tail), relation, location and time provides orthog-
onal bases of the Dihedron space and computes the scores based on Dihedron product.
This further reinforces the hypothesis that not only Spatio-temporal transformations are
important, but also the Spatio-temporal geometric representation has a high impact on
efficiently exploiting the location/time information. This design of the KGE models

266 M. Nayyeri et al.

Fig. 8. Location clustering on YAGO3K.

leads to a more efficient formulation of the score function that works for such spatio-
temporal data and outperforms other models. Such formulation has strong mathemat-
ical and geometric interpretation (discussed in method section). In addition to entity
completion, we report the results of our model ST-NewDE and the best performing
competitor ST-TransE. As shown in the Table 4, for completing the queries of the form
(h, r, t, l, ?) and (h, r, t, ?, τ), our model outperformed ST-TransE in all the used met-
rics. Such observation shows the efficiency of our model in head, tail, location, and
time predictions. Note that like most of existing KGE models, our models can perform
predictions on entities, relations, locations, and times that are seen during the training
process. We consider inductive Spatio-temporal KGEs for the prediction of elements
that are not given during training as future work. Regarding the number of parameters,
it is noteworthy that ST-NEwDE has slightly fewer parameters than ST-TransE, and
ST-DyHE has slightly more parameters than ST-TransE. Overall, the models have a
very close number of parameters and their differences mainly come from the varying
number of relation parameters which is significantly lower than the number of entity
parameters.

Clustering Figure 4 depicts an ablation study on the clustering ability of our model.
The quintuples are divided into three time categories of old (1910 - 1950) in orange,
medium-old (1959 - 1990) in green, and recent (1990 - 2020) in blue. The results are
generally “reasonable” and distinct while the overlapping parts belong to the cases with
same head or tail entities appearing in different time periods. The dense cluster in the
left side is caused by a high number of overlaps in the head or tail of the triples that
belong to all the time categories.

The Fig. 5 illustrates the clustering ability of ST-NewDE over temporal part of the
quintuples. For visualization purposes, each block of subsequent 20 years are grouped
in one interval cluster. By using t-SNE, we visualize time embeddings in 2D space.
First, our model puts all time points of the same 20-years block (1900–1920) in the

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 267

same cluster and embeds the neighboring temporal intervals closely while the tempo-
ral order is preserved. Therefore, together with high performance in accuracy and the
distinguished clustering results, we conclude that ST-NewDE efficiently captures the
similarity of temporal part. As of ST-NewDE, it captured the location information or
spatio-temporal part. As shown in Fig. 8, our model mainly embeds neighboring loca-
tions closely e.g., India, Nepal, Pakistan as well as cities in Germany (Freiburg, Ham-
burg).

Ablation Study on Dimension Here, we analyze the effect of dimension on the per-
formance of ST-NewDE. In Table 3, we set d = 100 for all models. To have a fair
comparison, we divided the used dimension relative to the space in which the models
were designed. For Dihedron- and Quaternion-based models (4D algebra), we divided
the dimension by four i.e. combination of all four parts will be 100 dimension. Sim-
ilarly, for the models designed in complex vector space (e.g., ComplEx), we divided
the dimension by two. For the ones in real space (e.g., TransE), we divided the dimen-
sion by one. Therefore, the performance improvement is assured not to be affected
by other factors but only the core formulation. We experimented ST-NewDE with
d = {8, 32, 64, 128, 256, 512}, and the other hyperparameters have been fixed. Figure 6
shows that by increasing the dimension on Wikidata53K, the performance improves
quickly and then converges.

Ablation Study Regularization As can be seen in Fig. 7, we provided a study
on the effect of regularization on the performance of ST-NewDE in Wikidata53K.
According to Table 5, we noticed that the choice of regularization is important for
improving the model performance. For some of the models such as DyHE, using
a high value of regularization, improved the performance. In term of other mod-
els such as ST-NewDE, choice of a smaller regularization led to a better perfor-
mance. We experimented the model with the following values for regularization
[0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001]. As shown, smaller regular-
ization values obtain better performance than higher values. This shows that our model
works well even without the N3 regularization.

6 Conclusion

In this paper, we address the problem of current KGE models performing on spatio-
temporal KGs. We specifically proposed a family of embedding models which take
advantage of the Dihedron algebra. The models were analysed in terms of the math-
ematical and geometric interpretations. We showed that our model facilitates Spatio-
temporal coordinate representation and captures Spatio-temporal and relational depen-
dencies. With these characteristics, the Dihedron-based KGE approach is capable of
efficiently embedding spatio-temporal information into a rich geometric space. We addi-
tionally adapted the already exiting models to be able to encode spatio-temporal data.
Our experiments on the subset of three public knowledge bases YAGO3K, DBpedia34K
and WikiData53K showed that our approach usually achieves significantly higher per-
formance than the extended state-of-the-art KGE models with time- or location-specific
information. While our models predict entities, location, and time points which have
been seen during training, we consider the prediction of unseen elements as future work.

268 M. Nayyeri et al.

Acknowledgement. We acknowledge the support of the following projects: SPEAKER (BMWi
FKZ 01MK20011A), JOSEPH (Fraunhofer Zukunftsstiftung), the EU projects Cleopatra (GA
812997), PLATOON(GA 872592), TAILOR(EU GA 952215), CALLISTO(101004152), the
BMBF projects MLwin(01IS18050) and the BMBF excellence clusters ML2R (BmBF FKZ 01
15 18038 A/B/C) and ScaDS.AI (IS18026A-F).

References

1. Balažević, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowledge graph
completion. arXiv preprint (2019). arXiv:1901.09590

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Neural Information Processing Systems (NIPS),
pp. 1–9 (2013)

3. Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic
knowledge graph embeddings. In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 6901–6914 (2020)

4. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge
graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2001–2011 (2018)

5. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph
embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32
(2018)

6. Garcı́a-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal
knowledge graph completion. arXiv preprint (2018). arXiv:1809.03202

7. Hobbs, J., Blythe, J., Chalupsky, H., Russ, T.A.: A survey of geospatial resources, represen-
tation and reasoning. Public Distribution of the University of Southern California (2006)

8. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping
matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (vol.
1: Long Papers), pp. 687–696 (2015)

9. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: repre-
sentation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. (2021)

10. Jin, W., Zhang, C., Szekely, P., Ren, X.: Recurrent event network for reasoning over temporal
knowledge graphs. arXiv preprint (2019). arXiv:1904.05530

11. Kingma, D.P., Adam, J.Ba.: A method for stochastic optimization. arXiv preprint (2014).
arXiv:1412.6980

12. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base
completion. arXiv preprint (2020). arXiv:2004.04926

13. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge
base completion. In: International Conference on Machine Learning, pp. 2863–2872. PMLR
(2018)

14. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Pro-
ceedings of the Web Conference 2018, pp. 1771–1776 (2018)

15. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from
wikipedia, vol. 6, pp. 167–195 (2015, IOS Press)

16. Leidner, J.L.: A survey of textual data & geospatial technology. In: Werner, M. (ed.) Hand-
book of Big Geospatial Data, pp. 429–457. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-55462-0 16

17. Li, Z., Liu, H., Zhang, Z., Liu, T., Xiong, N.N.: Learning knowledge graph embedding with
heterogeneous relation attention networks. IEEE Trans. Neural Netw. Learn. Syst. (2021)

http://arxiv.org/abs/1901.09590
http://arxiv.org/abs/1809.03202
http://arxiv.org/abs/1904.05530
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2004.04926
https://doi.org/10.1007/978-3-030-55462-0_16
https://doi.org/10.1007/978-3-030-55462-0_16

Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion 269

18. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowl-
edge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 29 (2015)

19. Ma, Y., Tresp, V., Daxberger, E.A.: Embedding models for episodic knowledge graphs. J.
Web Semant. 59, 100490 (2019)

20. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilingual
wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Con-
ference (2014)

21. Nayyeri, M., Vahdati, S., Aykul, C., Lehmann, J.: 5* knowledge graph embeddings with
projective transformations. arXiv preprint (2020). arXiv:2006.04986

22. Qian, T., Liu, B., Nguyen, Q.V.H., Yin, H.: Spatiotemporal representation learning for
translation-based poi recommendation. ACM Trans. Inf. Syst. (TOIS) 37(2), 1–24 (2019)

23. Rotman, J.J.: Advanced Modern Algebra, vol. 114. American Mathematical Soc, New York
(2010)

24. Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: Rotate: knowledge graph embedding by relational
rotation in complex space. arXiv preprint (2019). arXiv:1902.10197

25. Pellissier Tanon, T., Weikum, G., Suchanek, F.: YAGO 4: a reason-able knowledge base. In:
Harth, A. (ed.) ESWC 2020. LNCS, vol. 12123, pp. 583–596. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49461-2 34

26. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080.
PMLR (2016)

27. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10), 78–85 (2014)

28. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyper-
planes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

29. Wildberger, N.J.: The geometry of the dihedrons (and quaternions). https://www.youtube.
com/watch?v=qcmH0iKRF2w&t=1569s. Accessed 11 June 2021

30. Xu , C., Li, R.: Relation embedding with dihedral group in knowledge graph. arXiv preprint
(2019). arXiv:1906.00687

31. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: A time-aware knowledge graph
embedding via temporal rotation. arXiv preprint (2020). arXiv:2010.01029

32. Yang, B., Yih, W.-T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning
and inference in knowledge bases. arXiv preprint (2014). arXiv:1412.6575

33. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. arXiv preprint
(2019). arXiv:1904.10281

34. Zhao, L., Deng, H., Qiu, L., Li, S., Hou, Z., Sun, H., Chen, Y.: Urban multi-source spatio-
temporal data analysis aware knowledge graph embedding. Symmetry 12(2), 199 (2020)

http://arxiv.org/abs/2006.04986
http://arxiv.org/abs/1902.10197
https://doi.org/10.1007/978-3-030-49461-2_34
https://doi.org/10.1007/978-3-030-49461-2_34
https://www.youtube.com/watch?v=qcmH0iKRF2w&t=1569s
https://www.youtube.com/watch?v=qcmH0iKRF2w&t=1569s
http://arxiv.org/abs/1906.00687
http://arxiv.org/abs/2010.01029
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1904.10281

Hierarchical Topic Modelling
for Knowledge Graphs

Yujia Zhang1(B) , Marcin Pietrasik1 , Wenjie Xu1 ,
and Marek Reformat1,2

1 University of Alberta, 9211-116 Street, Edmonton, Canada
{yujia10,pietrasi,wx4,reformat}@ualberta.ca

2 University of Social Sciences, 90-113 �Lódź, Poland

Abstract. Recent years have demonstrated the rise of knowledge graphs
as a powerful medium for storing data, showing their utility in academia
and industry alike. This in turn has motivated substantial effort into
modelling knowledge graphs in ways that reveal latent structures con-
tained within them. In this paper, we propose a non-parametric hier-
archical generative model for knowledge graphs that draws inspiration
from probabilistic methods used in topic modelling. Our model discov-
ers the latent probability distributions of a knowledge graph and orga-
nizes its elements in a tree of abstract topics. In doing so, it provides a
hierarchical clustering of knowledge graph subjects as well as member-
ship distributions of predicates and entities to topics. The main draw of
such an approach is that it does not require any a priori assumptions
about the structure of the tree other than its depth. In addition to pre-
senting the generative model, we introduce an efficient Gibbs sampling
scheme which leverages the Multinomial-Dirichlet conjugacy to integrate
out latent variables, making the posterior inference process adaptable to
large datasets. We quantitatively evaluate our model on three common
datasets and show that it is comparable to existing hierarchical cluster-
ing techniques. Furthermore, we present a qualitative assessment of the
induced hierarchy and topics.

Keywords: Knowledge graphs · Hierarchical clustering ·
Non-parametric model · Generative model

1 Introduction

Knowledge bases have received considerable research attention in recent years,
demonstrating their utility in areas ranging from question answering [8,11]
to knowledge generation [9,12,29] to recommender systems [4]. These knowl-
edge bases are underpinned by graph structures called knowledge graphs which
describe facts as a collection of triples that relate two entities via a predicate.
Advances in artificial intelligence have spurred on the need to find represen-
tations of knowledge graphs which can be easily and accurately reasoned with

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 270–286, 2022.
https://doi.org/10.1007/978-3-031-06981-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_16&domain=pdf
http://orcid.org/0000-0001-6661-8901
http://orcid.org/0000-0001-7559-8658
http://orcid.org/0000-0002-0627-6919
http://orcid.org/0000-0003-4783-0717
https://doi.org/10.1007/978-3-031-06981-9_16

Hierarchical Topic Modelling for Knowledge Graphs 271

by machines. One aspect of this is the increased research attention devoted to
generative models for knowledge graphs which learn the latent probability dis-
tributions of a graph. These models work by decomposing the knowledge graph
to a set of probability distributions that, when sampled together, generate its
relations. The learning process, therefore, amounts to inferring the posterior
distribution conditioned on the data.

Probabilistic topic models are types of generative models that have received
considerable attention in the field of natural language processing. The aim of
these models is to build abstract word topics from a corpus of documents and
their words. In this sense, topics may be viewed as clusters of words. Most topic
models operate under the intuition that words which co-occur in the same doc-
uments are likely to have similar semantics and therefore belong to the same
topics. Hierarchical topic models extend this principle and organize the induced
topics into a topic hierarchy whereby each ancestor topic represents a conceptu-
ally coarser version of its descendant topics.

In this paper, we present a model for generating a topic hierarchy from knowl-
edge graphs which extends on existing topic models. In our model, topics are
collections of entities and predicates, and are organized hierarchically in the form
of a rooted tree. In generating these topics, our model also implicitly hierarchi-
cally clusters subjects by sampling a corresponding tree path. Furthermore, we
employ a non-parametric prior over the tree, allowing our model to be free of
any a priori assumptions about its structure other than its depth. We present an
efficient Gibbs sampling scheme for posterior inference of our model. The app-
roach leverages the Multinomial-Dirichlet conjugacy to integrate out parameters
for faster inference. Our evaluation demonstrates our model’s ability to induce
a coherent topic hierarchy as well as hierarchical subject clustering.

2 Related Works

We divide the discussion of related works into two subsections, each of which
our model shares a degree of similarity with: tag hierarchy induction models;
and embeddings and clustering algorithms.

2.1 Tag Hierarchy Induction Methods

In the subsequent section, we introduce the concept of knowledge graph tags
and how they can be leveraged to construct a topic hierarchy. Such a formula-
tion is similar to that used in tag hierarchy induction methods which construct
a hierarchy of tags based on the documents they annotate. One such method,
described by Heymann and Garcia-Molina [16], uses the cosine distance to cal-
culate tag similarity and generality. Tags are then added greedily, starting with
the most general tag, as the child of the tag already in the hierarchy they are
most similar to. Schmitz [30] proposed a method which uses subsumption rules
to identify the relations between parents and children in the hierarchy. These
rules form a directed graph which is then pruned to create a tree. Recently,

272 Y. Zhang et al.

SMICT [25] applied principles from the aforementioned methods to knowledge
graphs to induce a class taxonomy. This approach was extended in [26] to gen-
erate cluster hierarchies of knowledge graph subjects, yielding a result similar
to our model. Frequency-based methods, like the ones mentioned above, often
suffer from a problem where tags that appear more frequently are assumed to
be more general. In an attempt to solve this, [2] introduce domain knowledge
to the algorithm in [5] and verify the directionality of relations by searching for
lexico-syntactic patterns on Wikipedia. This approach improves the quality of
the induced hierarchy when compared to the original model. [15] and [34] both
use a two phase approach in which a tag hierarchy is first induced using a strictly
frequency-based approach and then optimized using domain knowledge in the
form of an existing hierarchy.

2.2 Embeddings and Clustering Algorithms

Knowledge graph embedding methods map knowledge graphs from the discrete
graph space to a continuous vector space. Such a representation is useful as it
allows knowledge graphs to be easily integrated with common machine learning
and deep learning methods. In the context of our work, knowledge graph embed-
dings may be used in conjunction with hierarchical clustering methods, allowing
for a benchmark comparison. Perhaps the most canonical of embedding meth-
ods, TransE [9], applies the intuition that subject embeddings should be near
object embeddings when translated by valid corresponding predicates. Such a
formulation provides an objective function which is then optimized via stochas-
tic gradient descent to learn the embeddings. In a related approach, RDF2Vec
[28] uses breadth-first graph walks on the skip-gram language model [22] to gen-
erate embeddings. Factorization models such as RESCAL [24] and DistMult [35]
learn embeddings by factorizing the knowledge graph adjacency tensor into the
product of entity embeddings and relation specific translation matrices. Com-
plEx embeddings [33] extend DistMult to the complex domain to better handle
asymmetry in the knowledge graph. ConvE [12] leverages the convolution oper-
ator in a neural framework by stacking embeddings as a martix and convolving
them in two dimensions.

Having mapped a knowledge graph to a continuous space via embeddings,
clustering is trivial since distances between embeddings may be easily calcu-
lated. The process is merely choosing the clustering algorithm best suited for
the data. K-means [20] is perhaps the most common clustering algorithm used
today and works by assigning entities to the cluster with the smallest centre
distance before recalculating cluster centre based on the updated memberships.
Another common approach, OPTICS [3], uses a density based approach which
expands clusters so long as density criteria are being met. Spectral clustering
encompasses a wide range of algorithms which operate on the eigenvalues of the
input entities. To generate hierarchical clusters, agglomerate clustering builds a
hierarchy bottom-up by joining clusters at higher levels in the hierarchy based
on linkage criteria. We use the these clustering methods in conjunction with the
aforementioned knowledge graph embeddings during our evaluation procedure.

Hierarchical Topic Modelling for Knowledge Graphs 273

This is similar to ExCut [13] which first generates embeddings before iteratively
refining them using rule mining approaches to generate entity clusters.

3 Proposed Model

In this section, we describe our model by positioning it in the context of exist-
ing probabilistic topic models from which it draws inspiration. Specifically, we
first introduce readers to Latent Dirichlet Allocation (LDA) [7] and Hierarchical
Latent Dirichlet Allocation (hLDA) [6] before formalizing our model.

3.1 Problem Formulation

We define a knowledge graph as a collection of triples, K, such that each triple
relates a subject entity, s, to an object entity, o, via a predicate, p. Formally,
K = {〈s, p, o〉 ∈ S×P×O} where 〈s, p, o〉 is a triple, and S, P, and O are the sets
of subjects, predicates, and objects in K, respectively. We note that knowledge
graphs are rarely bipartite in terms of S and O. In other words, entities can take
on the role of both subjects and objects in K, thus S ∩ O �= ∅. Our goal is to
find a representation of the knowledge graph in which entities and predicates are
hierarchically organized such that entities representing coarse concepts subsume
their fine grained counterparts. For instance, the concept Person is a coarser
concept than Artist since it encompasses all persons, including artists and non-
artists. A natural representation of this paradigm is a directed tree wherein
coarse concepts occupy nodes closer to the root node. Nodes are then collections
of entities and predicates which share similar semantics. Paths in the tree capture
the progressive granularization of a concept.

3.2 Probabilistic Topic Models

Given a collection of documents and their words, D, topic models generate
abstract topics on the intuition that words belonging to the same topic are
likely to occur in the same documents. Latent Dirichlet Allocation (LDA) [7] is
a canonical example of the topic models used today. In this approach, each doc-
ument, di ∈ D, is a mixture of topics and each topic is a distribution of words.
To generate a document, the number of document words, Wi, the document’s
topic mixture, θi, and each topic’s word distributions, βk, are sampled. For each
document word, wi,j , first a topic indicator zi,j is sampled according to θi then
the word is generated from zj ’s word distribution, βzj . This generative procedure
is formally defined as follows:

– for each document; di ∈ D
• Wi ∼ Poisson(ξ)
• θi ∼ Dirichlet(α)

– for each topic; k ∈ 1, 2, ...,K
• βk ∼ Dirichlet(η)

274 Y. Zhang et al.

– for each document; di ∈ D
• for each word in document; wi,j ∈ di

* zi,j ∼ Multinomial(θi)
* wi,j ∼ Multinomial(βzi,j)

Learning the distributions which generate the documents amounts to inferring
the posterior distribution. Although this problem is intractable for exact infer-
ence, it can be approximated with algorithms such as Variational Bayes [7] or
Collapsed Gibbs Sampling [14]. We refer readers to the original papers for the
full inference procedure.

LDA has been extended to generate a hierarchy of topics in Hierarchical
Latent Dirichlet Allocation (hLDA) [6]. The foundation of hLDA is the nested
Chinese restaurant process (nCRP) which is an extension of the Chinese restau-
rant process (CRP) [1]. The CRP is a recursively defined stochastic process
which gets its name from the analogy of seating patrons at a Chinese restau-
rant. In this restaurant, there are an infinite number of tables and each table
can seat an infinite number of guests. When a guest enters, the probability of
him being seated at a table is proportional to the number of patrons already
seated at the table. Formally, when seating guest gi at a restaurant that has M
non-empty tables, the probability of seating the guest at table m is:

P (gi = m|gi−1, ..., g1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|ni
m|

i − 1 + γ
m ≤ M

γ

i − 1 + γ
m = M + 1

0 M + 1 < m

where |ni
m| is the number of patrons sitting at table m when guest gi arrives and

γ is a hyperparameter which controls the probability that an incoming guest will
be seated at an empty table.

The nCRP is used in hLDA as an infinitely deep and infinitely branching
prior over a tree structure. In this process, a tree is generated by sampling a
path, ci, at each level in the tree via the CRP. Each node in a tree, nk ∈ N,
has its own CRP and being seated at a table is analogous to taking a specific
branch in the path down the tree. As before, the probability of taking a path
is proportional to the amount of times the path has been taken before. When
arriving at a node nk with children Mk on the (l − 1)th level in the tree, the
probability of selecting an existing branch, ci[l] ∈ Ml or creating a new branch,
ci[l] = M∗

k , is:

P (ci[l] = m|ci−1: 1, ci[l − 1: 1]) =

⎧
⎪⎨

⎪⎩

|ni
m|

|ni
k| + γ

m ∈ Mk

γ

|ni
k| + γ

m = M∗
k

where ci[l] is the node on the path of di at level l, M∗
k = min(Z+ \ Mk) is the

smallest positive integer not in Mk, and |ni
k| is the number of entities that have

gone through node nk when entity i arrived, |ni
k| = |{j ∈ Z+ : j < i∧cj [l] = nk}|.

Hierarchical Topic Modelling for Knowledge Graphs 275

Putting everything together, hLDA uses the nCRP to generate a tree of
topics. The tree is bounded to a maximum depth of L and each node in the tree
is associated with a topic βk. Each document di samples a path through L nodes
in the tree, ci, and a topic distribution over levels in the tree analogous to the
topic mixture in LDA, θi. For each word wi,j in di, a topic zi,j is sampled from θi
and a word is generated from that topic. The generative process is summarized
as follows:

– for each node in the tree; nk ∈ N
• βk ∼ Dirichlet(η)

– for each document; di ∈ D
• ci ∼ nCRP(γ)
• θi ∼ GEM(ρ, π)
• for each word in document; wi,j ∈ di

* zi,j ∼ Multinomial(θi)
* wi,j ∼ βci[zi,j]

where GEM(ρ, π) stands for the stick-breaking process [27] and functions as the
prior for topic levels. As with LDA, we refer the readers to the original papers
for model inference.

3.3 Model Description

We present our model as an extension of hLDA which has been adapted to
knowledge graphs. As such, we adopt the previously introduced concepts and
notation, and focus on highlighting the differences.

The first difference is the departure from the domain of documents and words
to that of subjects, predicates, and objects. We can think of a predicate-object
pair as a tag which describes a subject in a way that is analogous to how a word
describes a document. In this view, a tag, t, is defined as 〈p, o〉 and belongs to
a subject such that ti,j ∈ Ti denotes that tag ti,j belongs to subject si. This
formulation is leveraged in our model by assigning a tag topic distribution, βt, for
each node in the tree. Furthermore, to capture the distributions of predicates in
each cluster, we mix in a predicate specific topic, βp. Predicates share their level
indicators, zi,j , with their corresponding tags. As such, the number of predicates
belonging to a subject has to equal its tag count. We define the multiset of
predicates which belong to subject si as pi,j ∈ Pi such that |Pi| = |Ti|. Thus,
each node is a collection of two topics whose elements span the domain of T∪P.

Each subject si samples a path, ci, through the tree using the nCRP as well
as a level distribution, θi. A further departure from the original hLDA model is
the replacement of the stick-breaking process as the prior of the level distribution
with the Dirichlet distribution. This formulation is a return to the prior used in
LDA and was chosen for two reasons. The first is that the Dirichlet distribution
introduces only one hyperparameter in contrast to the stick-breaking process’
two. This makes our model easier to apply a priori since hyperparameter sen-
sitivity and selection present challenges in non-parametric models. The second

276 Y. Zhang et al.

is that the inference scheme is simpler when using the Dirichlet prior. Finally,
the theoretical benefits of the stick-breaking prior are not justified in a practical
context since the infinite distribution would get bounded in our model by the
tree depth, L.

As mentioned previously, level indicators, zi,j , are shared among correspond-
ing predicates and tags. Thus, we sample one level indicator for each tag analo-
gously to hLDA. This indicator is used in conjunction with the subject path to
determine the node whose topics will be sampled from. Unlike hLDA which only
samples words, our model samples predicates and tags from the selected node’s
predicate and tag topic distributions, βp[ci[zi,j]] and βt[ci[zi,j]], respectively. We
use the notation βp[ci[zi,j]] and βt[ci[zi,j]] to denote the predicate and tag topic
distributions of the node at level zi,j on path ci. The generative process is defined
as follows:

– for each node in the tree; nk ∈ N
• βp ∼ Dirichlet(ηp)
• βt ∼ Dirichlet(ηt)

– for each subject; si ∈ S
• ci ∼ nCRP(γ)
• θi ∼ Dirichlet(α)
• for each tag in subject; ti,j ∈ Ti

* zi,j ∼ Multinomial(θi)
• for each predicate in subject; pi,j ∈ Pi

* pi,j ∼ Multinomial(βp[ci[zi,j]])
• for each tag in subject; ti,j ∈ Ti

* ti,j ∼ Multinomial(βt[ci[zi,j]])

ηp and ηt are hyperparameters of our model which control the sparsity of the
topics such that lower η values result in sparser topics which are more dissimilar
from one another. Furthermore, the ratio between ηp and ηt controls the relative
importance of predicates to tags when calculating the likelihood functions. γ is a
hyperparameter of the nCRP and controls the probability of creating a new path
in the tree such that higher γ values will generate trees with a higher average
branching factor. Finally, α is the topic level hyperparameter. We provide a
graphical representation of our model using plate notation in Fig. 1.

3.4 Inference

Our model is intractable for exact inference, thus we approximate it using col-
lapsed Gibbs sampling for posterior inference. The goal of the sampling scheme
is to generate the subject paths, c, and level indicators, z, by inferring the latent
parameters. For faster mixing, we integrate out the topic distributions, βp and
βt, as well as the level distributions, θ, by leveraging the Multinomial-Dirichlet
conjugacy. This reduces our inference scheme to simply sampling paths and lev-
els alternately until the parameters of the model are learned, at which point we
can collect samples to estimate the true posterior.

Hierarchical Topic Modelling for Knowledge Graphs 277

Fig. 1. Plate diagram for our model.

Sampling Paths. The posterior distribution of ci, the path for subject si,
conditioned on all other variables is:

P(ci|c−i, zi,Pi,Ti, γ, ηp, ηt) ∝ P(ci|c−i, γ)P(Pi|ci,P−i, zi, ηp)
P(Ti|ci,T−i, zi, ηt) (1)

where c−i denotes all paths in the tree excluding the path taken by subject
si. Likewise, P−i and T−i denote the predicates and tags on the tree leaving
out those belonging to to subject si. This expression is merely an application
of Bayes’ theorem which states the posterior is proportional to the likelihood
times the prior. The first term, P(ci|c−i, γ), is the nCRP prior and is calculated
as outlined earlier in the paper. The second term, P(Pi|ci,P−i, zi, ηp), is the
predicate likelihood given the choice of paths. In other words, it is the probability
of observing the predicate data if subject si were to take path ci. The calculation
of this term is defined as follows:

P(Pi|ci,P−i, zi, ηp)

=
L∏

l=1

Γ
(∑

pi,j∈P−i
#[z−i = l, c−i,l = ci,l,P−i = pi,j] + ηp|P|

)

∑
pi,j∈P−i

Γ
(
#[z−i = l, c−i,l = ci,l,P−i = pi,j] + ηp

)

L∏

l=1

∏
pi,j∈Pi

Γ
(
#[zi = l, ci,l = ci,l,Pi = pi,j] + ηp

)

Γ
(∏

pi,j∈Pi
#[zi = l, ci,l = ci,l,Pi = pi,j] + ηp|P|

) (2)

where Γ (.) is the gamma function and #[.] indicates the number of elements
that satisfy the given conditions. Finally, the third term, P(Ti|ci,T−i, zi, ηt), is
the tag likelihood given the choice of paths and is calculated analogously to the
predicate likelihood:

278 Y. Zhang et al.

P(Ti|ci,T−i, zi, ηt)

=
L∏

l=1

Γ
(∑

ti,j∈T−i
#[z−i = l, c−i,l = ci,l,T−i = ti,j] + ηt|T|

)

∏
ti,j∈T−i

Γ
(
#[z−i = l, c−i,l = ci,l,T−i = ti,j] + ηt

)

L∏

l=1

∏
ti,j∈Ti

Γ
(
#[zi = l, ci,l = ci,l,Ti = ti,j] + ηt

)

Γ
(∑

ti,j∈Ti
#[zi = l, ci,l = ci,l,Ti = ti,j] + ηt|T|

) (3)

The time complexity of sampling a single path, ci, is O(|N|(|S| + |T|)), thus
sampling all the paths in one iteration of the Gibbs sampler is O(|S||N|(|S| +
|T|)).

Sampling Levels. The posterior distribution of zi,j , the level indicator for the
jth tag in subject si is as follows:

P(zi,j |zi,−j ,Pi,−j , i,−j , c, ηp, ηt, α) ∝ P(zi,j |zi,−j , α)P(pi,j |Pi,−j , c, zi, ηp)
P(ti,j |Ti,−j , c, zi, ηt) (4)

where zi,−j are all the level indicators in subject si excluding zi,j , the indi-
cator for tag ti,j . The prior for level indicators, P(zi,−j |zi,−j , α), is obtained
by integrating out the Multinomial distribution via the Multinomial-Dirichlet
conjugacy and calculating the Dirichlet prior as follows:

P(zi,j |zi,−j , α) = E(zi,j |zi,−j , α)

= E
(
E(zi,j = l)|θ1, θ2, ..., θL, zi,−j , α

)

∝ #[zi,−j = l] + α (5)

The predicate likelihood, P(pi,j |Pi,−j , ci, zi, ηp), is calculated by counting the
total number of predicates at the node specified by zi,j on path ci that are the
same as pi,j :

P(pi,j |Pi,−j , ci, zi, ηp) = E(pi,j |zi, ci, ηp)
∝ #[z−(i,j) = zi,j , czi,j = ci,zi,j ,P−(i,j) = pi,j] + ηp (6)

The tag likelihood, P(ti,j |Ti,−j , c, zi, ηt), is calculated analogously:

P(ti,j |Ti,−j , ci, zi, ηt) = E(pi,j |zi, ci, ηt)
∝ #[z−(i,j) = zi,j , czi,j = ci,zi,j ,T−(i,j) = ti,j] + ηt (7)

The time complexity of sampling a single topic, zi,j , is O(L) and meaning that
sampling all levels is O(|S||T||L).

Hierarchical Topic Modelling for Knowledge Graphs 279

Collapsed Gibbs Sampling. As mentioned previously, the collapsed Gibbs
sampling process samples paths and levels alternately, as summarized in Algo-
rithm 1. This approach creates a Markov chain which iteratively approaches its
stationary distribution. As such, it is necessary to burn-in a fixed number of sam-
ples before samples approximating the posterior distribution may be obtained.
Although Gibbs sampling is guaranteed to converge in the infinite case, the speed
with which it does so is highly variable and difficult to predict a priori. Monitor-
ing the likelihood of the model is therefore important in determining whether suf-
ficient training has taken place. Furthermore, due to the non-parametric nature
of our model, the selection of hyperparameters is critically important. Recall,
for instance, that the tree’s structure and size changes every time it is sampled.
Thus, high γ values may induce trees with branching factors too high to feasibly
perform inference on.

Algorithm 1. Gibbs Sampling Procedure
Input: Knowledge graph, K; nCRP hyperparmeter, γ; topic hyperparameters, ηp and
ηt; level hyperparameter α; Number of iterations, iters
Output: Hierarchical topic model for K defined by c and z

1: Obtain S, P, and T from K
2: for iter = {1, 2, ..., iters} do
3: for i ∈ {1, 2, ..., |S| do
4: Sample ci using Equation 1
5: for j ∈ {1, 2, ..., |T| do
6: Sample zi,j using Equation 4
7: end for
8: end for
9: end for

4 Evaluation

We split the evaluation of our model into two parts: quantitative and qualita-
tive. In our quantitative evaluation, we train our model to obtain a hierarchical
clustering of subject entities. This clustering is then evaluated by comparing
against ground truth labels and calculating metrics of clustering performance.
This gives insight into the quality of induced tree and allocation of subjects to
leaf nodes. To assess the quality of the inferred topic clusters, we perform a
qualitative evaluation by analyzing the membership distributions of predicates
and tags to selected topics. What follows is a summary of our evaluation pro-
cedure and discussion of the results. The source code for our model along with
the datasets used may be found on GitHub1.

1 https://github.com/yujia0223/hkg.

https://github.com/yujia0223/hkg

280 Y. Zhang et al.

Table 1. Summary of ground truth classes used to derive clustering evaluation
datasets.

FB15k-237 YAGO3-10 DBpedia

Level 1 Person, Organization,
Location, Event

Person, Organization,
Body of Water

Person, Place

Level 2 Artist, Politician, Sci-
entist, Officeholder,
Writer, Musical Or-
ganization, Party, En-
terprise, Nongovern-
mental Organization,
County, Town, City,
Mountain, Movie, En-
tertainment, Game,
Contest

Artist, Politician, Sci-
entist, Officeholder,
Writer, Musical Or-
ganization, Party, En-
terprise, Nongovern-
mental Organization,
Stream, Lake, Ocean,
Bay, Sea

Artist, Athlete, Pop-
ulatedPlace, Natu-
ralPlace

Level 3 - - Actor, MusicalArtist,
Painter, Soccer-
Player, GridironFoot-
ballPlayer, Winter-
SportPlayer,
Swimmer,
BodyOfWater, Moun-
tain, Settlement, Is-
land, Country

Level 4 - - AmericanFoot-
ballPlayer, IceHoc-
keyPlayer, Lake, City,
Town

4.1 Datasets

We use three real-world datasets in our evaluation: FB15k-237, YAGO3-10, and
DBpedia. The datasets were chosen based on their ubiquity in existing literature
and to highlight the scalability of our sampling scheme on large datasets. What
follows is a brief description of each dataset.

FB15k-237. The FB15k-237 dataset [32] was constructed from the FB15k data-
set [9] by removing redundant and inverse triples. It contains data queried from
a version of Freebase that existed around 2013. Specifically, it is comprised of
272115 triples, 14541 entities, and 237 predicates. For our hierarchical clustering
analysis, we followed a similar approach to generating a ground truth subset of
the data as [18]. Namely, we first mapped entities to the WordNet taxonomy [23]
through the sameAs predicate, which relates Freebase entities to YAGO entities.
We then extracted triples containing subjects with labels on second level in the
taxonomy from the sets provided in Table 1. This process yielded a dataset with
5301 subjects, 103550 triples, 10018 entities, and 190 predicates.

Hierarchical Topic Modelling for Knowledge Graphs 281

Table 2. Method results (mean ± standard deviation) on the FB15k-237, YAGO3-10,
and DBpedia datasets. Underscore denotes significance at alpha value of 0.05 compared
against our model as per t-test.

FB15k-237 YAGO3-10 DBpedia

Method ARI NMI ARI NMI ARI NMI

RDF2VEC

K-means .308 ± .012 .567 ± .007 .070 ± .019 .199 ± .017 .223 ± .005 .416 ± .005

OPTICS .087 ± .000 .283 ± .000 .009 ± .000 .172 ± .000 .001 ± .000 .311 ± .000

Agglom .455 ± .000 .601 ± .000 .038 ± .000 .174 ± .000 .236 ± .000 .414 ± .000

Spectral .539 ± .000 .678 ± .000 .071 ± .000 .218 ± .000 .218 ± .000 .410 ± .000

TransE

K-means .405 ± .049 .632 ± .009 .263 ± .009 .367 ± .003 .247 ± .029 .389 ± .024

OPTICS .031 ± .000 .253 ± .000 .049 ± .000 .150 ± .000 .001 ± .000 .198 ± .000

Agglom .491 ± .000 .599 ± .000 .226 ± .000 .337 ± .000 .198 ± .000 .383 ± .000

Spectral .658 ± .000 .684 ± .000 .270 ± .000 .345 ± .000 .057 ± .000 .321 ± .000

DistMult

K-means .269 ± .011 .559 ± .013 .174 ± .012 .326 ± .015 .400 ± .008 .587 ± .010

OPTICS .016 ± .000 .189 ± .000 .029 ± .000 .175 ± .000 .002 ± .000 .184 ± .000

Agglom .379 ± .000 .621 ± .000 .202 ± .000 .382 ± .000 .389 ± .000 .594 ± .000

Spectral .505 ± .000 .600 ± .000 .035 ± .000 .124 ± .000 .150 ± .000 .478 ± .000

ComplEx

K-means .271 ± .020 .562 ± .016 .137 ± .012 .342 ± .009 .462 ± .013 .630 ± .015

OPTICS .019 ± .000 .202 ± .000 .017 ± .000 .152 ± .000 .002 ± .000 .235 ± .000

Agglom .385 ± .000 .630 ± .000 .181 ± .000 .299 ± .000 .442 ± .000 .628 ± .000

Spectral .563 ± .000 .613 ± .000 .016 ± .000 .204 ± .000 .203 ± .000 .550 ± .000

ConvE

K-means .332 ± .031 .619 ± .013 .004 ± .003 .004 ± .001 .474 ± .019 .612 ± .013

OPTICS .040 ± .000 .254 ± .000 .012 ± .000 .088 ± .000 .002 ± .000 .238 ± .000

Agglom .384 ± .000 .630 ± .000 .003 ± .000 .005 ± .000 .458 ± .000 .614 ± .000

Spectral .556 ± .000 .703 ± .000 .002 ± .000 .006 ± .000 .439 ± .000 .639 ± .000

ExCut .343 ± .011 .651 ± .002 .130 ± .007 .322 ± .011 .380 ± .016 .595 ± .005

Our Method .656 ± .005 .669 ± .021 .044 ± .006 .218 ± .002 .406 ± .042 .582 ± .022

YAGO3-10. The YAGO3-10 dataset was derived from the YAGO3 database
[21] which is a knowledge graph derived from Wikipedia and follows the hier-
archical class structure of WordNet. As with FB15k-237, we mapped entities to
the WordNet taxonomy before selecting the subset defined by classes in Table 1.
This resulted in a dataset with 11954 subject, 84382 triples, 27572 entities, and
28 relations.

DBpedia. The DBpedia dataset was generated by querying DBpedia [19] for
random entities belonging to classes on levels 4 and 5 as specified in Table 1.
Specifically, 75 entities were extracted for each of these classes. Triples where
these entities take on the subject role were then queried for, filtering out triples
which indicate class membership. This process resulted in 908 subjects, 57191
triples, 31202 entities, and 345 predicates. The impetus for this dataset was to

282 Y. Zhang et al.

Fig. 2. Excerpt of our induced tree on the DBpedia dataset. Numbers in brackets
indicate number of subjects which visited the cluster on its path.

evaluate our model on a hierarchy not rooted in the WordNet taxonomy. The
hierarchical relations between DBpedia classes were obtained from the DBpedia
ontology mapping which may be found on the DBpeida website2. All querying
to generate the dataset and ground truth clusters was performed in November
of 2021.

4.2 Quantitative Evaluation

To quantitatively evaluate our model, we examined the hierarchical clustering of
subjects in our induced topic hierarchy. This type of evaluation jointly assesses
the quality of the tree structure as well as the allocation of paths along it.
Specifically, we ran our model five times on each of the aforementioned datasets
using 100 burn-in samples. We then sampled from our learned distributions to
obtain a topic hierarchy. We evaluated the quality of the clustering using the
Adjusted Rand Index (ARI) [17] and Normalized Mutual Information (NMI)

2 http://mappings.dbpedia.org/server/ontology/classes/.

http://mappings.dbpedia.org/server/ontology/classes/

Hierarchical Topic Modelling for Knowledge Graphs 283

Fig. 3. Predicates and their posterior distribution for cluster K on the DBpedia tree
as displayed in Fig. 2.

[31] as in previous works [18]. We compared our model against embedding based
methods described in the related works section. Pretrained embeddings for these
models were obtained from LibKGE3 [10]. The mean and standard deviations of
five runs are summarized in Table 2.

Our results indicate that our model is comparable with embedding based
approaches. Indeed, the performance of all methods is highly variable with no
method clearly outperforming the other. We note our model’s underperformance
on the YAGO3-10 dataset relative to other methods. We hypothesize that this is
due to the high ratio of subjects to triples in this dataset. Such a characteristic
results in a low amount of predicates and tags for each subject compared to
other datasets. This in turn hinders our model’s ability to approximate the true
likelihood when calculating the posterior, resulting in lesser performance. Nev-
ertheless, our model is still significantly better than many of the other methods
as measured by a t-test. We conclude, therefore, that our model is capable of
inducing coherent topic hierarchies on real world knowledge graphs.

4.3 Qualitative Evaluation

Cluster allocation is driven by the interaction of predicates and tags. Specifically,
each cluster has predicate and tag membership distributions. This allows us to
draw interesting observations in that we can describe a cluster by its predicate
and tag distributions. This gives us insight into the composition of a cluster.
Figure 2 provides an excerpt of our induced tree on the DBpedia dataset. On the
other hand in Fig. 3, we provide an example of cluster K’s predicate distribution
from the DBpedia dataset. We note that this predicate distribution is consistent
with the subjects whose path ends at this cluster. Namely, the predicates are
consistent with these subjects, i.e., mountains. Furthermore, we can also analyze
the distribution of objects to which the predicates are connected to. We highlight

3 https://github.com/uma-pi1/kge.

https://github.com/uma-pi1/kge

284 Y. Zhang et al.

Fig. 4. Objects’ posterior distribution for predicate locatedInArea

this in Fig. 4 which shows the object distribution for the predicate locatedInArea
for cluster K. Based on the data that we used, the mountains in cluster K are
most probably located in Italy, Peru, Switzerland, and United States.

5 Conclusion

In this paper we propose a model for discovering underlying hierarchical struc-
tures in knowledge graphs. For this purpose we adapt a hierarchical topic model
used in natural language processing, namely hLDA, to the domain of knowledge
graphs. Our model extends hLDA by introducing separate predicate and tag
(predicate-object pair) topics, yielding a topic hierarchy consisting of predicate
and tag distributions. Knowledge graph subjects take paths through this hierar-
chy which may be seen as an implicit hierarchical clustering of knowledge graph
subjects. This formulation has the added benefit in that it is non-parametric,
therefore does not require a priori assumptions about the tree structure other
than its depth. To infer our model, we present an efficient Gibbs sampling scheme
which leverages the Multinomial-Dirichlet conjugate to integrate out latent prob-
ability distributions allowing our model to scale to large datasets. We evaluate
our model on three real world datasets and compare against benchmark methods.
Our results demonstrate our model’s ability to induce coherent topic hierarchies
with high quality subject clusterings and explainable topic predicate and tag
memberships.

Hierarchical Topic Modelling for Knowledge Graphs 285

References

1. Aldous, D.J.: Exchangeability and related topics. In: Hennequin, P.L. (ed.) École
d’Été de Probabilités de Saint-Flour XIII — 1983. LNM, vol. 1117, pp. 1–198.
Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0099421

2. Almoqhim, F., Millard, D.E., Shadbolt, N.: Improving on popularity as a proxy
for generality when building tag hierarchies from folksonomies. In: Aiello, L.M.,
McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 95–111. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13734-6 7

3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to
identify the clustering structure. ACM Sigmod Rec. 28(2), 49–60 (1999)

4. Bellini, V., Schiavone, A., Di Noia, T., Ragone, A., Di Sciascio, E.: Knowledge-
aware autoencoders for explainable recommender systems. In: Proceedings of the
3rd Workshop on Deep Learning for Recommender Systems (2018)

5. Benz, D., Hotho, A., Stützer, S., Stumme, G.: Semantics made by you and me:
self-emerging ontologies can capture the diversity of shared knowledge (2010)

6. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and
bayesian nonparametric inference of topic hierarchies. J. ACM (JACM) 57(2), 7
(2010)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

8. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. arXiv preprint (2015). arXiv:1506.02075

9. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems 26 (2013)

10. Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: Libkge-a knowl-
edge graph embedding library for reproducible research. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 165–174 (2020)

11. Das, R., et al.: Go for a walk and arrive at the answer: reasoning over
paths in knowledge bases using reinforcement learning. arXiv preprint (2017).
arXiv:1711.05851

12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence
(2018)

13. Gad-Elrab, M.H., Stepanova, D., Tran, T.-K., Adel, H., Weikum, G.: ExCut:
explainable embedding-based clustering over knowledge graphs. In: Pan, J.Z. (ed.)
ISWC 2020. LNCS, vol. 12506, pp. 218–237. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-62419-4 13

14. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(suppl 1), 5228–5235 (2004)

15. Gu, C., Yin, G., Wang, T., Yang, C., Wang, H.: A supervised approach for tag
hierarchy construction in open source communities. In: Proceedings of the 7th
Asia-Pacific Symposium on Internetware, pp. 148–152. ACM (2015)

16. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical
taxonomies in social tagging systems. Technical report (2006)

17. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985).
https://doi.org/10.1007/BF01908075

https://doi.org/10.1007/BFb0099421
https://doi.org/10.1007/978-3-319-13734-6_7
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1711.05851
https://doi.org/10.1007/978-3-030-62419-4_13
https://doi.org/10.1007/978-3-030-62419-4_13
https://doi.org/10.1007/BF01908075

286 Y. Zhang et al.

18. Jain, N., Kalo, J.-C., Balke, W.-T., Krestel, R.: Do embeddings actually capture
knowledge graph semantics? In: Verborgh, R. (ed.) ESWC 2021. LNCS, vol. 12731,
pp. 143–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4 9

19. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale,
multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195
(2015)

20. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)

21. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilin-
gual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research.
CIDR Conference (2014)

22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural Inf. Process.
Syst. 26, 3111–3119 (2013)

23. Miller, G.A.: WordNet: an electronic lexical database (1998). MIT press
24. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on

multi-relational data (2011)
25. Pietrasik, M., Reformat, M.: A simple method for inducing class taxonomies in

knowledge graphs. In: Harth, A. (ed.) ESWC 2020. LNCS, vol. 12123, pp. 53–68.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2 4

26. Pietrasik, M., Reformat, M.: Path based hierarchical clustering on knowledge
graphs. arXiv preprint (2021). arXiv:2109.13178

27. Pitman, J.: Combinatorial stochastic processes. Technical report 621, Dept. Statis-
tics, UC Berkeley, 2002. Lecture notes for St. Flour course, 2002 (2002)

28. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P. (ed.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 30

29. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: Gangemi, A. (ed.)
ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93417-4 38

30. Schmitz, P.: Inducing ontology from flickr tags. In: Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, vol. 50, p. 39 (2006)

31. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J.
27(3), 379–423 (1948)

32. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pp. 57–66 (2015)

33. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

34. Wang, S., Wang, T., Mao, X., Yin, G., Yu, Y.: A hybrid approach for tag hierarchy
construction. In: Capilla, R., Gallina, B., Cetina, C. (eds.) ICSR 2018. LNCS,
vol. 10826, pp. 59–75. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90421-4 4

35. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint (2014). arXiv:1412.6575

https://doi.org/10.1007/978-3-030-77385-4_9
https://doi.org/10.1007/978-3-030-49461-2_4
http://arxiv.org/abs/2109.13178
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-90421-4_4
https://doi.org/10.1007/978-3-319-90421-4_4
http://arxiv.org/abs/1412.6575

Resources

Do Arduinos Dream of Efficient
Reasoners?

Alexandre Bento1(B), Lionel Médini1, Kamal Singh2, and Frédérique Laforest1

1 Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205,
69621 Villeurbanne, France

{alexandre.bento,lionel.medini,frederique.laforest}@liris.cnrs.fr
2 Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516,

F-42023 Saint-Étienne, France
kamal.singh@univ-st-etienne.fr

Abstract. The Semantic Web of Things enhances the Internet of Things
with Web technologies as well as Knowledge Graphs and reasoning. Tra-
ditional reasoners are too heavy in terms of memory footprint and/or
processing time to be implementable on things. In this work, we present
LiRoT, a lightweight incremental reasoner that can be embedded in con-
strained objects, so that reasoning on them in a fog architecture becomes
possible. The focus of this work is to reduce drastically memory footprint
while paying attention to processing time, hence usual optimization tech-
niques are not fully adequate. We provide evaluations that (i) compare
our system to the state of the art and (ii) show the effective benefits of
the different optimizations we have implemented.

Keywords: Semantic web · Reasoning · Web of things · Embedded
systems · Optimization

1 Introduction

Today, more and more applications require a connection to the physical world to
capture information from the environment as well as to act on it. The Internet
of Things provides answers to such needs by connecting sensors and actuators to
computers; the Web of Things (WoT) intends to do it using the Web standards;
and the Semantic Web of Things (SWoT) enhances the WoT by adding the
expressive power of Knowledge Graphs as well as reasoning capabilities. At the
same time, the huge number of things and the total volume of produced data
has raised the need for distributed edge and fog architectures [22] where data
are processed as close as possible to their production and consumption locations.
Fog computing architectures can involve different types of nodes. Some of these
fog nodes might have limited amounts of energy or/and bandwidth. Reasoning
on devices with limited resources, such as microcontroller-based1 ones, will be
1 Microcontrollers are small processing units designed to run embedded applications,

in contrast to more powerful microprocessors that can execute general purpose appli-
cations.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 289–304, 2022.
https://doi.org/10.1007/978-3-031-06981-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_17

290 A. Bento et al.

an important enabler for reasoning in such architectures. It is obvious that very
small microcontrollers with a few kilobytes of RAM will not be able to process
highly expressive reasoning tasks about very large datasets, and that enabling
semantic reasoning on constrained devices is a matter of trade-offs. Nevertheless,
significantly useful tasks such as classification using subsets of RDF-S2 can be
performed on devices with around 100 KB RAM and 100 MHz clock speed.
However, modern state-of-the-art reasoners are optimized for speed and high
data volumes and many of the optimizations on which they rely (e.g. exploiting
multiple cores and highly parallel architectures) are not usable on such devices,
so that finally none of them seems to fit for edge/fog reasoning.

Focusing on typical SWoT use cases on such architectures, the application,
ruleset and ontology are usually known in advance. Hence, they can be flashed
on the device (we herein assume there is enough room for that). Whilst running
the application, sensor data that arrives periodically should be processed on the
fly. Given our fog architecture assumption, we focus on a scenario where small
data quantities issued by one or a few sensors require to update the reasoner’s
internal state. For example, in the CoSWoT3 project, we target applications
such as field watering or frost prevention that are based on temperature and
humidity data provided for each field a couple of times each day, and that can
rely on decisions made locally for each field (more details in our use case4).
W3C WoT use cases also highlight connectivity and autonomy constraints in
edge architectures5, making reasoning on edge nodes relevant. We herein choose
to process data incrementally [14] rather than as stream [4], to avoid the need
for the reasoner to handle time or data windows.

In this work, we present LiRoT, a lightweight incremental reasoner that can
be embedded in resource-constrained nodes of fog architectures. Starting from
the well known RETE algorithm, we propose specific improvements that target
the above SWoT use cases. The focus of our work is thus mainly on memory
frugality, while also considering algorithmic optimization.

The paper is organized as follows. Section 2 reviews previous works on incre-
mental reasoning optimizations and discusses their adequacy to SWoT; it also
describes the classic RETE algorithm. Section 3 presents the proposed optimiza-
tions for LiRoT, a SWoT-compliant RETE-based reasoner. Section 4 presents
two sets of evaluations, (i) to compare our reasoner to state of the art systems
and (ii) to show the effects of the implemented optimizations. Section 5 dis-
cusses the results and describes optimizations that were experimented but did
not improve performance. Section 6 concludes and sketches future directions for
our work.

2 Related Work

In this section, we review the different works that can be applied to perform
reasoning tasks with a focus on small devices. Given the strongly constrained
2 https://www.w3.org/TR/rdf-mt/#rdfs entailment.
3 https://coswot.gitlab.io/.
4 https://www.w3.org/TR/wot-usecases/#Agricultural-irrigation.
5 https://www.w3.org/TR/wot-usecases/#edge-computing.

https://www.w3.org/TR/rdf-mt/#rdfs_entailment
https://coswot.gitlab.io/
https://www.w3.org/TR/wot-usecases/#Agricultural-irrigation
https://www.w3.org/TR/wot-usecases/#edge-computing

Do Arduinos Dream of Efficient Reasoners? 291

environments on which we intend to deploy our work, we herein focus on
lightweight reasoning algorithms, namely rule-based ones. The OWL 2 RL pro-
file6 has been designed to foster the use of rule-based reasoners. The founda-
tions of how and why to combine rules with ontologies for the Semantic Web
are addressed in Description Logic Programs (DLP) [8], which bridge the gap
between knowledge representation (KR) and in particular DL and LP7. More-
over, in order to allow their deployment on constrained environments, we herein
restrict to subsets of the OWL 2 RL ruleset and the RDF-S entailment list8.

2.1 The RETE Algorithm

A rule-based reasoner applies rules to the facts9 contained in a knowledge base
(KB) to produce new knowledge, and loops over the set of initial and produced
knowledge until no new knowledge is issued. In the reasoning field, the facts that
were already present in the KB at the beginning of this loop are called explicit
facts, and those that have been inferred during the loop are called implicit facts.

Fig. 1. Example of a RETE network for rule cls-svf1 from the OWL 2 RL profile:
(?v owl:someValuesFrom ?w) ∧ (?v owl:onProperty ?p) ∧ (?u ?p ?x) ∧ (?x rdf:type
?w) → (?u rdf:type ?v)

The RETE [6] algorithm is one of the most well-known algorithms to process
rulesets over a KB. Rules are represented with a trie structure called the RETE
network. A RETE network is composed of two main layers (see example on
Fig. 1):
6 https://www.w3.org/TR/owl2-profiles/#OWL 2 RL.
7 https://en.wikipedia.org/wiki/Logic programming.
8 https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative.
9 As we herein consider the KB as being an ontology expressed in OWL 2 RL under

RDF-based semantics, facts are RDF triples.

https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
https://en.wikipedia.org/wiki/Logic_programming
https://www.w3.org/TR/rdf11-mt/#entailment-rules-informative

292 A. Bento et al.

– The alpha nodes: each alpha node is associated with an atomic condition in
a rule (e.g. ?x rdf:type foaf:Person), and performs a match operation over the
whole knowledge base (i.e. explicit and implicit facts). Alpha nodes contain
alpha memories, which store the facts that match the node’s condition. An
alpha node is related to a single rule, even if a same condition is shared by
multiple rules. An alpha node has a single output edge, that leads to a beta
node.

– The beta nodes: beta nodes perform join operations between two nodes.
Beta nodes can be placed either after two alpha nodes, or after a beta and
an alpha node if the associated rule has more than two conditions (then join
operations are performed sequentially). Beta nodes contain beta memories,
that store variable substitutions that are compatible with the node’s parents.
A beta node has exactly two input edges and one output edge.

2.2 Incremental Reasoning

SWoT use cases imply multiple data insertion and deletion steps to reflect the
state of dynamically changing physical environments. When data evolves over
time, explicit facts may need to be inserted in and deleted from a reasoner.
Implicit facts derived from them also need to be updated. To tackle this issue,
incremental maintenance allows insertion and deletion of explicit facts without
re-performing the materialization operation from scratch.

The RETE algorithm natively supports incremental maintenance using two
adaptations. Incremental insertion is managed by splitting alpha memories into
two parts: new facts and already-processed facts. Deletion is managed by adding
a data structure inside alpha and beta nodes to connect implicit facts with the
explicit facts they come from. This is traditionally done using lists, although a
tree structure is also possible [5].

Jena [3] is a reference rule-based OWL reasoner based on RETE that imple-
ments the DL subset of the first OWL specification. It provides an easy-to-use
API for Java programmers and has been widely used as such. However, all con-
strained objects do not support this language, and especially a garbage-collecting
function, so it is out of scope for the field of SWoT and embedded reasoning.

CLIPS10 [12] is a widely used expert system tool. It uses a complete object-
oriented language for writing expert systems. It employs the RETE algorithm
for reasoning. However, RDF triples are not supported natively by CLIPS. Other
tools, such as R-DEVICE [1], are needed to import RDF into CLIPS.

The Delete/Rederive (DRed) algorithm [10] handles deletion. It first over-
deletes all implicit facts that depend on the deleted facts. Then it rederives
the implicit facts that can be inferred another way. Rederivation is iteratively
applied. Some other works use a variant of the DRed algorithm, for example
in [19].

For supporting incremental reasoning, RDFox [13] uses a backward-forward
algorithm. Unlike DRed that searches after over-deletion, the backward-forward

10 http://www.clipsrules.net/.

http://www.clipsrules.net/

Do Arduinos Dream of Efficient Reasoners? 293

algorithm uses an approach that first searches for the alternative derivations.
This is done by using a combination of backward and forward chaining. The
induced performance gain is particularly visible with implicit facts that are
derived from numerous chained deductions (e.g. rdfs:subClassOf). GraphDB11

uses the same approach. RDFox has a high memory footprint (especially due to
a high number of indexes) and is optimized for architectures that allow parallel
computing, hence it is not designed to be embedded in constrained devices.

HyLAR+ [17] is an incremental reasoner implemented in JavaScript and tar-
geting Web applications, which has been improved with a so-called “tag-based”
approach [18], that allows for fastly performing multiple fact insertion/deletion.
This approach is inspired from that initiated by [7] on improving reasoning about
evolving versions of ontologies. The general idea is to keep trace of previous rea-
soning computations originated by changes in the graph, in order to respond
more quickly to similar changes in the future. The drawback of this approach
is that it requires to store history as extra information, which is therefore not
suitable for memory-constrained devices.

2.3 Embedded Reasoning

Many existing semantic reasoners are too resource-intensive to be directly ported
on resource-constrained devices such as objects or sensors. Only a few works
embed reasoning in constrained devices. Some of them are designed for mobile
phones and not for more constrained devices. For example, [2] studied port-
ing Description Logics (DL) reasoners on mobile Android-based devices. It is
worth noting that smartphones have much higher computational capabilities as
compared to the devices we target.

An OWL reasoner for embedded devices was proposed in [15], it is based
on CLIPS. They considered OWL 2 RL. Their system was implemented and
tested on Gumstix Verdex Pro which has 400 MHz CPU, 64 MB RAM, and
16 MB Flash. Note that in our work, we are targeting embedded devices that
have several orders of magnitude less RAM (around 500 KB).

RETEpool [20] is a RETE-based reasoner that aims to reduce its memory
footprint by reducing data duplication during rule based reasoning, while specif-
ically considering OWL 2 RL. To do so, it uses one shared memory for all alpha
nodes in the network. This way, duplicates are eliminated during insertion. In
cases where a RDF store is used along the reasoner, another level of duplication
is removed by using this store directly as the RETE memory, each alpha node
having references to triples contained in the store. This saves memory, at the
cost of speed degradation. Their experiments were conducted on smartphones
and laptops.

Another work based on the RETE algorithm is called COROR [16]. It uses the
following composition algorithms to reduce memory consumption. It selectively
loads only the rules that are required, by creating a rule-construct dependencies

11 https://graphdb.ontotext.com/documentation/free/reasoning.html#retraction-of-
assertions.

https://graphdb.ontotext.com/documentation/free/reasoning.html#retraction-of-assertions
https://graphdb.ontotext.com/documentation/free/reasoning.html#retraction-of-assertions

294 A. Bento et al.

set. Next it decomposes the RETE algorithm in two phases. The first phase
does an initial matching. Then the next phase builds the next part of the RETE
network using statistics collected from the first phase, that allow to reorder rules
and conditions according to their selectivity (the most selective conditions are
matched first; this optimization is well-known in database management systems,
for ordering join operations). The first cycle is then completed by joining the facts
obtained from the first phase. Results show that COROR reduces the memory
footprint by 74% on average. COROR also uses rewriting for rules that are
known to be resource–and time–consuming, such as rules involving owl:sameAs
and wildcard conditions. COROR was experimented on a SunSPOT platform,
which has a similar memory size to our target platforms but uses the Java
language. These experiments showed very low speed: they reported 1561 s to
process the WINE ontology that contains 1833 triples with the ρD* ruleset.

This state of the art has shown that the proposed reasoners of the literature
are not well suited to be run on microcontroller-based platforms. Nevertheless,
they include some optimization proposals that target memory footprint. The
next section will present how we obtained a reasoner that can be run on platforms
of the Arduino family, by extracting the best ideas of the literature and adapting
them to this specific context.

3 LiRoT: Improving RETE for the SWoT

We propose optimizations over the traditional RETE algorithm. These optimiza-
tions are built with the objective to be embeddable on platforms like Arduino or
ESP32 architectures. So they are focused on memory footprint, as it is a strict
criterion for such platforms. We also pay attention to processing time, checking
that it remains within acceptable bounds.

3.1 Term Indexing

To save memory, we use an index over the terms within the reasoner. Various
implementations exist in the literature, relying on data structures such as linked
lists, arrays or binary search trees. A hash table can also be used to do this in an
efficient manner: indeed, on average, a hash table has a linear space complexity,
and constant time complexity for insertion, search and deletion, which is better
than the previously cited data structures. Hence we chose this option to make a
term index.

3.2 Merging Alpha Memories

Alpha memories have already been the place for optimization of the RETE algo-
rithm, like in RETEpool where all alpha memories are merged into one common
memory. Here, to optimize smartly the RETE algorithm memory footprint, we
merge memories of alpha nodes that share a syntactically similar rule condition.

Let c1 = (s1, p1, o1) and c2 = (s2, p2, o2) be two conditions. c1 and c2 are
similar if either:

Do Arduinos Dream of Efficient Reasoners? 295

– s1 and s2 (resp. p1 and p2, o1 and o2) are variable terms
– s1 and s2 (resp. p1 and p2, o1 and o2) are not variable terms and s1 = s2

(resp. p1 = p2, o1 = o2)

As we merge memories of all alpha nodes that share similar rule conditions,
each rule condition is checked by only one node. This optimization saves both
memory and time. This is particularly useful in rulesets like RDFS, where mul-
tiple rules use a wildcard condition (a condition that matches all facts in the
KB, e.g. ?x ?p ?y).

This optimization implies that each alpha memory is potentially connected to
multiple beta nodes (one for each original alpha memory that has been merged),
which is not the case in the original RETE network. It has an impact on the
management of the alpha memories, as a fact remains new as long as one of its
beta nodes has not yet processed it (see Sect. 2.2). Triggering the execution of
the beta nodes connected to this alpha memory is thus required before pushing
new facts in the already-processed part of the alpha memory.

3.3 Optimizing Incremental Maintenance

To handle incremental maintenance, we have used a similar philosophy as that
of the backward-forward algorithm [13]. Although not initially designed to work
with RETE, it is compatible with its network structure: each terminal beta node
(i.e. the last beta node of a rule) stores a list of the implicit facts that it has
produced. Every implicit fact contains the list of beta memories that led to its
production. When an explicit fact is removed from the knowledge base, it is first
removed from the memory of its matching alpha nodes, then the corresponding
variable substitutions are removed from beta memories following the same route
as when adding a new explicit fact. After this step, if an implicit fact has no
more cause coming from the beta node that produced it, the algorithm first
searches through all other terminal beta nodes if the same implicit fact was
produced somewhere else. If not, it is deleted from the knowledge base. This
avoids unnecessary deletions, in case an implicit fact was obtained in multiple
ways.

3.4 Implementation Details

LiRoT is written in C: low-level languages are more suited for constrained plat-
forms because they allow for more fine-grained memory management. Rust [11]
could also have been an option, but it is relatively new and not yet available on
most platforms.

LiRoT is composed of two modules:

– The core algorithm, based on RETE and including the proposed optimiza-
tions. It currently uses Sord12, a C library providing a lightweight in-memory
triplestore, to implement and store RDF triples.

12 https://github.com/drobilla/sord.

https://github.com/drobilla/sord

296 A. Bento et al.

– A wrapper to the core algorithm providing an RDF-JS-like API13 to query
the reasoner. It relies on Serd14 to parse and serialize RDF triples in Turtle,
N-Triples, N-Quads and TriG formats.

In the core algorithm, to implement the term index, we use the efficient
hashtable implementation from the uthash15 library. To compute terms hashes,
we use the hash function provided by Sord.

LiRoT comes with two versions: a Linux version and an Arduino version. It
was tested on Manjaro Linux, Arduino Due and ESP-32 platforms.

LiRoT source code is available at https://gitlab.com/coswot/lirot .

4 Evaluation and Results

4.1 Dataset and Evaluation Method

We used the LUBM benchmark [9] to generate 12 synthetic datasets of various
sizes in the domain of universities. These datasets contain from 0 to 10,000
explicit triples representing assertions, in addition to the ontology itself (293
triples).

We have implemented the three rulesets RDFS-Simple, RDFS-Default and
RDFS-Full (provided by Apache Jena16) for each tested reasoner. We provide
the lists of rules in the LiRoT source code repository.

To compare our approach to other incremental reasoners and to assess the
effectiveness of different versions of our algorithm, we have run four types of
experiments on each of the 12 datasets:

– full materialization. The dataset is entirely loaded at once, then the rea-
soning is launched.

– incremental insertions. We randomly split each dataset into two equal
parts. The first half is inserted into the reasoner. The second half is divided
into five fragments, each representing 10% of the whole dataset, and are added
sequentially.

– incremental deletions. The idea here is to delete multiple parts of a pre-
loaded dataset. We first load the whole dataset, execute an initial reasoning
task, then sequentially remove the same subsets as described before.

– incremental insertions and deletions. Here we sequentially add then
delete parts of the dataset. The first half of the dataset is loaded, then each
subset is first inserted then deleted. This is the closest test to the actual use

13 https://rdf.js.org/.
14 https://github.com/drobilla/serd.
15 https://github.com/troydhanson/uthash.
16 Rulesets are described at https://jena.apache.org/documentation/inference/#

RDFSconfiguration.

https://gitlab.com/coswot/lirot
https://rdf.js.org/
https://github.com/drobilla/serd
https://github.com/troydhanson/uthash
https://jena.apache.org/documentation/inference/#RDFSconfiguration
https://jena.apache.org/documentation/inference/#RDFSconfiguration

Do Arduinos Dream of Efficient Reasoners? 297

cases that we performed using LUBM. In the use cases for which this rea-
soner is designed, the “same” triples will be added and removed (possibly
with some variations).

We use two performance metrics: i) maximum resident set size17 (maxRSS):
in the context of constrained objects, memory size is a mandatory limitation,
and ii) execution time.

Experimentation materials are available at https://gitlab.com/coswot/
lirot-experiments-eswc-2022, where one can find datasets, scripts used to run
all reasoners, raw results files and plots.

In the following sections, RETE denotes our baseline implementation of the
RETE algorithm; RETE+alpha is RETE with the optimization on alpha mem-
ories as described in Sect. 3.2; RETE+terms denotes RETE with the index on
terms described in Sect. 3.1; LiRoT is RETE with the optimizations on alpha
memories and the index on terms. The optimization on incremental reasoning is
present in all versions of RETE, RETE+alpha, RETE+terms and LiRoT.

4.2 Correctness Verification

To ensure that LiRoT produces correct results, we compared its output with
that of Apache Jena, which is a well tested reasoner. We performed these tests
both on the insertion and deletion algorithms, and got the same output in all
cases.

4.3 Comparison with Other Reasoners

We compared our approach to two standard incremental reasoners: Apache Jena
and RDFox. To do so, we ran each reasoner on the same desktop computer (MSI
GF63 Thin 10SCXR-046FR Dragon Station, with an Intel Core i7-10750H CPU
and 32 GB of DDR4 2666 MHz MHz RAM). We forced the execution of each
reasoner on only one CPU thread, to mimic the behavior of more constrained
devices. We ran each test 20 times, removed the most extreme values (5% lowest
and 5% highest) and computed the average maxRSS and execution time for each
reasoner and dataset.

Figure 2 compares LiRoT with Jena and RDFox for the easiest type of test
(full materialization with the RDFS-Simple ruleset) and the most difficult one
(successive insertions and deletions with the RDFS-Full ruleset).
All other results lie in between these two extreme cases; figures for the other
tests are available online; they show similar trends to these figures.

With the RDFS-Simple ruleset and a full materialization, LiRoT uses 58–
91% less memory than RDFox, and 92–98% less than Jena. With the RDFS-
Full ruleset and incremental insertions and deletions, LiRoT uses 46–90% less
memory than RDFox, and 91–98% less than Jena.

With RDFS-Simple and a full materialization, LiRoT is 72–93% faster than
Jena. It is faster than RDFox for datasets under 1000 explicit facts and slower
17 The maximum amount of RAM used by a program throughout its execution.

https://gitlab.com/coswot/lirot-experiments-eswc-2022
https://gitlab.com/coswot/lirot-experiments-eswc-2022
https://gitlab.com/coswot/lirot-experiments-eswc-2022/-/tree/main/plots

298 A. Bento et al.

Fig. 2. maxRSS and execution time comparisons between LiRoT, Jena and RDFox.
Figures a) and b) show a full materialization using the RDFS-Simple ruleset. Figures
c) and d) show successive insertions and deletions using the RDFS-Full ruleset.

for larger datasets. With RDFS-Full and incremental insertions and deletions,
LiRoT is faster than Jena (resp. RDFox) for datasets under 2500 (resp. 200)
facts. Other configurations have maxRSS and execution time values in between
these intervals.

4.4 Improvements of the RETE Algorithm

On the same desktop setup as previous evaluations, we ran each version of our
RETE algorithm baseline and improvements.

Figure 3 shows the different maxRSS and execution times for all four RETE-
based algorithms, and in the same configurations as above. With the RDFS-
Simple ruleset (resp. RDFS-Full), we find that sharing similar alpha nodes across
rules allows to save up to 24% (resp. 28%) memory compared to our baseline
RETE implementation. The use of an index on terms saves up to 25% (resp.
29%) memory compared to baseline. The combination of both saves up to 32%
(resp. 41%) memory.

Do Arduinos Dream of Efficient Reasoners? 299

Fig. 3. maxRSS and execution time comparisons between different optimizations of the
RETE algorithm. Figures a) and b) show a full materialization using the RDFS-Simple
ruleset. Figures c) and d) show successive insertions and deletions using the RDFS-Full
ruleset.

Figure 3 shows that for easier types of tests (full materialization with the
RDFS-Simple ruleset), optimizations over the RETE baseline have a small
impact on the execution time (+1% for the optimization on alpha nodes, +7.6%
for the optimization on terms, −0.2% with both optimizations, for the largest
dataset; the difference is even smaller for smaller datasets). For the most difficult
type of tests (successive insertions and deletions with the RDFS-Full ruleset),
optimizations have a more significant impact on the execution time (−37% for
the optimization on alpha nodes, +6.5% for the optimization on terms, −23%
for the combination of both). The differences among these optimizations are
discussed in Sect. 5.2.

4.5 Improvements on Embedded Devices

We also provide tests for LiRoT on constrained devices, with the RDFS-Simple
ruleset. We used an Arduino Due (clock speed of 84 MHz and 96 KB of SRAM)

300 A. Bento et al.

and an Adafruit ESP32 Feather (clock speed of 240 MHz and 520 KB of SRAM).
We use incremental insertion of triples to determine the maximum number of
triples that can be handled by LiRoT before the device runs out of memory.

On an ESP32 board, we used the standard ESP.getFreeHeap function to
measure the memory footprint.

Figure 4 shows the results obtained on ESP32: the baseline RETE imple-
mentation is able to load 509 facts (ontology + explicit facts + implicit facts),
before the board runs out of memory. With the alpha node-sharing optimization,
this number goes up to 656 facts (+22% wrt baseline), 672 facts with the opti-
mization with an index on terms (+24%) and 760 facts with the combination
of both optimizations (+49%). All versions have similar execution time for an
equal number of facts (for instance, the baseline takes about 200ms to load facts
until it runs out of memory).

Table 1. Number of facts (ontology + explicit facts + implicit facts) after reasoning
on Arduino Due and ESP32, with the RDFS-Simple ruleset

Platform Version of RETE # facts

ESP32

RETE 509

RETE+alpha 656

RETE+terms 672

LiRoT 760

Arduino Due

RETE 240

RETE+alpha 285

RETE+terms 290

LiRoT 349

The hardware architecture of the Arduino Due does not allow to dynamically
measure memory usage with standard functions, as we did on the ESP32. To
the best of our knowledge, no equivalent library allows to do it on this device.
Hence, we measured the maximum number of facts that the reasoner is able to
load and process before the board runs out of memory. Table 1 shows that the
optimization on alpha nodes allows to load 19% more facts than the baseline
implementation on Arduino Due; the use of an index on terms allows for 21%
more facts, and the combination of both allows for 45% more facts, compared to
baseline. All versions have similar execution time (about 550 ms for the baseline
version).

Do Arduinos Dream of Efficient Reasoners? 301

Fig. 4. Comparison of memory usage on a ESP32 board with different optimizations
of the RETE algorithm, using the RDFS-Simple ruleset. The horizontal axis shows the
number of explicit facts (ontology included).

5 Discussion

5.1 Memory Usage

On classic PC architectures, LiRoT significantly improves the memory footprint
as compared to the literature. Its processing time is lower for small datasets
in these settings, but increases rapidly when the number of facts grows. This
shows that LiRoT can also be of help on intermediary devices that rely on the
same architectures, but have less resources than even smaller computers (e.g.
Raspberry Pi).

To the best of our knowledge, LiRoT is the only one able to be actually
deployable on Arduino-based platforms18.

These two points validate our hypothesis of LiRoT as designed for specifically
targeting such devices. Processing time is of course to be taken seriously, but
must be considered with respect to the findings of Sect. 4.5.

5.2 Processing Time

Considering the maximum number of facts that a small device can handle, LiRoT
remains faster than other reasoners, given that these reasoners could be deployed
on the devices. Our experiments also show that the time gained by the optimiza-
tions varies according to both sizes of the ruleset and the dataset. It is interesting
to note that the LiRoT optimization is not the one that shows the best time

18 Indeed, these devices have, in addition to a limited memory size for handling the
application data (DRAM), the same kind of limitations for storing the program itself
(IRAM). The reasoner should also be compiled specifically for the targeted platform,
and use platform-specific available libraries.

302 A. Bento et al.

performance among all optimizations presented in Sect. 4.4. However, as they do
save memory space, we chose to keep all three optimizations in LiRoT.

Though we admit that restricting the operation range to processing very
small amounts of data is not a common goal, it can still benefit to use cases
where energy consumption is a critical issue, as well as to embed the reasoner on
a relatively more powerful device that has to perform other tasks than reasoning.
Indeed, in the CoSWoT project, we intend to include this reasoner as a WoT
servient module, so that sensors and actuators can be run autonomously and
locally process data as RDF triples.

Moreover, even if RDFox overpasses LiRoT when the number of facts grows,
our trade-off assumption seems to remain valid for relatively higher number of
facts than those that Arduino-based devices can handle. Our evaluations showed
that there is less than 200 ms difference for a full materialization of 2000 facts for
a whole run of insertions and deletions under the RDFS-Simple ruleset, which
sounds to us as acceptable.

The optimizations we implemented for LiRoT come with a few trade-offs.
The optimization on alpha nodes could cause concurrent access issues on alpha
memories if it were implemented in a multi-threaded application (which LiRoT
is not). Term indexing causes a slight loss in performance, as each term insertion
requires to check if the term already exists; however, a hash table is a very effi-
cient way to perform this task, so the performance loss is small, in comparison
with the overall computation time. Finally, the optimized incremental mainte-
nance algorithm requires to store intermediate reasoning results, which has an
impact on memory footprint.

In order to improve the speed of our reasoner, we explored one dead-end that
is worth mentioning, and are forseeing two directions:

– One option we tried consists in using an efficient join algorithm in beta nodes.
The naive approach, using a nested loop join, reviews all possible matches
among two nodes. The sort-merge join algorithm can solve this issue by using
sorted data structures in alpha and beta memories and limiting the number
of merge steps to the minimum required, to the cost of nodes needing to
maintain sorted data structures. However, the relevance of this optimization
depends on the ruleset and the dataset sizes: it saves time when the two nodes
to join have many elements in their respective memories. This is not the case
in our experiments, which showed lower performance.

– The evaluations in which data were to be deleted show higher processing
times than expected, while compared to RDFox for instance. Future works
include improving the deletion algorithm by removing intermediary beta node
memories, as done in [21].

– Parsing and serializing facts from and to a standard representation format is
also time and memory-consuming. Even if Sord and Serd are optimized for this
task, they offer many unneeded functionalities that could be removed from
the reasoner. In order to diminish both memory usage and processing time, we
are currently looking for a more global way to handle compressed RDF data
without serialization/deserialization operations at the servient level, relying
on binary representations such as CBOR-LD or HDT.

Do Arduinos Dream of Efficient Reasoners? 303

6 Conclusion and Future Works

We proposed LiRoT, a lightweight incremental reasoner, the first–to the best of
our knowledge–that can be embedded on constrained devices such as Arduino
Due and ESP32. LiRoT as a tool acts as an enabler for Semantic Web of
Things by providing a reasoning capability to constrained devices. Our work
also advances the existing state of the art in the fog computing paradigm.

LiRoT implements the RETE algorithm at its heart as the baseline algorithm.
Additionally, we studied three optimization schemes to the baseline RETE that
resulted in significant memory savings for incremental reasoning. We performed
experiments on Linux as well as on embedded systems. We compared the perfor-
mance of LiRoT with existing reasoners such as RDFox and Jena. As compared
to these approaches, our experiments showed that for relatively modest numbers
of facts (around 200 to 3000 facts depending on the complexity of the ruleset),
which corresponds well to the paradigm of the Semantic Web of Things, LiRoT
can do reasoning with lower computation times. LiRoT always had the lowest
memory usage for performing reasoning on up to 10,000 facts (maximum number
of facts tested). The memory usage was several orders of magnitude lower than
RDFox and Jena.

On a desktop configuration, using the LUBM benchmark, our optimizations
saved up to 32% of memory with the RDFS-Simple ruleset, up to 36% of memory
with RDFS-Default and up to 41% with RDFS-Full. On embedded devices, with
the RDFS-Simple ruleset, LiRoT was able to load up to 49% more facts than
our baseline RETE implementation.

In the future, we would like to perform tests on other rulesets and to explore
more optimization schemes as the ones presented in Sect. 5.2. We will also com-
pare the energy consumption of different optimizations. We would also like to
explore distributed and collaborative reasoning algorithms suited to SWoT and
embedded environments.

Acknowledgment. This work is supported by grant ANR-19-CE23-0012 from the
Agence Nationale de la Recherche, France, for the CoSWoT project.

References

1. Bassiliades, N., Vlahavas, I.: R-device: a deductive RDF rule language. In: Anto-
niou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 65–80. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30504-0 6

2. Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices:
do androids dream of efficient reasoners? J. Web Seman. 35, 167–183 (2015)

3. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th International World Wide Web Conference on Alternate Track Papers &
Posters, pp. 74–83 (2004)

4. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)

https://doi.org/10.1007/978-3-540-30504-0_6

304 A. Bento et al.

5. Doorenbos, R.B.: Production Matching for Large Learning Systems. Carnegie-
Mellon Univ Pittsburgh PA Dept of Computer Science, Technical report (1995)

6. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. In: Readings in Artificial Intelligence and Databases, pp. 547–559.
Elsevier (1989)

7. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: incremental
ontology reasoning using modules. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 183–196. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 14

8. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combin-
ing logic programs with description logic. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 48–57 (2003)

9. Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems.
J. Web Seman. 3(2–3), 158–182 (2005)

10. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
ACM SIGMOD Rec. 22(2), 157–166 (1993)

11. Matsakis, N.D., Klock, F.S.: The rust language. ACM SIGAda Ada Lett. 34(3),
103–104 (2014)

12. Meditskos, G., Bassiliades, N.: Clips-owl: a framework for providing object-oriented
extensional ontology queries in a production rule engine. Data Knowl. Eng. 70(7),
661–681 (2011)

13. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M. (ed.) ISWC 2015. LNCS, vol. 9367, pp. 3–20.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 1

14. Oliya, M., Pung, H.K.: Towards incremental reasoning for context aware systems.
In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.)
ACC 2011. CCIS, vol. 190, pp. 232–241. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22709-7 24

15. Seitz, C., Schönfelder, R.: Rule-based OWL reasoning for specific embedded
devices. In: Aroyo, L. (ed.) ISWC 2011. LNCS, vol. 7032, pp. 237–252. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25093-4 16

16. Tai, W., Keeney, J., O’Sullivan, D.: Resource-constrained reasoning using a rea-
soner composition approach. Seman. Web 6(1), 35–59 (2015)

17. Terdjimi, M., Médini, L., Mrissa, M.: Hylar+ improving hybrid location-agnostic
reasoning with incremental rule-based update. In: Proceedings of the 25th Inter-
national Conference Companion on World Wide Web, pp. 259–262 (2016)

18. Terdjimi, M., Médini, L., Mrissa, M.: Web reasoning using fact tagging. In: Com-
panion Proceedings of the The Web Conference 2018, pp. 1587–1594 (2018)

19. Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel
materialization of dynamic RDF data. In: Alani, H. (ed.) ISWC 2013. LNCS, vol.
8218, pp. 657–672. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-41335-3 41

20. Van Woensel, W., Abidi, S.S.R.: Optimizing semantic reasoning on memory-
constrained platforms using the RETE algorithm. In: Gangemi, A. (ed.) ESWC
2018. LNCS, vol. 10843, pp. 682–696. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93417-4 44

21. Wright, I., Marshall, J.A.: The execution kernel of rc++: Rete*, a faster rete with
treat as a special case. Int. J. Intell. Game. Simul. 2(1), 36–48 (2003)

22. Yousefpour, A., et al.: All one needs to know about fog computing and related edge
computing paradigms: a complete survey. J. Syst. Architect. 98, 289–330 (2019)

https://doi.org/10.1007/978-3-540-76298-0_14
https://doi.org/10.1007/978-3-540-76298-0_14
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-642-22709-7_24
https://doi.org/10.1007/978-3-642-22709-7_24
https://doi.org/10.1007/978-3-642-25093-4_16
https://doi.org/10.1007/978-3-642-41335-3_41
https://doi.org/10.1007/978-3-642-41335-3_41
https://doi.org/10.1007/978-3-319-93417-4_44
https://doi.org/10.1007/978-3-319-93417-4_44

A Programming Interface for Creating
Data According to the SPAR Ontologies

and the OpenCitations Data Model

Simone Persiani1, Marilena Daquino2,3 , and Silvio Peroni2,3(B)

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

simone.persiani2@studio.unibo.it
2 Research Centre for Open Scholarly Metadata, Department of Classical Philology

and Italian Studies, University of Bologna, Bologna, Italy
{marilena.daquino2,silvio.peroni}@unibo.it

3 Digital Humanities Advanced Research Centre (/DH.arc), Department of Classical
Philology and Italian Studies, University of Bologna, Bologna, Italy

Abstract. The OpenCitations Data Model (OCDM) is a data model
for bibliographic metadata and citations based on the SPAR Ontologies
and developed by OpenCitations to expose all the data of its collections
as sets of RDF statements compliant with an ontology named OpenCi-
tations Ontology. In this paper, we introduce oc ocdm, i.e. a Python
library developed for creating OCDM-compliant RDF data even if the
programmer has no expertise in Semantic Web technologies. After an
introduction of the library and its main characteristics, we show a num-
ber of projects within the OpenCitations infrastructure that adopt it as
their building block unit.

Keywords: OpenCitations · Python · Rdf · rdflib · citation data ·
bibliographic metadata · Spar Ontologies

1 Introduction

Data models are crucial artifacts that datasets suppliers should make available
to document data and to enable users to understand and, thus, use appropriately
suppliers’ data. Sometimes, data models may be created (re)using terms defined
in the same ontologies with different nuances, thereby generating diversity in
data representation [7]. Of course, a data model can employ clearly defined
ontological terms to ensure data consistency and facilitate integration tasks.

However, even if ambiguities are entirely avoided from a terminological per-
spective, creating datasets compliant with a particular data model can still be
a challenge for people who are not experts in the related technologies, such as
OWL and RDF. Further challenges can be due to data dynamics (e.g. extensions
and modifications) [22] which must be performed accordingly to the data model

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 305–322, 2022.
https://doi.org/10.1007/978-3-031-06981-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_18&domain=pdf
http://orcid.org/0000-0002-1113-7550
http://orcid.org/0000-0003-0530-4305
https://doi.org/10.1007/978-3-031-06981-9_18

306 S. Persiani et al.

either to correct possible mistakes in an entity or to introduce new data. Addi-
tional complexities in data handling are introduced when the data model asks
for tracking entities’ provenance and changes every time an entity is modified.

To enable users (e.g. domain experts) to programmatically access the data
organised according to a particular data model and to permit their modifica-
tions, applications (visual interfaces, web editors, etc.) must be developed to
facilitate human-data interaction. However, an additional interface layer should
be provided to permit programmers to develop such applications, since such pro-
grammers are experts in coding but not necessarily skilled in the technologies
used by an underlying data model. Such an interface layer would enable creating
and manipulating data transparently from the actual technologies used for their
representation, such as RDF and, particularly, OWL ontologies.

The situation introduced above describes what happened in OpenCitations in
the past few years. OpenCitations (http://opencitations.net) is an independent
not-for-profit infrastructure organisation for open scholarship dedicated to the
publication of open bibliographic and citation data by the use of Semantic Web
technologies [27]. A few years ago, OpenCitations released the OpenCitations
Data Model (OCDM) [7], a data model based on SPAR Ontologies [26], PROV-
O [25], and other existing models, for describing all the entities in its collections,
keeping track of their provenance and modifications in time. In addition of being
reused by OpenCitations, the OCDM has also been recently adopted by other
external projects dealing with bibliographic metadata and citations [7]. The more
the OCDM is adopted, the more it is necessary to have a library to simplify the
creation of applications dealing with OCDM-compliant data.

In this paper, we introduce a Python library, i.e. oc ocdm [29], for enabling
data owners and publishers to develop applications using OCDM-based data and
provenance information. This library has already been used by OpenCitations
in several components and projects, and it is the building block for all the future
applications dealing with RDF data in OpenCitations’ collections.

The rest of the paper is structured as follows. In Sect. 2, we introduce relevant
existing libraries for simplifying the creation of RDF data compliant with data
models and ontologies. In Sect. 3, we summarise the OpenCitations Data Model
and list the requirements for the development of the library. In Sect. 4, we present
the main characteristics of the library, including a discussion of its main modules
and classes. In Sect. 5, we address the potential impact, adoption and community
involved in the library development and reuse. Finally, in Sect. 6, we conclude
the paper sketching out some future developments.

2 Related Works

Serving easy-to-access and effective instructions to reuse an ontology contributes
to the recognition and validation of the quality of the ontology itself [13]. In
recent years, several works have expanded on this aspect adapting FAIR (find-
able, accessible, interoperable, and reusable) principles to ontologies [12,14,31].

http://opencitations.net

A Programming Interface for SPAR Ontologies and the OCDM 307

While ontology engineers have introduced best practices for documenting, ver-
sioning, and publishing Semantic Web artefacts, they rarely focus on the develop-
ment of software to enable researchers to programmatically make use of ontolo-
gies in the early stages of their project pipelines (e.g. knowledge extraction and
RDF data creation). To cope with potential data quality issues arisen by mislead-
ing interpretations of the ontologies, the development of SHACL [5] and ShEx
[30] has enabled the validation of data conformance to a schema, which is defined
in terms of the syntax and structure of a “shape”. Nevertheless, human-readable
documentation keeps being the primary way to correctly reuse ontologies, as it
can more effectively convey the semantics and interpretation of ontology terms.

Only a few notable ontology providers provide effective solutions to system-
atically create and organise data according to an ontology. These include Python
libraries, like GOATOOLS [21], which allows to reuse terms from Gene Ontology
and perform data analysis, pronto [23], used to access specifications of the Open
Biomedical Ontologies [33], or motools (https://github.com/motools), including
a library for consuming terms of the Music Ontology. Alternatively, WYSIWYG
tools, like quickstatements (https://quickstatements.toolforge.org) and OntoRe-
fine (https://disc-semantic.uibk.ac.at/ontorefine) allow non-expert users to cre-
ate and map data conforming to specific data models. It is worth noting that
such efforts appear to be common in broad communities where diverse stake-
holders, with more or less knowledge of Semantic Web technologies, must reuse
the ontology to create data and conform to community standards. These solu-
tions significantly prevent time-consuming quality checks, e.g. on crowdsourced
data.

To the best of our knowledge, such aids are lacking in the publishing domain.
Converters to transform bibliographic records into linked data according to RDA
vocabularies [19] and other models exist, e.g. [9] and bibtex2rdf (http://www.l3s.
de/∼siberski/bibtex2rdf/). However, only records complying with library meta-
data standards are suitable for conversion and no programming interfaces are
available for alternative formats, therefore excluding data produced by aca-
demic journals and venues. Similarly, well-known scholarly linked data providers
[1,11,15] do not share interfaces for data creation according to their schemas
[7]. In this work, we fill the gap providing a Python library for creating RDF
data according to OCDM [7]. OCDM expands on several modules of the SPAR
Ontologies [26], therefore allowing stakeholders in the publishing domain to eas-
ily create bibliographic and citation data regardless of their legacy formats –
that could be stored according to other ontological models e.g. BIBO (https://
bibliontology.com).

3 Model and Requirements

The OpenCitations Data Model (OCDM) [7] includes terms to describe bib-
liographic and citation data of scholarly publications. Rather than being yet
another ontology, OCDM addresses a broad selection of terms belonging to
the SPAR Ontologies [26], which have been conveniently collected within the

https://github.com/motools
https://quickstatements.toolforge.org
https://disc-semantic.uibk.ac.at/ontorefine
http://www.l3s.de/~siberski/bibtex2rdf/
http://www.l3s.de/~siberski/bibtex2rdf/
https://bibliontology.com
https://bibliontology.com

308 S. Persiani et al.

OpenCitations Ontology (OCO, https://w3id.org/oc/ontology). Such guidelines,
available as open access human-readable and machine-readable documentation,
are adopted by several datasets that are either created and maintained by
OpenCitations or by external ontology reusers.

Fig. 1. The Graffoo diagram [10] of the OpenCitations Ontology. Yellow rectangles
represent classes, green polygons represent datatypes, while blue and green arrows
represent object properties and data properties, respectively. (Color figure online)

Specifically, the OCDM provides directives for recording dataset metadata,
bibliographic entities metadata, identifiers, and provenance metadata (includ-
ing versioning and provenance of changes in data). Dataset metadata include
information on the distribution (e.g. a downloadable file) of the dataset.
Bibliographic metadata (summarised in Fig. 1) include descriptions of biblio-
graphic resources such as journals and articles (fabio:Expression), analog and
digital editions of resources (fabio:Manifestation), in-text reference point-
ers (c4o:InTextReferencePointer), lists of pointers (c4o:SingleLocation
PointerList), agents (foaf:Agent) and their roles (pro:Role linked to the
agent via pro:RoleInTime), bibliographic references (biro:Bibliographic
Reference), citations (cito:Citation), identifiers and their schemes (datacite:
Identifier and datacite:IdentifierScheme).

Provenance metadata describe snapshots of data, which document the evolu-
tion of a particular entity as detailed in [28]. The provenance mechanism enforced
by OpenCitations, summarised in Fig. 2, foresees an initial creation snapshot,
potentially followed by operations like modification, merge and deletion, each
corresponding to an additional snapshot.

https://w3id.org/oc/ontology

A Programming Interface for SPAR Ontologies and the OCDM 309

Fig. 2. The high-level description of the provenance layer of the OCDM to keep track
of an entity’s changes.

Fig. 3. The Graffoo diagram describing snapshots (prov:Entity) of an entity (linked
via prov:specializationOf) and the related provenance information.

Every snapshot is linked to the described entity via prov:specializationOf,
and to the previous snapshot via prov:wasDerivedFrom (see Fig. 3). Creation
time (prov:generatedAtTime) and invalidation time (prov:invalidatedAt
Time) of a snapshot are recorded along with the SPARQL Update query (oco:
hasUpdateQuery) that encodes the changes applied with respect to the previ-
ous snapshot. The operation is also described with free text (dcterms:descri
ption), and the snapshot is linked to the source of metadata (prov:hadPri
marySource) and to the agent responsible for it (prov:wasAttributedTo).

The development of the oc ocdm library was driven by the need of reengi-
neering the existing OpenCitations’ tools to make them modular. These tools
should reuse basic software components, among which oc ocdm has a central
role. The library was developed considering the following requirements.

The first requirement was to adopt a development methodology that could
make errors easier to spot at development time, thus ensuring better code quality
even if with increased maintenance costs. We chose the Test Driven Development
(TDD) method [2], which imposes a preliminary test design phase followed by
an alternation of software development and testing.

The second requirement was the need to use a programming language com-
pliant with the one that is used in other OpenCitations’ applications, which led
us to choose Python. To make the library easy to install for the final user, it
was decided to package it, to manage its external dependencies and to release it

310 S. Persiani et al.

on the PyPI online repository by making use of Poetry1, a tool for dependency
management and packaging in Python. In this way it is possible to manage the
versioning of the library separately from that of the projects depending on it,
making it simpler for users to follow the advancements in its development.

The final requirement was operational and concerned the design of a mech-
anism to consider the existing state of an entity defined somewhere (e.g. in a
file or in a triplestore) in order to understand which modifications are applied
to such an entity through the library.

4 Implementation

The Python library oc ocdm (repository at https://github.com/opencitations/
oc ocdm, documentation at https://oc-ocdm.readthedocs.io/) is based on
rdflib2 and was developed to simplify the handling of OCDM-compliant RDF
graphs, including tasks of information extraction, shape validation, editing,
provenance tracking and data serialisation. It’s organised as a hierarchy of sub-
packages, each consisting of a set of Python modules. All the main subpackages
are shown in Fig. 4 and in Fig. 5, and describe the main classes they define.

Fig. 4. The UML diagram of the main package and of the counter handler subpackage.

The classes Reader and Storer are used for importing data from external
sources and for either exporting data to a file or synchronising entities’ status
with an external triplestore.

Following OCDM’s guidelines, all the entities are named using a URI that
contains their local identifier, i.e. an incremental integer that uniquely identi-
fies an entity among all entities of the same type. Thus, in order to enforce
the uniqueness of the local identifiers for any given type of entity, the library
provides a mechanism to correctly handle such counters. This functionality is
provided by the abstract class CounterHandler, for which there currently exist
only two implementations. On the one hand, the InMemoryCounterHandler tem-
porarily stores counters via an in-memory data structure, with every progress
being immediately lost when the instance of such class is destroyed. On the

1 https://python-poetry.org/.
2 https://github.com/RDFLib/rdflib.

https://github.com/opencitations/oc_ocdm
https://github.com/opencitations/oc_ocdm
https://oc-ocdm.readthedocs.io/
https://python-poetry.org/
https://github.com/RDFLib/rdflib

A Programming Interface for SPAR Ontologies and the OCDM 311

other hand, FilesystemCounterHandler makes use of the file system to per-
sistently read and write counters. Both CounterHandler implementations are
in charge of keeping track of the last assigned integer number for each kind of
entity, incrementing it by one unit when a new entity of the corresponding type
is created.

Fig. 5. The UML diagram of the graph, prov and metadata subpackages.

The *Set classes, shown in Fig. 5, are factories defining collections of enti-
ties (*Entity classes). Each *Set class contains a reference to a CounterHandler
instance (see Fig. 6) for managing the assignments of unique URIs to the newly
generated entities. The AbstractSet class is extended by three concrete classes:
GraphSet for all kinds of bibliographic entities, ProvSet for entities’ provenance
snapshots, and MetadataSet for metadata about the dataset and its distribu-
tions. Various subclasses of GraphEntity, ProvEntity and MetadataEntity (all
subclasses of the AbstractEntity class) were defined so as to represent all the
possible types of entities described in the OCDM.

In oc ocdm, all the subclasses of GraphEntity and MetadataEntity are able
to internally track edits. It is worth mentioning that the library enables the gen-
eration of provenance information only for non-provenance entities. In addition,
each *Entity internally holds a reference to the *Set in which it is contained,
leading to the bidirectional containment relationships shown in Fig. 6.

Fig. 6. A UML diagram showing the main relationships between classes in oc ocdm.

312 S. Persiani et al.

4.1 Importing Data from a Persistent RDF Graph

The Reader class allows one to import entities from a persistent RDF graph
and to parse them to produce their in-memory representations as a collection of
Python objects. Entities with an rdf:type which is recognised by the library (i.e.
the classes used the OCDM) are automatically converted into an instance of the
corresponding *Entity class and collected inside a *Set. Additional statements
about such entities that are not OCDM-compliant are, anyway, imported into
the corresponding in-memory instances, even if they cannot be neither directly
accessed nor modified using the methods provided by oc ocdm. Every other entity
is ignored and no statement about it are imported.

The import entities from graph method processes instances of the
rdflib.Graph class, while import entity from triplestore sends a CON-
STRUCT query to a triplestore to retrieve the statements about a single entity.
Both methods enable importing only bibliographic entities (converting them
into instances of a GraphEntity subclass) and they require an instance of the
GraphSet class as input where to collect the imported entities.

Shape Validation. When using the methods import entities from graph
and import entity from triplestore, the user can specify to perform shape
validation on the imported graph, in order to filter out all the entities that do
not respect the shape constraints described in the OCDM (constraints on a given
property regarding its range datatype/class, the minimum/maximum amount of
attributes associated to an entity, etc.). This operation is currently handled via
the PyShEx library.

The shapes described in the OCDM were formalised into a proper ShExC
file, that is the required input of PyShEx. Such a resource is included within the
oc ocdm package. ShEx was a design choice that we inherited from the initial
phase of the development, which started a few years ago. We chose the ShExC
format because of its simplicity and compactness, which makes it easy to be
written and read also by non-expert users.

4.2 Data Manipulation

Oc ocdm allows one to manipulate the content of OCDM-compliant entities only
through the Python API exposed by their corresponding in-memory representa-
tions, while it does not offer a way to directly act on the persistent RDF graph.
All the changes applied to a graph during a session are not made effective and
persistent until the updated state of the in-memory objects is synchronised with
the original dataset. The way in which the current OpenCitations’ tools deal
with such updates is to work with small chunks of the original dataset to reduce
the impact on memory usage.

Once a *Set instance containing the imported entities has been obtained,
it is possible to access each entity individually to read its content. Several
getter methods are available for each *Entity class. For example, the title of
a BibliographicResource instance can be obtained by calling the method

A Programming Interface for SPAR Ontologies and the OCDM 313

get title on it. For each getter method, the Python API provides also two cor-
responding setter methods: one for adding/modifying a value (e.g. has title)
and the other for removing predicate-object pairs (e.g. remove title). It is
worth mentioning that, with respect to methods naming, we decided to inherit
the naming conventions used in the OCDM. In particular, setter methods recall
the name of the ontology predicates to prevent misalignment between the OCDM
and the library implementing it.

The method remove every triple modifies the *Entity by removing every
triple from its in-memory representation, without deleting its persistent coun-
terpart. This method could be used to clear the content of an *Entity instance
to start writing on it from scratch.

In general, all the operations that can be performed on an *Entity allow:

– the creation of a new entity;
– the modification of an entity by adding, changing, or deleting its triples;
– the merging of an entity with another one (not applicable to instances of the
ProvEntity subclasses);

– the deletion of the entity from the graph (not applicable to instances of the
ProvEntity subclasses).

Creation of an Entity. The creation of a new entity can be done through one of
the add * methods made available by the GraphSet, ProvSet and MetadataSet
classes. For example, a new Citation entity can be added to a GraphSet via
the method add ci. Each new instance is initialised with a triple stating its
rdf:type and, optionally, with a user-provided rdfs:label.

Modification of an Entity. All the methods that apply changes to an entity
(e.g. those that add or delete triples) perform preliminary checks to ensure com-
pliance with the following constraints defined in the OCDM:

– the type of the object of a triple must comply with the one specified in the
OCDM for the corresponding predicate (e.g. the value supplied to the method
has citing entity must be of type BibliographicResource), otherwise an
exception is thrown;

– predicates defined as functional properties (e.g. the method has name of
ResponsibleAgent) can be associated to at most one object. If called twice,
the second value will override the first one.

Merge of Entities. The merge operation is motivated by user requirements, as
it allows to manage deduplication and reconciliation of duplicated entities. Only
two or more instances that belong to the same *Entity class can be merged
together. The merge method is used on the *Entity to keep and specifies, as
input, the other *Entity to merge. Hence, to merge n entities together (including
the one to keep), the method must be called n−1 times. Running the instruction
A.merge(B) produces the following effects:

314 S. Persiani et al.

– for each predicate which is compliant with the OCDM for the particular type
of the entities A and B, all corresponding objects from B are added to A
(with overwriting in case of functional predicates). Every other statement
from B which is not compliant with the OCDM gets ignored and it is not
added to A;

– regarding the rdf:type predicate, the OCDM allows one to specify at most
two values per entity. The first type value is mandatory and must be the
same for both A and B, being in itself the requirement for enabling the
merging operation. The second type value, if present in B, is added to A (or
overwritten if a second value is already present in A);

– B is marked as to be deleted;
– all the other imported entities are scanned to replace B with A in all

predicate-object pairs in which the object is B, thus redirecting all the refer-
ences which still point to B.

Deletion of an Entity. An *Entity can be marked as to be definitively removed
from the persistent graph via the method mark as to be deleted. Invoking such
method on an *Entity E produces the following effects:

– E is marked as to be deleted;
– all the other imported entities are scanned to remove all predicate-object

pairs having E as object, thus cleaning up dead links.

Additionally, it is possible to remove dead links also from other persistent
entities that were not imported via the remove dead links from triplestore
method from the GraphSet class. Such method is able to import from a triple-
store all the entities that refer to at least one *Entity which is currently marked
as to be deleted and to remove the dead links from their in-memory graphs.

Marking an *Entity as to be deleted cannot be undone. When we synchro-
nise the deleted entity with the persistent graph, oc ocdm automatically recog-
nises that its persistent counterpart has to be completely deleted and it directly
removes its persistent triples.

4.3 Change Tracking

Each *Entity contains some private fields that are exploited by oc ocdm to inter-
nally keep track of all the operations performed on it and to later reconstruct
what happened. This does not apply to provenance entities, since there is no
need to generate provenance information for them.

In addition to the rdflib.Graph that holds the current triples of the *Entity,
another rdflib.Graph named preexisting graph is initialised during the con-
struction of the Python instance. Such graph is intended to be read-only, as it
represents the initial content of the entity at the time of importing it from the
persistent graph. This allows, at any stage, to compute the changes introduced
through oc ocdm by making a comparison between the two in-memory graphs.
There can be situations in which the initial content of an entity is unknown

A Programming Interface for SPAR Ontologies and the OCDM 315

(e.g. when instantiating an *Entity identified by a URI that is already assigned
to an existing entity, without importing its triples from the persistent graph).
In this case the preexisting graph remains empty, thus the library can only
interpret new triples found inside the graph as to be added to the persistent
graph.

For keeping track of merging operations, each *Entity internally sets a
was merged flag while also populating its merge list with all the entities that
were merged into it. Finally, the to be deleted flag is set when the *Entity is
marked as to be deleted.

4.4 Provenance Generation

The OCDM envisions a provenance graph composed by trees of snapshot entities
that describe the evolution of bibliographic entities and their external identifiers.
In oc ocdm, such entities are represented with instances of the GraphEntity
subclasses, which are the only classes having a provenance graph associated.

The most recent snapshot of either a bibliographic entity or an external
identifier (e.g. DOI, ISBN, ORCID, . . .) represents its current persistent content.
The provenance generation algorithm provided by oc ocdm is responsible for
iterating the imported GraphEntity instances and for generating a new snapshot
exclusively for those whose content has been modified through the Python API.
Usually, each new snapshot invalidates the previous one, and in turn becomes
the most recent snapshot for a certain entity. However, in the event that an
entity is removed from the persistent graph, the corresponding snapshot to be
generated must invalidate both the previous one and also itself, and no other
snapshots are linked to it afterwards.

Once the user is satisfied by the changes applied to the imported
GraphEntity instances, it is possible to automatically generate a provenance
snapshot (i.e. an instance of the SnapshotEntity class) for each involved *Entity.
Such snapshot is intended to describe the changes produced on the related
GraphEntity with respect to its preexisting graph.

Multiple Operations on the Same Entity. The snapshot entity produced
for a given GraphEntity can be of four different types which reflect the oc ocdm’s
operations, namely: creation, modification, merging and deletion. When a com-
position of more than one of these operations is applied to an entity, it is nec-
essary to define a scale of priority to be followed when choosing which of them
should be associated with the new snapshot. By design, the highest priority
operation is deletion, followed by merging, creation and, finally, modification.
For instance, if an entity is modified and later it is deleted, then the particular
details of the modification are lost (i.e. they are of no interest anymore), as the
operation that correctly summarises the entire process is the deletion. In such a
case, a new deletion snapshot would be produced.

316 S. Persiani et al.

The Special Case of the Merging Operation. When two or more entities
are merged together, a merge snapshot must be generated only for the entity
that the user chooses to keep in the persistent graph (i.e. the one to which the
triples of the others are added). The merge snapshot needs to keep a reference to
the latest snapshots of all the entities contained in the merge list (see Sect. 4.3)
by means of the predicate prov:wasDerivedFrom. It is mandatory that the dele-
tion snapshots for the entities in the merge list are generated only afterwards,
as the merge snapshot must refer to the snapshots that represent the state of
the involved entities prior to their deletion. This requirement imposes a strict
ordering constraint in the production of snapshots.

The Provenance Generation Algorithm. The algorithm introduced in List-
ing 1 describes the rationale for handling the task described in this section. Com-
ments have been inserted in particular branches of the pseudo-code to highlight
all the possible scenarios that the algorithm needs to handle. In oc ocdm, it is
implemented by the generate provenance method of the ProvSet class.

The algorithm iterates (line 2) over the entities A that have been effectively
merged with any number of entities Bi (i.e. A.merge(Bi)), that is, all those
entities that have been involved in a merging while not having been consequently
marked as to be deleted. For these entities, the following scenarios must be
addressed:

– scenario A.1: A does not exist in the persistent graph, hence a creation
snapshot is generated;

– scenario A.2: A already exists in the persistent graph but each Bi in A’s
merge list does not exist. Since it’s not possible for a merge snapshot to
refer to the snapshot of any Bi as they do not exist, such a merge operation
can only be interpreted by oc ocdm as a modification of A;

– scenario A.3: A already exists in the persistent graph and at least one Bi

in A’s merge list exists as well. In this case, a merge snapshot is generated
for A that references all the latest snapshots of such Bi entities.

Then, another iteration of the algorithm is performed (line 12) on all the
remaining entities E. In this case, the following scenarios can occur:

– scenario B.1: E does not exist in the persistent graph and was not deleted,
hence a creation snapshot is generated. Had it been deleted, no snapshot
would have been generated, since the deletion of a non-existing entity does
not produce any change to the persistent graph;

– scenario B.2: E already exists in the persistent graph and it was deleted
(either explicitly or as a consequence of being involved in a merging opera-
tion), hence a deletion snapshot is generated;

– scenario B.3: E already exists in the persistent graph, it was not deleted
but it was modified. In this last case, a modification snapshot is generated.

A Programming Interface for SPAR Ontologies and the OCDM 317

Algorithm 1: Pseudocode for provenance generation
1 resultSet ← an empty set
2 foreach entity such that (wasMerged(entity) and not wasDeleted(entity))

do
3 latestSnapshot ← retrieveLatestSnapshot(entity)
4 if latestSnapshot is None then

// Scenario A.1 -> Creation

5 resultSet.add(newCreationSnapshot(...))

6 else
7 snapshotsList ← getSnapshotsFromMergeList(entity.merge list)
8 if wasModified(entity) and len(snapshotsList) ≤ 0 then

// Scenario A.2 -> Modification

9 resultSet.add(newModificationSnapshot(...))

10 else if len(snapshotsList) > 0 then
// Scenario A.3 -> Merge

11 resultSet.add(newMergeSnapshot(...))

12 foreach remaining entity do
13 latestSnapshot ← getLatestSnapshot(entity)
14 if latestSnapshot is None then
15 if not wasDeleted(entity) then

// Scenario B.1 -> Creation

16 resultSet.add(newCreationSnapshot(...))

17 else
18 if wasDeleted(entity) then

// Scenario B.2 -> Deletion

19 resultSet.add(newDeletionSnapshot(...))

20 else if wasModified(entity) then
// Scenario B.3 -> Modification

21 resultSet.add(newModificationSnapshot(...))

22 return resultSet

4.5 Data Synchronisation

Generally, the last step of a workflow that involves the manipulation of an
OCDM-compliant dataset consists in the synchronisation of the in-memory
content of the *Entity instances with a triplestore or a persistent RDF resource.
All the relevant library operations are collected within the Storer class.

As far as the data serialisation task is concerned, the library supports three
possible RDF file formats, namely: N-Triples for bibliographic entities and
their external identifiers, N-Quads for provenance entities and JSON-LD (the
default option for both kinds of entities).

The methods that the Storer class makes available enable one to work on the
content of either a single *Entity or an entire *Set and permit considering the
related export target (which can be either an RDF file or a SPARQL endpoint).

318 S. Persiani et al.

In particular, store and store all methods are used to export respectively
a single entity and an entire set of entities on the file system, while upload
and upload all are capable of generating batches of SPARQL 1.1 Update
queries that are sequentially sent to a user-specified endpoint. Finally, the
upload and store method combines the effects of store all and upload all.

Once the synchronisation task is executed, further modifications require the
user to first call the commit changes method either on single *Entity instances
or on an entire *Set. Such method takes care of effectively destroying the Python
objects of deleted entities and of resetting the internal state of the other ones
(i.e. resetting their boolean flags and realigning the preexisting graph with
their updated persistent graph).

5 Potential Impact, Adoption and Community

In a previous article [7], we demonstrated the impact of OCDM with respect to
a growing community, which includes a number of datasets and projects main-
tained by the OpenCitations infrastructure [16,18,27], a few OCDM adopters
from diverse disciplines [4,20,24], a growing number of applications and services
that rely on data served by OpenCitations (e.g., VOSViewer3, CitationGecko4,
VisualBib5, and OAHelper6, DBLP7 and Lens.org8), and data providers that
align data to OpenCitations (e.g., OpenAIRE9, MAKG, and WikiCite).

The library oc ocdm has been tested and it is currently integrated into four
applications and collaborative projects, namely: Wikipedia Citations in Wiki-
data10, a project funded by the Wikimedia Foundation to extract citations from
the English Wikipedia towards external bibliographic resources, transform data
to RDF according to OCDM, and upload citations to Wikidata; OpenCitations
Meta11, a software to clean and transform tabular bibliographic metadata to
RDF according to OCDM; GraphEnricher12, a tool for identifiers discovery and
data deduplication used to improve data quality of OpenCitations data; finally,
oc ocdm is used to define testing benchmarks of another Python library13 used
to perform time and provenance-aware queries on RDF datasets compliant with
the OCDM.

Nevertheless, like other software developed by OpenCitations [6,8,17], also
oc ocdm has been developed with the aim of sharing a component that can
3 https://www.vosviewer.com/.
4 https://citationgecko.com/.
5 https://visualbib.uniud.it/en/project/.
6 https://www.otzberg.net/oahelper/.
7 https://dblp.org.
8 https://lens.org.
9 https://www.openaire.eu/.

10 https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia Citations in
Wikidata.

11 https://github.com/opencitations/meta.
12 https://github.com/opencitations/oc graphenricher.
13 https://github.com/opencitations/time-agnostic-library.

https://www.vosviewer.com/
https://citationgecko.com/
https://visualbib.uniud.it/en/project/
https://www.otzberg.net/oahelper/
https://dblp.org
https://lens.org
https://www.openaire.eu/
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://github.com/opencitations/meta
https://github.com/opencitations/oc_graphenricher
https://github.com/opencitations/time-agnostic-library

A Programming Interface for SPAR Ontologies and the OCDM 319

be reused in different contexts. In particular, the broader community of SPAR
Ontologies adopters can benefit of this programming interface, including current
adopters for (1) data creation, (2) data analysis [3], (3) ontology-based data
managements systems [32] and (4) academic journals [34].

Moreover, oc ocdm can be reused by scholars in the Library and Information
Science domain that want to produce bibliographic and citation data accord-
ing to the SPAR Ontologies, which comply with most of the requirements for
bibliographic ontologies (e.g. being based on FRBR conceptual model).

6 Conclusions

In this paper, we have introduced oc ocdm, a Python library for enabling the
development of applications using OCDM-based data and provenance informa-
tion. After showing the main requirements for the development, we have intro-
duced its organisation in terms of Python modules and classes and we have
presented its current and future uses in the context of several components and
projects related to OpenCitations, being the main building block for all the
applications dealing with creating and modifying RDF data in OpenCitations’
collections.

In the future, we aim at continuing the development of the library adding
new features and reusing other existing components. For instance, since mid-
February 2021 the development of PyShEx, that it is used to validate input data
processed by oc ocdm, has been slowed down. Therefore, we plan to convert the
ShExC file into a compact SHACL file and use the pySHACL14 library, which is
actively maintained and better optimised.

Another aspect that deserves to be properly addressed is related to the par-
allel use of the library. Indeed, the current release of oc ocdm is designed to work
correctly if no more than one instance of oc ocdm needs to access the indexes
used to name new entities. If this condition is not met, episodes of race condi-
tions could easily occur with the risk of assigning the same URI to more entities,
therefore compromising the consistency and validity of all the produced data.

Finally, a last aspect that deserves to be addressed concerns the possibility of
detaching from the library some aspects that can be applied to any RDF dataset,
and not only to OCDM-compliant data. For instance, the way proposed by the
OCDM to handle provenance and, in particular, change tracking is independent
from the kinds of entities to track and could be devised, in the future, as a
possible plugin for rdflib.

Acknowledgements. This work has been funded by the project “Open Biomedi-
cal Citations in Context Corpus” (Wellcome Trust, Grant n. 214471/Z/18/Z) and
the project “Wikipedia Citations in Wikidata” (Wikimedia Foundation, https://
meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia Citations in Wikidata), and par-
tially funded by the European Union’s Horizon 2020 research and innovation program
under grant agreement No 101017452 (OpenAIRE-Nexus). We would like to thank (in

14 https://github.com/RDFLib/pySHACL.

https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://meta.wikimedia.org/wiki/Wikicite/grant/Wikipedia_Citations_in_Wikidata
https://github.com/RDFLib/pySHACL

320 S. Persiani et al.

alphabetic order) Fabio Mariani, Arcangelo Massari, and Gabriele Pisciotta for the
constructive feedback.

References

1. Ammar, W., et al.: Construction of the literature graph in semantic scholar. In:
Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Vol. 3 (Indus-
try Papers), pp. 84–91. Association for Computational Linguistics, New Orleans
- Louisiana (2018). https://doi.org/10.18653/v1/N18-3011.https://aclanthology.
org/N18-3011

2. Beck, K.: Test-Driven Development: By Example. The Addison-Wesley signature
series, Addison-Wesley, Boston (2003)

3. Bertin, M., Atanassova, I., Sugimoto, C.R., Lariviere, V.: The linguistic patterns
and rhetorical structure of citation context: an approach using n-grams. Sciento-
metrics 109(3), 1417–1434 (2016). https://doi.org/10.1007/s11192-016-2134-8

4. Colavizza, G., Romanello, M.: Citation mining of humanities journals: the progress
to date and the challenges ahead. J. Eur. Periodical Stud. 4(1), 36–53 (2019)

5. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive
SHACL. In: Vrandečić, D. (ed.) ISWC 2018. LNCS, vol. 11136, pp. 318–336.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 19

6. Daquino, M., Heibi, I., Peroni, S., Shotton, D.: Creating RESTful APIs over
SPARQL endpoints using RAMOSE (2020). http://arxiv.org/abs/2007.16079

7. Daquino, M., et al.: The opencitations data model. In: Pan, J.Z., Tamma, V.,
d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.)
ISWC 2020. LNCS, vol. 12507, pp. 447–463. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-62466-8 28

8. Daquino, M., Tiddi, I., Peroni, S., Shotton, D.: Creating open citation data with
BCite. In: Emerging Topics in Semantic Technologies, pp. 83–93. IOS Press, Ames-
terdam (2018)

9. Dunsire, G., Fritz, D., Fritz, R.: Instructions, interfaces, and interoperable data: the
rimmf experience with RDA revisited. Cataloging Classif. Q. 58(1), 44–58 (2020)

10. Falco, R., Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: Modelling OWL ontolo-
gies with graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis,
I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 320–325. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11955-7 42

11. Färber, M.: The microsoft academic knowledge graph: a linked data source with
8 billion triples of scholarly data. In: Ghidini, C. (ed.) ISWC 2019. LNCS, vol.
11779, pp. 113–129. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30796-7 8

12. Franc, Y.L., Coen, G., Essen, J.P.V., Bonino, L., Lehväslaiho, H., Staiger, C.: D2.2
FAIR Semantics: First Recommendations (2020)

13. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology eval-
uation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 140–154. Springer, Heidelberg (2006). https://doi.org/10.1007/
11762256 13

14. Garijo, D., Poveda-Villalón, M.: Best Practices for Implementing FAIR Vocabu-
laries and Ontologies on the Web. Applications and practices in ontology design,
extraction, and reasoning, vol. 49, p. 39 (2020)

https://doi.org/10.18653/v1/N18-3011.
https://aclanthology.org/N18-3011
https://aclanthology.org/N18-3011
https://doi.org/10.1007/s11192-016-2134-8
https://doi.org/10.1007/978-3-030-00671-6_19
http://arxiv.org/abs/2007.16079
https://doi.org/10.1007/978-3-030-62466-8_28
https://doi.org/10.1007/978-3-030-62466-8_28
https://doi.org/10.1007/978-3-319-11955-7_42
https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.1007/11762256_13
https://doi.org/10.1007/11762256_13

A Programming Interface for SPAR Ontologies and the OCDM 321

15. Hammond, T., Pasin, M., Theodoridis, E.: Data integration and disintegration:
managing springer nature SciGraph with SHACL and OWL. In: International
Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)

16. Heibi, I., Peroni, S., Shotton, D.: Crowdsourcing open citations with CROCI-An
analysis of the current status of open citations, and a proposal (2019). arXiv
preprint arXiv:1902.02534

17. Heibi, I., Peroni, S., Shotton, D.: Enabling text search on SPARQL endpoints
through OSCAR. Data Sci. 2(1–2), 205–227 (2019)

18. Heibi, I., Peroni, S., Shotton, D.: Software review: COCI, the opencitations index
of crossref open DOI-to-DOI citations. Scientometrics 121(2), 1213–1228 (2019).
https://doi.org/10.1007/s11192-019-03217-6

19. Hillmann, D., Coyle, K., Phipps, J., Dunsire, G.: RDA vocabularies: process, out-
come, use. D-Lib Mag. 16(1/2), 6 (2010)

20. Hosseini, A., Ghavimi, B., Boukhers, Z., Mayr, P.: EXCITE-A toolchain to extract,
match and publish open literature references. In: 2019 ACM/IEEE Joint Confer-
ence on Digital Libraries (JCDL), pp. 432–433. IEEE (2019)

21. Klopfenstein, D., et al.: GOATOOLS: a python library for gene ontology analyses.
Sci. Rep. 8(1), 1–17 (2018)

22. Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked
data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S.
(eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38288-8 15

23. Larralde, M., Philipp, A., Henrie, A., Himmelstein, D., Mitchell, S., Sakaguchi, T.:
althonos/pronto: 2.4.3 (2021). https://doi.org/10.5281/zenodo.5153400

24. Lauscher, A., et al.: Linked open citation database: enabling libraries to con-
tribute to an open and interconnected citation graph. In: Proceedings of the 18th
ACM/IEEE on Joint Conference on Digital Libraries, pp. 109–118 (2018)

25. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: the PROV ontology. W3C Rec-
ommendation 30 Apr 2013 (2013). http://www.w3.org/TR/2013/REC-prov-o-
20130430/

26. Peroni, S., Shotton, D.: The SPAR ontologies. In: Vrandečić, D. (ed.) ISWC 2018.
LNCS, vol. 11137, pp. 119–136. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00668-6 8

27. Peroni, S., Shotton, D.: OpenCitations, an infrastructure organization for open
scholarship. Quant. Sci. Stud. 1(1), 428–444 (2020)

28. Peroni, S., Shotton, D., Vitali, F.: A document-inspired way for tracking changes
of RDF data - the case of the OpenCitations Corpus. In: Hollink, L., Darányi, S.,
Meroño Peñuela, A., Kontopoulos, E. (eds.) Detection, Representation and Man-
agement of Concept Drift in Linked Open Data. CEUR Workshop Proceedings, vol.
1799, pp. 26–33. CEUR-WS, Aachen (2016). http://ceur-ws.org/Vol-1799/Drift-
a-LOD2016 paper 4.pdf

29. Persiani, S.: opencitations/oc ocdm (version 6.0.2) (2021). https://doi.org/10.
5281/zenodo.5770647

30. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: an RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems, pp. 32–40. SEM 2014, Association for Computing
Machinery, New York (2014). https://doi.org/10.1145/2660517.2660523

31. Riungu-Kalliosaari, L., Hooft, R., Kuijpers, S., Parland-von Essen, J., Tana, J.:
D2.4 2nd report on FAIR requirements for persistence and interoperability (2020)

http://arxiv.org/abs/1902.02534
https://doi.org/10.1007/s11192-019-03217-6
https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.5281/zenodo.5153400
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://doi.org/10.1007/978-3-030-00668-6_8
https://doi.org/10.1007/978-3-030-00668-6_8
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf
https://doi.org/10.5281/zenodo.5770647
https://doi.org/10.5281/zenodo.5770647
https://doi.org/10.1145/2660517.2660523

322 S. Persiani et al.

32. Senderov, V., et al.: OpenBiodiv-O: ontology of the openbiodiv knowledge man-
agement system. J. Biomed. Semant. 9(1), 1–15 (2018). https://doi.org/10.1186/
s13326-017-0174-5

33. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat. biotech. 25(11), 1251–1255 (2007)

34. Willighagen, E.: Adoption of the citation typing ontology by the journal of chem-
informatics. J. Cheminformatics 12(1), 1–3 (2020)

https://doi.org/10.1186/s13326-017-0174-5
https://doi.org/10.1186/s13326-017-0174-5

LD Connect: A Linked Data Portal
for IOS Press Scientometrics

Zilong Liu1(B) , Meilin Shi1 , Krzysztof Janowicz1, Blake Regalia1 ,
Stephanie Delbecque2 , Gengchen Mai1,3 , Rui Zhu1 , and Pascal Hitzler4

1 STKO Lab, UC Santa Barbara, Santa Barbara, CA, USA
{zilongliu,meilinshi,janowicz,regalia,gengchen_mai,ruizhu}@ucsb.edu

2 IOS Press, Amsterdam, The Netherlands
s.delbecque@iospress.nl

3 Department of Computer Science, Stanford University, Stanford, CA, USA
maigch@cs.stanford.edu

4 Data Semantics Lab, Kansas State University, Manhattan, KS, USA
hitzler@k-state.edu

Abstract. In this work, we describe a Linked Data portal, LD Connect,
which operates on all bibliographic data produced by IOS Press over the
past thirty-five years, including more than a hundred thousand papers,
authors, affiliations, keywords, and so forth. However, LD Connect is
more than just an RDF-based metadata set of bibliographic records. For
example, all affiliations are georeferenced, and co-reference resolution
has been performed on organizations and contributors including both
authors and editors. The resulting knowledge graph serves as a public
dataset, web portal, and query endpoint, and it acts as a data backbone
for IOS Press and various bibliographic analytics. In addition to the
metadata, LD Connect is also the first portal of its kind that publicly
shares document embeddings computed from the full text of all papers
and knowledge graph embeddings based on the graph structure, thereby
enabling semantic search and automated IOS Press scientometrics. These
scientometrics run directly on top of the graph and combine it with the
learned embeddings to automatically generate data visualizations, such
as author and paper similarity over all journals. By making the involved
ontologies, embeddings, and scientometrics all publicly available, we aim
to share LD Connect services with not only the Semantic Web commu-
nity but also the broader public to facilitate research and applications
based on this large-scale academic knowledge graph. Particularly, the
presented scientometric system generalizes beyond IOS Press data and
can be deployed on top of other bibliographic datasets as well.

Keywords: LD Connect · Knowledge graphs · Ontology engineering ·
Document embeddings · Knowledge graph embeddings · Scientometrics

Z. Liu and M. Shi—Both authors contributed equally to this work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 323–337, 2022.
https://doi.org/10.1007/978-3-031-06981-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_19&domain=pdf
http://orcid.org/0000-0002-7699-3366
http://orcid.org/0000-0001-6039-7810
http://orcid.org/0000-0001-9303-1591
http://orcid.org/0000-0002-4052-2810
http://orcid.org/0000-0002-7818-7309
http://orcid.org/0000-0002-8910-9445
http://orcid.org/0000-0001-6192-3472
https://doi.org/10.1007/978-3-031-06981-9_19

324 Z. Liu et al.

1 Introduction

Knowledge graphs are playing an increasingly important role in academic search
engines, and they serve as data backbones for data analytics at publishers and
funding organizations. For example, Semantic Scholar provides a REST API1 to
facilitate author and paper lookup, conference peer review service, etc., based on
its academic literature graph. SPECTER [3], a method for embedding scientific
papers based on paper IDs, titles, and abstracts, has also been implemented in
Semantic Scholar as a public endpoint2 for retrieving embeddings computed for
selected papers. However, these academic knowledge graphs suffer from several
limitations. First, the access to these large-scale graphs, either via public end-
points or downloadable URLs, is limited. An example is AMiner, which consists
of over 130M researchers and 320M publications in total (by the time of writ-
ing), has only released parts of its entire graph for the public to download3 (i.e.,
50K entities and 290M links). Second, few academic search engines share docu-
mentations about their ontologies, which hinders the semantic interoperability
across different academic knowledge graphs. Third, spatial and temporal infor-
mation is often unavailable in these graphs. For instance, while the data schema
of Microsoft Academic Graph4 contains affiliation information with geocoded
outputs as Latitude and Longitude, no additional spatial contexts (e.g., the
country of an affiliation) are provided nor visualization. Similarly, there is a lack
of annotations about when a publication was received, reviewed, and accepted
to support knowledge discovery during the entire publication process. Fourth,
while pre-trained document embeddings such as SPECTER5, are shared for aca-
demic knowledge graphs such as Semantic Scholar, these embeddings are learned
from titles and abstracts instead of the full text of publications. Additionally, no
knowledge graph embeddings trained on these graphs have been publicly avail-
able yet. Finally, the dataset and scientometric portal presented here are, while
restricted to a single publisher, not merely a data export or service, but form
the deployed data backbone of an academic publisher since several years, thus
offering additional insights into the usage of bibliographic knowledge graphs in
commercial practice.

With these limitations in mind, this paper presents LD connect, a Linked
Data portal that serves, retrieves, visualizes, and analyzes IOS Press biblio-
graphic data. More specifically, we introduce the construction of an academic
knowledge graph using a newly designed (but aligned) ontology, the implemen-
tation of document embedding and knowledge graph embedding techniques, and
the design of a scientometric system to support visualization and analysis of
bibliographic data.

1 https://www.semanticscholar.org/product/api.
2 https://github.com/allenai/paper-embedding-public-apis#specter.
3 https://www.aminer.cn/knowledge_graph.
4 https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema.
5 https://github.com/allenai/specter.

https://www.semanticscholar.org/product/api
https://github.com/allenai/paper-embedding-public-apis#specter
https://www.aminer.cn/knowledge_graph
https://docs.microsoft.com/en-us/academic-services/graph/reference-data-schema
https://github.com/allenai/specter

LD Connect 325

All resources in this paper, including a version of the datasets and pre-trained
embeddings, underlying ontology, and scientometrics, are publicly available on
GitHub6 with detailed documentation.

The remainder of this paper is organized as follows. Section 2 provides an
overview of LD Connect with the underlying ontology. Section 3 explains the need
of embedding representation for both documents and knowledge graphs, and elab-
orates how they are generated. Section 4 demonstrates how IOS Press sciento-
metrics are developed to answer identified competency questions for bibliographic
analysis. Finally, Sect. 5 concludes the paper, and discusses future directions of
improving and adopting LD Connect to other academic related datasets.

2 LD Connect

The ontology of LD Connect can be considered as an extension of the Bib-
liographic Ontology (BIBO)7. First, publications (iospress:Publication) are
categorized as articles (iospress:Article) and chapters (iospress:Chapter),
and contributors (iospress:Contributor) of a publication are categorized as
authors (iospress:Role.Author) and editors (iospress:Role.Editor). Using
list properties of container membership in RDF, the order of authorship in a
paper is expressed as rdf:_0, rdf:_1, rdf:_2, etc. During bibliographic data
triplification, since multiple Uniform Resource Identifiers (URIs) are assigned
to a contributor for all contributed publications, co-reference resolution is per-
formed to learn weights for matching contributors, and owl:sameAs relations
are established among those URIs which indicate the same contributor based
on whether their information, including first names, last names, and affilia-
tions, is significantly similar. The same process is applied to one affiliation
(iospress:Organization) shared by multiple contributors based on affiliation
names and associated contributors. Figure 1(a) and Fig. 1(b) show ontology frag-
ments of iospress:Publication and iospress:Contributor, respectively.

In addition, during the triplification process, spatial and temporal informa-
tion is automatically generated and integrated into the knowledge graph. Affil-
iations are geocoded with Geocoding API provided by Google Map to fetch
their geographic information. The ontology follows the OGC GeoSPARQL stan-
dard8 to generate affiliation geometry. In addition, we provide spatial con-
texts about affiliations, including cities (iospress-geocode:city), countries
(iospress-geocode:country), postal codes (iospress-geocode:postalCode),
regions (iospress-geocode:region), and zones (iospress-geocode:zone). We
also include rich temporal information about a publication such as its received
date (iospress:publicationReceivedDate), accepted date (iospress:publi
cationAcceptedDate), preprint date (iospress:publicationPreprintDate),
and publication date (iospress:publicationDate).

6 https://github.com/stko-lab/LD-Connect.
7 http://bibliontology.com/specification.html.
8 https://www.ogc.org/standards/geosparql.

https://github.com/stko-lab/LD-Connect
http://bibliontology.com/specification.html
https://www.ogc.org/standards/geosparql

326 Z. Liu et al.

A statistical summary about these main classes is listed in Table 1. By
the time of writing, there are over 100K articles, 530K contributors, and 60K
geocoded locations in LD Connect linked by 11M relations, and these numbers
are still growing as the dataset gets updated. It contains all papers published at
IOS Press over the past 35 years.

Table 1. An overview of LD Connect as of 12/06/2021.

Class Number of instances

iospress:Category 9
iospress:Series 44
iospress:Journal 133
iospress:Volume 2687
iospress:Issue 9732
iospress:Chapter 49874
iospress:Article 106131
iospress:Contributor 531126
iospress:Organization 547014
iospress:GeocodedLocation 60284

LD Connect is also made available via a SPARQL endpoint9 for seman-
tic search and more complex queries. The following SPARQL query shows an
example of retrieving relevant information about papers whose first author is
from affiliations located in China. The returned results include corresponding
paper titles, associated keywords, publication years, journals, first authors, and
their affiliations. At an academic publisher, such queries can be used to compare
and potentially adjust the composition of editorial boards of journals to keep
them geographically representative with respect to the locations of authors.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX iospress: <http://ld.iospress.nl/rdf/ontology/>
PREFIX iospress-geocode: <http://ld.iospress.nl/rdf/geocode/>

select ?title (group_concat(?keyword; separator=’,’)
as ?keywords) ?year ?journal ?first_author_name ?org_name

{
?paper iospress:publicationTitle ?title;

iospress:publicationIncludesKeyword ?keyword;
iospress:publicationDate ?date;
iospress:articleInIssue/iospress:issueInVolume/
iospress:volumeInJournal ?journal;
iospress:publicationAuthorList ?author_list.

9 http://ld.iospress.nl/sparql.

http://ld.iospress.nl/sparql

LD Connect 327

Fig. 1. An overview of the ontology behind LD Connect. Edges with filled arrows
are object/datatype properties, and edges with open arrow heads represent subclass
relations. All classes and properties without any prefix are in the namespace iospress:
<http://ld.iospress.nl/rdf/ontology/> .

?author_list rdf:_0 ?first_author.
?first_author iospress:contributorFullName ?first_author_name;

iospress:contributorAffiliation ?org.
?org iospress:geocodingInput ?org_name ;

iospress:geocodingOutput/
iospress-geocode:country ?org_country.

http://ld.iospress.nl/rdf/ontology/

328 Z. Liu et al.

bind(year(?date) as ?year)
values ?org_country {"China"@en}

} group by ?title ?year ?journal ?first_author_name ?org_name

3 Embeddings

In order to capture both semantic and structural knowledge about IOS Press
publications, we take advantages of unsupervised embedding learning techniques,
such as document embeddings [12,16] and knowledge graph embeddings [1,5]
that encode each document and each entity in the graph as high dimensional
embeddings, respectively. More details about the generation of both embeddings
can be found in our paper [13].

3.1 Document Embeddings

To fill the gap of missing semantic properties of publications in LD Connect, we
adopt the Distributed Bag of Words (PV-DBOW) [12] model, which is a specific
version of the Doc2Vec model that encodes the full text bodies of documents
(e.g., conference papers, journal articles, book chapters) from IOS Press into
document embeddings.

PV-DBOW uses the maximum log likelihood (MLE) as its training objec-
tive. Given a document di represented as a sequence of words, i.e., di =
{w1, w2, ..., wT }, PV-DBOW aims at optimizing the joint probability distribu-
tion of each word given di, as shown in Eq. 1.

T∑

t=1

log p(wt|di) (1)

In the generation pipeline, the full text bodies of documents are first extracted
from their corresponding PDF files. Text preprocessing steps such as tokeniza-
tion, lemmatization, and stop word removal are carried out before texts are fed
into the PV-DBOW model. Note that although there are more advanced text
embedding techniques such as ELMo [17] and BERT [4], we selected PV-DBOW
because 1) PV-DBOW is a rather simple but widely used neural network archi-
tecture that can be re-trained in a short amount of time, which is favored by
LD Connect given its fast evolving nature and updates, and 2) implementation
of PV-DBOW is highly reproducible for commercial production.

3.2 Knowledge Graph Embeddings

While document embeddings provide semantic knowledge about publications,
structural knowledge is also needed to understand the relations among entities
in LD Connect, such as journals, authors, and affiliations. Therefore, we utilize
the knowledge graph embedding technique, TransE [1], to encode each entity

LD Connect 329

and relation in LD Connect into a high dimensional vector space. Given one
triple (hi, ri, ti) in LD Connect, TransE encodes both entities and relations into
the same embedding space - hi, ri, ti - so that relation embedding ri is treated
as a translation operation from the head entity embedding hi to the tail entity
embedding ti. A plausibility scoring function fTransE(·, ·, ·) is defined for each
triple as shown in Eq. 2, where triples that exist in LD Connect receive lower
plausibility scores, and those that do not exist receive higher scores.

fTransE(hi, ri, ti) =‖ hi + ri − ti ‖ (2)

Similar to the reason why we use PV-DBOW, we choose to use TransE
because it is more efficient to train, easier to interpret, and it has rather accept-
able performance compared with other counterparts such as TransH [20], TransR
[5], R-GCN [19], and TransGCN [2].

4 IOS Press Scientometrics

Scientometrics refers to the study of measuring and analyzing scholarly literature
[8]. Research in scientometrics ranges from the study of growth and development
in publications of a specific journal [11] to quantitatively characterizing the sci-
entific output of a scholar [7], to designing a framework for measuring spatial
and temporal citation patterns of both publications and researchers [6]. The
large amount of structured bibliographic data provided by LD Connect enables
knowledge discovery and data-driven analysis in studying the science of science.
Our previous work have demonstrated prototypes of scientometric systems that
use similar extended BIBO ontologies based on data from one journal published
by IOS Press, or data enriched with research topics, expertise, and geographic
information of institutions [9,10,15].

In this section, we present an overview of the current version of the sciento-
metric system IOS Press scientometrics10 built upon LD Connect which contains
more enriched journal data and uses a more comprehensive ontology. Developed
with JavaScript libraries such as D3.js11 and Leaflet12, IOS Press scientometrics
consist of seven interactive modules for visual analysis, including Home, Coun-
try Collaboration, Author Map, Author Similarity, Paper Similarity, Keyword
Graph, and Streamgraph. The Semantic Web journal is used as an example to
explain how each module helps answer the competency questions listed below.

Q1: What is the spatial coverage of a journal based on the locations of author
affiliations? The Home module provides an overview of the spatial coverage of
the selected journal. A choropleth map displays the countries/regions of author
affiliations included in the selected journal. Hovering the mouse over a coun-
try/region on the map displays the number of contributing authors. Figure 2

10 http://stko-roy.geog.ucsb.edu:7200/iospress_scientometrics.
11 https://d3js.org.
12 https://leafletjs.com.

http://stko-roy.geog.ucsb.edu:7200/iospress_scientometrics
https://d3js.org
https://leafletjs.com

330 Z. Liu et al.

shows a total of 34 authors from Greece in the Semantic Web journal. The
country/region is colored in proportion to the number of contributing authors.
Countries/regions with higher than average authors are in darker shades of blue
while those with fewer than average are shown in lighter shades.

Fig. 2. Spatial coverage of affiliations mentioned in the Semantic Web journal

Q2: What is the country collaboration pattern based on co-authorship? The
Country Collaboration module uses a chord diagram to display collaboration
patterns based on the co-authorship of the papers from the selected journal.
The arc length represents the percentage of the total collaborative papers from
each country/region. When hovering the mouse over the arc of a specific coun-
try/region, the total number of papers contributed by authors whose affiliations
are from that country/region, and its percentage of the total collaborations is dis-
played. The probabilistic affinity between two countries/regions is shown when
hovering the mouse over a specific chord. Figure 3(a) provides an overview of
the collaboration pattern of the Semantic Web journal, and Fig. 3(b) highlights
collaborations with the United States.

Q3: How are institutions of all authors geographically distributed on a global/local
scale? The Author Map module allows users to drag, zoom in or out to see how
institutions are clustered, and shows the count of each cluster. Users are able to
observe at a local view and investigate further details about the institution of an
author. For example, from Fig. 4 we can know that Ludger Jansen was working
at Institute of Philosophy in the University of Rostock (when one of his papers
was published in the Semantic Web journal), and the address of the institution
is August-Bebel-Straße 28, 18051 Rostock, Germany.

LD Connect 331

Fig. 3. Country collaboration of the Semantic Web journal

Q4: Who are the most similar authors/papers to a selected author/paper? In
Author Similarity module, similar authors across all journals are found based on
the pre-trained knowledge graph embeddings discussed in Sect. 3.2. Cosine simi-

332 Z. Liu et al.

Fig. 4. Map visualization of clusters of author affiliations

larity between each pair of authors is computed to measure their similarity. The
top 20 similar authors are retrieved, along with their institutions, addresses,
and first 20 associated knowledge graph embeddings (see Fig. 5(a)). Hovering
over stack bars of the selected author enables users to see the actual values of its
knowledge graph embeddings. By clicking on one of the similar authors, a follow-
your-nose author similarity search will be conducted with the selected author as
a new input (see Fig. 5(b)). Similarly, the Paper Similarity module provides the
functionality of searching for the most similar papers based on the pre-trained
document embeddings discussed in Sect. 3.1. For each retrieved paper, its pub-
lished year, a list of keywords, as well as first 20 corresponding document embed-
ding are visualized (see Fig. 6(a)). Similarly, a follow-your-nose paper similarity
search will perform once a similar paper is selected (see Fig. 6(b)).

Q5: How are the papers clustered based on similar keywords? The Keyword Graph
module uses a force-directed graph to show the relationship among papers. Each
paper from the selected journal is represented as a node. The nodes are clustered
and linked together by shared keywords. Hovering the mouse over a node displays
information about the paper, associated keywords, and the number of paper
connections. Given the sheer number of keywords, the data have been split by
years. In Fig. 7, an example node from the Semantic Web journal in 2016 is
displayed.

Q6: What are the research topic trends of a journal across time? The Stream-
graph module displays the trend of research topics/keywords in the selected
journal over time. The top 20 keywords are selected and ranked according to the
total number of papers containing the topic keywords. The streamgraph allows
users to see the changes in the number of papers under certain topics. When

LD Connect 333

Fig. 5. Information display of the selected author and similar authors, including the
visualization of their first 20 knowledge graph embeddings.

Fig. 6. Information display of the selected paper and similar papers, including the
visualization of their first 20 document embeddings.

hovering the mouse over a specific keyword on the streamgraph, the informa-
tion boxes will display author, paper, and year information associated with the
selected keyword, as well as its count per year. Clicking on an author will link to
its dereferencing interface developed on top of the Phuzzy.link framework [18].
Figure 8 shows an example of the keyword Linked Open Data with a count of 6
in 2016 from the Semantic Web journal.

334 Z. Liu et al.

Fig. 7. Keyword graph visualization of the Semantic Web journal in 2016

Fig. 8. Streamgraph visualization of top research topics in the Semantic Web journal

5 Conclusions and Future Work

In this work, we introduced a Linked Data-driven scientometric system on top
of the LD Connect bibliographic knowledge graph that enables users to answer
several competency questions by browsing and interacting with the system. The
scientometrics showcase the potential to unveil the underlying characteristics
of academic literature across space and time, as well as the ability to empower

LD Connect 335

embedding-based similarity search on LD Connect. Being openly and freely avail-
able, the system is already in-use at IOS Press where it powers their data back-
bone, and will be publicly accessible13 after transforming this prototype into
production. At the same time, we aim to increase long-term availability and
sustainability of our work in addition to the scientometrics. We have recently
switched to an ongoing deployment where almost all steps described in this paper
are automated, and therefore, time and costs can be reduced to a minimum. This
deployment includes a pipeline that updates both the graph and embeddings
when new data come in. We also plan to enrich our graph with more external
information. For instance, we will associate contributors with their ORCIDs and
include citation data for further bibliographic analysis.

It is worth noting that the scientometric system itself can be used and
deployed by other researchers as a resource, such as for recommending reviewers
and uncovering potential disparities between the geographic locations of authors
versus journal editors. Also, the presented Linked Data-driven scientometrics are
not restricted to LD Connect but can be deployed on other RDF-based datasets
with minimal adjustments. While future work includes improving scalability of
the scientometric system to support queries from journals with a larger volume,
we also plan to develop new scientometrics to answer other interesting questions,
such as how academic activity and collaboration change across space and time
for both individuals and groups of scholars.

The ontology behind LD Connect can be aligned with other open biblio-
graphic ontologies that are commonly in use for academic services, which will
facilitate research in ontology alignment to improve semantic interoperability
across academic knowledge graphs. Moreover, as a wide variety of spatial and
temporal information is integrated with bibliographic data in the knowledge
graph construction pipeline, we hope LD Connect highlights the importance of
GeoEnrichment in ontology engineering for future research.

In addition to the ontology, a SPARQL endpoint, and open access to both
the graph and the scientometrics, LD Connect is the first of its kind that shares
both pre-trained document and knowledge graph embeddings, which overcomes
copyright limitation to direct access to full text bodies of publications. In the
future, we plan to incorporate spatial information in embedding generation by
using techniques such as Space2Vec [14] to develop similarity search functions for
discovering spatial similarity among entities in LD Connect. Furthermore, both
shared embeddings serve as large-scale datasets with a wide diversity of research
topics, author contribution, and their relations, opening up a great number of
opportunities for research and applications in knowledge graphs, natural lan-
guage processing, the Semantic Web, and beyond.

13 http://ld.iospress.nl/scientometrics/.

http://ld.iospress.nl/scientometrics/

336 Z. Liu et al.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 26,
2787–2795 (2013)

2. Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transforma-
tion assumptions with graph convolutional networks for link prediction. In: Pro-
ceedings of the 10th International Conference on Knowledge Capture, pp. 131–138
(2019)

3. Cohan, A., Feldman, S., Beltagy, I., Downey, D., Weld, D.S.: Specter: document-
level representation learning using citation-informed transformers (2020). arXiv
preprint arXiv:2004.07180

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT (1) (2019)

5. Fan, M., Zhou, Q., Chang, E., Zheng, F.: Transition-based knowledge graph embed-
ding with relational mapping properties. In: Proceedings of the 28th Pacific Asia
Conference on Language, Information and Computing, pp. 328–337 (2014)

6. Gao, S., Hu, Y., Janowicz, K., McKenzie, G.: A spatiotemporal scientometrics
framework for exploring the citation impact of publications and scientists. In: Pro-
ceedings of the 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 204–213 (2013)

7. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc.
Natl. Acad. Sci. 102(46), 16569–16572 (2005)

8. Hood, W.W., Wilson, C.S.: The literature of bibliometrics, scientometrics, and
informetrics. Scientometrics 52(2), 291–314 (2001). https://doi.org/10.1023/A:
1017919924342

9. Hu, Y., Janowicz, K., McKenzie, G., Sengupta, K., Hitzler, P.: A linked-data-
driven and semantically-enabled journal portal for scientometrics. In: International
Semantic Web Conference, pp. 114–129. Springer (2013)

10. Hu, Y., McKenzie, G., Yang, J.A., Gao, S., Abdalla, A., Janowicz, K.: A linked-
data-driven web portal for learning analytics: data enrichment, interactive visual-
ization, and knowledge discovery. In: LAK Workshops (2014)

11. Santha kumar, R., Kaliyaperumal, K.: A scientometric analysis of mobile technol-
ogy publications. Scientometrics 105(2), 921–939 (2015). https://doi.org/10.1007/
s11192-015-1710-7

12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

13. Mai, G., Janowicz, K., Yan, B.: Combining text embedding and knowledge graph
embedding techniques for academic search engines. In: Semdeep/NLIWoD@ ISWC,
pp. 77–88 (2018)

14. Mai, G., Janowicz, K., Yan, B., Zhu, R., Cai, L., Lao, N.: Multi-scale represen-
tation learning for spatial feature distributions using grid cells. In: International
Conference on Learning Representations (2020)

15. McKenzie, G., Janowicz, K., Hu, Y., Sengupta, K., Hitzler, P.: Linked sciento-
metrics: designing interactive scientometrics with linked data and semantic web
reasoning (2013)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural Inf. Process.
Syst. 26, 3111–3119 (2013)

http://arxiv.org/abs/2004.07180
https://doi.org/10.1023/A:1017919924342
https://doi.org/10.1023/A:1017919924342
https://doi.org/10.1007/s11192-015-1710-7
https://doi.org/10.1007/s11192-015-1710-7

LD Connect 337

17. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
NAACL-HLT, pp. 2227–2237 (2018)

18. Regalia, B., Janowicz, K., Mai, G.: Phuzzy. link: a SPARQL-powered client-sided
extensible semantic web browser. In: VOILA@ ISWC, pp. 34–44 (2017)

19. Schlichtkrull, M., et al.: Modeling relational data with graph convolutional net-
works. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

20. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, pp. 1112–1119. AAAI Press (2014)

https://doi.org/10.1007/978-3-319-93417-4_38

Chowlk: from UML-Based Ontology
Conceptualizations to OWL

Serge Chávez-Feria(B) , Raúl Garćıa-Castro , and Maŕıa Poveda-Villalón

Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
serge.chavez.feria@upm.es, {rgarcia,mpoveda}@fi.upm.es

Abstract. Ontology conceptualization is an ontology development task
that consists in generating a preliminary model based on the require-
ments that the ontology should represent. This activity is often carried
out by generating the models as diagrams in a blackboard, paper or
digital tools. The generated models drive the ontology implementation
activity, where the model is formalized and completed using an imple-
mentation language. Normally, the ontology conceptualization output
serves as guidance for the ontology implementation; however, ontology
implementation is usually done from scratch using ontology editors. The
goal of this work is to consider ontology conceptualizations as first-order
artifacts in ontology development in order to boost the ontology imple-
mentation activity. For doing so we present Chowlk, a framework to
transform digital machine-processable ontology conceptualization dia-
grams into OWL. Domain experts and ontologists benefit from this app-
roach in several ways: 1) reduce time generating the first versions of the
OWL file that can be invested on 2) focusing on the conceptualization
diagrams that can be used both for 3) improving communication between
ontology users and developers and 4) be reused during the ontology doc-
umentation stage.

Keywords: Ontology engineering · Ontology conceptualization · OWL

1 Introduction

Everyday more and more applications are being built on top of or in combination
with semantic technologies. Ontologies play a crucial role in this development
as they allow the representation of knowledge in a formal and structured way,
being the OWL [4] language the default choice for their implementation because
of its high level of expressiveness, reasoning capabilities and the fact that it has
been designed for the web environment.

One of the first and most important steps in ontology development is the con-
ceptualization one, during which the ontology development team defines a set of
concepts and properties to represent the knowledge of a specific domain. Often,

This work has been supported by the BIMERR funded from the European Union’s
Horizon 2020 research and innovation programme under grant agreement no. 820621.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 338–352, 2022.
https://doi.org/10.1007/978-3-031-06981-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_20&domain=pdf
http://orcid.org/0000-0002-7454-9202
http://orcid.org/0000-0002-0421-452X
http://orcid.org/0000-0003-3587-0367
https://doi.org/10.1007/978-3-031-06981-9_20

Chowlk: from UML-Based Ontology Conceptualizations to OWL 339

this conceptualization is materialized in a diagram that displays the relation-
ships, attributes and axioms of the different concepts of an ontology. From this
model, the ontology implementation is carried out normally using an ontology
editor, such as Protégé [11], realizing the model into OWL code.

However, in this process the diagram is in most of the cases only used as
a guideline to implement the ontology, translating the ontological elements and
constructs to a formal syntax, being this process mostly manual and error-prone.
Some tools have been proposed in the last years that allow the graphical creation
or modification of ontologies following their respective visual notations [2,16].

In our case, rather than building a graphical ontology editor, the effort is
driven towards the goal of allowing a smoother transition from the concep-
tualization activity to a first version of the actual implementation by taking
the conceptualization output as a first order artifact in ontology development
projects. For doing so, the Chowlk framework has been designed. The framework,
shown in Fig. 1, consists of: 1) an UML-based visual notation; 2) a pair of dia-
grams.net templates implementing the visual notation; and 3) a converter from
diagrams.net XML diagrams to OWL. It should be clarified that the resource
presented in this paper is the converter that will be detailed in Sect. 3). How-
ever, for a better understanding of the converter, the visual notation is briefly
presented in Sect. 2.

It should be clear at this stage that our goal is to fill the gap between the
conceptualization and implementation of ontologies which is still a manual pro-
cess, and as every manual procedure, it can be prone to errors. Even though,
it is true that users can create ontologies directly in specialized editors such as
Protégé [10] and avoid the creation of a diagram, our focus is on ontology users
who follow developments where the conceptualization is the corner stone of the
development process, and want to take full advantage of the effort made in the
conceptualization step, for example to communicate and verify the model with
users or clients as well as for documenting the ontology to publish or share it.

The validation of the Chowlk converter is described in Sect. 4 while a com-
parison with existing approaches is presented in Sect. 5. Future lines of work to
evolve and improve the present work are proposed in Sect. 6.

Fig. 1. Chowlk framework.

340 S. Chávez-Feria et al.

2 Visual Notation

The converter presented in this paper is based on the Chowlk visual notation that
extends the UML Ont profile [7]. It should be mentioned that while the original
UML Ont profile utilizes custom stereotypes and dependencies to cover OWL 1
constructs, the Chowlk notation binds the stereotypes used in the profile to OWL
and RDF(S) constructs. Also, the visual notation used in this work proposes
compact alternatives for representing property characteristics and axioms.

Due to the fact that the notation is considered an input for the converter
instead of part of the resource presented in this paper, and for space matters,
in this section only the main characteristics of the notation are included. While
the notation has been partially published in [6], a more complete and updated
version, including examples and alternative notation elements for those presented
in this paper, is provided in the notation website1.

Figure 2 provides an overview of the notation of the main OWL elements.
Named classes are represented by labelled boxes. Unlabelled boxes or circles
are used to represent anonymous classes and class intersections, unions, equiva-
lences and disjoints. Object properties are represented by labelled arrows and
datatype properties by labelled boxes attached to class boxes. Note that both
types of properties can be represented by diamonds, notation needed in some
cases, for example to represent equivalences or property hierarchies for datatype
properties. For object properties, the relations between them (subproperty of,
inverse or equivalent) can be represented both by arrows linking either the arrows
representing the properties or the diamonds representing them.

Property characteristics (functional, inverse functional, transitive and
symmetric) can be indicated before the property name or stating the charac-
teristic construct in the diamond. Class constraints are represented between
classes including the operator (universal, existential o cardinality) before the
property over which the constraint is stated for subclass constraints. For equiv-
alent class constraints or constraints in domains or ranges, unlabelled boxes are
used in combination with the equivalent or domain/range indicator.

The Chowlk visual notation also allows to declare namespaces, for example to
link entities from different ontology modules within a network or to indicate the
reuse of other ontology elements. Finally, the notation includes a metadata block
used not only for documenting the diagram but for ontology metadata generation
during the conversion phase. The metadata is stated in a printed-document alike
shape and makes use of the prefixes defined in the namespaces building block.
Examples of namespaces and metadata blocks are shown in Fig. 3.

1 https://chowlk.linkeddata.es/notation.html.

https://chowlk.linkeddata.es/notation.html

Chowlk: from UML-Based Ontology Conceptualizations to OWL 341

Fig. 2. Chowlk visual notation summary.

Figure 3 shows an excerpt of the BIMERR building ontology2. The figure shows
basic elements such as classes, class hierarchies, object properties and datatype
properties. Also, some more complex statements are represented as universal
restrictions, for example between building:Building and building:Storey
over the object property bot:hasStorey. Class cardinality constrains are shown
for several datatype properties, for example the cardinality of the attribute
building:ifcIdentifier for building:Storey is exactly 1.

Even though the presented visual notation is in some cases a one to one
representation of the formalisms of the OWL language, it gives the freedom to
develop lighter models. These less complex models can contain just boxes and
plains arrows, without indicating restrictions or more complicated constructs,

2 http://bimerr.iot.linkeddata.es/def/building#.

http://bimerr.iot.linkeddata.es/def/building#

342 S. Chávez-Feria et al.

Fig. 3. Conceptualization example for an ontology using Chowlk.

almost like a conceptual map, which is easier to develop and understand by non
ontology experts. For this reason, the notation allows for different alternatives
for representing most of the OWL constructs and the framework includes two
flavours of the notation that are implemented in two different templates.

The first template is a complete version containing all the building blocks
described in the visual notation. This version was designed for ontology engi-
neers who are knowledgeable about OWL. The second template is a lightweight
version containing just a subset of the blocks, such as rectangles, arrows, and
Boolean operators without more complicated constructs like restrictions. This
second version was intended for users which are not familiar with OWL. Users
can upload the templates and start making their conceptualizations by dragging
and dropping the building blocks of the template into the diagramming layout of
diagrams.net. This procedure reduces the entry barrier to start using the nota-
tion and avoids visual syntax errors when constructing the conceptualizations
by providing already predefined combinations of the blocks in order to represent
the OWL constructs.

Chowlk: from UML-Based Ontology Conceptualizations to OWL 343

3 The Chowlk Converter

Chowlk is a web application that takes as input an ontology conceptualization
created with diagrams.net and generates the OWL implementation. The con-
ceptualization is made following the Chowlk visual notation described in Sect. 2.
The web application is available through its URL3, and through its API4. The
source code is shared in a GitHub repository5 under the Apache 2.0 license. The
software has a canonical citation using the DOI6 provided by its Zenodo entry7.

Figure 1 shows the modules in which the system is decomposed, namely: the
detection module, the association module, and the writing module. The input
to the system is a diagram representing the conceptual model of an ontology
in XML format. After the conversion process, the tool outputs the ontology
implementation in Turtle that can be downloaded to continue with the remaining
ontology engineering process.

It is worth mentioning that even though the workflow shown in Fig. 1 has been
defined within the Chowlk Framework, it can be reused to develop converters for
other visual notations, just by adapting the detection stage which is in charge of
detecting the underlying syntax of the blocks. Section 3.1 exposes the reasons to
build the converter based on diagrams.net and the rest of the sub-sections cover
in detail each of the modules in the transformation pipeline.

3.1 Selecting a Diagramming Tool

As already mentioned, the goal is not to produce a graphical ontology editor but
to take advantages of conceptualizations that can be developed with a variety of
diagramming tools. Indeed, the Chowlk notation is independent of the tool used
to draw the diagram shapes or symbols and provides alternatives in case the
diagramming tool does not support some symbols as the existential or universal
operators. However, in order to use the converter to generate the OWL code
from the conceptualization, diagrams.net should be used as the diagramming
tool. The main reasons for choosing diagrams.net are:

1. It is flexible enough in terms of features and drawing options, so it allows to
implement all the elements of the visual notation.

2. It supports synchronous collaborative diagram edition. In this sense, ontolo-
gists and domains experts, or other roles involved in ontology conceptualiza-
tion, could be visualizing and/or editing the diagrams at the same time.

3. It is able to export diagrams in a structured format, such as an XML file.
Figure 4 shows an example of the nested structure generated, where on the
left side we have a very simple ontology excerpt composed by two classes and
one object property, and on the right side the XML counterpart. Additionally,

3 https://chowlk.linkeddata.es.
4 https://chowlk.linkeddata.es/api.
5 https://github.com/oeg-upm/Chowlk.
6 https://doi.org/10.5281/zenodo.4312930.
7 https://zenodo.org/record/4312930#.X9yNt9hKiUk.

https://chowlk.linkeddata.es
https://chowlk.linkeddata.es/api
https://github.com/oeg-upm/Chowlk
https://doi.org/10.5281/zenodo.4312930
https://zenodo.org/record/4312930#.X9yNt9hKiUk

344 S. Chávez-Feria et al.

Fig. 4. Sample XML output of diagrams.net

each child element has a sequence of attributes that helps in the identification
of each building block. Table 1 describes the fields used to describe the children
elements. Some attributes apply to all the building blocks of the diagram such
as the “id” field, while others only apply to specific shapes like the arrow
blocks that should include a “target” and a “source” field.

4. It is a web-based open source platform. This feature lowers the barrier for
its adoption, avoiding the process of having to download the software, install
it and run it locally. The open source characteristic also opens the door to
increase its functionalities whether through the extension of its source code
or by means of plugins.

Table 1. XML diagrams.net data structure.

Block at-
tribute

Block type Definition

id Classes, object properties,
datatype properties

Unique identifier of the block in the diagram

value Classes, object properties,
datatype properties

Text content assigned to the block. Used to represent
the URIs of the elements of the ontology

style Classes, object proper-
ties,datatype properties

Allows to give style to the blocks and make a differ-
entiation between the elements of the ontology

source Object properties Points to the block id that is connected to the source
side of an arrow

target Object properties Points to the block id that is connected to the target
side of an arrow

Chowlk: from UML-Based Ontology Conceptualizations to OWL 345

3.2 The Detection Module

Once the diagram is uploaded to the system, the transformation process triggers.
The first step in the conversion procedure is performed by the detection module,
where all the building blocks of the diagram are found.

The detection of ontology elements is performed for all the building blocks
represented in the diagram that follow the Chowlk visual notation, discarding
any shape that does not correspond to the notation ones. This detection is done
by analyzing the attributes of the XML data structure mentioned in Sect. 3.1.
Specifically, the module searches for information in the “style” attribute of chil-
dren elements to derive the type of shape it is dealing with. For instance, if the
“style” attribute contains the keyword “edge”, the module can interpret that the
shape being analyzed is of type “arrow” that could represent an object property
in the OWL language. Each element identified in the diagram populates a pre-
defined data structure, where the fields change according to the type of ontology
element. For example, in the case of an object property the data structure will
store information regarding its prefix, the URI, if it is functional or symmetric,
etc. These data structures facilitate later the querying of elements and searching
for information during the subsequent stages.

In most of the cases the type of visual blocks used in the specification has a
unique mapping to the OWL construct, like the namespace block. However, there
are other situations in which the same type of building block is used to represent
more than one OWL element. This is the case of concepts and attributes, where
both use the rectangle definition, and it is needed to identify the geometry
disposition of the blocks in the layout in order to disambiguate their meaning.
In this particular example, if the algorithm detects a rectangle, then it searches
for other rectangles above it in a close neighborhood. If they exist, the rectangle
we are analyzing represents datatype properties, otherwise it represents a class.

In the current version of the converter, the source and target of arrows
in a diagram must be anchored to other building blocks in order to iden-
tify the relationship. This characteristic in combination with the restriction
that diagrams.net does not allow connections between arrows, impedes the cre-
ation of relationships between properties. This means that in order to repre-
sent rdfs:subPropertyOf relations between two object properties, the diamond
option specified in the visual notation to represent object properties should be
used. Diamond shapes can also be used as an optional alternative to state sev-
eral other characteristics of the properties such as symmetry, functionality, range,
domain, etc. If an object property is represented as an arrow in one part of the
diagram and additional information is provided using the diamond shape, the
definition of the property is generated by combining the information represented
in both shapes.

Additionally, the converter is able to identify ontology metadata, and the
namespaces and prefixes being used in the model, thanks to specific blocks ded-
icated to this type of information. Labels to each ontology element are added
during the detection process.

346 S. Chávez-Feria et al.

Finally, the detector module also identifies any deviation from the visual
notation and returns a report diagram indicating in which part of the diagram
the ontology engineer is not following the correct syntax. For instance, if the
ontology engineer attempts to instantiate a property without a prefix, or a prefix
was detected in the ontology elements that was not included in the namespace
declaration block, the module detects those errors and outputs: the id of the
block involved, the label if available, and a generic explanation of the error. This
example can be seen in Fig. 5.

Fig. 5. Example of error report

3.3 The Association Module

The association module performs the connection between the classes, and the
object and datatype properties instantiated in the diagram.

The correspondences are established following different procedures. In the
case of associations between classes and object properties, the module checks
if the identifier of the building block representing a class and the identifier in
the “source” field of an object property is the same. For the case of association
between classes and datatype properties, the module analyzes the location of
the blocks representing them. If the datatype property block is below and close
enough to a class block, it means those attributes are intended to be used with
that class.

In a second step, the module analyzes if the object and datatype properties
have a restriction with the class at hand. The module specifically searches for
the following notation in the text of the properties: (some), (all), or (N1..N2),
which indicates existential, universal, and cardinally restrictions respectively.

If the restrictions exist, the module maintains the connections previously
created between the classes and the properties. Otherwise, the associations are
eliminated because the properties have been diagrammed in that way only to
give the potential user of the ontology an idea of how the properties are planned

Chowlk: from UML-Based Ontology Conceptualizations to OWL 347

to be used. However, there is no formal restriction that states that it can only
be used with that specific class.

Finally, the output of this module is an array that contains the concepts,
objects properties and datatype properties associated through restrictions. This
will facilitate the serialization of the restrictions in the final Turtle file.

3.4 The Writing Module

The writing module takes all the ontological elements detected in the previous
steps and writes them one by one in an RDF file. The process starts by taking as
basis a template that already incorporates common namespaces (rdfs, owl, rdf,
xml, dcterms and vann) and their prefixes to avoid the user to indicate them.

This default list is complemented with the namespaces and prefixes found
in the metadata block. If there exist some prefixes detected on the elements of
the ontology (e.g., concepts, relations, attributes) that were not declared on the
namespace block, new namespaces invented by the tool are created automati-
cally. Afterwards, the module writes high level information about the ontology
declared in the ontology metadata block, such as title, authors, imports, etc.
This information will be written in the owl:Ontology header.

Next, the module writes the definition of the object and datatype properties.
The following information is included for both types of properties: English labels
(which are automatically extracted from the URI), if they are functional, the
domain, the range, and if they are sub-property or equivalent to another one. In
the case of object properties additional characteristics are included if they are
stated during the conceptualization: symmetric, transitive, inverse functional, or
inverse of another property.

The process is similar for writing the classes, with the difference that in
this case the module uses as input the output from the associations module.
The writing module needs such data structure to know the type of restrictions
that applies over each class with respect to the object and datatype properties.
Relationships of the type owl:disjointWith and owl:equivalentClass with
other concepts are also included. Instances and general axioms such as multiple
disjoints between several classes are also added.

Once the writing process is finished, the converter provides the ontology in
the Turtle format, and the file can be finally downloaded from the GUI of the
web application.

Additionally, if the visual notation was not followed properly, a report is
provided in the GUI of the application listing all the errors found during the
parsing process. The report includes the id of the block containing the error, the
label of the block for a rapid inspection in the diagram, and a generic explanation
of the problem.

3.5 Current Limitations

The diagrams.net tool is a general purpose diagramming software, not specific
for the development of ontologies, so the user has to be very careful when

348 S. Chávez-Feria et al.

constructing the conceptualizations in order to avoid deviations from the visual
notation being used. Even though the current version of the model can generate
reports about the errors detected in model and the user can make the appropri-
ate changes in the diagram, the process of identifying the blocks in the diagram
manually can be very complex for very large conceptualizations.

Also, because diagrams.net does not allow to anchor the extremes of
arrows to other arrows, the system cannot detect the rdfs:subpropertyOf,
owl:inverseOf and owl:equivalentOf relationships. For that we need to use
the diamond options of the Chowlk visual notation. For instance, to express that
the object property “hasSpace” has a relationship of type owl:inverseOf with
the property “isSpaceOf” we need to use the diamond shapes for the converter
to be able to detect this kind of construct.

4 Validation

In the following section we provide a series of examples that prove the usage
of the tool. Additionally, we verified the correctness of the results obtained by
the converter by transforming the visual OWL constructs listed in the visual
notation. Because of the simplicity of the tool, we do not include user experience
evaluation in this first version, but it is something that we plan to do for the
next iterations.

4.1 Adoption and Use

The service has been adopted in different projects from several institutions. For
instance, Chowlk is being used as part of the ontology development pipeline in
different H2020 European projects, such as BIMERR8, and COGITO9, within
the research lab developing Chowlk, but also by external teams, for example in
the BIM4EEB10 and CosWot ANR projects11.

Additionally, the system is being used to support the development of ontolo-
gies in different domains such as agriculture12, public transport [14], time13,
ethics14, material science15, and ICT infrastructure [3]. Furthermore, some
ontologies developed by international communities such as the W3C16 has also
being implemented using Chowlk, such as the WoT discovery ontology17.
8 https://bimerr.iot.linkeddata.es/.
9 https://cogito.iot.linkeddata.es/.

10 https://digitalconstruction.github.io/v/0.5/index.html.
11 https://coswot.gitlab.io/.
12 http://www.elzeard.co/ontologies/c3po/plant#.
13 https://github.com/mnavasloro/ft3/blob/04c65c2b2ed2bd57f9ac6cfb32b7f4ebfda1f4

c4/ft3.owl.
14 https://krnlet.github.io/#.
15 https://github.com/Mat-O-Lab/MSEO.
16 https://www.w3.org/.
17 https://github.com/w3c/wot-discovery/blob/24b2141e8e0cb74abd24cead0b4bbffb6

72e24c6/context/discovery-ontology.ttl.

https://bimerr.iot.linkeddata.es/
https://cogito.iot.linkeddata.es/
https://digitalconstruction.github.io/v/0.5/index.html
https://coswot.gitlab.io/
http://www.elzeard.co/ontologies/c3po/plant#
https://github.com/mnavasloro/ft3/blob/04c65c2b2ed2bd57f9ac6cfb32b7f4ebfda1f4c4/ft3.owl
https://github.com/mnavasloro/ft3/blob/04c65c2b2ed2bd57f9ac6cfb32b7f4ebfda1f4c4/ft3.owl
https://krnlet.github.io/#
https://github.com/Mat-O-Lab/MSEO
https://www.w3.org/
https://github.com/w3c/wot-discovery/blob/24b2141e8e0cb74abd24cead0b4bbffb672e24c6/context/discovery-ontology.ttl
https://github.com/w3c/wot-discovery/blob/24b2141e8e0cb74abd24cead0b4bbffb672e24c6/context/discovery-ontology.ttl

Chowlk: from UML-Based Ontology Conceptualizations to OWL 349

Finally, the usage of the tool can be demonstrated by the issues, pull requests
and forks made to the Github of the project. This demonstrate that Chowlk is
being used not only to develop ontologies, but also being integrated in other
ontology development softwares18.

4.2 Validation Tests

The service has been tested against a set of 49 diagrams, where all the results
obtained were valid ontologies. Each diagram contains a set of building blocks
representing the OWL constructs defined in the Chowlk visual notation. The
diagrams constructed with their corresponding OWL ontologies are available in
the GitHub repository of the project19 for its verification. Figure 6 shows an
example of an input diagram and the ontology generated by the converter.

Fig. 6. Test conversion example.

As it was mentioned in Sect. 4.4, since it is not possible for the sys-
tem to detect the owl:inverseOf, owl:equivalentProperty and rdfs:subPro
pertyOf axioms between object properties when they are represented using
arrows, we tested those axioms representing the object properties with the dia-
mond shapes.

5 Related Work

Several approaches have been proposed in the recent years with respect to visual
ontology edition tools. The work developed in [5] presents a good review of the
18 https://gitlab.com/kupferdigital/ontoflow.
19 https://github.com/oeg-upm/Chowlk/tree/webservice/tests/inputs.

https://gitlab.com/kupferdigital/ontoflow
https://github.com/oeg-upm/Chowlk/tree/webservice/tests/inputs

350 S. Chávez-Feria et al.

state of the art regarding tools with edition and visualization capabilities. From
the spectrum of tools analyzed, only six include the visual edition of ontologies
as a feature. It is important to remark that the following review only considers
tools that are free for its usage.

On the one hand, there is a set of applications that are implemented as a
web service. WebVOWL [16] is an application that has as a principal feature the
visualization of OWL ontologies, which are displayed following the VOWL visual
notation that has a graph representation. Among other capabilities it allows
the customization of the visualization and the modification of the ontology by
directly manipulating the elements of the graph. On the same line, OWLGrEd
[2] is a framework that offers visualization capabilities following an UML based
notation. The tool allows the visual edition of ontologies but only in its desk-
top version. Even though, the graphical edition of the ontologies is possible in
both applications, neither of them allow collaborative work. Graffoo20 is an open
source tool that can be used to represent OWL ontologies as easy-to-understand
diagrams. Originally, it was developed as a standard library for the yEd dia-
gram editor including a set of pallets to create ontology conceptualizations and
afterwards using the Ditto21 web service to generate the OWL implementation.
Recently, a library for diagrams.net was created to develop ontology conceptu-
alization using the Graffoo visual notations; however, in this case the conversion
service is not available.

On the other hand, there is a set of applications that require the local instal-
lation of software. The following tools are described based on their publications
because there is no evidence of their availability. CMap Ontology Editor [8] is
a set of tools that allows the creation and visualization of ontologies as concep-
tual maps [12], which are general artifacts that serve for the representation of
any kind of knowledge. Ontotrack [10] is a standalone application that supports
graph based and hierarchical representations of ontologies. It includes instant
reasoning capabilities that provide instant feedback about the modeling deci-
sions made by the user. Triple20 [15] is a manipulation and visualization tool
developed using Prolog. Some of its characteristics include the representation of
the ontology following a graph based and hierarchical view and the ability to
handle large ontologies because all the data is stored in RAM memory. Finally,
GrOWL [9] is a standalone Java application that, apart from the basic visual-
ization and edition features, also makes use of shape, color and shade to encode
properties in the nodes of the graph.

One common characteristic among the tools described previously is that all
require the learning of a new development environment, the local installation of
the software, or do not allow collaborative work.

The Chowlk converter eliminates the need for software installation by lever-
aging on existing popular diagramming tools that already provide collaborative
edition features to generate the ontology conceptualizations. It could also be
integrated with third party software. In addition, the proposed framework and

20 https://essepuntato.it/graffoo/.
21 https://essepuntato.it/ditto/.

https://essepuntato.it/graffoo/
https://essepuntato.it/ditto/

Chowlk: from UML-Based Ontology Conceptualizations to OWL 351

converter are based on UML notation as it is commonly used in software engi-
neering, and it is familiar to software engineers.

6 Conclusions and Future Work

This paper presents a system, Chowlk, to ease the ontology development process
by leveraging the conceptualization activity outputs in order to transform the
obtained diagrams into OWL code. Chowlk is implemented as a web application
that allows the uploading of the diagram as an XML file and outputs the ontology
in RDF/XML and Turtle formats speeding up the ontology developments.

The system was tested using a unit-test procedure with all the OWL con-
structs defined by the Chowlk visual notation, and also using it to generate the
ontologies of the BIMERR ontology network.

We will explore the support for other visual notations for a broader adoption
and testing of the tool. Additionally, further research should be carried out in
order to support the updating of the conceptualizations. That is, how for a
given ontology created by Chowlk, and then modified by an editor (Protégé),
the changes can be appropriately represented in the diagram. The support for
other standard formats such as SVG is also something to be explored in the next
version. This could allow the converter to be independent of the diagramming
tool to be used.

Finally, the sustainability plan for the system includes its continue use and
evolution as part of current and future research projects and as part of the
group ontology engineering tools suite roadmap. Some foreseen interactions exist
between Chowlk and OnToology [1], by integrating the XML file as a resource
in GitHub repositories from where OnToology can trigger Chowlk to generate
the OWL code; and incorporating the pitfalls detection from OOPS! [13] within
the conceptualization phase by the diagrams.net Chowlk plugin.

References

1. Alobaid, A., Garijo, D., Poveda-Villalón, M., Santana-Perez, I., Fernández-
Izquierdo, A., Corcho, O.: Automating ontology engineering support activities with
OnToology. J. Web Semant. 57, 100472 (2018)

2. Barzdins, A., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: UML style graph-
ical notation and editor for OWL 2. In: Forbrig, P., Günther, H. (eds.) BIR 2010.
LNBIP, vol. 64, pp. 102–114. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16101-8 9

3. Corcho, O., et al.: A high-level ontology network for ICT infrastructures. In: Hotho,
A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 446–462. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88361-4 26

4. Dean, M., et al.: Owl web ontology language reference. W3C Recommendation,
World Wide Web Consortium (2004). http://www.w3.org/TR/owl-ref/

5. Dudás, M., Lohmann, S., Svátek, V., Pavlov, D.: Ontology visualization methods
and tools: a survey of the state of the art. Knowl. Eng. Rev. 33 (2018)

https://doi.org/10.1007/978-3-642-16101-8_9
https://doi.org/10.1007/978-3-642-16101-8_9
https://doi.org/10.1007/978-3-030-88361-4_26
http://www.w3.org/TR/owl-ref/

352 S. Chávez-Feria et al.

6. Garijo, D., Poveda-Villalón, M.: Best Practices for Implementing FAIR Vocabu-
laries and Ontologies on the Web. IOS Press, Amsterdam (2020). https://doi.org/
10.3233/SSW200034

7. Haase, P., Brockmans, S., Palma, R., Euzenat, J., d’Aquin, M.: D1.1.2 updated
version of the networked ontology model. Technical report, Universität Karlsruhe
(2009). NeOn Project. http://neon-project.org/

8. Hayes, P., Eskridge, T., Saavedra, R., Reichherzer, T., Mehrotra, M., Bobrovnikoff,
D.: Collaborative knowledge capture in ontologies. In Proceedings of the 3rd Inter-
national Conference on Knowledge Capture (2005)

9. Krivov, S., Williams, R., Villa, F.: Ontotrack: a semantic approach for ontology
authoring. A tool for visualization and editing of OWL ontologies, GrOWL (2007)

10. Liebig, T., Noppens, O.: Ontotrack: a semantic approach for ontology authoring.
Science, Services and Agents on the World Wide Web, Web Semantics (2005)

11. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015)

12. Novak, J., Cañas, A.: The theory underlying concept maps and how to construct
and use them. Technical report (2006). Technical Report IHMC CmapTools 2006–
01, Institute for Human and Machine Cognition (IHMC)

13. Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M.C.: Oops! (ontology
pitfall scanner!): an on-line tool for ontology evaluation. Int. J. Semant. Web Inf.
Syst. 10(2), 7–34 (2014)

14. Ruckhaus, E., Anton-Bravo, A., Scrocca, M., Corcho, O.: Applying the lot method-
ology to a public bus transport ontology aligned with transmodel: challenges and
results (2021). https://doi.org/10.3233/SW-210451. https://content.iospress.com/
articles/semantic-web/sw210451

15. Wielemaker, J., Schreiber, G., Wielinga, B.: Using triples for implementation:
the triple20 ontology-manipulation tool. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 773–785. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11574620 55

16. Wiens, V., Lohmann, S., Auer, S.: Webvowl editor: device-independent visual ontol-
ogy modeling. In: International Semantic Web Conference (2018)

https://doi.org/10.3233/SSW200034
https://doi.org/10.3233/SSW200034
http://neon-project.org/
https://doi.org/10.3233/SW-210451
https://content.iospress.com/articles/semantic-web/sw210451
https://content.iospress.com/articles/semantic-web/sw210451
https://doi.org/10.1007/11574620_55

QuoteKG: A Multilingual Knowledge
Graph of Quotes

Tin Kuculo1(B) , Simon Gottschalk1 , and Elena Demidova2

1 L3S Research Center, Leibniz Universität Hannover, Hannover, Germany
{kuculo,gottschalk}@L3S.de

2 Data Science and Intelligent Systems (DSIS), Universität Bonn, Bonn, Germany
demidova@cs.uni-bonn.de

Abstract. Quotes of public figures can mark turning points in history.
A quote can explain its originator’s actions, foreshadowing political or
personal decisions and revealing character traits. Impactful quotes cross
language barriers and influence the general population’s reaction to spe-
cific stances, always facing the risk of being misattributed or taken out of
context. The provision of a cross-lingual knowledge graph of quotes that
establishes the authenticity of quotes and their contexts is of great impor-
tance to allow the exploration of the lives of important people as well as
topics from the perspective of what was actually said. In this paper, we
present QuoteKG, the first multilingual knowledge graph of quotes. We
propose the QuoteKG creation pipeline that extracts quotes from Wik-
iquote, a free and collaboratively created collection of quotes in many
languages, and aligns different mentions of the same quote. QuoteKG
includes nearly one million quotes in 55 languages, said by more than
69, 000 people of public interest across a wide range of topics. QuoteKG
is publicly available and can be accessed via a SPARQL endpoint.

Keywords: Knowledge Graph · Quotes · Cross-lingual Alignment

1 Introduction

Quotes of public figures provide valuable information to understand their
thoughts and attitudes, potentially leading to historically important actions,
and thus serve as a crucial component in exploring world history [19]. Table 1
provides three examples of quotes, with the first one emphasising the relevance of
historic quotes: in 1930, Winston Churchill recognised the value of reading them.
The second example in Table 1 illustrates the relevance of quotes in world his-
tory: During a press conference in 2015, the German chancellor Angela Merkel
said “Wir schaffen das” (“We can do this”) when the European migrant cri-
sis unfolded and Germany prepared for the reception of refugees from Northern

Resource DOI: 10.5281/zenodo.4702544
Permanent URL: https://quotekg.l3s.uni-hannover.de.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 353–369, 2022.
https://doi.org/10.1007/978-3-031-06981-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_21&domain=pdf
http://orcid.org/0000-0001-6874-8881
http://orcid.org/0000-0003-2576-4640
http://orcid.org/0000-0002-5134-9072
https://quotekg.l3s.uni-hannover.de
https://doi.org/10.1007/978-3-031-06981-9_21

354 T. Kuculo et al.

Africa and the Middle East. Since then, these three words defined Merkel’s polit-
ical course in the migrant crisis – and led both to a welcoming culture as well
as the rise of nationalist protests and right-wing political parties [21,23].

Given this potential impact of words, it is of utmost importance to provide
sources to quotes and to dismiss hoaxes [18,28]: The third example in Table 1
is a famous quote that has been attributed to different people, including Albert
Einstein, Benjamin Franklin, and Mark Twain, but has not actually been said
by any of them.1 In general, a quote can be mentioned in different sources, and
mentions can deviate. For example, “Wir schaffen das” might be mentioned as
“We can do this” or “We will make it!” in English translations. Therefore, there
is a need to align mentions to the same quote and to provide context information
such as the source and description (e.g., “during a press conference”).

Table 1. Three example quotes, together with their originators and dates. The last
column gives examples of context that can be attributed to the mention of a quote,
including source information, translations or validation of the quote’s correctness.

Quote By Date Selected context

It is a good thing for an
uneducated man to read books of
quotations. (en)

Winston
Churchill

1930 Source: Roving
Commission: My
Early Life (1930)
Chapter 9

Wir schaffen das. (de) Angela
Merkel

2015, Aug 31 Translation: We can
do this (en)

The definition of insanity is doing
the same thing over and over and
expecting different results. (en)

Albert
Einstein

Misattributed

In this paper, we introduce QuoteKG – a new knowledge graph that provides
nearly one million quotes said by more than 69, 000 persons of public interest
in 55 languages. Quotes in QuoteKG come with detected sentiment and context
such as their origin dates and sources. They are interlinked with their originators
and other entities such as persons or events they refer to. Different mentions of
the same quote are aligned across languages.

The creation of a knowledge graph covering quotes in many languages and
their contexts faces several challenges detailed in the following.

– Lack of context: Most quote collections [10,24,34] lack context information
and solely provide the quotes and their originators. To provide more context
information in QuoteKG , we extract quotes from Wikiquote – a “free online
compendium of sourced quotes from notable people”2.

1 Reasons for false attribution of quotes to persons include to appear educated or to
lend authority from the person. [27].

2 https://en.wikiquote.org/wiki/Main Page.

https://en.wikiquote.org/wiki/Main_Page

QuoteKG : A Multilingual Knowledge Graph of Quotes 355

– Tedious extraction process: Even though Wikiquote is a semi-structured
resource, extraction of quotes and contexts is a tedious process. In particular,
we must design an extraction pipeline that is flexible across languages and
adopts their characteristics. For example, it is necessary to differentiate the
quotes not said by a person, but said about a person (e.g., English: “Quotes
about Albert Einstein”, German: “Zitate mit Bezug auf Albert Einstein”).

– Missing alignment of quote mentions: As quote mentions in Wikiquote are
not linked across languages, another important step is cross-lingual quote
alignment which we perform using a language-agnostic transformer model
that we evaluate on a ground truth set of manually aligned quote clusters.

Our contributions are as follows: (i) We propose a schema to represent quotes
and context information. (ii) We propose an extraction pipeline that extracts
quotes, their mentions and context information from all Wikiquote language
versions. (iii) We align quote mentions across languages using a cross-lingual
language model. (iv) We make QuoteKG publicly available3.

The remainder of this paper is structured as follows: First, we describe the
impact of QuoteKG in the fields of Semantic Web, Natural Language Processing,
Digital Humanities and others in more detail. Then, in Sect. 3, we describe the
schema adopted for QuoteKG . In Sect. 4, we describe the QuoteKG creation
pipeline. In Sect. 5, we provide statistics and examples of QuoteKG , followed by
information about the availability and maintenance in Sect. 6. Section 7 gives an
overview of related work. Finally, we provide a conclusion in Sect. 8.

2 Potential Impact

QuoteKG contains quotes, a new type of information that is, to the best of
our knowledge, not yet present in existing knowledge graphs. Therefore, Quote-
KG can potentially attract new audiences from several fields such as Digital
Humanities and Natural Language Processing. While existing cross-domain or
event-centric knowledge graphs such as Wikidata [36], DBpedia [2], and Even-
tKG [12] target the representation of real-world entities, including persons of
public interest and important events, they scarcely represent what people actu-
ally said – even though this information reflects persons’ characteristics and can
lead to an understanding of how particular events unfolded in the real world.
Instead, facts about persons in knowledge graphs (e.g., properties representing
birth dates, marriages, and awards received) without a doubt represent relevant
facts in a person’s life but typically do not reveal personal traits or surprising
insights. Existing corpora of quotes like Quotebank [34] and the QUOTES500K
dataset [10] provide large collections of English quotes. In contrast to these cor-
pora, QuoteKG is a knowledge graph and provides societal relevant quotes and
contexts in 55 languages, links them to other knowledge graphs, and aligns quote
mentions across languages.

3 https://www.quotekg.l3s.uni-hannover.de.

https://www.quotekg.l3s.uni-hannover.de

356 T. Kuculo et al.

Potential applications of QuoteKG are manifold: (i) First and foremost,
QuoteKG can add a new dimension to the exploration and investigation of the
lives of public figures. While the creation of biography timelines from knowledge
graphs has been studied in the past [1,13], such timelines do not consider the
inclusion of quotes. QuoteKG can help to enrich such timelines with relevant
quotes to make them more lively and informative. (ii) Similarly, the analysis of
quotes related to a specific topic over time can support research in the fields
of Digital Humanities, and can be used to gauge public opinion regarding spe-
cific events. For example, there have been analyses of how social movements and
global events affect language [14] and how the words used by public persons carry
political backgrounds [35]. (iii) Quotes also play an important role when observ-
ing information propagation [31] and the bias potentially caused by one-sided
selection of quotes [25]. (iv) QuoteKG can also serve as an additional resource
for machine translation, given that it contains 38, 931 quotes with mentions in
different languages. (v) QuoteKG can help answering questions such as “Who
said ‘yes, we can’?”. (vi) QuoteKG contains 13, 104 quotes labelled as misat-
tributed or falsely claimed. They can be used as a resource for understanding
the propagation of false or misleading information [28]. (vii) Finally, QuoteKG
can take quote collections to a new level: There are plenty of websites avail-
able that provide collections of quotes4, typically monolingual and primarily for
entertainment purposes (e.g., images of inspirational quotes or quote mashup
games5). The context information in QuoteKG can support the exploration and
the search for quotes and provide important information surrounding a quote,
and, as such, broaden the user’s horizon.

3 QuoteKG Schema

The goal of the QuoteKG schema is to model quotes, their relationships with
persons and other entities, as well as their different mentions, e.g. translations,
typically in different contexts. To this end, QuoteKG is based on an extension of
the schema.org vocabulary that provides a so:Quotation6 class which is re-
used. According to the schema.org description, the so:Quotation class models
quotes that are “Often but not necessarily from some written work” and can also
refer to a “Quotation from an Event”7. Therefore, it fits well to our concept of
a quote in QuoteKG . However, we extend the schema with a new class qkg:
Mention which models the different mentions of a quote.

Figure 1 presents QuoteKG ’s schema. Its classes are described in the
following.

4 https://www.brainyquote.com, https://www.goodreads.com/quotes, https://www.
successories.com/iquote,

5 http://natetyler.github.io/.
6 so: https://schema.org/.
7 https://schema.org/Quotation.

https://schema.org/
https://www.brainyquote.com
https://www.goodreads.com/quotes
https://www.successories.com/iquote
https://www.successories.com/iquote
http://natetyler.github.io/
https://schema.org/
https://schema.org/Quotation

QuoteKG : A Multilingual Knowledge Graph of Quotes 357

so:Quotation

so:Person

so:spokenBy
Character

so:Thing so:mentions
xsd:date so:date

Created

Prefixes:
dbo: https://dbpedia.org/ontology/
dcterms: http://purl.org/dc/terms/
onyx: http://www.gsi.dit.upm.es/ontologies/onyx/ns#
owl: http://www.w3.org/2002/07/owl#
qkg: https://quotekg.l3s.uni-hannover.de/resource/
skos: http://www.w3.org/2004/02/skos/core#
so: https://schema.org/
xsd: http://www.w3.org/2001/XMLSchema#

xsd:string so:text

owl: sameAs

Links to Wikiquote,
Wikidata and DBpedia

qkg:has
Context

xsd:string

so:description

qkg:Context xsd:uridcterms:
source

xsd:string

qkg:contextText

qkg:Mention

qkg:hasMention so:Thing

qkg:mentions

xsd:stringrdfs:
label

xsd:string
skos:

prefLabelxsd:boolean
qkg:

isMisattributed

xsd:gYear dbo:year

xsd:uri

so:isPartOf

xs:double

onyx:hasEmo
tionCategory onyx:hasEmo

tionIntensity
onyx:

EmotionSet
onyx:

Emotion

onyx:Emotion
Category

onyx:has
EmotionSet

onyx:has
Emotion

so:Thing

Fig. 1. The QuoteKG schema based on schema.org. Arrows visualize the rdfs:
domain and rdfs:range restrictions on properties. Name spaces and prefixes are
described in the top right corner. Orange classes are related to quotes and their men-
tions, blue ones to the sentiment of a quote and the green class is about the person.
(Color figure online)

– Person: Each quote in QuoteKG is assigned to a person modeled as so:
Person. For persons, QuoteKG provides additional type information (e.g.,
Politician) plus owl:sameAs relations to Wikidata and the different DBpe-
dia and Wikiquote language editions.

– Quote: In QuoteKG , a resource typed as so:Quotation refers to the
unique event of something being said by a person of public interest (so:
spokenByCharacter) at a specific point in time (so:dateCreated). A
quote may also refer to other entities (so:mentions) of any type.

– Mention: A quote can be mentioned in different contexts: For example, there
may be translations of the quote in different languages, alternative records of
the same quote, or different contexts that a quote is extracted from. Therefore,
we introduce the class qkg:Mention. Mentions can be related to one or more
qkg:Context objects.

– Context: The context of a mention provides additional attributes that come
together with the specific mention. For example, its origin (e.g., a reference
to a specific interview) and the original source (e.g., a link to a news website).
To model context, we create the class qkg:Context.

– Sentiment: For each quote, we provide its sentiment using the Onyx ontology
which is used for describing emotions [29]. A quote is assigned a score for a
specific emotion category (“neutral”, “negative” or “positive”).

358 T. Kuculo et al.

Fig. 2. An example quote modeled using the QuoteKG schema. � marks rdf:type
relations. xsd:data type annotations were omitted for brevity. The prefixes and name
spaces are the same as in Fig. 1, plus wd: https://www.wikidata.org/entity/.

Figure 2 shows an example instantiation of the QuoteKG schema. The quote
“Wir schaffen das” introduced in Table 1 is connected to two instances of qkg:
Mention, one representing a German mention, the other one an English one
(“We can do this”). Both mentions come with additional context information.

4 Extraction and Alignment of Quotes

This section describes the input data and the implementation of the four main
steps of the QuoteKG creation pipeline shown in Fig. 3.

Fig. 3. Pipeline to create QuoteKG from Wikiquote.

4.1 Wikiquote

We base QuoteKG on Wikiquote – an online collection of quotes8. Wikiquote
has a similar structure to Wikipedia: Independent versions of Wikiquote exist for
different languages. Wikiquote contains pages, each of them about a given topic
and divided into different sections and subsections. For QuoteKG , we focus on

8 https://en.wikiquote.org/wiki/Main Page.

https://www.wikidata.org/entity/
https://en.wikiquote.org/wiki/Main_Page

QuoteKG : A Multilingual Knowledge Graph of Quotes 359

Fig. 4. Example of a quote in the English Wikiquote, based on MediaWiki markup.

Fig. 5. Example of a quote in the French Wikiquote, using templates.

Wikiquote pages about persons that contain quotes attributed to them. Example
pages are the English9 and French page about Albert Einstein10.

Each Wikiquote page is formatted using the MediaWiki markup11 and con-
tains semi-structured content that includes the person’s description, sections
with quotes, references and more. The quotes are given in one of the follow-
ing representations: in the traditional MediaWiki markup as shown in Fig. 4 or
using pre-defined templates that allow for a more structured definition of key-
value pairs. For example, Fig. 5 shows the key-value pair (key : Citation, value:
Tomber amoureux...).

While there are links between the pages describing persons in different lan-
guages, quote mentions are not linked across languages. Figure 4 and Fig. 5 show
two mentions of the same quote by Albert Einstein. The first is from the English
Wikiquote and shows an English quote, the second one from the French Wik-
iquote is given in French and English. The original German quote is not available
in these two language versions.

In general, one can observe a large imbalance in Wikiquote regarding the
covered persons and the number of quotes in different language versions. This
imbalance can often be explained by the different sizes of Wikiquote language
versions and the difference in the cultural significance of a person in one language
community compared to another. For example, there exists a French page with
35 quotes and an Italian page with 2 quotes of the former footballer Michel
Platini who used to play in Italy, but there is no English page. This imbalance
also implies that there is no guarantee that Wikiquote will contain the original
language version of a quote. QuoteKG can have multiple quote mentions of the
same quote through cross-lingual quote mention alignment.

9 https://en.wikiquote.org/wiki/Albert Einstein.
10 https://fr.wikiquote.org/wiki/Albert Einstein.
11 https://www.mediawiki.org/wiki/Help:Formatting.

https://en.wikiquote.org/wiki/Albert_Einstein
https://fr.wikiquote.org/wiki/Albert_Einstein
https://www.mediawiki.org/wiki/Help:Formatting

360 T. Kuculo et al.

Fig. 6. Excerpt of an example page tree from the English Wikiquote page about Albert
Einstein. Section titles are underlined.

4.2 Extraction of Page Trees

In the beginning, our QuoteKG creation pipeline processes all Wikiquote lan-
guage editions with at least 50 pages, excluding Simple English12 and selects all
pages about persons. From each Wikiquote page about a person, we create a
page tree. The page tree consists of section titles plus quotes and contexts. An
example page tree is presented in Fig. 6.

4.3 Identification and Enrichment of Quotes

In the second step of the QuoteKG creation pipeline, the page trees are trans-
formed into a set of quotes with contextual information. To this end, we specify
language-specific rules and enrich quotes and contexts with additional metadata.

To identify quotes, we first define a language-specific list of section titles
denoting quotes (e.g., “Citations”, “Zitate”, “Citazioni”) and contextual infor-
mation (e.g., “útskýring”, “Viitattu”, “vydavatel”). In addition, we collect a list
of template types representing quotes and consider all child nodes of section titles
as quotes. From section titles and templates, we further gather the following:

– Dates: We identify the dates of quotes from a pre-defined list of template
keys (e.g., “année d’origine” in French) for quotes extracted from templates.
If such dates are not available or when dealing with quotes not extracted from
templates, we extract dates from the section titles above the particular quote
in the page tree and the contexts below the quote.
We select the time expression with the highest level of precision (e.g., we
select May 2020 over 2020). In case of conflicts, no date is chosen.

– Veracity: To reflect the authenticity of quotes and their contextual infor-
mation, we capture whether a quote has been misattributed to the person.
In Wikiquote, misattributed quotes are grouped into specified sections. We
identify such sections with a manually created list of regular expressions (e.g.,
“Misattributed” (English) and “Fälschlich zugeschrieben” (German).

– Sources: Often, context contains links to websites where the quote was
reported. We collect such external links from templates and from the markup.

– Linked entities: Quotes can be linked to entities such as other persons or
organisations. We collect such links from templates and the markup.

12 For more detailed statistics about Wikiquote language editions see: https://
wikistats.wmcloud.org/display.php?t=wq.

https://wikistats.wmcloud.org/display.php?t=wq
https://wikistats.wmcloud.org/display.php?t=wq

QuoteKG : A Multilingual Knowledge Graph of Quotes 361

– Language: While the Wikiquote pages are written in specific languages, their
quotes can be written in their original language or translated. For this reason,
we use language detection to designate the language of a quote and do not
rely on the language of the page tree.

– Sentiment: We detect the sentiment of each quote mention (positive, negative
or neutral with a score between 0 and 1) using XLM-RoBERTa-Twitter, an
XLM-RoBERTa model trained on ∼198 M multilingual tweets [3].

– Identity links: To establish owl:sameAs links between the QuoteKG entities,
Wikidata and DBPedia, we use Wikidata’s sitelinks13.

For all persons and entities identified during this process, we extract addi-
tional information regarding their labels and types from DBpedia and Wikidata.

4.4 Cross-Lingual Alignment of Quote Mentions

After identifying and enriching quotes, we need to detect which of them represent
mentions of the same quote said by a person of public interest. This task of cross-
lingual alignment of quote mentions is treated as a clustering task at the end of
which each cluster represents a quote with a set of mentions.

In detail, the clustering task is performed for each person in isolation. Given
a person’s quote mentions in a set of languages, we aim at creating clusters of
highly similar mentions. To derive a similarity between two mentions, poten-
tially from different languages, we compute the cosine similarity of sentence
embeddings derived from the mentions’ texts. As an embedding model, we use
a language-agnostic transformer model pre-trained on millions of multilingual
paraphrase examples in more than 30 languages, namely XLM-RoBERTa [8].
The ability of such models to adapt to previously unknown languages has been
shown in [16]. Given such embeddings and the cosine similarity function, cluster-
ing is performed by detecting communities of quotes using a nearest-neighbour
search. To do so, we chose UKPLab’s Fast Clustering algorithm14 that is opti-
mised towards efficient similarity computations of our embeddings.

To aggregate the sentiments of all mentions in a cluster, we take the most
frequent sentiment category and average over the scores of that category.

4.5 RDF Triples Creation

After identification of quotes and their contexts and cross-lingual alignment, we
transform them into RDF triples following the schema presented in Fig. 1.

4.6 Implementation

We use the MWDumper15 to process the Wikiquote XML dumps and parse the
single pages given in the Wikipedia markup using the Bliki engine16. For lan-
13 https://www.wikidata.org/wiki/Help:Sitelinks/en-gb.
14 https://github.com/UKPLab/sentence-transformers/blob/master/examples/

applications/clustering/.
15 https://www.mediawiki.org/wiki/Manual:MWDumper.
16 https://github.com/axkr/info.bliki.wikipedia parser.

https://www.wikidata.org/wiki/Help:Sitelinks/en-gb
https://github.com/UKPLab/sentence-transformers/blob/master/examples/applications/clustering/
https://github.com/UKPLab/sentence-transformers/blob/master/examples/applications/clustering/
https://www.mediawiki.org/wiki/Manual:MWDumper
https://github.com/axkr/info.bliki.wikipedia_parser

362 T. Kuculo et al.

Table 2. Statistics of selected languages in QuoteKG .

Language Persons Quotes Mentions Mentions with contexts

English 19,073 267,740 271,541 193,848

Italian 18,803 145,235 146,103 48,107

German 3,461 16,012 16,441 4,330

Croatian 2,707 11,023 12,965 2,045

Welsh 239 461 508 247

All Languages 69,467 880,878 961,535 411,912

guage detection and time expression extraction, we use the langdetect17 and
dateparser18 libraries. The Fast Clustering algorithm was run with a cosine
similarity threshold of 0.8. The creation of knowledge graph triples and their
serialisation is done via the RDFLib library19. The Java implementation of the
dumper and the Python code for cross-lingual alignment and knowledge graph
creation are publicly available on GitHub20.

5 Statistics, Evaluation, Examples and Web Interface

In this section, we first provide general statistics of QuoteKG , evaluate the cross-
lingual alignment and present example queries.

5.1 Statistics

In total, QuoteKG contains 880, 878 quotes with 961, 535 quote mentions.
For 411, 912 mentions, context is available. Table 2 provides detailed statistics
for selected languages. QuoteKG covers both high-resource languages such as
English (271, 541 quote mentions from 19, 073 persons) and Italian (146, 103
quote mentions from 18, 803 persons), as well as low-resource languages such as
Welsh (508 quote mentions from 239 persons).

5.2 Evaluation of the Cross-Lingual Alignment

We evaluate the quality of the cross-lingual alignment of quote mentions by
comparing to a ground truth of correctly clustered mentions. Creating such a
ground truth is a tedious process due to the large amount of possible clusterings

17 https://pypi.org/project/langdetect/.
18 https://github.com/scrapinghub/dateparser/.
19 https://github.com/RDFLib/rdflib.
20 https://github.com/tkuculo/QuoteKG.

https://pypi.org/project/langdetect/
https://github.com/scrapinghub/dateparser/
https://github.com/RDFLib/rdflib
https://github.com/tkuculo/QuoteKG

QuoteKG : A Multilingual Knowledge Graph of Quotes 363

and the number of pairwise comparisons21. We have selected eight persons with
quotes in English, German and Italian and manually clustered their mentions.
Ground truth clusters were then compared to the QuoteKG clusters by viewing
the clustering process as a series of decisions for each of the pairs of mentions
[30]. For example, we consider three positive pairs for a quote mentioned in three
languages: (Mention1, Mention2), (Mention1, Mention3), (Mention2, Mention3).

Table 3 shows the results of this evaluation: Cross-language alignment in
QuoteKG shows an average precision of 1.0 and an F1 score of 0.99 for this
ground truth data set. Following the imbalance of Wikiquote’s coverage described
in Sect. 4.1, there is a high number of true negatives, i.e., the majority of quotes
are only mentioned once in all Wikiquote language versions. In total, there are
only two mentions which are not clustered together but should have been. All
the other clusters are correct.

Table 3. Evaluation of cross-lingual alignment for eight selected persons in English,
German and Italian. TP: true positives (mention pairs that were correctly clustered
together) TN: true negatives (mention pairs that were correctly not clustered together),
FP: false positives, FN: false negatives, P: precision, R: recall, F1: F1 score.

Person TP TN FP FN P R F1

Alan Turing 10 935 0 1 1 0.91 0.95

Alexander the Great 5 491 0 0 1 1.0 1.0

Edward Snowden 6 697 0 0 1 1.0 1.0

Gustav Mahler 1 44 0 0 1 1.0 1.0

Jean-Claude Juncker 4 776 0 0 1 1.0 1.0

Marie Antoinette 4 347 0 0 1 1.0 1.0

Marie Curie 2 251 0 0 1 1.0 1.0

Tom Clancy 1 2849 0 0 1 1.0 1.0

Total 33 6390 0 1 1.0 0.99 0.99

Our ground truth set of manually aligned quote clusters is available on the
QuoteKG website.

5.3 Example Queries

In this section, we present two example queries demonstrating how to use Quote-
KG as a collection of quotes and as a resource to conduct research on the mis-
attribution of quotes.

21 When considering a person that has 10 quotes in 5 languages each, there are
∑5−1

i 10·
i2 = 1, 000 possible pairwise comparisons.

364 T. Kuculo et al.

SELECT ?Person (COUNT(?quote) AS ?NumberOfQuotes) WHERE {
?quote a so:Quotation ;

so:spokenByCharacter [
skos:prefLabel ?Person] .

} GROUP BY ?Person
ORDER BY DESC(COUNT(?quote))

Listing 1.1. SPARQL query: Persons with the most quotes.

QuoteKG as a Collection of Quotes and their Originators. Listing 1.1
shows a SPARQL query that returns the five persons with the most quotes
inQuoteKG . Table 4 shows these persons together with the number of quotes.
Without surprise, the persons with most quotes are philosophers and writers,
including Friedrich Nietzsche and Oscar Wilde, plus Albert Einstein, known for
many (misattributed) quotes [28].

Table 4. The first five results of the query in Listing 1.1.

?Person ?NumberOfQuotes

Friedrich Nietzsche 2, 530

Oscar Wilde 1, 786

Albert Einstein 1, 627

Donald Trump 1, 610

Johann Wolfgang von Goethe 1, 537

Verification of Quotes. Misinformation on the Internet has become an
increasingly important problem and requires methods that classify the veracity
of information [33] and benefit from knowledge graphs such as ClaimsKG that
provide annotated and erroneous facts [32]. While ClaimsKG provides wrong
claims stated by persons extracted from fact-checking sites, QuoteKG has quotes
labelled as wrongly attributed to persons, thus a different type of misinforma-
tion. The query shown in Listing 1.2 returns quotes of Albert Einstein that
are marked as misattributed in QuoteKG (see Table 5), together with context
information. Such context information can be a valuable resource for explaining
misattribution in the case of quotes.

5.4 Web Interface

On the QuoteKG website, we offer a SPARQL endpoint and a demo Search
& Demo interface where users can search for specific persons and display their
quotes in selected languages. An example of this interface is shown in Fig. 7
which display Portuguese and English quotes of Johann Wolfgang von Goethe.

QuoteKG : A Multilingual Knowledge Graph of Quotes 365

SELECT ?Text (SAMPLE(?contextText) AS ?contextTexts)
(SAMPLE(?source) AS ?Source) WHERE {

?quote so:spokenByCharacter [
skos:prefLabel "Albert Einstein"] ;

qkg:isMisattributed true ; qkg:hasMention ?mention .

?mention so:text ?Text ;
qkg:hasContext [
qkg:contextText ?contextText ; so:source ?source

] .
} GROUP BY ?Text

Listing 1.2. SPARQL query: Quotes misattributed to Albert Einstein and their con-
texts.

Table 5. Two results of the query in Listing 1.2, returning quotes that were misat-
tributed to Albert Einstein. Texts are shortened for brevity here.

?Text ?contextTexts ?Source

Everything is energy and that’s
all there is to it . . . It can be no
other way. This is not
philosophy. This is physics

There’s no evidence that
Einstein ever said this

http://
quoteinvestigator.
com/2012/05/16/
everything-energy/

If the facts don’t fit the theory,
change the facts

The earliest published
attribution of this quote to
Einstein found on . . . , but
no source to Einstein’s
original writings is given . . .

http://books.google.
com/books?id=...

6 Availability

Availability: The QuoteKG website22 provides access to a description of Quote-
KG and its schema, to the SPARQL endpoint, to data downloads and will pro-
vide a canonical citation to this paper. QuoteKG is licensed under the Creative
Commons Attribution Share Alike 4.0 International23 license. Persistent access
to the QuoteKG triple files is provided through an upload to the zenodo reposi-
tory24. The code for the creation of QuoteKG is publicly available on GitHub25

and is licensed under the MIT license26.

Sustainability Plan: To account for updates in all Wikiquote language edi-
tions, we plan to release new versions of QuoteKG twice a year. To do so, we
22 https://quotekg.l3s.uni-hannover.de.
23 https://creativecommons.org/licenses/by-sa/4.0/legalcode.
24 https://zenodo.org/record/4702544.
25 https://github.com/tkuculo/QuoteKG.
26 https://opensource.org/licenses/MIT.

http://quoteinvestigator.com/2012/05/16/everything-energy/
http://quoteinvestigator.com/2012/05/16/everything-energy/
http://quoteinvestigator.com/2012/05/16/everything-energy/
http://quoteinvestigator.com/2012/05/16/everything-energy/
http://books.google.com/books?id=...
http://books.google.com/books?id=...
https://quotekg.l3s.uni-hannover.de
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://zenodo.org/record/4702544
https://github.com/tkuculo/QuoteKG
https://opensource.org/licenses/MIT

366 T. Kuculo et al.

Fig. 7. An example of the Search & Demo interface showing two quotes of Johann
Wolfgang Goethe which are available in Portuguese or English. The sentiment of quotes
is indicated by colour (red: negative, green: positive). (Color figure online)

deploy a script that covers the entire pipeline depicted in Fig. 3, from the down-
load of Wikiquote dumps in each language until the creation of triples.

Adherence to Standards:QuoteKG is modeled through the Resource Descrip-
tion Framework. Its schema is an extension of schema.org. We provide a
machine-readable description of QuoteKG using the VoID vocabulary27. Quote-
KG adheres to the Linked Data Principles: resources can be looked up through
their URIs and they are interlinked with Wikidata and DBpedia.

7 Related Work

In this section, we give an overview of other corpora and knowledge graphs
containing quotes, other usages of Wikiquote and about cross-lingual alignment.

Quote Corpora. Many collections of quotes have been created and maintained,
mainly mono-lingual and without semantic annotations. Since the release of its
first edition in 1941, The Oxford Dictionary of Quotations [20] aims at pro-
viding “the wit and wisdom of past and present” with a focus on the prove-
nance of quotes. Provenance of quotes is also an indispensable criterion in the
Book of Fake Quotes [4]. There are few machine-readable monolingual quote col-
lections28,29 [10,24,34]. These corpora are typically monolingual and extracted
from news. Consequently, while they may have a large amount of quotes, they
lack a mechanism to ensure societal relevance of quotes as in Wikiquote. As a
knowledge graph, QuoteKG enables easy access to quotes and rich metadata.

Quotes in Knowledge Graphs. While DBQuote [26] allows user annotations
of quotes extracted from Twitter and Wikiquote through an ontology, it only
covers two languages (English and Korean) and has not been made available.
To the best of our knowledge, QuoteKG is the first publicly available knowledge

27 https://www.w3.org/TR/void/.
28 https://www.kaggle.com/akmittal/quotes-dataset.
29 https://github.com/JamesFT/Database-Quotes-JSON.

https://www.w3.org/TR/void/
https://www.kaggle.com/akmittal/quotes-dataset
https://github.com/JamesFT/Database-Quotes-JSON

QuoteKG : A Multilingual Knowledge Graph of Quotes 367

graph of quotes. Consequently, quotes have only been insufficiently covered in the
Semantic Web: for example, Wikidata [36] contains less than 400 instances of the
class “Phrase”30 that are attributed to an author or creator – most of them only
consisting of few words (e.g., “cogito ergo sum” and “covfefe”). Event-centric
knowledge graphs such as EventKG [12] provide an understanding of the human
history and world-shaking events. They do not include quotes that complement
the deeds of public figures. Many applications based on knowledge graphs (e.g.,
for exploring the lives of persons of public interest [1,13]) could immediately
profit from the inclusion of quotes.

Wikiquote. Until now, Wikiquote has rarely been used as a research corpus,
presumably due to the required but tedious extraction process. One example is
the work by Buscaldi et al. who manually tagged quotes of the Italian Wikiquote
as humorous or not, and used their annotated corpus for training models for
humour recognition [5]. Giammona et al. analysed the spread of ancient quotes
in today’s Web through Wikiquote [9] and Wikiquote was used for training the
chatbot Poetwannabe [6]. With QuoteKG , we foresee to ease the access to quotes
for a wide range of research questions.

Cross-Lingual Alignment. Several studies have shown that different lan-
guages share similar statistical properties that can be used to learn cross-lingual
alignments between two languages, even without relying on any form of bilin-
gual supervision [7]. While most works and datasets address bilingual alignment
[11,15,17], there are only few works on cross-lingual alignment [22]. QuoteKG
focuses on the specific task of cross-lingual alignment of quote mentions.

8 Conclusion

In this paper, we presented QuoteKG – a novel, multilingual knowledge graph
of quotes. We have presented the QuoteKG schema based on schema.org as well
as a pipeline that extracts quotes from the Wikiquote corpus and aligns them
across languages. QuoteKG is publicly available and includes nearly one million
quotes quotes in 55 languages, said by nearly 69, 000 people of public interest.

Acknowledgement. This work was partially funded by H2020-MSCA-ITN-2018-
812997 under “Cleopatra”.

References

1. Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: TimeMachine:
timeline generation for knowledge-base entities. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
19–28 (2015)

30 https://www.wikidata.org/wiki/Q187931.

https://www.wikidata.org/wiki/Q187931

368 T. Kuculo et al.

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Barbieri, F., Anke, L.E., Camacho-Collados, J.: XLM-T: A Multilingual Language
Model Toolkit for Twitter. arXiv preprint arXiv:2104.12250 (2021)

4. Boller, P.F., Jr., George, O.J., Jr., et al.: They Never Said It: A Book of Fake
Quotes, Misquotes, and Misleading Attributions: A Book of Fake Quotes, Mis-
quotes, and Misleading Attributions. Oxford University Press, Oxford (1989)

5. Buscaldi, D., Rosso, P.: Some experiments in humour recognition using the Italian
Wikiquote collection. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS
(LNAI), vol. 4578, pp. 464–468. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73400-0 58

6. Chorowski, J., Lancucki, A., Malik, S., Pawlikowski, M., Rychlikowski, P.,
Zykowski, P.: A talker ensemble: the University of Wroclaw’s entry to the NIPS
2017 conversational intelligence challenge. In: Escalera, S., Weimer, M. (eds.)
The NIPS ’17 Competition: Building Intelligent Systems. TSSCML, pp. 59–77.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94042-7 4

7. Chung, Y.A., Weng, W.H., Tong, S., Glass, J.: Unsupervised Cross-Modal Align-
ment of Speech and Text Embedding Spaces. arXiv preprint arXiv:1805.07467
(2018)

8. Conneau, A., et al.: Unsupervised Cross-Lingual Representation Learning at Scale.
arXiv preprint arXiv:1911.02116 (2019)

9. Giammona, C., Yanes, E.S.: From Print to Digital Texts, from Digital Texts to
Print. Indirect Tradition of Latin Classics on the Web. Storie e Linguaggi 5(1)
(2019)

10. Goel, S., Madhok, R., Garg, S.: Proposing contextually relevant quotes for images.
In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds.) ECIR 2018. LNCS,
vol. 10772, pp. 591–597. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76941-7 49

11. Gottschalk, S., Demidova, E.: MultiWiki: interlingual text passage alignment in
Wikipedia. ACM Trans. Web 11(1), 6:1–6:30 (2017)

12. Gottschalk, S., Demidova, E.: EventKG-the hub of event knowledge on the web-and
biographical timeline generation. Semant. Web 10(6), 1039–1070 (2019)

13. Gottschalk, S., Demidova, E.: EventKG+BT: generation of interactive biography
timelines from a knowledge graph. In: Harth, A., et al. (eds.) ESWC 2020. LNCS,
vol. 12124, pp. 91–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
62327-2 16

14. Haun, M.: How social movements and global events are changing language in 2020
(2020). Accessed 03 Dec 2021

15. Hieber, F.: WikiCLIR: A Cross-lingual Retrieval Dataset from Wikipedia. Univer-
sität (2014)

16. Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., Johnson, M.: XTREME: a
massively multilingual multi-task benchmark for evaluating cross-lingual generali-
sation. In: International Conference on Machine Learning, pp. 4411–4421. PMLR
(2020)

17. Jing, Y., Xiong, D., Zhen, Y.: BiPaR: A Bilingual Parallel Dataset for Mul-
tilingual and Cross-Lingual Reading Comprehension on Novels. arXiv preprint
arXiv:1910.05040 (2019)

18. Keyes, R.: The Quote Verifier: Who Said What, Where, and When. St. Martin’s
Griffin (2007)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/2104.12250
https://doi.org/10.1007/978-3-540-73400-0_58
https://doi.org/10.1007/978-3-540-73400-0_58
https://doi.org/10.1007/978-3-319-94042-7_4
http://arxiv.org/abs/1805.07467
http://arxiv.org/abs/1911.02116
https://doi.org/10.1007/978-3-319-76941-7_49
https://doi.org/10.1007/978-3-319-76941-7_49
https://doi.org/10.1007/978-3-030-62327-2_16
https://doi.org/10.1007/978-3-030-62327-2_16
http://arxiv.org/abs/1910.05040

QuoteKG : A Multilingual Knowledge Graph of Quotes 369

19. Khurana, S.: These 4 Quotes Completely Changed the History of the World.
https://www.thoughtco.com/quotes-that-changed-history-of-world-2831970.
Accessed 01 Dec 2021

20. Knowles, E.: The Oxford Dictionary of Quotations. Oxford University Press,
Oxford (2009)

21. Krämer, A.: Ein Satz mit Folgen (2021). https://www.tagesschau.de/inland/
merkel-wir-schaffen-das-109.html. Accessed 01 Dec 2021

22. Liang, Y., et al.: XGLUE: A New Benchmark Dataset for Cross-Lingual Pre-
training, Understanding and Generation. arXiv preprint arXiv:2004.01401 (2020)

23. Mushaben, J.M.: Wir schaffen das! Angela Merkel and the European refugee crisis.
German Polit. 26(4), 516–533 (2017)

24. Newell, C., Cowlishaw, T., Man, D.: Quote extraction and analysis for news. In:
Proceedings of the Workshop on Data Science, Journalism and Media, KDD, pp.
1–6 (2018)

25. Niculae, V., Suen, C., Zhang, J., Danescu-Niculescu-Mizil, C., Leskovec, J.: QUO-
TUS: the structure of political media coverage as revealed by quoting patterns. In:
Proceedings of the 24th International Conference on World Wide Web, pp. 798–808
(2015)

26. Piao, G., Breslin, J.G.: DBQuote: a social web based system for collecting and
sharing wisdom quotes. In: Proceedings of the 5th Joint International Semantic
Technology Conference, Poster and Demonstrations (2015)

27. Reucher, G.: Famos Quotes: Why are so many fake? (2021). Accessed 03 Dec 2021
28. Robinson, A.: Did Einstein really say that? Nature 557(7703), 30–31 (2018)
29. Sánchez-Rada, J.F., Iglesias, C.A.: Onyx: a linked data approach to emotion rep-

resentation. Inf. Process. Manag. 52(1), 99–114 (2016)
30. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval,

vol. 39. Cambridge University Press, Cambridge (2008)
31. Sims, M., Bamman, D.: Measuring information propagation in literary social net-

works. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (2020)

32. Tchechmedjiev, A., et al.: ClaimsKG: a knowledge graph of fact-checked claims.
In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 309–324. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 20

33. Thorne, J., Vlachos, A.: Automated fact checking: task formulations, methods
and future directions. In: Proceedings of the 27th International Conference on
Computational Linguistics, pp. 3346–3359 (2018)

34. Vaucher, T., Spitz, A., Catasta, M., West, R.: Quotebank: a corpus of quotations
from a decade of news. In: Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pp. 328–336 (2021)

35. Viala-Gaudefroy, J., Lindaman, D.: Donald Trump’s ‘Chinese Virus’: The Politics
of Naming (2020). Accessed 03 Dec 2021

36. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. Com-
mun. ACM 57(10), 78–85 (2014)

https://www.thoughtco.com/quotes-that-changed-history-of-world-2831970
https://www.tagesschau.de/inland/merkel-wir-schaffen-das-109.html
https://www.tagesschau.de/inland/merkel-wir-schaffen-das-109.html
http://arxiv.org/abs/2004.01401
https://doi.org/10.1007/978-3-030-30796-7_20

Stunning Doodle: A Tool for Joint
Visualization and Analysis of Knowledge

Graphs and Graph Embeddings

Antonia Ettorre(B) , Anna Bobasheva , Franck Michel ,
and Catherine Faron

Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France
{aettorre,bobasheva,fmichel,faron}@i3s.unice.fr

Abstract. In recent years, the growing application of Knowledge
Graphs to new and diverse domains has created the need to make
these resources accessible and understandable by users with increas-
ingly diverse backgrounds. Visualization techniques have been widely
employed as means to facilitate the exploration and comprehension of
such data sources. Moreover, the emerging use of Knowledge Graph
Embeddings as input features of Machine Learning methods has given
even more visibility to this kind of representation, but raising the new
issue of understandability and interpretability of such embeddings. In
this paper, we show how visualization techniques can be used to jointly
explore and interpret both Knowledge Graphs and Graph Embeddings.
We present Stunning Doodle, a tool that enriches the classical visualiza-
tion of Knowledge Graphs with additional information meant to enable
the visual analysis and comprehension of Graph Embeddings. The idea
is to help the user figure out the logical connection between (1) the infor-
mation captured by the Graph Embeddings and (2) the structure and
semantics of the Knowledge Graph from which they are generated. We
detail the use of Stunning Doodle in a real-world scenario and we show
how it has been helpful to interpret different Graph Embeddings and to
choose the most suitable with respect to a specific final goal.

Keywords: Knowledge Graphs Visualization · Graph Embeddings

1 Introduction

During the last decade, the adoption of Knowledge Graphs (KGs) in multiple
domains has increased steadily such that more and more projects rely on this
kind of representation to store their data without compromising the semantics
they bear. The fame of KGs has kept growing even more as they started to be
used as information sources for many AI-powered applications in the most diverse
fields, e.g. education [7,10], medicine [19] and finance [13]. One of the reasons for
their increasing success is the possibility to easily employ them as input features
for several Machine Learning methods by using a low-dimensional representation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 370–386, 2022.
https://doi.org/10.1007/978-3-031-06981-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_22&domain=pdf
http://orcid.org/0000-0003-4868-2584
http://orcid.org/0000-0003-0395-2069
http://orcid.org/0000-0001-9064-0463
http://orcid.org/0000-0001-5959-5561
https://doi.org/10.1007/978-3-031-06981-9_22

Stunning Doodle: A Tool for Visual Analysis of KGEs 371

of such KGs, obtained through the graph embedding process. The diversity of
circumstances in which Graph Embeddings (GEs), and therefore KGs, can be
used opened the way to the exploitation of these data sources by users from
various communities and with diverse backgrounds. In this context, two major
needs for such users arise: (i) exploring and understanding the content and the
structure of KGs and (ii) analyzing and interpreting the information captured
by their GEs.

In recent years, the need for solutions to allow simple and straightforward
exploration of KGs has stimulated the development of a plethora of visualization
tools for such data sources. Indeed, visualization techniques are recognized as
one of the main means to provide an immediate and simple understanding of
complex concepts and structured data. Ideally, users could be able to gain in-
depth understanding of the structure of a KG by analyzing the sheer ontologies
and vocabularies on which the KG is based, and when it comes to RDF-based
KGs, they could explore its content by means of SPARQL queries. Nevertheless,
studying ontologies and vocabularies and writing SPARQL queries can be rather
cumbersome tasks, especially when dealing with very large KGs. Moreover, these
operations can only be carried out by practitioners of Semantic Web languages.
Visualization techniques can help and simplify the exploration and understand-
ing of KGs by non-expert users, offering easy-to-use interfaces, advanced statis-
tics, and interaction functionalities. However, the visual exploration of KGs is a
non-trivial task mainly due to the amount and heterogeneity of the information
possibly described by KGs.

The comprehension of the information captured by GEs is an even more chal-
lenging process. Indeed, GEs are computed using “black-box” Machine Learning
(ML) techniques that translate each element in the graph into a low-dimensional
vector. Even though the algorithmic process to compute embeddings is well
understood, a relation between the characteristics and role of the element in the
graph and its vector representation in the embedding space cannot be estab-
lished with certainty. In other words, multiple questions cannot be answered
easily, such as:

– What do my embeddings represent?
– How are they related to the structure and semantics of my KG?
– How can I improve my embeddings to be better suited to my downstream

application?

Recently, several research efforts have been made in this direction to start making
sense of the information captured by GEs. Some approaches propose explainable
models for computing GEs [12] or implement explanation strategies for specific
embedding models [22]; while others propose methods to verify whether some
specific piece of knowledge represented in a KG is actually encoded and captured
by its GEs [9].

In this work, we aim to tackle this issue from a different point of view.
We think that, as for KGs, the information borne by GEs could be explored
and unveiled through the use of visualization techniques that would favor the
discovery of the logical connection between the graph and its embeddings. Our
goal is therefore to provide a visualization tool supporting the analysis and

372 A. Ettorre et al.

decoding of the information captured by KGEs by unveiling the relationship
between, on one hand the structure and semantics of the KG, and on the other
hand the KGEs generated from it.

To achieve this goal, in this paper we present Stunning Doodle, a tool designed
for the visualization of RDF-based KGs and GEs. Stunning Doodle first provides
a visualization of the graph to be analyzed, offering a rich overview of both the
structure and the semantics of the data. We believe that this visualization should
allow users to gain a general and immediate understanding of the displayed KG
while presenting a complete and detailed view of each of its components. More
interestingly, this visualization is enriched by connecting the nodes in the graph
with the corresponding GEs to be analyzed. It enables to select a node in a
KG and visualize its neighborhood in the embedding space, and conversely to
pick any of its neighbors in the embedding space and visualize their links in the
KG. We argue that the joint visualization of GEs and the KG from which they
are generated, with its structure and semantics, will help users, may they be
non-expert users, RDF experts or Machine Learning experts, to gain interesting
insights into the information captured during the embedding process.

The remainder of this paper is organized as follows. In Sect. 2 we present our
KGEs analysis tool, while in Sect. 3 we demonstrate how our tool can be used
and useful in two real-world use-cases. In Sect. 4 we review related work. Finally,
conclusions and future work are discussed in Sect. 5.

2 Stunning Doodle

Stunning Doodle has been developed to fill the gap in the field of visual analysis
of KGEs. Its main goal is to provide users with an advanced visualization of RDF
graphs, enriched with information extracted from the GEs generated from those
graphs. To achieve this goal, Stunning Doodle offers two main functionalities:
(1) the visualization and navigation of RDF graphs and, (2) for each node,
the enrichment of such visualization with the addition of its neighborhood in
the embedding space, w.r.t. a chosen similarity measure. Additionally, Stunning
Doodle presents semantic-based filtering and customization functionalities for
nodes and links which make the visualization clearly understandable even for
users with no familiarity with RDF and SPARQL concepts. To improve the
readability and comprehension of the displayed KG, Stunning Doodle implements
a partial visualization of the graph and allows users to navigate and explore it
incrementally.

2.1 Knowledge Graphs Visualization

The first function of Stunning Doodle is the dynamic visualization of a KG using
a regular graph layout. The process starts with the upload of the RDF graph file
in Turtle syntax. Once the file is uploaded, the graph will be displayed as shown
in Fig. 1. On the left side of the page, under the “Upload Graph” menu, three
menus provide relevant information about the graph: the list of the declared
namespaces with their prefixes (1), and the legend, and advanced customization

Stunning Doodle: A Tool for Visual Analysis of KGEs 373

Fig. 1. Screenshot of the partial visualization of YAGO3 illustrating Stunning Doodle’
exploration capabilities.

options for nodes (2) and links (3) that will be detailed later in this section.
The visualization is interactive: nodes can be moved and zoom and spanning
functionalities are available. Nodes can be selected by clicking on them, and the
triples associated with the currently selected node are listed in the component
“Node in focus” (4) on the right. In the example of Fig. 1, which shows an extract
of YAGO3 [14], the selected node is the largest one at the bottom of the graph
(ns1:Giacomo Modica) and the triples for which this node is a subject are listed
on the right. Each object in this list can be clicked to select the corresponding
node in the graph.

Graph Exploration Interface. One of the main characteristics of Stunning
Doodle is the ability to display nodes incrementally, thanks to the graph explo-
ration system.

To deal with the large number of nodes possibly described in a KG, existing
visualization tools employ different strategies: (i) relying on clusterized views
which group similar (or close) nodes together [18], (ii) visualizing nodes incre-
mentally based on the displayed area [3,4], or (iii) showing only the nodes that
are considered to be more relevant based on diverse statistical metrics [20]. In
Stunning Doodle we opted for a different approach: a user-guided incremental
exploration. Indeed, through our tool, the user decides which nodes to visualize
according to their interests and needs. This choice is motivated by the fact that
different users can have different, possibly very specific requirements, e.g. ana-
lyzing only the facts related to individuals of a given type while disregarding all
the other possible predicates; and these requirements do not always correspond
to the standard clusterization criteria or relevance metrics. As Fig. 1 shows it,

374 A. Ettorre et al.

Fig. 2. Stunning Doodle interface with the available customization options. (Color
figure online)

after the upload of an RDF graph, only one node, randomly selected among all
the nodes in the graph, is displayed alongside its close neighborhood, i.e. nodes
at one-hop distance from the main node. Users can change the displayed node
by typing the URI of the node they want to visualize in the component “Upload
Graph” and setting it as a new center (5). Users can also navigate the graph
starting from a node of interest by using the buttons in the “Node in focus”
component (6). Indeed, once a node is selected, users can decide to either (a)
center the graph on that node, causing only the selected node and its neighbor-
hood to be visualized, while hiding the other nodes and links; (b) hide the node,
producing the removal of that node together with the nodes that are connected
only to it; (c) expand the node, i.e. adding the direct neighbors of the node
to the visualization; and (d) collapse the node, i.e. removing all the nodes that
are only connected to that node while keeping the node itself. For example, the
visualization in Fig. 1 has been obtained by centering the graph on the node
ns1:male at first, and then expanding the selected node (ns1:Giacomo Modica)
to display its neighborhood.

Filtering and Customizing Nodes and Edges. Another helpful feature of
Stunning Doodle is the possibility of filtering nodes based on their types (values
of property rdf:type) and customizing nodes and links colors. These features
help the user to easily recognize the nodes and links they want to analyze and
to focus only on them while removing information that is irrelevant for their
exploration needs.

In Fig. 2 we show an example customized visualization of an RDF graph and
the settings of the visualization modes. These are optional and can be activated

Stunning Doodle: A Tool for Visual Analysis of KGEs 375

Fig. 3. Screenshot of Stunning Doodle showing closest nodes in the embedding space.
(Color figure online)

by selecting the corresponding options in the “Nodes’ overview” and “Links’
overview” menus. In the “Links’ overview” menu (1), all the possible predicates
are listed, each one with the number of edges of that type currently displayed
on the graph and the corresponding colors which can be customized by the user
(2). Similarly, in the “Nodes’ overview” menu (3), the types of all the displayed
nodes are listed with the count of occurrences of every type (4). For each type, a
filter is added to hide/show the corresponding nodes (5). In the same component,
we find two additional options that allow the user to enable and disable labels
and literals visualization (6). Once activated, the former will display labels, i.e.
values of properties rdfs:label and skos:prefLabel, next to the nodes subject
of these properties; while the latter will add literals as leaves in the graph.

2.2 Graph Embeddings Visual Analysis

In addition to the dynamic visualization of a KG, the key functionality provided
by Stunning Doodle which represents a major step forward when compared with
the state-of-the-art tools described in Fig. 4 is the possibility of having a first,
simple visual analysis of the GEs computed from the visualized KG.

As explained in Fig. 1, the recent success of KGs is mainly due to the growing
number of AI applications relying on KGs through the use of KGEs. Unfortu-
nately, the main stumbling block to extensive utilization of such representation
is its difficult interpretability.

With Stunning Doodle, we take a first step in the understanding of KGEs
through the joint visualization of both KGEs and the KG from which they
are generated. More precisely, Stunning Doodle enables to visualize, for each
node, its closest nodes in the embedding space, according to both euclidean

376 A. Ettorre et al.

and cosine distance. Figure 3 shows an example of KGEs analysis. The “Upload
Embeddings” menu allows the user to upload a CSV file containing the GEs
computed from the visualized KG (1). Then, the user can select a node of interest
and visualize its closest neighbors in the embedding space. The closest nodes are
displayed with a gradient of color that represents their distance from the node
whose embedding is analyzed, i.e. darker nodes are closer (in the embedding
space) to the selected node while lighter nodes are more distant. If a relation
between any couple of visualized nodes exists in the KG, then the corresponding
link is directly displayed in the graph according to the selected customization
settings.

The list of the closest nodes with their distance is shown in the “Graph
Embeddings Information” menu on the right side of the page (2). Together with
this list, additional options allow the user to choose the desired distance metric
(Euclidean or cosine in the current implementation), and to customize the num-
ber of closest nodes to be displayed. The example in Fig. 3 shows the 100 closest
nodes in the embedding space to the node ns1:answer536324943, according to
cosine distance. The node currently selected (biggest node) is the node that we
are analyzing and from which the distances are computed. This is evident by the
fact that its URI is the first item in the list of nodes and it is also the darkest
node in the graph, as the distance from itself is 0. The different shades of green
of each node clearly highlight which nodes among the 100 visualized are closer,
while the links show how they are connected in the KG.

While visualizing a node’s neighbors in the embedding space, it is still possi-
ble to access the functionalities for navigating in the KG through the buttons in
“Node in focus”. Therefore, any displayed node can be expanded to show addi-
tional nodes linked to it in the KG even if they are not close in the embedding
space. Naturally, any new node can be further expanded to visualize the desired
portion of the KG. All the links and the displayed nodes whose embeddings are
not close to the initial node will be visualized according to the selected cus-
tomization options in “Nodes’ overview” and “Links’ overview”. To switch back
to the simple view of the KG it is sufficient to recenter the graph on any of the
displayed nodes.

To sum up, Stunning Doodle enables the user to understand in a glance which
nodes of a KG are considered to be similar in the embedding space, while keeping
track of their connections in the KG. This permits to gain immediate insights
on the information captured by KGEs, e.g. which predicates have the highest
impact or what connectivity patterns are more taken into account during the
embedding process.

2.3 Software Design and Limitations

For the sake of simplicity and flexibility of use, Stunning Doodle has been imple-
mented as a lightweight web application relying on Python and Javascript,
respectively for back-end and front-end. Its setup is fairly simple as it requires
only to create a Python virtual environment and it allows the easy deployment
on a server to be accessed remotely by multiple users through a web browser.

Stunning Doodle: A Tool for Visual Analysis of KGEs 377

Fig. 4. Schema of the processing pipeline implemented in Stunning Doodle.

Stunning Doodle uses as input for the graph visualization a RDF Knowledge
Graph stored in a file using Turtle syntax. For the analysis of the GEs, a CSV
file containing the nodes’ URIs associated with the corresponding embeddings
is required. Figure 4 illustrates the processing pipeline of Stunning Doodle and
shows how the interactions with users are handled. Firstly, users need to upload
the RDF graph they want to visualize. This graph is parsed and converted into
JSON, enriching each node description with information about its types and
labels to enable on-the-fly customization of the visualization based on this infor-
mation. When users navigate the graph by re-centering it or expanding new
nodes, a remote request to the back-end is performed to compute and retrieve
the new list of nodes to visualize. Since the actions of customization and filtering
concern only the nodes and edges currently visualized, they do not require any
remote request to the server. To enable the functionalities of analysis of GEs,
a CSV file storing such embeddings must be uploaded by the user and stored
on the server. At this point, users can analyze the embeddings of any displayed
node, by visualizing its closest nodes in the embedding space. When this action
is executed, the back-end is queried to compute the list of the closest nodes with
their distances. After mapping the closest embeddings with their corresponding
nodes and computing the edges connecting them, the results are returned to the
front-end that displays the obtained subgraph.

The main limitation of Stunning Doodle is represented by the size of the KG
to be analyzed. Indeed, the larger the KG and, consequently, the embeddings file
are, the longer is the time needed to upload such files, to search for the nodes to
be displayed and to compute the distances between embeddings. Table 1 reports
the time needed to execute the main actions provided by Stunning Doodle on
the graph shown in Fig. 1 and Fig. 2, which contains 920.435 triples describ-
ing 124.982 nodes. These timings were obtained running Stunning Doodle on a
MacBook Pro with 2,8 GHz Quad-Core Intel Core i7 and 16 GB RAM.

378 A. Ettorre et al.

Table 1. Execution time with number of displayed nodes when performing actions for
the analysis of a subset of YAGO3.

Load graph Set center Expand node Closest nodes

(ns1:male) (ns1:AC Sparta Prague)

Time 120 s 21,7 s 12,03 s 5,4 s

nodes – 502 271 100

2.4 Software Availability and Reusability

Stunning Doodle is made available as an open-source software under the MIT
License. The tool is identified by means of a DOI provided through Zenodo [8] to
improve its accessibility and citability. Moreover, Stunning Doodle source code
is publicly accessible on the GitHub repository1, which also includes extensive
documentation and examples to guide the users. We plan on keeping improving
Stunning Doodle with new functionalities and offering best-effort support to
future users in case of bugs or issues of any kind. Furthermore, we welcome any
feedback, idea or contribution by the community.

3 Use Cases: The OntoSIDES Scenario

To demonstrate the usefulness of Stunning Doodle and the added value of the
functionalities it implements, we describe hereafter the two main use cases that
motivated the development of such a tool. Both use cases stem from the SIDES
real-world project in the field of e-education which aims to provide highly intel-
ligent learning services to the medical students in France. The SIDES project
involves the manipulation of OntoSIDES [17], a large KG describing the French
higher education system for medical studies, with universities, students, learning
material, and interactions between them. The graph includes in total more than
9.2 billion triples. To be able to exploit such an amount of information in an
AI-powered downstream application, a first approach would be to rely on KGEs,
as done in [10]. This scenario highlights two common needs for researchers and
engineers working on the project:

1. understanding the OntoSIDES KG, its content and structure;
2. analyzing and comparing GEs generated from it.

In the following use cases, we considered a subgraph of OntoSIDES including
only answers to questions of the pediatrics medical specialty. The extracted
subgraph contains in total almost 650.000 triples.

3.1 Understanding a Knowledge Graph

We tested Stunning Doodle for the visualization and comprehension of the KG in
the SIDES scenario. In this case, users are only aware of the high-level concepts
1 https://github.com/antoniaettorre/stunning doodle.

https://github.com/antoniaettorre/stunning_doodle

Stunning Doodle: A Tool for Visual Analysis of KGEs 379

Fig. 5. Screenshot of Stunning Doodle showing the basic entities and relations in the
OntoSIDES graph. (Color figure online)

that are supposedly defined in OntoSIDES and they need to understand what
the described entities are, how they are modeled in the KG and how they are
linked to each other through predicates. Expert users are normally able to gain
this knowledge by running several prototypical SPARQL queries, but the use
of Stunning Doodle facilitates this task by retrieving and displaying the same
information only through a few clicks, and, at the same time, makes the KG
accessible also to users with no expertise in SPARQL.

Once the graph file is uploaded, users can choose a node from which to
start the graph exploration. This allows users to expand only the nodes that
are relevant for them, displaying only the needed information. After expand-
ing a few nodes, users should be able to visualize a small graph containing
all the main elements of interest, i.e. questions, students, answers, institutes,
and their links. Thanks to the “Nodes’ overview” menu, users are able to dis-
tinguish the main entities in a glance, based on their colors. Considering the
visualization (Fig. 5), it is evident that instances of answers (orange nodes) are
directly linked to questions (spring green) and students (in gray). Moreover,
it is possible to see that questions are associated with specialties (navy blue
nodes) and learning objectives (yellow). Taking a look at the “Links’ overview”
menu, predicates can also be easily discriminated in the graph thanks to their
colors. Moreover, connections between distant nodes can be quickly identified to
be possibly used as property paths in SPARQL queries. For example, to ana-
lyze which topics a student worked on, it is sufficient to follow the path going
from a gray node (student) to a yellow node (learning objectives), therefore,
chaining the properties done by (fuchsia line), correspond to question (pink),
is linked to ECN referential entity (brown). Additionally, few statistical obser-

380 A. Ettorre et al.

vations on the number and types of entities can be done from the visualization.
In the example in Fig. 5, the “expanded” student gave 174 answers, the displayed
university has 44 students, all the questions are linked to the same medical spe-
cialty. Finally, each node can be analyzed in detail, by selecting the node and
looking at the menu “Node in focus” which displays the triples associated with
that node.

Thanks to its characteristics, Stunning Doodle proved to be not only useful
but fundamental to gain a first, global understanding of the content and orga-
nization of the OntoSIDES KG. Its navigation systems, filtering functionalities,
and customization capabilities allow the user to explore the graph step by step,
focusing at each moment only on the pieces of information of interest for them.
We claim that those features are very helpful for the understanding of Knowledge
Graphs in any context.

3.2 Analyzing and Comparing GEs

The GEs analysis provided by Stunning Doodle allows to gain insights into the
information encoded in the GEs and, therefore, to assess their meaningfulness for
their final use. In particular, Stunning Doodle can be used for comparing GEs
computed through different embedding models with several hyper-parameters
settings, with the final goal of identifying and tuning the model generating the
most meaningful embeddings.

In the framework of the SIDES project, GEs computed from OntoSIDES
have been used as input features for a ML model designed to predict students’
performance on medical questions [10]. In this context, (1) interpreting the infor-
mation captured by GEs, (2) identifying the best model for their computation,
and (3) tuning the hyper-parameters to obtain a meaningful representation of
the nodes are crucial tasks.

In the following, we show how Stunning Doodle has been used to carry out
these tasks, by analyzing the GEs generated from the OntoSIDES subgraph
described in Sect. 3.1. We inspect and compare two sets of GEs, both computed
using the node2vec model [11]. In the first case, the embeddings have been com-
puted considering the graph directed (i.e. it can be traversed only going from
subjects of triples to objects), while in the second case embeddings are obtained
considering the graph undirected (i.e. links are bidirectional, it is possible to go
from objects to subjects). In both cases, we study the embeddings of a student
node (stu81235) to figure out which nodes are considered to be similar from
the embeddings point of view and, therefore, what information embeddings can
capture from the KG. After uploading the graph and embeddings’ files, we select
the node corresponding to ns2:stu81235 and we choose to visualize its closest
nodes in the embedding space.

GEs from a Directed Graph. Figure 6 shows the result of visualizing the 100
nodes with the shortest euclidean distance (in the embedding space) from the
node ns2:stu81235. The darkest node is the node ns2:stu81235 itself since
its distance from itself is 0. Immediately, it occurs from the visualization that

Stunning Doodle: A Tool for Visual Analysis of KGEs 381

Fig. 6. Closest nodes in the embedding space to the node ns2:stu81235 with GEs
computed from a directed graph. (Color figure online)

its closest nodes are not directly linked between each other and, based on the
gradient color, some of them are much closer than others. Looking at the nodes’
list in the menu “Graph Embeddings Information”, we can see that all the
closest nodes are other instances of the student class. Therefore, we can assume
that during the embedding process, nodes with the same type are recognized as
similar, ending up close in the embedding space.

To investigate why some students are closer to ns2:stu81235 than others, we
can “expand” a few nodes to find connections among them. Figure 7 shows that
the closest nodes (darkest color) are connected to the same university (fuchsia
node) as ns2:stu81235. This highlights the fact that the link with the university
has a high impact during the computation of the embeddings of a student’s
node. Nevertheless, we can notice that not all the students registered at the
same university as ns2:stu81235 are among its closest nodes (gray nodes in
Fig. 7), meaning that there are other factors affecting the similarity between
embeddings. Repeating the same analysis for other nodes of type ns2:student
led to the discovery of similar patterns, i.e. all the analyzed nodes resulted to
be similar to other students attending the same university. Thanks to these
observations, we can conclude that, in this case, GEs are able to encode the
information about the node type and the university for students’ nodes.

GEs from an Undirected Graph. Figure 8 shows the closest nodes to
ns2:stu81235 for the embeddings computed from the undirected graph. The
difference with the GEs computed in the previous case is immediately visible.
Firstly, by looking at the list of the closest nodes we discover that for undi-
rected embeddings the type of the node does not play an important role in
the embedding process. Indeed, the closest nodes are of various types, including

382 A. Ettorre et al.

Fig. 7. Links between ns2:stu81235 and its closest nodes in the embedding space.
(Color figure online)

ns2:answer and ns2:action to answer. From the visualization, it is obvious
that the connections between nodes assume a much more important role, as the
closest nodes in the embedding space result to be the ones that are close in the
KG as well (at 1-hop or 2-hops distance). On the other side, we notice that the
opposite implication does not hold. Indeed, when we expand the node stu81235
to display all the direct neighbors in the KG as done in Fig. 9, we can see that
there are additional nodes which were not displayed before as they are not close
in the embedding space (answers in orange). Therefore, we can assume that the
distance in the KG, though important, is not the only parameter taken into
account during the embedding process. Same observations can be done for other
nodes of type ns2:student.

Finally, uniquely through the joint visualization of the distances in the
embedding space and the KG structure, we can draw interesting conclusions on
the meaning of GEs and, thus, identify the best settings to be used for the embed-
ding computation. In our case, we discovered that GEs computed from directed
graphs can capture semantic information from the KG, such as the nodes’ type
and the university associated with each student; while GEs obtained from undi-
rected graphs tend to summarize the graph structure. As a consequence, if our
final goal is the prediction of students’ performance [10] the information about
the attended university is likely relevant and GEs computed from the directed
graph are more meaningful.

4 Related Work

Despite the growing attention dedicated to the issues of interpretability and
understandability of KGEs, to the best of our knowledge, no work has been

Stunning Doodle: A Tool for Visual Analysis of KGEs 383

Fig. 8. Closest nodes in the embedding space to the node ns2:stu81235 with GEs
computed from an undirected graph.

done towards the visual analysis and comprehension of such representations.
Yet, some solutions have been developed for the similar task of sentences and
words embeddings visualization. TensorFlow Projector2 allows users to upload
and visualize their embeddings to help the comprehension of the information they
summarize. Through this tool, it is possible to visualize the uploaded embed-
dings in a 3D space by using dimensionality reduction techniques. Moreover,
the tool permits, for each element, to list its closest neighbors in the embedding
space with the final goal of providing insights on the meaning of the computed
embeddings. Although TensorFlow Projector is general enough to visualize any
kind of embedding, i.e. word, sentence or graph, its usefulness in understanding
KGEs is limited by the absence of KG-specific functionalities, such as displaying
the graph structure or considering semantic information.

Concerning the visual analysis of KGs, multiple tools have been developed
throughout the years. Recent research efforts [1,6] focused on listing, analyz-
ing, and comparing existing Linked Data (LD) visualization tools able to deal
both with KG schema and data. The majority of the available tools rely on a
graph-based visualization and present several commonalities with respect to the
provided functionalities and input mode. Many of these applications enable to
visualize resources accessible through a public SPARQL endpoint [16,18], while
only a few of them allow users to upload local RDF graphs [21]. Some of the
tools complement graph visualization with advanced features, such as augment-
ing graph content with external information [16] and collecting statistics about
the KG [20]. Different strategies are used to deal with large-scale KGs, e.g. [18]
aggregates nodes in clusters, [2,21] try to identify and show firstly the most
important concepts, while others, such as [5,15], rely on incremental exploration

2 https://projector.tensorflow.org.

https://projector.tensorflow.org

384 A. Ettorre et al.

Fig. 9. ns2:stu81235 expanded to show its neighbors in the KG that are not close in
the embedding space.

by the user. The conclusion drawn by [6] highlights the impossibility of identi-
fying the best tool in the absolute and states that the research in this field is far
from conclusion. Moreover, most of the existing applications are developed as
proofs of concept or research tools, therefore they are often conceived for a very
specific task and dataset and they can hardly be generalized, or they are rather
cumbersome to set up. These limitations make them not suitable for widespread
use by non-expert users.

Inspired by the GEs visualization implemented by Tensorflow, Stunning Doo-
dle builds upon the functionalities offered by recent KGs visualization tools and
extends them to enable a simple and straightforward visual analysis of the KGEs.

5 Conclusion and Future Work

Stunning Doodle is a first step to fill the gap in the field of visual analysis of
KGEs. This visualization tool enables to build a link between the content and
structure of any KG and its corresponding embeddings. We implemented a set of
functionalities to facilitate the exploration and understanding of any KG and to
analyze KGEs, connecting the two, and making sense of the information captured
by the KGEs. We used Stunning Doodle to address two use cases requiring the
study of a real-world KG and its embeddings. It has proven its usefulness in
gathering meaningful insights for a more informed exploitation of KGEs.

As future work, we plan to implement new functionalities particularly useful
for more expert users, such as the visualization of the result of SPARQL queries
and the direct access to well-known SPARQL endpoints. Moreover, we aim to
provide a deeper analysis of the uploaded GEs including advanced statistics on
the closest nodes and additional similarity metrics. We also want to optimize

Stunning Doodle: A Tool for Visual Analysis of KGEs 385

the pre-processing pipeline to be able to display and analyze larger KGs. Our
hope is that Stunning Doodle could build a large community of users and keep
improving and growing throughout the years to satisfy their needs.

References

1. Antoniazzi, F., Viola, F.: RDF Graph Visualization Tools: A Survey, November
2018. https://doi.org/10.23919/FRUCT.2018.8588069

2. Asprino, L., Colonna, C., Mongiov̀ı, M., Porena, M., Presutti, V.: Pattern-based
visualization of knowledge graphs. arXiv preprint arXiv:2106.12857 (2021)

3. Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., Sellis, T.: Towards
scalable visual exploration of very large RDF graphs. In: Gandon, F., Guéret, C.,
Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015.
LNCS, vol. 9341, pp. 9–13. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-25639-9 2

4. Bikakis, N., Liagouris, J., Krommyda, M., Papastefanatos, G., Sellis, T.:
GraphVizdb: a scalable platform for interactive large graph visualization. In: 2016
IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1342–1345.
IEEE (2016)

5. Camarda, D.V., Mazzini, S., Antonuccio, A.: Lodlive, exploring the web of data. In:
Proceedings of the 8th International Conference on Semantic Systems, pp. 197–200
(2012)

6. Desimoni, F., Po, L.: Empirical evaluation of linked data visualization tools. Future
Gener. Comput. Syst. 112, 258–282 (2020)

7. Ernst, P., Meng, C., Siu, A., Weikum, G.: KnowLife: a knowledge graph for health
and life sciences. In: 2014 IEEE 30th International Conference on Data Engineer-
ing, pp. 1254–1257 (2014)

8. Ettorre, A.: antoniaettorre/stunning doodle: First Version, December 2021.
https://doi.org/10.5281/zenodo.5769192

9. Ettorre, A., Bobasheva, A., Faron, C., Michel, F.: A systematic approach to identify
the information captured by knowledge graph embeddings. In: IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technol-
ogy (WI-IAT) (2021)

10. Ettorre, A., Rocha Rodŕıguez, O., Faron, C., Michel, F., Gandon, F.: A knowledge
graph enhanced learner model to predict outcomes to questions in the medical field.
In: Keet, C.M., Dumontier, M. (eds.) EKAW 2020. LNCS (LNAI), vol. 12387, pp.
237–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61244-3 17

11. Grover, A., Leskovec, J.: Node2Vec: scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 855–864 (2016)

12. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge
graphs. In: Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, pp. 4289–4300 (2018)

13. Liu, J., Lu, Z., Du, W.: Combining enterprise knowledge graph and news sentiment
analysis for stock price prediction. In: Proceedings of the 52nd Hawaii International
Conference on System Sciences (2019)

14. Mahdisoltani, F., Biega, J., Suchanek, F.: YAGO3: a knowledge base from multilin-
gual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research.
CIDR Conference (2014)

https://doi.org/10.23919/FRUCT.2018.8588069
http://arxiv.org/abs/2106.12857
https://doi.org/10.1007/978-3-319-25639-9_2
https://doi.org/10.1007/978-3-319-25639-9_2
https://doi.org/10.5281/zenodo.5769192
https://doi.org/10.1007/978-3-030-61244-3_17

386 A. Ettorre et al.

15. Micsik, A., Turbucz, S., Györök, A.: LODmilla: a linked data browser for all (2014)
16. Nuzzolese, A.G., Presutti, V., Gangemi, A., Peroni, S., Ciancarini, P.: Aemoo:

linked data exploration based on knowledge patterns. Semant. Web 8(1), 87–112
(2017)

17. Palombi, O., Jouanot, F., Nziengam, N., Omidvar-Tehrani, B., Rousset, M.C.,
Sanchez, A.: OntoSIDES: ontology-based student progress monitoring on the
national evaluation system of French Medical Schools. Artif. Intell. Med. 96, 59–67
(2019)

18. Po, L., Malvezzi, D.: High-level visualization over big linked data. In: International
Semantic Web Conference (P&D/Industry/BlueSky) (2018)

19. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., Sontag, D.: Learning a health
knowledge graph from electronic medical records. Sci. Rep. 7, 1–11 (2017)

20. Santana-Pérez, I.: Graphless: using statistical analysis and heuristics for visualizing
large datasets. In: VOILA@ ISWC 2187, pp. 1–12 (2018)

21. Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: RDFDigest+: a
summary-driven system for KBs exploration. In: International Semantic Web Con-
ference (P&D/Industry/BlueSky) (2018)

22. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: gener-
ating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 32,
9240 (2019)

Capturing the Semantics of Smell:
The Odeuropa Data Model

for Olfactory Heritage Information

Pasquale Lisena1(B) , Daniel Schwabe2 , Marieke van Erp3 ,
Raphaël Troncy1 , William Tullett4 , Inger Leemans3 , Lizzie Marx5 ,

and Sofia Colette Ehrich3

1 EURECOM, Sophia Antipolis, France
{pasquale.lisena,raphael.troncy}@eurecom.fr

2 Jožef Stefan Institute, Ljubljana, Slovenia
daniel.schwabe@ijs.si

3 KNAW Humanities Cluster, Amsterdam, The Netherlands
marieke.van.erp@dh.huc.knaw.nl, {inger.leemans,sofia.ehrich}@huc.knaw.nl

4 Anglia Ruskin University, Cambridge, UK
william.tullett@aru.ac.uk

5 University of Cambridge, Cambridge, UK
esm38@cam.ac.uk

Abstract. Smells are a key sensory experience. They are part of a multi-
billion euro industry and gaining traction in different research fields such
as museology, art, history, and digital humanities. Until now, a semantic
model for describing smells and their associated experiences was lacking.
In this paper, we present the Odeuropa data model for olfactory heritage
information. The model has been developed in collaboration with olfac-
tory and art historians. Our model can express the various stages in a
smell’s lifetime – creation, being experienced, deodorisation – and their
relation to locations, times and the agents that interact with them.

Keywords: Smell · Ontology · Cultural heritage · Vocabularies ·
Sensory mining

1 Introduction

Smells are a key sensory experience. As olfactory information goes straight from
the nose, from the olfactory bulb, to the limbic system, the amygdala and hyp-
pocampus, smells often evoke strong emotions and memories [32]. Throughout
history, these emotive and mnemonic qualities of smelling have been recognised
and described, for example in John Louis-Francois Ramond’s Travels in the Pyre-
nees (French 1789; English translation 1813):

There is a somewhat in perfumes which powerfully awakens the memory
of the past. Nothing so soon recalls to the mind a beloved spot, a regretted

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 387–405, 2022.
https://doi.org/10.1007/978-3-031-06981-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_23&domain=pdf
http://orcid.org/0000-0003-3094-5585
http://orcid.org/0000-0003-4347-2940
http://orcid.org/0000-0001-9195-8203
http://orcid.org/0000-0003-0457-1436
http://orcid.org/0000-0002-8975-8031
http://orcid.org/0000-0003-1640-4109
http://orcid.org/0000-0001-9611-5969
https://doi.org/10.1007/978-3-031-06981-9_23

388 P. Lisena et al.

situation, or moments whose passage has been deeply recorded in the heart,
though lightly in the memory. The fragrance of a violet restores us to the
enjoyment of many springs.

Senses such as vision and hearing are largely studied in signal processing and
computer science, while others are underrepresented in scientific research. The
sense of olfaction can be found in this latter group. However, the domain of smell,
which is often perceived as a fringe one, is in fact quite broad and relevant by
humanities and social science scholars [24,25,59]. A new interest in the odours
of the past and how past odours are perceived in the present has stimulated
research in cultural heritage, or more specific: into olfactory heritage [5] – where
scents and smellscapes are understood as a form of both Tangible and Intangible
Heritage1 – and where scholars have become interested in past ways of smelling
and historical smell scapes [28,47]. In addition to the perfume-making indus-
try, we acknowledge the interest of GLAMs [23,62], urban design [22], tourism
and environment preservation,2 human-computer interfaces and ‘computer nose’
devices [8]. Emerging research has also been triggered by olfactory dysfunctions
due to the COVID-19 pandemic, which make the preservation of past olfactory
experience more urgent [40].

To capture information about historical smells, olfactory practices, and smell
scapes, we can reach out to the rich digital heritage collections that have been
developed over the last decades. References to smells and olfactory practices
can be found in a large variety of digital texts and images: normative texts,
medical texts and perfume handbooks, for instance, offer information about the
production and usage of perfumes, or smell management [30,33]. Novels, poems
and travel literature reveal connections between odours and identities, testifying
to cultural sensitivities around smelling. They may also describe fragrant places,
such as churches, parks, or sewers [29,59]. Olfactory clues, gestures and allegories
can also be found in paintings, prints and other visual sources [56].

Cultural heritage data collections pose both an opportunity and a challenge.
Up to now, most effort in olfactory mining has been put into mapping and clas-
sifying fragrances and malodours (specifically in the perfume and odour indus-
tries) and in computing the nose - the act of smelling and its effect on the body.
Smells are notoriously hard to predict. Thusfar, olfactory informatics has been
focused on computing what a molecule smells like based on its chemical struc-
ture [36,49,63]. Heritage texts and images however, provide a different type of
information. They offer rich data about odour perception and valuation, about
the cultural experience of smelling, including subjective interpretations of the
perceived odours. To capture this information, different computer science tech-
nologies are required, such as image recognition, text mining, and semantic web
technologies. Odeuropa3 is the first major research project to combine these
technologies to capture smell experiences in their historical and cultural con-
1 It is relevant the inclusion of the perfumes of Grasse in the UNESCO list. Source:

https://bit.ly/3opPRin. Last visited: 15/03/2022.
2 Examples in Japan: https://bit.ly/3u4ySFD and in France: https://bit.ly/3rYpv7Q.
3 https://www.odeuropa.eu.

https://bit.ly/3opPRin
https://bit.ly/3u4ySFD
https://bit.ly/3rYpv7Q
https://www.odeuropa.eu

Capturing the Semantics of Smell: The Odeuropa Data Model 389

text. Our goal is not so much to represent smells per se but rather to represent
the historical and social aspects of smell perception and olfactory practices.

In this paper, we introduce the Odeuropa data model for representing odours
and their experiences from a cultural heritage perspective. The data model re-
uses and extends established ontologies such as CIDOC CRM [14], to represent
the relevant information as a set of interconnected events. The model is com-
pleted by a set of controlled vocabularies for representing crucial elements such
as olfactory objects and gestures.

The ontology is developed using web technologies and is intended as a struc-
ture for realising an olfactory Knowledge Graph (KG) in the context of the
Odeuropa project. The KG will include olfactory-related data extracted from
text and images from the 17th to the early 20th century. This KG is intended to
serve as a base for supporting heritage professionals, historians and scent design-
ers in including Artificial Intelligence (AI) techniques in their daily practice [39].

This ontology is contributing to the domain in two ways:

– Offering a structure for representing smell-related information, a necessary
step for the preservation of this intangible heritage. The ontology can poten-
tially serve in all the previously mentioned areas of the olfactory domain;

– For the first time, closing a gap in the representation between objective obser-
vations and subjective experiences (in particular, sensory ones). This aspect
is targeted also going beyond the olfactory domain, using a 2-level structure –
with a first layer targeting senses in general and a second one focusing specif-
ically on smells – enabling the description of sensorial experiences in fields
such as history, literature, art, and cultural heritage.

The remainder of this paper is organised as follows. In Sect. 2, we describe
related work on olfactory and semantic web modelling. In Sect. 3, we present our
approach to designing the Odeuropa olfactory model with domain experts and
the model requirements. In Sect. 4, we present our model, detailing the mod-
elling decisions underneath, while in Sect. 5 are described the vocabularies that
followed from the knowledge elicitation from domain experts. Section 6 reports
about the evaluation of the data model. We showcase our model’s use and expres-
sivity in Sect. 7 with an example describing a smell experience. We conclude with
a discussion and plans for future work in Sect. 8.

2 Related Work

The olfactory domain has typically been the purview of perfumers [27], psy-
chologists [16], and sanitary scientists [61]. In the past decade, museologists,
chemists, and historians have become interested in researching and preserving
heritage smells [6] and curating smell archives, such as the Osmothèque in Ver-
sailles.4 While there is a subfield of computer science that concerns itself with

4 https://www.osmotheque.fr/en/the-collection/.

https://www.osmotheque.fr/en/the-collection/

390 P. Lisena et al.

olfactory informatics, these studies are mostly focused on predicting or map-
ping olfactory characteristics of molecules [36,49,63], and semantic modelling of
smells is as yet an under-researched area.

Previous work has shown that Knowledge Graphs are suitable to represent
and exploit the domain information in cultural heritage [11,14,26], history [31],
and art [1,13], as well as complex intangible domains such as event modelling [53,
60], biomedicine [54], ecological networks [58], and chemistry [41]. Whilst smells
have a measurable component, namely their molecular composition, they remain
a largely intangible and subjective concept as most smell discourse is based on
personal observations. An olfactory model therefore needs to be able to deal with
subjective observations that are anchored to a place and time.

In the past decade, (digital) humanities researchers have started working
with semantic web researchers to develop ontologies and knowledge graphs for
their domain such as [1,7,50,51]. For visual information, various ontologies and
knowledge graphs are available such as [55]. Auditory information is well cov-
ered by for example [42], and a taste model was developed by [44]. The IoT
community has been working on a digital senses model [12] and the concept of
an artificial nose [19]. Recently, [52] combined odours, odorants, olfactory recep-
tors and odorant-receptor interactions in a single MySQL database. However,
this model focuses on the chemical compositions of odours, is not open data,
and is less focused on the sensory impacts of olfactory experiences and heritage
than Odeuropa. To the best of our knowledge, there is a lack of ontologies that
specifically aim to represent sensory experiences.

3 Design Methodology and Model Requirements

As there is a large gap between the everyday practices of computer science
and humanities researchers in which this model is to fit, we opted for a user-
centred design methodology in which the olfactory and (art) historian experts
were closely involved. In a series of meetings and hands-on exercises, the require-
ments of the model were elicited whereby the overall Odeuropa project goals were
kept in mind as end-goal.5 A core instrument in this process was the formulation
of 74 competency questions for the model to answer.

With each step, the intermediate results were shared and progress on the
design was measured according to the competency questions formulated and
results of these were used to steer the next development iteration. A visual
overview of our method is provided in Fig. 1.

The desired ontology will serve for storing together olfactory information
from structured resources, as well as information from texts and images. Fur-
thermore, the resulting knowledge graph is to be used to research smells through
time and related to places. Historians are furthermore particularly interested in
what people did with smells or how they created smells and what emotions these
evoked. These requirements led to the following 7 categories of competency ques-
tions, all declinable in time and space:
5 https://odeuropa.eu/objectives-timeline/.

https://odeuropa.eu/objectives-timeline/

Capturing the Semantics of Smell: The Odeuropa Data Model 391

Fig. 1. User-centred design

Smells: About core properties of smell (source, carrier).
- What are the most frequent smell sources in London in the 18th century?
- Which smells were perceived during spring?

Noses and Gestures: Involving the actors perceiving the odours.
- Which professions are more present in smelling experience descriptions?
- Which smelling gestures are described more frequently by tea-merchants?

Identities: About the meaning of smells and their capability of being represen-
tative of something/someone.
- Which flavours did people associate with femininity in Asia?
- What are the odours most associated with Ashkenazi Jewish practices?

Emotions: Focusing on the interaction between olfaction and feelings.
- What odours disgusted upper-class Europeans most?
- Which smell triggers memories of childhood?

Practices: About smell-producing practices.
- What types of cooking produce a bad smell?
- Which practice can reduce a smell intensity?

Sites and contexts: About the presence of odours in particular places.
- Which smells are associated with ships?
- Which smell could be perceived during the Crimean War?

Texts and images: About how smells are represented in texts and images.
- What are the adjectives used for orange aroma in the 15th century?
- Which smells can be found in paintings of the Rijksmuseum?

4 The Odeuropa Data Model

This section describes the olfactory data model, highlighting our core modelling
decisions and the main structure of the resulting ontology.

4.1 Extending Established Ontologies

Following best practices in the ontology development [10], we aim to re-use exist-
ing data models as base and extend them to represent domain-specific classes

392 P. Lisena et al.

and properties. Given the lack of sensory-centered ontology (Sect. 2), we chose
CIDOC CRM [14] as our core ontology for the following reasons:

• It is a bridge to other cultural and heritage objects: CIDOC CRM
can be used to describe objects in museum and creative works [38], including
paintings and textual resources. This makes it more natural to describe the
relations between olfactory information and those elements;

• It is already familiar to museums and digital libraries: This can be an
advantage when creating interlinking with existing collections and for even-
tual adoption by these institutions;

• It is event-based: [46] Due to the intangible nature of smells and the
inevitable subjectivity in their usual descriptions, we decided to focus on the
representation of olfactory events rather on odours themselves. In CIDOC
CRM, events are the fundamental building blocks: the existence of anything
is implying an event that generated it or made someone aware of it. An event
can be described in relation to time, space, and involved participants can be
linked to other events, including sub-events such as actions and gestures;

• It is expressive and flexible: The information to be represented may vary
significantly, ranging from highly detailed olfactory experiences to brief men-
tions to a particular smell. The modularity of CIDOC CRM – itself made of
events as building blocks which may be freely interconnected – provides the
required flexibility in the representation. In particular, it allows to indepen-
dently represent the event which generated (or transformed) the smell and
the olfactory experience(s), giving the possibility of describing both or only
one of them.

CIDOC CRM is extended by CRMsci [15], which adds properties about the
scientific observation and description of natural phenomena. Here, the observa-
tion concept has to be understood in the broad sense of experiencing something,
such that it can also be applied to sensory experiences beyond sight.

As a derivation of CIDOC CRM, the Odeuropa model follows the naming
convention to prefix classes and property names with a number and a letter:
CIDOC CRM uses E (for classes) and P (for properties); CRMSci uses S (classes)
and O (properties); Odeuropa uses L (classes) and F (properties), taking two
letters from “olfaction”. In the text of this paper, we will omit these codes and
letters for readability, while keeping them in the figures.

In addition, parts of the following ontologies are used:

• The READ-IT ontology, to represent emotions triggered by events [3];
• The PROV-O Ontology, for representing data provenance [34];
• The FOAF vocabulary, for describing people [18];
• Schema.org [20], e.g. to describe the genre and author of a text or painting.

4.2 A Three-Layered Model

Due to the complexity of the phenomena related to odours, we adopted a lay-
ered approach to construct the data model. We identified abstraction levels that

Capturing the Semantics of Smell: The Odeuropa Data Model 393

Fig. 2. The core of the Odeuropa data model

roughly correspond to the different aspects of interest. Accordingly, the Odeu-
ropa Data model is organised in the following three levels:

• Level 1 consists of the CIDOC CRM and CRMsci classes and properties that
were used and/or extended. It represents an observation of a phenomenon;

• Level 2 is an extension of Level 1 for representing sensorial experiences,
not limited to olfaction. This level was developed because we identified com-
monalities shared by all senses and decided to provide more general classes
and properties. This will help future extension of the model, including the
representation of synaesthetic experiences;

• Level 3 extends Level 2 by specifically targeting olfactory information.

The three levels are shown in Fig. 2, representing the core of the model. Smell
(Sensory Stimulus) plays a central role, directly connected to two main types of
events, namely Smell Emission (Stimulus Generation) and Olfactory Experience
(Sensory Experience).

In this model, we consider a smell as a unique and non-repeatable entity,
with defined time and space coordinates. By way of example, two roses have two
distinct (but similar) smells, and the “smell of roses” exists only as a generalisa-
tion of the smells of all roses. A given smell can be generated by a unique Smell
Emission event, but can be experienced multiple times, in distinct situations,
by multiple people. This captures the fact that each person can perceive and
describe the same smell differently [2].

Figure 3 reports all elements that are part of the data model. The information
is organised around the three main events, directly linked to the Smell:

– The Smell Emission allows us to describe the smell generation from a smell
source (e.g. tobacco) and the carrier of the smell (e.g. a pipe). These elements

394 P. Lisena et al.

Fig. 3. The Odeuropa data model

Capturing the Semantics of Smell: The Odeuropa Data Model 395

can be further described through their components and/or the production
process which creates them;

– The Olfactory Experience allows us to describe the perception of smell –
who perceived the smell, their eventual emotions and gestures. In addition, it
records the description that the perceiver makes of the smell, be it through
adjectives (typed and linked to vocabularies using the Attribute Assignment
class) or through the mention of (i.e., association with) evoked entities such
as other smells, people, places, etc.;

– The Odorizing class allows to describe how a specific smell was used. For
instance, it is possible to specify the purpose for which an odour was used –
e.g. covering another smell, medical reason, etc. –, who was using it on what
the smell is being used – e.g. a room, a part of the body, etc.

Both event classes inherit from CIDOC CRM some common properties to specify
the time and space of the event and eventual co-occurring events. Given the sub-
jective nature of the words used for describing smell, we preferred to model them
as Attribute Assignment connecting the word (assigned) to the smell (assigned
attribute to), with a direct link to the original person (carried out by) and the
possibility to include the attribute (has type) in a category (e.g. hedonic, inten-
sity, character, state, etc.).

Furthermore, the model includes also classes such as Stimuli/Smell Transfor-
mation – to represent events that modify a smell, e.g. opening a window – and
Stimuli/Smell Interaction – to represent smells that are perceived as a combi-
nation of different smells, e.g. different foods in a dining room. Special care was
devoted to model perceivers (i.e. the agents perceiving smells), by employing
and extending the class Actor to represent people, groups and animals. Simi-
larly, fragrant spaces are also represented, capturing those attributes that allow
us to aggregate them – by type of place or by geographical contiguity.

4.3 Provenance Information

As we intend to trace smells through time, we need to keep track of the sources
from which statements in our knowledge graph are derived and through what
process. Furthermore, to anchor statements in time and place, we want to keep
track of when they were published, and if possible who published them to –
for example – map a debate on cultural differences with respect to a particular
odour. To keep track of this in the KG, we apply the following strategy:

CIDOC CRM enables us to represent that a text (Linguistic Object) or
image (Visual Item) contains a reference (refers to) to an entity, which is, in
our domain, a Smell or an Olfactory Event. To include the information without
drastically increasing the number of triples in the KG, these refers to links are
instantiated on a subset of the graph, containing at least the core.

PROV-O [34] is used to record the ways this information was extracted from
textual and visual sources, including the agent and/or software/algorithm which
extracted the information and a confidence score in case automatic processes

396 P. Lisena et al.

Fig. 4. The provenance of information represented in the Odeuropa data model

were involved. To keep the graph clean, we include this information in a sec-
ond layer. This is realised by applying RDF* [21] and linking the provenance
information to the relevant refers to properties, as shown in Fig. 4. In this way,
the information and the meta-information are kept distinct, while it is always
possible (when needed) to retrieve the provenance of a data excerpt.

5 Controlled Vocabularies

For the description of some fundamental olfactory-related concepts, a collection
of controlled vocabularies was created. The use of vocabularies helps to bet-
ter disambiguate entities, grouping synonyms and labels in different languages
under a single identifier (URI). Our vocabularies are represented in SKOS [43], a
format that allows us to define, for each concept, preferred and alternate labels,
descriptions, broader, narrower and related terms. In this way, we can construct a
hierarchy of terms, grouping the related ones and to instantiate bridges between
concepts belonging to different vocabularies.

Following previous experiences in constructing controlled vocabularies in Dig-
ital Humanities [35,37], our collection is composed of previously-existing tax-
onomies – which are expressed using SKOS – and vocabularies built from scratch
through the collaboration of domain experts and computer scientists.

The list of olfactory vocabularies converted in SKOS format is reported in
Table 1 and consists of:

• The Fragrance Circle by Edward Drom, a smell wheel used in perfumery; [9]
• Michael Edwards’ Fragrance Wheel, including 4 families and 14 subfamilies

of olfactory groups used in modern perfumery;6

• The Odour wheel of historical books, for smell heritage preservation [5];
• The Nose-first classification of iconographies realised by Ehrich et al. for link-

ing smells and their representation in art [17];

6 https://en.wikipedia.org/wiki/Fragrance wheel Last visited: 07/12/2021.

https://en.wikipedia.org/wiki/Fragrance_wheel

Capturing the Semantics of Smell: The Odeuropa Data Model 397

Table 1. Vocabularies converted in SKOS. Some classification systems have a second
level which consists of smell sources rather than smell classes (reported as 1+1).

Name Type Levels
Top level

concepts

Total

concepts

Drom’s fragrance circle Odour wheel 2 16 77

Michael Edwards’ scent wheel Odour wheel 2 4 18

Odour wheel of historical books Odour wheel 2 8 43

Nose-first classification of iconographies Classification 1+1 25 168

Flavornet and human odour space Classification 1+1 25 495

Zwaardemaker smell system Classification 1+1 9 9

• The Flavornet odour space, the compilation of aroma compounds found in
human odour space [4];

• The Linnaeus/Zwaardemaker smell system developed in 1895 [48].

These vocabularies were manually converted to a common format based on
CSV and then processed and converted to SKOS. In addition, 3 multi-language
vocabularies were developed in a collaboration between knowledge engineers and
domain experts, representing:

• Fragrant spaces, listing interesting (from an olfactory point of view) such
as churches, buildings, natural places, etc. These concepts are intended to be
linked to instances of type E53 Place through P137 exemplifies;

• Olfactory gestures, simple actions which possibly occur during olfac-
tory experiences, e.g. sniffing, covering the nose, etc. The included concepts
are intended to be linked to instances of type L13 Olfactory Experience
through F5 involved gesture;

• Olfactory objects, including entities (natural or human made) which are
particularly relevant because emitting odours – e.g. a flower – or potentially
carrying odour sources – e.g. a perfume bottle or a pomander. The included
concepts are intended to be linked to instances of type L12 Smell Emission
through F3 source or F4 carrier.7

The realisation of these vocabularies was carried out with synchronised spread-
sheet tabs – one for each language – to collect the translations of each term.
In addition, semantic relationships between terms inside the same vocabulary
were instantiated – e.g. “Rose” skos:broader “Flower” or “Pipe” skos:related
“Tobacco – and between vocabularies – e.g. “Library” skos:related “Book”. An
overview of the available languages is shown in Table 2. Please note that a given
concept does not always have an appropriate translation in all languages.

7 While some of these are clearly carriers (wind, bottle) and other smell sources (jas-
mine, sulphur), some specific elements can embody any of the two role depending
on the context (smoke). For this reason, we decided to have a single vocabulary
including all terms, reporting the preferred role when possible.

398 P. Lisena et al.

Table 2. Multi-language vocabularies for English (EN), German (DE), French (FR),
Italian (IT), Dutch (NL), and Slovene (SL)

Name
Total

concepts
EN DE FR IT NL SL

Fragrant spaces 110 110 4 108 106 110 4

Olfactory gestures 35 35 0 33 32 16 0

Olfactory objects 417 400 172 378 381 390 402

6 Evaluation with Competency Questions

To guide the design of the data model and to provide a way to evaluate it, we
used the set of 74 Competency Questions (CQ) [45] collected in Sect. 3 before
the development of the model. These CQ were proposed by domain experts –
historians and scholars with expertise in olfactory heritage – and are organised in
7 categories, reported in Table 3. These questions allowed the team to iteratively
improve versions of the data model, in sequences of development and check.
We considered the process of designing the ontology complete only when each
CQ could be expressed with a proper SPARQL query, making sure that all the
components and relations necessary to answer this question are in place.

In the final version of the model, we distinguish 4 different cases:

• The vast majority of questions can be answered with a SPARQL query.
Example: What are the most frequent smell sources in London in the 18th
century?

• A few questions cannot be answered by simple SPARQL queries, but require
more AI methods to find a proper solution.
Example: Was muck perceived as more disgusting than smog?

• 4 questions are answerable with SPARQL, but require external information
that are outside the scope of the model – e.g. with the addition of knowledge
bases such as WikiData.
Example: Which smell could be perceived during a war?

• 1 question requires an extension of the model. Given that the challenging
element of this question is not directly related to the olfactory/heritage infor-
mation but to time representation, we decide to keep this issue open for future
work.
Example: Which smells were perceived during morning?

Apart from the last group, we consider the other cases satisfied by the model.
Our results are summarised in Table 3.

Some of the CQs require additional AI techniques to be solved in a more
exhaustive way. For example, when searching for bad smells, we are not only
interested in the result for a query exactly matching the word bad, but we are
interested in all kinds of malodours, smells described as stinking, terrible, awful,
etc. We identified 2 possible strategies to address this situation:

Capturing the Semantics of Smell: The Odeuropa Data Model 399

Table 3. The number of competency question per category, together with the number
of answerable one with the sole model (OK), in combination with AI techniques (AI),
with the addition of external data (ExtData) and only with a further extension of the
model (Extension)

Category OK AI ExtData Extension Total

A. Smells 10 0 0 1 11

B. Noses and gestures 6 0 0 0 6

C. Identities 6 0 0 0 6

D. Emotions 6 0 0 0 6

E. Practices 8 5 0 0 13

F. Sites and contexts 9 0 2 0 11

G. Texts and images 19 0 2 0 21

TOTAL 64 5 4 1 74

• Sentiment detection on the words used for describing the smell (when we
search for good/bad or pleasant/unpleasant smells);

• Rely on word embeddings and compute the similarity between the word in
the graph (e.g. reluctant, fetid) and the searched one (e.g. disgusting).

7 Showcase: Modelling the Smell of a Location

To better understand and appreciate the expressivity and flexibility of the pro-
posed data model, we showcase a modeling example. In Fig. 5, we model the
olfactory information contained in a passage from Vita Sackville-West’s Knole
and the Sackvilles (1922). In this book, the author describes the house she grew
up in but could not inherit due to aristocratic inheritance customs:

“They [galleries of Knole, ed.] have the old, musty smell which to me,
whenever I met it, would bring back Knole. I suppose it is really the
smell of all old houses - a mixture of woodwork, pot-pourri, leather,
tapestry, and the little camphor bags which keep away the moth, and
specifically about the pot pourri: bowls of lavender and dried rose-
leaves stand on the window-sills; and if you stir them up you get the
quintessence of the smell, a sort of dusty fragrance, sweeter in the under
layers where it has held the damp of the spices.”

The different olfactory sources mentioned are not physically combined
together as in a recipe,8 but they separately emit different smells which are
combined (Smell Interaction) in the galleries of Knole. The author perceives
this ensemble smell and describes this ensemble smell as old and musty. In the
8 In that case, there will not be a Smell Interaction, but a single Smell Emission having

as source the union of the different ingredients.

400 P. Lisena et al.

Fig. 5. An example of data representation in the Odeuropa model from a passage of
Vita Sackille-West’s Knole and the Sackvilles (1922)

text, one of the member smells, emitted by the pot-pourri is described, as dusty
and sweeter, also mentioning the procedure of its realisation from lavender and
rose leaves. Graph nodes can be interlinked with the controlled vocabularies
of olfactory objects – e.g. leather, camphor bags – and fragrant spaces – e.g.
old house. Further examples can be found in the Data Model presentation (see
Table 5).

8 Conclusions and Future Work

In this paper, we introduced the Odeuropa Data Model, an olfactory extension of
CIDOC CRM and CRMsci. The model can represent smell-related information,
in particular describing the emission, use and experience of a given odour. The
data model is accompanied by a set of multi-language controlled vocabularies
for disambiguating of crucial olfactory information elements, such as the odour
source or associated gestures. The model is implemented in OWL format and

Capturing the Semantics of Smell: The Odeuropa Data Model 401

Table 4. Re-used classes and properties in the Odeuropa data model

Ontologies Reused classes Reused properties

CIDOC CRM 10 16

CRMsci 1 0

FOAF 0 4

PROV-O 3 3

READ-IT 1 3

Schema.org 1 4

Time 1 1

Table 5. Resource table

Resource URL

Data model complete presentation https://bit.ly/3GuIHzL

Ontology (OWL) https://github.com/Odeuropa/ontology

Ontology (Documentation) http://data.odeuropa.eu/ontology/

Competency questions https://bit.ly/odeuropa-cq

Vocabularies (RDF) https://github.com/Odeuropa/vocabularies

Vocabularies (SKOSmos) http://vocab.odeuropa.eu/

Vocabulary API http://data.odeuropa.eu/api/vocabulary
Doc: https://github.com/D2KLab/vocabulary-api

Odeuropa KG http://data.odeuropa.eu/

published at http://data.odeuropa.eu/ontology under a Creative Commons 4.0
CC-BY License, along with its documentation. Odeuropa proposes 13 new classes
and 10 new properties to capture olfactory information, defined as subclassed
and subproperties of CIDOC CRM and CRMsci. To these, classes and properties
from other models have been reused, as reported in Table 4.

Table 5 lists the pointers to all resources that we developed and published
in the context of this work, available as resources to the whole community. In
addition to the ontology and the competency questions, some olfactory controlled
vocabularies are available via different access points in RDF (Turtle format)
using SKOS, in a wide-public visualisation based on SKOSmos [57], through a
HTTP API which can be used for interlinking.

The ontology and the vocabularies are part of the Odeuropa Knowledge
Graph, hosted at http://data.odeuropa.eu/. At the time of writing, we are pop-
ulating this graph with data extracted from text and images. This will constitute
a multifaceted playground for the data model and for olfactory heritage research.
Use of the knowledge graph may also inspire further extensions, validations and
improvements of the Odeuropa Data Model.

In future work, we intend to further extend the data model. In particular, we
aim to close the gap between the smell heritage domain and the perfume industry,

https://bit.ly/3GuIHzL
https://github.com/Odeuropa/ontology
http://data.odeuropa.eu/ontology/
https://bit.ly/odeuropa-cq
https://github.com/Odeuropa/vocabularies
http://vocab.odeuropa.eu/
http://data.odeuropa.eu/api/vocabulary
https://github.com/D2KLab/vocabulary-api
http://data.odeuropa.eu/
http://data.odeuropa.eu/ontology
http://data.odeuropa.eu/

402 P. Lisena et al.

for example by including the representation of chemical compounds and olfactory
notes. In addition, we want to better investigate the capability of the model to
represent synaesthetic experiences, i.e. the connections people perceive between
different sensory experiences such as seeing colours when smelling fragrances. We
also intend to extend the vocabularies by including new terms and translations
and by adding new thesauri and classifications to our list.

Acknowledgements. This work has been partially supported by European Union’s
Horizon 2020 research and innovation programme within the Odeuropa project (grant
agreement No. 101004469). Smells that helped get this paper out: citrus (to boost our
energy levels), rosemary (to keep us alert) and the smell of hell (to keep us on our
toes).

References

1. Achichi, M., Lisena, P., Todorov, K., Troncy, R., Delahousse, J.: DOREMUS: a
graph of linked musical works. In: Vrandečić, D., et al. (eds.) The Semantic Web –
ISWC 2018. LNCS, vol. 11137, pp. 3–19. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00668-6 1

2. Almagor, U.: Odors and private language: observations on the phenomenology of
scent. Hum. Stud. 13(3), 253–274 (1990). https://doi.org/10.1007/BF00142757

3. Antonini, A., et al.: Understanding the phenomenology of reading through mod-
elling. Semant. Web 12, 191–217 (2021). https://doi.org/10.3233/SW-200396

4. Arn, H., Acree, T.: Flavornet: a database of aroma compounds based on odor
potency in natural products. Dev. Food Sci. 40, 27–28 (1998)

5. Bembibre, C., Strlič, M.: Smell of heritage: a framework for the identification,
analysis and archival of historic odours. Herit. Sci. 5(1), 2 (2017). https://doi.org/
10.1186/s40494-016-0114-1

6. Bembibre Jacobo, C.: Smell of Heritage. Ph.D. Thesis, UCL (University College
London) (2020)

7. de Boer, V., van Doornik, J., Buitinck, L., Marx, M., Veken, T., Ribbens, K.:
Linking the kingdom: enriched access to a historiographical text. In: Proceedings
of the Seventh International Conference on Knowledge Capture, pp. 17–24 (2013)

8. Brooks, J., et al. (eds.): STT21: Smell, Taste, and Temperature Interfaces work-
shop. Yokohama, Japan (2021). https://stt21.plopes.org/

9. Brud, W.: Words versus odours, how perfumers communicate. Perfum. Flavorist
11, 27–44 (1986)

10. Carriero, V.A., et al.: The landscape of ontology reuse approaches. In: Applications
and Practices in Ontology Design, Extraction, and Reasoning, pp. 21–38. IOS Press
(2020)

11. Carriero, V.A., et al.: ArCo: the Italian cultural heritage knowledge graph. In:
Ghidini, C., et al. (eds.) The Semantic Web – ISWC 2019. LNCS, vol. 11779, pp.
36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7 3

12. Datta, S.K., Coughlin, T.: An IoT architecture enabling digital senses. In: 2016
IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin),
pp. 67–68. IEEE (2016)

13. Dijkshoorn, C., et al.: The Rijksmuseum collection as linked data. Semant. Web J.
9, 221–230 (2018)

https://doi.org/10.1007/978-3-030-00668-6_1
https://doi.org/10.1007/978-3-030-00668-6_1
https://doi.org/10.1007/BF00142757
https://doi.org/10.3233/SW-200396
https://doi.org/10.1186/s40494-016-0114-1
https://doi.org/10.1186/s40494-016-0114-1
https://stt21.plopes.org/
https://doi.org/10.1007/978-3-030-30796-7_3

Capturing the Semantics of Smell: The Odeuropa Data Model 403

14. Doerr, M.: The CIDOC conceptual reference module: an ontological approach to
semantic interoperability of metadata. AI Mag. 24(3), 75 (2003)

15. Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M.: Definition
of the CRMsci an extension of CIDOC-CRM to support scientific observation.
Forth-Institution of Computer Science (2015)

16. Dravnieks, A.: Atlas of Odor Character Profiles. American Society for Testing and
Materials, Philadelphia (1985)

17. Ehrich, S., Verbeek, C., Zinnen, M., Marx, L., Bembibre, C., Leemans, I.: Nose first.
Towards an olfactory gaze for digital art history. In: First International Workshop
on Multisensory Data and Knowledge (MDK), Zaragoza, Spain (2021)

18. Graves, M., Constabaris, A., Brickley, D.: FOAF: connecting people on the
semantic web. Cat. Classif. Q. 43(3–4), 191–202 (2007). https://doi.org/10.1300/
J104v43n03 10

19. Guest, C., et al.: Feasibility of integrating canine olfaction with chemical and micro-
bial profiling of urine to detect lethal prostate cancer. PLoS ONE 16(2), e0245530
(2021)

20. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data
on the web. Commun. ACM 59(2), 44–51 (2016)

21. Hartig, O.: The RDF* and SPARQL* approach to annotate statements in RDF and
to reconcile RDF and property graphs. In: W3C Workshop on Web Standardization
for Graph Data, Berlin, Germany (2019)

22. Henshaw, V.: Urban Smellscapes: Understanding and Designing City Smell Envi-
ronments. Routledge/Taylor & Francis Group, New York (2014)

23. Howes, D.: Introduction to sensory museology. Senses Soc. 9(3), 259–267 (2014).
https://doi.org/10.2752/174589314X14023847039917

24. Howes, D.: Empire of The Senses: The Sensual Culture Reader. Routledge, London
(2021)

25. Howes, D., Classen, C.: Ways of Sensing: Understanding the Senses in Society.
Routledge, London (2013)

26. Isaac, A., Haslhofer, B.: Europeana linked open data - data.europeana.eu. Semant.
Web J. 4, 291–297 (2013)

27. Jaubert, J.N., Tapiero, C., Dore, J.: The field of odors: toward a universal language
for odor relationships. Perfum. Flavorist 20, 1 (1995)

28. Jenner, M.S.: Follow your nose? Smell, smelling, and their histories. Am. Hist. Rev.
116(2), 335–351 (2011)

29. Kettler, A.: The Smell of Slavery: Olfactory Racism and the Atlantic World. Cam-
bridge University Press, Cambridge (2020)

30. Kiechle, M.A.: Smell Detectives: An Olfactory History of Nineteenth-century
Urban America. University of Washington Press, Seattle (2017)

31. Koho, M., Ikkala, E., Leskinen, P., Tamper, M., Tuominen, J., Hyvönen, E.:
WarSampo knowledge graph: Finland in the second world war as linked open data.
Semant. Web J. 12, 265–278 (2021)

32. Krusemark, E.A., Novak, L.R., Gitelman, D.R., Li, W.: When the sense of smell
meets emotion: anxiety-state-dependent olfactory processing and neural circuitry
adaptation. J. Neurosci. 33(39), 15324–15332 (2013)

33. Le Guérer, A.: Parfum. Le), Des origines à nos jours. Odile Jacob (2005)
34. Lebo, T., et al.: PROV-O: the PROV ontology. Technical report, World Wide Web

Consortium (2013)

https://doi.org/10.1300/J104v43n03_10
https://doi.org/10.1300/J104v43n03_10
https://doi.org/10.2752/174589314X14023847039917

404 P. Lisena et al.

35. Leon, A., Gaitán, M., Insa, I., Sebastián, J., Alba, E.: SILKNOW. designing a
thesaurus about historical silk for small and medium-sized textile museums. In:
Ortiz Calderón, P., Pinto Puerto, Verhagen, P., Prieto, A. (eds.) Science and Digital
Technology for Cultural Heritage. CRC Press, London (2020). https://doi.org/10.
1201/9780429345470-34

36. Licon, C.C., et al.: Chemical features mining provides new descriptive structure-
odor relationships. PLoS Comput. Biol. 15(4), e1006945 (2019)

37. Lisena, P., et al.: Controlled vocabularies for music metadata. In: 19th International
Society for Music Information Retrieval Conference (ISMIR), Paris, France (2018).
http://ismir2018.ircam.fr/doc/pdfs/68 Paper.pdf

38. Lisena, P., Troncy, R.: Representing complex knowledge for exploration and rec-
ommendation: the case of classical music information. In: Cota, G., Daquino, M.,
Pozzato, G.L. (eds.) Applications and Practices in Ontology Design, Extraction,
and Reasoning, Studies on the Semantic Web Series (SSWS), vol. 49, pp. 107–123.
IOS Press (2020). https://doi.org/10.3233/SSW200038

39. Lisena, P., van Erp, M., Bembibre, C., Leemans, I.: Data mining and knowl-
edge graphs as a backbone for advanced olfactory experiences. In: Brooks
et al. [8] (2021). https://stt21.plopes.org/wp-content/uploads/2021/05/STT2021
Odeuropa.pdf

40. Mathis, S., et al.: Olfaction and anosmia: from ancient times to COVID-19. J. Neu-
rol. Sci. 425, 117433 (2021). https://doi.org/10.1016/j.jns.2021.117433, https://
www.sciencedirect.com/science/article/pii/S0022510X21001271

41. de Matos, P., et al.: ChEBI: a chemistry ontology and database. J. Cheminform.
2(1), 1 (2010). https://doi.org/10.1186/1758-2946-2-S1-P6

42. Meroño-Peñuela, A., et al.: The midi linked data cloud. In: International Semantic
Web Conference, vol. 10588, pp. 156–164. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68204-4 16

43. Miles, A., Pérez-Agüera, J.R.: SKOS: simple knowledge organisation for the web.
Cat. Classif. Q. 43(3–4), 69–83 (2007)

44. Naravane, T., Lange, M.: Ontological framework for representation of tractable
flavor: food phenotype, sensation, perception. In: ICBO (2018)

45. Noy, N.F., Hafner, C.D.: The state of the art in ontology design: a survey and
comparative review. AI Mag. 18, 53 (1997). https://doi.org/10.1609/aimag.v18i3.
1306, https://ojs.aaai.org/index.php/aimagazine/article/view/1306

46. Pasin, M., Motta, E.: Ontological requirements for annotation and navigation of
philosophical resources. Synthese 182, 235–267 (2009). https://doi.org/10.1007/
s11229-009-9660-3

47. Perkins, C., McLean, K.: Smell walking and mapping, chap. 10. Manchester
University Press, Manchester (2020). https://doi.org/10.7765/9781526152732.
00017, https://www.manchesterhive.com/view/9781526152732/9781526152732.
00017.xml

48. Philpott, C.M., Bennett, A., Murty, G.E.: A brief history of olfaction and olfac-
tometry. J. Laryngol. Otol. 122(7), 657–662 (2008). https://doi.org/10.1017/
S0022215107001314

49. Sanchez-Lengeling, B., Wei, J.N., Lee, B.K., Gerkin, R.C., Aspuru-Guzik, A.,
Wiltschko, A.B.: Machine learning for scent: learning generalizable perceptual rep-
resentations of small molecules. arXiv preprint arXiv:1910.10685 (2019)

50. Schleider, T., et al.: The SILKNOW knowledge graph. Semant. Web 1–16 (2021)

https://doi.org/10.1201/9780429345470-34
https://doi.org/10.1201/9780429345470-34
http://ismir2018.ircam.fr/doc/pdfs/68_Paper.pdf
https://doi.org/10.3233/SSW200038
https://stt21.plopes.org/wp-content/uploads/2021/05/STT2021_Odeuropa.pdf
https://stt21.plopes.org/wp-content/uploads/2021/05/STT2021_Odeuropa.pdf
https://doi.org/10.1016/j.jns.2021.117433
https://www.sciencedirect.com/science/article/pii/S0022510X21001271
https://www.sciencedirect.com/science/article/pii/S0022510X21001271
https://doi.org/10.1186/1758-2946-2-S1-P6
https://doi.org/10.1007/978-3-319-68204-4_16
https://doi.org/10.1007/978-3-319-68204-4_16
https://doi.org/10.1609/aimag.v18i3.1306
https://doi.org/10.1609/aimag.v18i3.1306
https://ojs.aaai.org/index.php/aimagazine/article/view/1306
https://doi.org/10.1007/s11229-009-9660-3
https://doi.org/10.1007/s11229-009-9660-3
https://doi.org/10.7765/9781526152732.00017
https://doi.org/10.7765/9781526152732.00017
https://www.manchesterhive.com/view/9781526152732/9781526152732.00017.xml
https://www.manchesterhive.com/view/9781526152732/9781526152732.00017.xml
https://doi.org/10.1017/S0022215107001314
https://doi.org/10.1017/S0022215107001314
http://arxiv.org/abs/1910.10685

Capturing the Semantics of Smell: The Odeuropa Data Model 405

51. Schouten, S., de Boer, V., Petram, L., van Erp, M.: The wind in our sails: devel-
oping a reusable and maintainable Dutch maritime history knowledge graph. In:
Proceedings of the 11th on Knowledge Capture Conference, K-CAP 2021, pp. 97–
104. Association for Computing Machinery, New York (2021). https://doi.org/10.
1145/3460210.3493548

52. Sharma, A., Saha, B.K., Kumar, R., Varadwaj, P.K.: OlfactionBase: a repository
to explore odors, odorants, olfactory receptors and odorant-receptor interactions.
Nucleic Acids Res. (2021). https://doi.org/10.1093/nar/gkab763

53. Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In:
Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) The Semantic Web, ASWC 2009. LNCS,
vol. 5926, pp. 153–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10871-6 11

54. Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

55. Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G., Smith, J.R.: Multime-
dia annotations on the semantic web. IEEE Multimedia 13(1), 86–90 (2006)

56. van Suchtelen, A.: Fleeting Scents in Colour. Mauritshuis, Den Haag, the Nether-
lands (2021)

57. Suominen, O., et al.: Publishing SKOS vocabularies with Skosmos. Manuscript
submitted for review (2015)

58. Torta, G., Ardissono, L., La Riccia, L., Savoca, A., Voghera, A.: Represent-
ing ecological network specifications with semantic web techniques. In: KEOD-
International Conference on Knowledge Engineering and Ontology Development,
vol. 2, pp. 86–97. SCITEPRESS-Science and Technology Publications, Lda. (2017)

59. Tullett, W.: Smell in Eighteenth-Century England: A Social Sense. Oxford Univer-
sity Press, Oxford (2019)

60. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and
use of the Simple Event Model (SEM). J. Web Seman. 9(2), 128–136 (2011)

61. Van Harreveld, A.P., Heeres, P., Harssema, H.: A review of 20 years of standard-
ization of odor concentration measurement by dynamic olfactometry in Europe. J.
Air Waste Manag. Assoc. 49(6), 705–715 (1999)

62. Verbeek, C., van Campen, C.: Inhaling memories. Senses Soc. 8(2), 133–148 (2013).
https://doi.org/10.2752/174589313X13589681980696

63. Wu, D., Luo, D., Wong, K.Y., Hung, K.: POP-CNN: predicting odor pleasantness
with convolutional neural network. IEEE Sens. J. 19(23), 11337–11345 (2019)

https://doi.org/10.1145/3460210.3493548
https://doi.org/10.1145/3460210.3493548
https://doi.org/10.1093/nar/gkab763
https://doi.org/10.1007/978-3-642-10871-6_11
https://doi.org/10.1007/978-3-642-10871-6_11
https://doi.org/10.2752/174589313X13589681980696

Stream Reasoning Playground

Patrik Schneider1,2(B), Daniel Alvarez-Coello3,4, Anh Le-Tuan5,
Manh Nguyen-Duc5, and Danh Le-Phuoc5

1 Vienna University of Technology, Vienna, Austria
2 Siemens AG Österreich, Vienna, Austria

patrik@kr.tuwien.ac.at
3 University of Oldenburg, Oldenburg, Germany

4 BMW Technologies E/E Architecture, Wire Harness, Garching, Germany
5 Technical University of Berlin, Berlin, Germany

Abstract. Stream Reasoning is a well established field not only in the
Semantic Web, but is also adapted in the knowledge representation and
reasoning and AI community in general. In the Semantic Web area, there
have been valuable efforts in building data generators and benchmarks,
however they are not well suited for evaluating more expressive stream
reasoning approaches, since the focus is on a graph-based data model
and more limited reasoning features, such as query answering. This paper
aims at filling the gap, so the different communities can compare, discuss,
and benchmark the various approaches for stream reasoning based on a
common playground. We will present the stream reasoning playground
that targets streaming reasoning as the first-class modelling and pro-
cessing feature. Our playground includes an easy-to-extend platform for
data stream generation with pluggable data formatters, whereby different
data stream sources, and modelling problems for two interesting appli-
cation scenarios, i.e., intelligent traffic management and vehicle stream
data analytics, are provided. Furthermore, we present a more generic
scenario for time-series data, where a workflow for streaming time-series
data from various datasets is facilitated by using mapping functions. To
illustrate a first application of the playground, we report on the usage
experience of well-known stream reasoner developers in the “model and
solve” Hackathon event of the annual Stream Reasoning workshop.

1 Introduction

Stream Reasoning (SR) is a well established field not only in the Semantic Web,
but also in the AI community in general and focuses on inference, i.e., deduc-
ing or inducing implicit facts over data streams. SR has been actively evolving
for more than a decade now, and there exists a wide range of approaches to
reason over streams [9,21]. Since approaches to stream reasoning can be con-
siderably diverse, it has become desirable to have an agile and well-defined
playground accompanied by the corresponding scenarios, datasets, and (output)
tooling to compare and test the different approaches by fast cycles of iterative
tasks. Notably, the RDF Stream Processing (RSP) community has developed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 406–424, 2022.
https://doi.org/10.1007/978-3-031-06981-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_24

Stream Reasoning Playground 407

several successful platforms, e.g., TripleWave [22], RSPLab [32], RSP4J [31], and
LSBench [18] for benchmarking and comparing different RSP approaches. How-
ever, these platforms usually require a graph-based data model, i.e., RDF [17],
that can be queried by some extension of SPARQL [25], i.e., C-SPARQL [4] or
CQELS [19].

This brings us to the core of the problem, the underlying data model and
query language puts already (desired) restrictions on the scope of usage regard-
ing: (a) the expressive power of an approach, (b) the underlying data model
and syntax that can be consumed, and (c) the reasoning tasks that could be
solved. Hence, RSP-based tools cannot be simply adapted and used for evalu-
ating and benchmarking logic programming- or complex event detection-based
approaches. In this paper, we present the SR Playground that is an initiative
and underlying open-source framework for providing such resources to the SR
community, which should eventually lead to a better understanding of the man-
ifolds of (formal) languages, approaches/pipelines, and reasoners. This imposes
the following requirements and the derived features to the framework:

– (F1) Stream reasoning as a first-class use case, where the prime focus
of the playground is the evaluation of a wide range of stream reasoning
approaches/pipelines, i.e., RSP-, logic programming-, and complex-event-
based approaches (see Sect. 4).

– (F2) Consumer agnosticism, where streams for several consumer modelling
languages and input formats should be generated, whether the consumer is
graph-, rule-, or complex event-based (see Sect. 2).

– (F3) Extensibility, where a simple extension with new stream players and
data sources is desired, whether the data source can be a simulation tool,
web stream, or collections of (preprocessed) datasets (see Sect. 2/3).

– (F4) Availability and agility, where the playground should be easy to deploy
and fast to update, in case changes or extensions occur, e.g., a syntax change
in the generated streams (see Sect. 2).

– (F5) Base scenarios, where already challenging scenarios from relevant
domains should be given as a starting point (see Sect. 3).

– (F6) Multiple tasks, where for each scenario a range of reasoning tasks is given
as plain text, which should go beyond query answering, and include the use
of a background knowledge base (see Sect. 3).

Alas, the above features cannot be always aligned, since for instance agnos-
ticism makes the process of extensions harder. Taking the above considerations
into account and aiming at a well-balanced framework, we present the SR Play-
ground with the following contributions:

– An easy-to-configure and extendable platform for stream generation capa-
ble of producing streams of different scenarios based on stream players and
pluggable data formatters. The platform is quickly deployable using the play-
ground’s Github repository and a Docker-container-based deployment.

– Two well-defined Intelligent Transport Systems (ITS) scenarios, that consist
of (a) a traffic-simulation-generated vehicle flow, and (b) a driving trace from
the perspective of an ego vehicle’s camera moving in a city.

408 P. Schneider et al.

Fig. 1. (a) Overview of architecture and (b) interaction between the components, where
the data source is a traffic simulation tool.

– A scenario with a workflow that indicates the steps for streaming time-series
data from various datasets that is facilitated by using mapping functions.

– A case study, including the lessons learned from the first usage of the platform
in the Stream Reasoning Hackathon 2021, where different model and solve
tasks were given to participants.

The rest of this paper is organized as follows: Sect. 2 introduces the SR play-
ground. Then, in Sect. 3, we describe two out-of-the-box scenarios that were
built with the playground and suggest a workflow to reuse this work with a
custom scenario. Then, a case study of a hackathon that tested the presented
playground is presented in Sect. 4. Related work is covered in Sect. 5. Lastly, the
final remarks are available in Sect. 6.

2 Platform - Stream Reasoning Playground

In this section, we introduce the Stream Reasoning Playground (SRP), an infras-
tructure to stream out semantically annotated data. The SRP’s design is based
on a client-server architecture that is illustrated in Fig. 1a. The Server is a pub-
lisher that generates and broadcasts data streams, whereas the Client is a data
stream consumer that can be piped to the users’ Stream Reasoning solver.

On the server-side, the Stream Player streams out annotated data streams
based on a data source-specific implementation. For example, in the Scenario
A (Sect. 3.1), the Stream Player embeds a microscopic traffic simulation tool
[33] and forwards the simulation tool’s states, e.g., vehicle positions and traffic
light states. In its simplest form, the Stream Player reads preprocessed datasets
and forwards their content to the Data Formatter. Since our architecture is
designed to be easily extendable, new scenarios can be added with little effort.

Stream Reasoning Playground 409

The Data Formatter is embedded inside the Stream Player and allows data from
the data source to be mapped into several output data formats (i.e., Datalog,
RDF, etc.) as the publisher desires. The data streams from the Stream Player
are broadcasted via a Websocket Server to one or more clients. On the server-
side, there is also a REST API Handler that allows users (clients, developers,
or administrators) to operate and manipulate the behavior of the Stream Player
using a given REST API. For example, via the REST API, users can request
the background knowledge base (KB) used in their reasoning engine, start/stop
streaming, and modify the streaming rate or stream output formats.

On the client-side, users can pipe their reasoner (e.g., a SR solver) to the
Playground via the Consumer API. This is illustrated in the sequence diagram
of Fig. 1b, which describes the data flow of the Stream Playground for Scenario
A (Sect. 3.1), where a user can send control commands to the Server as HTTP
requests via a HTTP client, e.g., a web browser, and receives the data stream
from the Server via a Websocket client. A user can set up, start, and stop the
SR playground via the following commands:

– Initialise a stream player : /init
– Start playing a stream : /start
– Modify the behavior of a stream: /modify
– Stop streaming: /stop
– Get the background knowledge base: /getkb

At initialization a user can select the scenario and dataset using the
?streamtype and ?streamid arguments, as well as the output format using the
?templatetype argument. All the possible initialization parameters are defined
for a scenario in the configurations defined in the config.yaml file.

Example 1. HTTP requests to initialize and start of a SUMO traffic stream with
JSON-LD as the output format:

– 〈IP ADDRESS〉:〈PORT〉/init?streamtype=sumo&streamid=streamSumo1
&templatetype=traffic-json

– 〈IP ADDRESS〉:〈PORT〉/start

Feature Coverage. Regarding extensibility (F3), we designed the architecture
with two layers, where the generic layer is scenario-independent and allows a uni-
fied REST API and Websocket server facing the clients. The scenario-dependent
part is implemented via stream players and the re-use of data formatters, where
a new Stream Player inherits from an abstract player that defines the interfac-
ing. Importantly, the Stream Player acts as a Python generator (introduced in
PEP 255)1 using the yield keyword to return stream messages.

Consumer agnosticism (F2) requires that different output formats, given by
a modelling language, should be supported regardless of the scenario. We assume
that the data sources provided are either relational (as with DB tables and log
files) or tree-shaped (as with JSON files). Then, the input tuples are transformed
by distinct data formatters, where we support the following types of formatters:
1 https://www.python.org/dev/peps/pep-0255/.

https://www.python.org/dev/peps/pep-0255/

410 P. Schneider et al.

– Template-based formatters are based on template files for stream messages
given in the configuration. A set of variables is predefined and replaced on
execution by the Stream Player, e.g., as shown in Scenario A (Sect. 3.1).

– With in-line formatters the transformations are hard-coded in the Stream
Player, as shown for instance in Scenario B (Sect. 3.2).

– Mapping-language-based formatters are based on a standardized mapping lan-
guage such as RML [10], which consists of mapping rules made of a logical
source, a subject map and zero or more predicate-object maps.

The type of formatter can be chosen according to the complexity of the scenario,
where for simpler scenarios template- or in-line-based and for complex scenarios
mapping-language-based formatters can be used.

Regarding availability (F4), the SRP is published under the Apache 2.0
license. The source code and all the scenario data can be found in the
Github repository: https://github.com/patrik999/stream-reasoning-challenge.
For a fast deployment, it is dockerized and can be delivered as a Docker con-
tainer.2

3 Scenarios

In this section, we outline a traffic management, a vehicle signal processing with
object detection, and a custom time-series streaming scenario. The scenarios dif-
fer regarding the most complex reasoning tasks and background KB in Scenario
A, the highest complexity of streams and novelty of the domain in Scenario B,
and the easiness to extend with new sources in Scenario C.

3.1 Scenario A - Traffic Management

The first scenario is in the domain of urban traffic management and involves
traffic management for Cooperative Intelligent Transportation Systems (C-ITS).
Traffic is observed from a third-person, top-down perspective, and streams of
vehicle movements and signal phases (states) of traffic lights in a given road
network are generated. In this scenario, we have identified the following (possible)
tasks to be tackled:

1. Gathering traffic statistics, e.g., counting the number of vehicles passing;
2. Event detection, e.g., detecting accidents or traffic jams;
3. Diagnosis, e.g., finding the cause for a traffic jam;
4. Motion planning, e.g., routing the vehicles optimally through the network.

Unexpected events could be triggered, e.g., vehicle breakdowns, which lead to
possible traffic disruptions. The data source in this scenario is a microscopic
traffic simulation framework [33] called Simulation of Urban MObility (SUMO).3

2 https://www.docker.com/.
3 https://www.eclipse.org/sumo/.

https://github.com/patrik999/stream-reasoning-challenge
https://www.docker.com/
https://www.eclipse.org/sumo/

Stream Reasoning Playground 411

Fig. 2. (a) SUMO rendering of two intersections and (b) corresponding abstract flow
model, where green/brown edges are the “we” or “ew” traffic orientation.

The data streams are generated on the fly by different simulation runs on SUMO,
where the simulation design is taken from the experiments by Eiter et al. [11].

Data Generation. In Fig. 2a, we show the provided road networks of the sce-
nario rendered in SUMO with two intersections that connect three roads (one
horizontal and two vertical). Figure 2b is the graph representation of the road
network of Fig. 2a including nodes for intersections, links, sources, and sinks.
As shown in the figure, the street layout has two intersections and tree roads
with two in/outgoing lanes each, different road segments between intersections,
and each intersection with a traffic light controller generating traffic light states
based on a static signal plan. We also provide different traffic scenarios to gen-
erate traffic streams of varying density, where the streamid parameter in the
API is used for the initialization of the density:

– Light traffic with free flow (30 vehicles): &streamid=streamSumo1;
– Medium traffic with free flow (120 vehicles): &streamid=streamSumo2;
– Heavy traffic with traffic jam (180 vehicles): &streamid=streamSumo3.

Background KB. A static background KB adds additional immutable infor-
mation to the data streams. In this scenario, it captures the SUMO graph repre-
sentation, including simple traffic regulations, traffic signal plan constraints, and
a simple vehicle taxonomy. The road network of the SUMO model was rendered
into a graph representation encoded as Datalog facts and RDF triples. It is split
into segments of the same length as shown in Fig. 2b, where the type its:node
defines connection points between two edges, and a single edge is represented by
an its:link property, where its subject is the source of the edge and the sink is
given by the its:linkedTo property with the additional information on the traffic
flow direction, i.e., “we” denotes west to east. Traffic regulations currently come
with speed limits (in m/s) that are assigned to an edge using the its:maxSpeed
property. Conflicts between traffic lights, i.e., lanes that are not allowed to be
simultaneously red, are given for each intersection by the its:conflictingTL prop-
erty, which are (hard) constraints regarding a signal plan. We also provide a
simple vehicle taxonomy, which adds sub-types using rdfs:subClassOf axioms,
where vehicles in the streams are relate to leaf types.

412 P. Schneider et al.

Fig. 3. Representation of the schema used for the streams of scenario A.

Streams. The given data streams are the means for processing and performing
the intended evaluation, e.g., a hackathon task. The traffic streams are directly
extracted from the SUMO simulation, where we distinguish between vehicle and
traffic light signal streams. The generation of stream messages in this scenario
is driven by each simulation step, whereby each step results in a single message
for each vehicle and each traffic light signal. Figure 3 provides an overview of
the model used for the traffic streams, where the background KB is static and
the traffic streams capture moving objects, e.g., the vehicles, and their values as
observations. Two observable properties have slightly different annotation pat-
terns for their observations, where the first pattern describes movement-related
attributes, such as speed, heading, and acceleration, and the second pattern
describes position-related attributes, such as the GPS position or the active
lane of the vehicle. Note that the properties its:onLane and the vehicle model
in rdf:type, e.g., carA, refer to facts in the background KB. The attributes for
traffic signal messages are not outlined here, but are simpler and include the
intersection, the traffic light ID, and the signal state (green or red), as well as
the message time as a time-point.

We also provide for each data stream a predefined template that allows to
render the messages to RDF triples (encoded in JSON-LD) or Datalog facts,
where the rendering can be set in the stream initialization by the template types
of traffic-json, resp., traffic-asp. A given set of attributes can be used in
the template to complete it on execution.4 For example in vehicle streams, the
variables $VehicleID$, $Type$, and $Timestamp$ can be used in templates to
add the respective SUMO-generated values.

4 A full list of attributes is given in https://github.com/patrik999/stream-reasoning-
challenge/blob/master/hackathon-2021/Hackaton Overview.pdf.

https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Hackaton_Overview.pdf
https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Hackaton_Overview.pdf

Stream Reasoning Playground 413

Example 2. In the following, we give a (simplified) example message rendered
in Datalog: speed(vehicle:20, 20, 1001). vehModel(vehicle:20, carA).,
stating that :vehicle:20 of type carA moves at the speed of 20 at time-point 1001.
The same message rendered as RDF triples is shown below:5

<vehicle:20> a sosa:Platform;

a its:carA;

sosa:madeObservation <obs:20_1001>.

<obs:20_1001> a sosa:Observation;

sosa:hasResult [its:speed "20"^^xsd:float];

sosa:resultTime "1001"^^xsd:int.

Example Tasks. We introduce possible example tasks that could be used for
a model and solve hackathon. The tasks increase in difficulty, so the first tasks
could be given as a starting point.

Tasks 1. Collection of network traffic statistics updated frequently:

1. Calculating the number of vehicles (NoV) and average speed of all vehicles
on each edge;

2. Separated by vehicle super-type, calculate the NoV and their average speed;
3. Based on red traffic lights, detect any vehicles that do a red-light violation.

Tasks 2. Detection of legal/illegal behavior and driving patterns of individual
vehicles:

1. Detect the vehicles that perform standard maneuvers: vehicles appear/
disappear in the network, turn left/right, or make a short stop;

2. Detect the vehicles that violate traffic rules: speeding, accident, or u-turn;
3. Detect the vehicles that must stop because of another vehicle’s accident.

3.2 Scenario B - Vehicle Signals and Surrounding Objects

The second scenario introduces the challenge of automotive applications to SR
modelers/developers, which was triggered by industry stakeholders (e.g., BMW,
Bosch, and Siemens) to use SR tools and develope descriptive requirements
via well-formulized/standardized data models (e.g., RDF) and query/reasoning
tools. Different from the previous scenario, which focuses on a complex
background-KB, this scenario will focus on facilitating the access to a large col-
lection of open stream data sources of the automotive industry, provided along
with a DNN processing pipeline. We believe that this application domain can
foster interesting applications for SR community in years to come, which also
distinguishes the playground from current RSP counter-parts.

5 Additionally to the standard namespaces rdf, rdfs, and xsd, we have sosa:

<http://www.w3.org/ns/sosa/>, vsso: ¡https://github.com/w3c/vsso#¿, semkg:

<http://vision.semkg.org/onto/v0.1/>.

414 P. Schneider et al.

In this light, the second scenario consists of data streams produced from the
perspective of vehicles. For each time step, data representing the driving context
is generated. Although the driving context involves data from several domains
(e.g., traffic, weather, infrastructure, and others [16]), we focus on two specific
stream sources: (1) the stream of the vehicle’s location and movement e.g., speed,
acceleration, etc.; (2) the stream of objects that are detected from the images
captured by the camera attached in front of the vehicle. In this scenario, we find
the following tentative tasks to be solved:

1. Finding relevant behavioral patterns from the driving context, e.g., the flow
of traffic around.

2. Finding possible reasons for particular situations, e.g., what was the reason
for a particular maneuver?

3. Detection of complex events, e.g., dangerous situations on the road.

Data Generation: The second scenario concerns with the object scene flow
for autonomous vehicles. The data used in this scenario is based on a few traces
from the KITTI dataset [13], a well-known dataset that has been extensively used
for benchmark comparisons in tasks related to autonomous driving. The data
consists of images captured from a camera attached to a car, its GPS location,
and its speed and acceleration. The data is semantically annotated with SSN [14]
and VisionKG6 vocabulary [20] and is provided as a Linked Data stream using
the streaming platform described in Sect. 2.

To annotate the location and movement of the car, we follow the schema as
described in Scenario A (see Fig. 3). The result of each IndividualMove observa-
tion includes the speed (m/s), and the acceleration in X axis and Y axis of the
vehicle. The IndividualLocation gives the GPS coordinates of the vehicle.

Figure 4 illustrates the semantic schema of the stream data of detected
objects. To detect the objects from the images captured by the camera, we use
an object detection algorithm (e.g., FRCNN [27] or Yolo [26]) which is annotated
as a procedure (sosa:Procedure). To perform object detection for our data, we
use Yolo algorithm version 4 [5]. An object detection is a result of an observation
(sosa:Observation) that is made by using Yolov4. The result of the object detec-
tion is 1:1 associated with a frame by the property :observedFrame. A detected
object contains a box (Box) and a label that names the object (e.g., car, van).
X and Y are the coordinates of the center of the box in the image. The width
and height values are the size of the box. Figure 5 illustrates an example of how
a detected object from a frame is symbolically annotated (see Footnote 5). The
box that is labelled with “van” is described as follows. Line 1 represents that
the detected object 0 belongs to the detection 0. Line 2 links the detected object
0 with the label “van”, and box 0. The coordination and the size of box 0 are
annotated from lines 4 to 7.

Example Tasks.

– Task 1: Query (detect) other vehicles behavior in the stream of labelled
objects collected by the ego-vehicle. Possible tasks are to detect:

6 https://vision.semkg.org/.

https://vision.semkg.org/

Stream Reasoning Playground 415

Fig. 4. Schema used for the semantic annotation of objects detected from the video
frames of the KITTI dataset

Fig. 5. Example of the semantic annotations of detected objects in RDF.

1. Detect all oncoming traffic or all crossing traffic.
2. Detect if one object (vehicle) is stationary or moving.

– Task 2: Driving scene understanding, find the explanations for certain obser-
vations, e.g., stopping because of pedestrians, traffic lights, or other cars.

3.3 Streaming a Custom Time-Series Scenario

While the previous subsections provided details about ready-to-use data streams
produced from two distinct scenarios, the platform’s users might be interested in
streaming out a custom scenario. Hence, we present in this subsection a possible
workflow to stream a custom time-series scenario, together with an example of
using a public dataset.

Workflow: The workflow, illustrated in Fig. 6, shows how to reuse our plat-
form with arbitrary time-series data sources and annotation schemes. Please
note that it aims to show one way of reusing our platform. Alternatively, users
might opt to design and implement their own solutions. We assume that a data
source representing the scenario of interest is available. Such data source could
be either a stored time-series dataset or directly a data stream (e.g., readings
of an actual sensor, simulation of transactions, among others). The workflow

416 P. Schneider et al.

follows the general description of the so-called semantization process [29], and
consists of mainly three steps: (a) dataset preparation, (b) semantic annotation,
and (c) message broadcast.

Fig. 6. Overview of the suggested workflow for streaming a custom scenario from a
dataset or an actual data stream. (a) datasets must be prepared by the user. (b) a
mapping function does the semantic annotation. (c) semantic data is streamed out.

The dataset preparation step only applies when the data source is a stored
dataset. As datasets are highly diverse, they must be prepared by the user. The
idea is to transform the dataset into one data frame, where columns refer to
the values of the properties (aka., features, variables) that will be streamed, and
rows associate a set of values with the corresponding time. The data frame can
then be read as a whole or iterated over its rows. Since values are sometimes
unavailable for all columns at a specified time, null values can be cleaned up for
simplicity. Alternatively, the user can choose to resample the series to impute or
fill in the missing values to have all columns with values at each row.

The semantic annotation step annotates the input values with a schema
defined from a semantic model. It has a mapping function that populates the
schema with the source data values. The mapping itself could be performed
in different ways. In the case of RDF data, we recommended using the RDF
Mapping Language (RML) [10]. There are a few existing implementations of
RML interpreters. For further reference see, for example, RMLStreamer.7 Alter-
natively, one can also programmatically do the mapping.

Lastly, the message broadcast step takes the resulting semantic data at the
current time and streams it out as a message by yielding it to the stream player.
An example of the workflow is presented next.

An Example with the comma2k19 Dataset: To demonstrate the suggested
workflow, we applied it on the comma2k19 8 dataset [28]. This dataset is publicly
available and consists of multiple commute journeys (aka., routes) that are split

7 https://github.com/RMLio/RMLStreamer.
8 https://github.com/commaai/comma2k19.

https://github.com/RMLio/RMLStreamer
https://github.com/commaai/comma2k19

Stream Reasoning Playground 417

into one-minute segments. Data was collected from two vehicles driven mainly
on a highway in California, United States. It has data properties available in
three groups: Controlled Area Network (CAN) bus, Inertial Measurement Unit
(IMU) and Global Navigation Satellite System (GNSS).

We have implemented9 the proposed workflow with one of the dataset seg-
ments and with two dynamic vehicle properties: Speed and SteeringWheelAngle.
However, if needed, the principle could be replicated with more segments or
properties. Figure 7 shows an excerpt from the time series data before and after
the data preparation step.

Fig. 7. Sample sequences of speed and steering wheel angle before and after the dataset
preparation.

Regarding the semantic annotation, we defined a custom schema and a map-
ping function. The schema, shown in Fig. 8, is based on the combination of the
ontologies Sensor, Observation, Sample, and Actuator (SOSA) [15] and the Vehi-
cle Signal Specification (VSSo) [34] (See footnote 5). It is used as a template for
the mapping function, implemented with RML rules. An excerpt of the rule that
maps the Speed is shown below:

rr:subjectMap [

rr:template "http://sr-challenge/vehicle/speed/observation/{id}" ;

rr:class sosa:Observation];

rr:predicateObjectMap [

rr:predicate sosa:hasSimpleResult;

rr:objectMap [

rml:reference "Speed" ;

rr:datatype xsd:float]] ;

Consequently, the resulting semantic data is passed as a message that the
player will stream out. For instance, the semantic data (in RDF turtle format)
at a particular time looks like the following:

<http://sr-challenge/vehicle/speed/observation/1> a sosa:Observation;

sosa:hasSimpleResult "27.622222222222224"^^xsd:float;

sosa:observedProperty indv:Speed;

sosa:resultTime "2021-01-02 05:18:41.750"^^xsd:dateTime .

9 https://github.com/patrik999/stream-reasoning-challenge/blob/master/example-
custom-scenario/workflow.ipynb.

https://github.com/patrik999/stream-reasoning-challenge/blob/master/example-custom-scenario/workflow.ipynb
https://github.com/patrik999/stream-reasoning-challenge/blob/master/example-custom-scenario/workflow.ipynb

418 P. Schneider et al.

Fig. 8. Schema used in the mapping function. It combines the SOSA and the vehicle
signal specification ontology.

<http://sr-challenge/vehicle/steering/observation/1> a sosa:Observation;

sosa:hasSimpleResult "-0.5"^^xsd:float;

sosa:observedProperty indv:SteeringWheelAngle;

sosa:resultTime "2021-01-02 05:18:41.750"^^xsd:dateTime .

Please refer to the platform’s Github repository for further details, such as the
complete RML mapping rules, the Stream Player implementation, and explana-
tions of the workflow.

4 Case Study and Lessons Learned: SR Hackathon 2021

The stream generation platform, together with the Scenarios A and B, was for
the first time applied in the Stream Reasoning (SR) Hackathon 2021,10 which was
organized as part of the SR Workshop in Milan, Italy.11 This hackathon allowed
both onsite/remote participation and was designed as a “model and solve” chal-
lenge, where participants had the freedom to choose their own SR pipelines and
reasoners. The principal milestones were: (1) Hackathon announcements prior
to the competition, including the description of preliminary tasks to let the par-
ticipants familiarize with the platform; (2) Introduction of participants, general
overview of the platform, and detailed discussion of the tasks at the beginning of
the event; (3) Intermediate short sync discussions between organizers and par-
ticipants to clarify problems and fix problems in the stream players and data
formatters; (4) Presentation of solutions by all teams and an online voting to
determine the most interesting solutions at the end.

10 http://streamreasoning.org/stream-reasoning-hackathon-2021.
11 http://streamreasoning.org/events/srw2021.

http://streamreasoning.org/stream-reasoning-hackathon-2021
http://streamreasoning.org/events/srw2021

Stream Reasoning Playground 419

4.1 Solutions of the Participants

In this section, we give a short overview of the participating teams and their
suggested solutions, where the solutions of Oxford University and University of
Calabria collected the most votes.

FAU Erlangen-Nürnberg. The team of FAU used Stream Containers, which
are designed to map RDF streams to a RESTful architecture by the decomposi-
tion and decentralization of stream query evaluation. The decomposition is based
on a stream-to-relation (S2R) operator for creating a snapshot of tuples based on
a window function, and a relation-to-stream (R2S) operator for creating streams
with newly time-stamped instances. Example solution: SELECT ?v ?s
(AVG(?z) AS ?s) WHERE {?v :madeObservation ?y. ?y :hasResult ?x.
?x its:speed ?z } GROUP BY ?v, where the sliding window is managed by the
embedding stream container.

NCSR Demokritos. NCSR’s team applied the solver Wayeb [1] for complex
event forecasting using a streaming extension of symbolic automata. Symbolic
automata extend deterministic finite automata with Boolean algebra that can
be defined over an infinite domain. Complex (event) patterns can be defined as
regular expressions with concatenation as · , and Kleene-star as ∗. Example solu-
tion: R = (speed > 13)·(speed > 13), detecting that the event (speed > 13)
occurs twice on the (vehicle) speed stream.

Oxford University. The team of Oxford suggested a hybrid approach to
participate at the hackathon. According to the given tasks, a decision mod-
ule selects between two solvers, namely RDFox [23] and MeTeoR. In RDFox,
they applied standard Datalog rules including aggregation. MeTeoR was applied,
where metric temporal logic (MTL) operators such as �[0,5] for simulating a
window operator, e.g., of 5 time steps (ts), were needed. Example solution:
avgSpeed[?Z,?T] :- AGGREGATE(onLane[?X, ?Z], speed[?X,?S] ON ?Z
BIND AVG(?S) AS ?T).

University of Calabria. The team of UniCal competed with an approach
that extends static Answer Set Programming (ASP) with streaming features.
The solver is called I-DLV-sr [7] and combines an incremental grounding solver
[6] with streaming data forwarded from Apache Flink. Example solution:
accid(X) :- speed(X,0) always in [25]., where the last part of the rule
states that speed(X,0) has to occur always in a 25 ts window.

TU Wien. The TU Wien team followed the spirit of a hackathon and extended
the static ASP solver Clingo [12] to handle streaming data. This was achieved by
a Python-based stream handler that emulates a window operator and generates
time-dependent facts. Example solution: cNoV(N,X,Y,T) :- link(X,Y),

420 P. Schneider et al.

time(T), N=#count{I:onLane(I,X,Y,T))}, N �= 0., where cNoV(N,X,Y,T) can
then be chained in a new rule to sum up several time points.

4.2 Lessons Learned

The lessons learned include a user survey after the hackathon based on the
introduced features, but also covers our own evaluation of organizational aspects.

Hackathon Survey. We conducted a survey after the hackathon, where six
questions were asked to the participants.12 The questions related directly to the
platform features with the results shown in parenthesis: Overall suitability (4.2
out of 5 points), suitability for SR (3.4 out of 5 points), extensibility with new
features (4.4 out of 5 points), preferred usability aspects (deployment, API, and
fast error fixing), and difficulty of the“model and solve” tasks (well balanced).
The last question regarding platform improvements is discussed below.

Own Evaluation. Using Github and providing an easy-to-follow installation
to replicate the environment via Docker were positive decisions and allowed
participants to quickly deploy after we made changes. The release of the ini-
tial hackathon’s tasks a few weeks before the competition helped participants
get familiar with the platform and set up their working environments on time,
where the use of the messaging platform Slack was essential for the rapid com-
munication between (remote) teams and organizers. The increasing difficulty of
the tasks was an appropriate way to keep the engagement of participants. Tasks
that were not fully solved are a clear indicator of possible future work. Giving
the participants the freedom to “model and solve” the solutions resulted (as
expected) in different ways of solving the tasks, which is an excellent way to
cope with the diverse techniques and approaches existent in the SR area.

What Could Be Improved? From the participants perspective, the following
suggestions for improvements were given: (1) For Scenario A, provide a larger
set of streams, (2) give a clearer definition of the tasks and some example solu-
tions, (3) provide all formats for all scenarios including plain JSON, (4) add
benchmarking features for automated measurements, (5) extend the protocols
so other communication methods such as Apache Kafka Producer API could be
used. From our perspective, we released the platform/documentation only a few
weeks in advance, hence the timeline was tight to spot, and issues needed to be
fixed on-the-fly. Therefore, the earlier the competition details and tools can be
released, the better.

Based on the evaluation, we conclude that the reuse of the proposed platform
is recommended as it constitutes a strong foundation for the preparation of future
competitions, where the focus could be on the other scenarios presented or on
entirely new scenarios taken from different domains such as robotics.
12 The questions and results are provided in https://github.com/patrik999/stream-

reasoning-challenge/blob/master/hackathon-2021/Survey.pdf.

https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Survey.pdf
https://github.com/patrik999/stream-reasoning-challenge/blob/master/hackathon-2021/Survey.pdf

Stream Reasoning Playground 421

5 Related Work

There have been many benchmarks and data generators for RDF stream data
processors. The earliest ones are SRBench [35], LSBench [18], and CityBench [2],
which focus on the query features of C-SPARQL and CQELS-QL. SRBench
uses data from three sources, i.e., LinkedSensorData, Geonames and DBpe-
dia to create data streams. LSBench provides social network stream data via
its simulated data generator. CityBench provides stream data from a Smart
City application for the city of Aarhus, Denmark. Recently, integrated tools
and benchmarks, such as TripleWave [22] and RSPLab [32] aim to reduce the
effort required to design and execute reproducible experiments as well as share
their results. RSPLab integrates two existing RSP benchmarks (LSBench and
CityBench) and two RSP engines (C-SPARQL engine and CQELS). It provides
a programmatic environment to deploy in the cloud RDF Streams and RSP
engines. While LSBench’s and CityBench proposed two test-drivers that push
RDF Stream to the RSP engines subject of the evaluation, RSP Lab is devel-
oped to be benchmark-independent. The most common processing features of
this line of work are based on SPARQL such as C-SPARQL and CQELS-QL. In
some cases, complex event query patterns such as [3] and [8] are also introduced.

There have been some extensions of the above RSP-based data generators
to accommodate reasoning features. However, such extensions only cover some
small set of reasoning features such as RDFS or a fragment of OWL-DL. In
SRP, reasoning is the first-class feature by design which is motivated the emer-
gent application scenarios around V2X and autonomous driving. Our playground
has been encouraged by the developers of stream reasoners participating at the
annual stream reasoning workshops (see Footnote 11). For instances, the ones
listed in Sect. 4 are among the well-known reasoners. Moreover, with the extensi-
bility of the playground presented above, the mentioned benchmarking systems
can be reused in our players for their systems.

6 Conclusion

This work is sparked by the diversity of approaches in the field of SR, making it
challenging to compare formal languages, approaches/pipelines, and reasoners.
Existing works from the RSP community have constituted a good starting point,
but they are too restrictive regarding the data model and the reasoning tasks
(i.e., RDF and query answering). To overcome these limitations, we presented
the Stream Reasoning Playground (SRP), which is an open source platform and
treats SR as a first-class use case. As indicated by a user survey, it provides a sat-
isfying level of extensibility (F3), consumer agnosticism (F2), availability/agility
(F4), and a base scenarios with reasoning tasks that were considered as “well
balanced” (F5/F6). The SRP comes with an easy-to-configure and extensible
platform to generate streams for different scenarios based on stream players and
pluggable data formatters. Notably, besides two well-defined ready-to-use ITS
scenarios, we have described a workflow for streaming custom time-series data.

422 P. Schneider et al.

The features were evaluated in a case study based on the SR Hackathon 2021,
where we reported on developed solutions, a user survey, and lessons learned.

We consider that the following aspects deserve the attention of the future
development of the SRP: (i) defining and including benchmarking features and
the corresponding metrics to validate and compare the performance of differ-
ent solutions to a standard set of tasks; (ii) extending SRP to support streams
that include probabilities and addition of probabilistic reasoning features to inte-
grate deep learning models and common-sense reasoning, such as [24,30]; (iii)
organizing a repository for community-contributed scenarios and data sets; and
(iv) improving the semantization step by adding new formatters covering other
languages and a tighter integration of RML.

Acknowledgements. This work was funded by the German Research Foundation
under grant nr. 453130567 (COSMO), the German Ministry for Education and
Research BIFOLD grant nr. 01IS18025A and 01IS18037A, the German Academic
Exchange Service grant nr. 57440921, and the EU Horizon 2020 Research and Innova-
tion program under grant nr. 779852 (IoTCrawler).

References

1. Alevizos, E., Artikis, A., Paliouras, G.: Wayeb: a tool for complex event forecasting.
CoRR abs/1901.01826 arXiv:1901.01826 (2019)

2. Ali, M.I., Gao, F., Mileo, A.: Citybench: a configurable benchmark to evaluate
RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) The Semantic
Web - ISWC 2015. Lecture Notes in Computer Science, vol. 9367, pp. 374–389.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 25

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Srinivasan, S., Ramamritham, K.,
Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th
International Conference on World Wide Web, WWW 2011, pp. 635–644. ACM
(2011). https://doi.org/10.1145/1963405.1963495

4. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: Proceedings of the 18th International Con-
ference on World Wide Web, pp. 1061–1062 (2009)

5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 (2020)

6. Calimeri, F., Ianni, G., Pacenza, F., Perri, S., Zangari, J.: Incremental answer set
programming with overgrounding. Theory Pract. Log. Program. 19(5–6), 957–973
(2019). https://doi.org/10.1017/S1471068419000292

7. Calimeri, F., Manna, M., Mastria, E., Morelli, M.C., Perri, S., Zangari, J.: I-DLV-
sr: a stream reasoning system based on I-DLV. Theory Pract. Log. Program. 21(5),
610–628 (2021). https://doi.org/10.1017/S147106842100034X

8. Dell’Aglio, D., Dao-Tran, M., Calbimonte, J., Phuoc, D.L., Valle, E.D.: A query
model to capture event pattern matching in RDF stream processing query lan-
guages. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) Knowledge
Engineering and Knowledge Management, vol. 10024, pp. 145–162 (2016). https://
doi.org/10.1007/978-3-319-49004-5 10

http://arxiv.org/abs/1901.01826
https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1145/1963405.1963495
http://arxiv.org/abs/2004.10934
https://doi.org/10.1017/S1471068419000292
https://doi.org/10.1017/S147106842100034X
https://doi.org/10.1007/978-3-319-49004-5_10
https://doi.org/10.1007/978-3-319-49004-5_10

Stream Reasoning Playground 423

9. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
a survey and outlook: a summary of ten years of research and a vision for the next
decade. Data Sci. 1(1–2), 59–83 (2017). https://doi.org/10.3233/DS-170006

10. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous
data. In: Proceedings of the 7th Workshop on Linked Data on the Web, April 2014

11. Eiter, T., Falkner, A.A., Schneider, P., Schüller, P.: ASP-based signal plan adjust-
ments for traffic flow optimization. In: Giacomo, G.D., et al. (eds.) ECAI 2020–24th
European Conference on Artificial Intelligence, Including 10th Conference on Pres-
tigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Artificial
Intelligence and Applications, vol. 325, pp. 3026–3033. IOS Press (2020)

12. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

13. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti
dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

14. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard
specifying the semantics of sensors, observations, sampling, and actuation. Semant.
Web 10(1), 9–32 (2019). https://doi.org/10.3233/SW-180320

15. Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., LefrançSois, M.: SOSA: a
lightweight ontology for sensors, observations, samples, and actuators. J. Web
Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003

16. Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: A driving context ontology for
making sense of cross-domain driving data (2018). https://www.researchgate.net/
publication/331991645 A driving context ontology for making sense of cross-
domain driving data

17. Klyne, G., Carroll, J.J.: Resource description framework (RDF): concepts and
abstract syntax. W3C Recommendation (2004). http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

18. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al.
(eds.) The Semantic Web – ISWC 2012. LNCS, vol. 7650, pp. 300–312. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0 20

19. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., et al. (eds.) The Semantic Web – ISWC 2011. LNCS, vol. 7031, pp.
370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-
6 24

20. Le-Tuan, A., Kien-Tran, T., Nguyen-Duc, M., Yuan, J., Hauswirth, M., Yuan, J.:
VisionKG: towards a unified vision knowledge graph. In: Proceedings of the ISWC
2021 Posters and Demonstrations Track. CEUR Workshop Proceedings (2021)

21. Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: reasoning
over dynamic data. J. Web Seman. 25, 24–44 (2014). https://doi.org/10.1016/j.
websem.2014.02.001

22. Mauri, A., et al.: TripleWave: spreading RDF streams on the web. In: Groth, P.,
et al. (eds.) The Semantic Web – ISWC 2016. LNCS, vol. 9982, pp. 140–149.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0 15

23. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) The Semantic Web - ISWC 2015.
Lecture Notes in Computer Science, vol. 9367, pp. 3–20. Springer (2015). https://
doi.org/10.1007/978-3-319-25010-6 1

https://doi.org/10.3233/DS-170006
https://doi.org/10.3233/SW-180320
https://doi.org/10.1016/j.websem.2018.06.003
https://www.researchgate.net/publication/331991645_A_driving_context_ontology_for_making_sense_of_cross-domain_driving_data
https://www.researchgate.net/publication/331991645_A_driving_context_ontology_for_making_sense_of_cross-domain_driving_data
https://www.researchgate.net/publication/331991645_A_driving_context_ontology_for_making_sense_of_cross-domain_driving_data
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://doi.org/10.1007/978-3-642-35173-0_20
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1016/j.websem.2014.02.001
https://doi.org/10.1016/j.websem.2014.02.001
https://doi.org/10.1007/978-3-319-46547-0_15
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-25010-6_1

424 P. Schneider et al.

24. Phuoc, D.L., Eiter, T., Lê Tuán, A.: A scalable reasoning and learning approach
for neural-symbolic stream fusion. In: Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, pp. 4996–5005. AAAI Press (2021).
https://ojs.aaai.org/index.php/AAAI/article/view/16633

25. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation, January 2008. http://www.w3.org/TR/rdf-sparql-query/

26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99
(2015)

28. Schafer, H., Santana, E., Haden, A., Biasini, R.: A commute in data: the
comma2k19 dataset. arXiv:1812.05752 (2018)

29. Shi, F., Li, Q., Zhu, T., Ning, H.: A survey of data semantization in Internet of
Things. Sensors 18(2), 313 (2018). https://doi.org/10.3390/s18010313

30. Suchan, J., Bhatt, M., Varadarajan, S.: Commonsense visual sensemaking for
autonomous driving - on generalised neurosymbolic online abduction integrating
vision and semantics. Artif. Intell. 299, 103522 (2021). https://doi.org/10.1016/j.
artint.2021.103522

31. Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E.: RSP4J: an API for RDF
stream processing. In: Verborgh, R., et al. (eds.) The Semantic Web, ESWC 2021.
LNCS, vol. 12731, pp. 565–581. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77385-4 34

32. Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream
processing benchmarking made easy. In: d’Amato, C., et al. (eds.) The Semantic
Web – ISWC 2017. LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68204-4 21

33. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

34. Wilms, D., Alvarez-Coello, D., Bekan, A.: An evolving ontology for vehicle signals.
In: 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), pp. 1–
5. IEEE, Helsinki (2021). https://ieeexplore.ieee.org/document/9448884/, https://
doi.org/10.1109/VTC2021-Spring51267.2021.9448884

35. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming
RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) The Semantic
Web – ISWC 2012. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35176-1 40

https://ojs.aaai.org/index.php/AAAI/article/view/16633
http://www.w3.org/TR/rdf-sparql-query/
http://arxiv.org/abs/1812.05752
https://doi.org/10.3390/s18010313
https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-030-77385-4_34
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-319-68204-4_21
https://doi.org/10.1007/978-3-642-32460-4
https://ieeexplore.ieee.org/document/9448884/
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448884
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448884
https://doi.org/10.1007/978-3-642-35176-1_40

In-Use Track

The Dow Jones Knowledge Graph

Ian Horrocks1(B), Jordi Olivares2, Valerio Cocchi3, Boris Motik1,
and Dylan Roy2

1 University of Oxford, Oxford, UK
Ian.Horrocks@cs.ox.ac.uk

2 Dow Jones, New York, USA
3 Oxford Semantic Technologies, Oxford, UK

Abstract. Dow Jones is a leading provider of market, industry and port-
folio intelligence serving a wide range of financial applications including
asset management, trading, analysis and bankruptcy/restructuring. The
information needed to provide such intelligence comes from a variety
of heterogeneous data sources. Integrating this information and answer-
ing complex queries over it presents both conceptual and computational
challenges. In order to address these challenges Dow Jones have used the
RDFox system to integrate the various sources in a large RDF knowledge
graph. The knowledge graph is being used to power an expanding range
of internal processes and market intelligence products.

1 Background and Motivation

Dow Jones is a leading provider of market, industry and portfolio intelligence
serving a wide range of financial applications including asset management, trad-
ing, analysis and bankruptcy/restructuring.1 Dow Jones supports businesses,
governments and financial institutions with award-winning journalism, deep con-
tent archiving and indexing, robust data sets, and flexible information tools; it
provides a portfolio of information solutions covering diverse customer needs
including uncovering market advantage, integrating data into workflows and
managing risk. The goal of Dow Jones is to deliver trusted news and data that
can help businesses and society to make better decisions.

High quality market intelligence is critical to corporate decision making. For
example, decision makers in a given company may need to be alerted to news
items about competitor companies that operate in a related sector to themselves
or one of their subsidiaries. The information needed to answer such questions can
come from a wide range of heterogeneous sources, including structured sources
such as company data and financial data, and unstructured sources such as news
feeds. This data needs to be integrated so as to allow for suitable queries to be
formulated across multiple sources. This can be very challenging: even if the
data from all sources is loaded into a single database, the resulting schema can
be very complex, and formulating suitable queries can be very difficult, requir-
ing a combination of knowledge and expertise in the domain, the data sources
1 https://www.dowjones.com/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 427–443, 2022.
https://doi.org/10.1007/978-3-031-06981-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_25&domain=pdf
https://www.dowjones.com/
https://doi.org/10.1007/978-3-031-06981-9_25

428 I. Horrocks et al.

and the query language. Moreover, the resulting queries can be computationally
challenging for a typical database system.

The solution adopted at Dow Jones is to use relevant information from mul-
tiple sources to construct a large RDF knowledge graph. This is achieved by
using the standard direct mapping to transform structured sources into RDF
triples [3], and by using an NLP process to extract relevant facts from news
feed articles and transform them into triples. Fast loading and updating of the
graph is critical to the feasibility of this approach: the graph currently consists
of approximately 2.6 billion triples, and while some of these are derived from
relatively static data sources (such as company data) others come from rapidly
changing sources (such as news feeds).

The knowledge graph will power a wide range of internal processes and mar-
ket intelligence products, with knowledge from the graph being accessed via
SPARQL queries [6]. For example, Dow Jones researchers maintain data about
competitor relationships between companies, and to support this they use an
in-house tool to explore information about companies and their relationships
retrieved from the graph via back-end SPARQL queries. Using SPARQL queries
over the knowledge graph provides applications with both power and flexibility,
but it means that fast SPARQL query answering is critical in order to provide
acceptable response times in applications.

In order to meet these requirements, Dow Jones has chosen to use the RDFox
knowledge graph system. RDFox provides fast parallelised data loading and is
able to load all 2.6 billion triples in approximately 26 min using only a relatively
modest 4 vCPU server; it also supports incremental updates, and can add/delete
several thousand triples per second. RDFox also provides a highly optimised
SPARQL engine which not only exploits novel in-memory data structures but
also employs sideways information passing to optimise complex SPARQL queries;
as a result, typical queries can be answered in milliseconds, and even hard “stress-
test” queries can be answered in only a few seconds.

In the remainder of the paper we will provide more details about the con-
struction of the knowledge graph and how it is used in applications (Sect. 2);
review the relevant features of RDFox, and in particular the data loading and
query answering capabilities that are critical in this setting (Sect. 3); present
some data on system performance (Sect. 4); and discuss future plans for extend-
ing the system and its application (Sect. 5).

2 Knowledge Graph Construction and Applications

2.1 Knowledge Graph Construction

The knowledge graph integrates data from a wide range of sources that are
maintained by and hosted in various different parts of the company. The majority
of the data comes from the following sources:

– Basic information about companies. This is stored in a relational database and
consists of basic information about more than 70 million companies including

The Dow Jones Knowledge Graph 429

name, address, normalized code for the region of the address, industry codes
(NAICS, SIC, NACE), other identifiers (such as DUNS or LEI), and other
name aliases that might be found in news feeds.

– Company hierarchy information. This is stored in a relational database and
consists of information that links a DUNS coded company to its parent com-
pany, forming a company hierarchy graph in relational form.

– Executives. This is stored in a relational database and consists of information
about more than 140 million company executives including their name, the
companies that they are associated with and the roles that they play in these
companies.

– Stock information about companies. This is stored in a relational database and
consists of information about approximately 100,000 company stock market
listings including their stock ticker (a unique identifier assigned to each secu-
rity traded on a particular market), whether this is the main listing or not,
and in which stock exchanges they are listed.

– Stock exchanges. This is stored in a CSV file and consists of information
about stock exchanges including their name, location and relationship to other
exchanges. The data is publicly available and can be accessed from https://
www.iso20022.org/market-identifier-codes.

– Geonames. This is a public domain geographical names database derived from
official public sources, and extended and improved via crowdsourcing. It con-
sists of information about more than 25 million locations, including name vari-
ants, latitude, longitude, elevation, population, etc. The data is already avail-
able as RDF and can be accessed via https://www.geonames.org/.

The relational data sources are transformed into RDF triples via the standard
Direct Mapping of Relational Data to RDF [3]. A similar process is used to
transform the CSV data into RDF. The Geonames data is already in RDF form.
Integration of this data is relatively straightforward as the structured sources are
well curated, and include industry standard identifiers such as ticker symbols,
DUNS numbers, and NAICS codes. Some cleanup of”messy” identifiers may be
required in the future if other data sources are added, but this is not currently
an issue for Dow Jones.

The above sources yield a total of approximately 2.3 billion triples, and con-
stitute about 90% of the triples in the knowledge graph. These sources are con-
tinuously curated and updated, but the rate of change is relatively low, and
in order to simplify the system architecture the whole ETL process is simply
repeated once per month.

In addition to this relatively static data, the graph also includes data
extracted from financial news articles from several sources:

– Articles from Dow Jones publications including the Wall Street Journal,2

Market Watch3 and Baron’s Magazine.4 Approximately 7–10 thousand such
2 https://www.wsj.com/.
3 https://www.marketwatch.com/.
4 https://www.barrons.com/.

https://www.iso20022.org/market-identifier-codes
https://www.iso20022.org/market-identifier-codes
https://www.geonames.org/
https://www.wsj.com/
https://www.marketwatch.com/
https://www.barrons.com/

430 I. Horrocks et al.

articles are available at any time, and this set is constantly changing as old
articles are deleted, new articles are added and existing articles are edited.

– Articles from the Dow Jones Factiva feed.5 Approximately 150–250 thousand
such articles are available at any time, and like the Dow Jones articles the
set of available articles is constantly changing.

Each available Dow Jones article is represented by an entity in the knowl-
edge graph, along with meta-data such as its title, news topics, and companies
and regions mentioned. Some of this meta-data is available directly, but some,
such as companies and regions mentioned, must be extracted from the text.
This is done using a custom NLP process that extracts not only this kind of
meta-data, but also so called signals that indicate relevant events such as earn-
ings announcements, initial public offerings (IPOs), acquisitions, mergers and
Chap. 11 bankruptcy filings. Each such signal is also represented by an entity in
the graph. The data extraction process exploits domain knowledge stored in the
graph and uses it to identify target entities (such as companies and regions), and
is designed so as to be easily adaptable to capture any kind of entity or signal
that might be of interest to Dow Jones customers, and that might help them to
identify relevant news content. Article and signal meta-data is stored as triples
in the knowledge graph associated with the relevant article and signal entities;
additional triples link signal entities to relevant articles, companies, regions, etc.

Articles from the Factiva feed are processed in the same way, but due to the
very large number of such articles they are only stored in the graph if they are
found to contain relevant entities or signals.

The above process typically yields in the range of 4–5 thousand new signals
each day, amounting to approximately 30–40 thousand triples. These are added
to the knowledge graph incrementally, which takes only a few seconds. At the
same time, triples relating to older articles that have been deleted from the
relevant news-feeds are removed from the knowledge graph; this is again done
incrementally, and again requires only a few seconds.

When signals are first added to the knowledge graph they are marked as
“potential” by adding a suitable triple to the signal entity. Potential signals are
checked and curated by human experts, and if confirmed the “potential” triple is
deleted; otherwise the whole signal is deleted. These deletions are again achieved
via incremental updates; such updates involve deleting only a small number of
triples, which typically requires only a few milliseconds.

Finally, Dow Jones also maintains data about competitor relationships
between companies. This data is actively curated on a continuous basis using an
in-house tool that exploits knowledge graph queries to identify and analyse pos-
sible competitors. The resulting competitor relationship data is stored back into
the knowledge graph. This is again realised via incremental updates; as in the
case of signal curation, the number of triples involved in each update is relatively
small and such updates can be performed in only a few milliseconds.

When all these sources are loaded into RDFox the resulting knowledge graph
contains approximately 2.6 billion triples.
5 https://factiva.com/.

https://factiva.com/

The Dow Jones Knowledge Graph 431

The resulting graph structure is very simple. The Direct Mapping of relational
sources produces a structure that directly mimics the source tables; articles and
signals are represented by single entities, with attached (meta-) data triples; and
triples are used to link signals, articles and other entities in the graph. Dow Jones
have chosen to use the W3C Shape Expressions Language (ShEx) to describe this
structure [18]. This could in principle be used for data validation, but it is used at
Dow Jones simply to document the graph structure. Dow Jones application devel-
opers and knowledge engineers use the ShEx schema to help them to write queries,
and they chose ShEx over SHACL [19] for this purpose because they find ShEx syn-
tax to be more natural and easier to understand. For example, the following extract
specifies the graph structure of stock listings:

cande-shex:StockListing {

a [cande:StockListing] ;

cande:lists_company IRI // orm:continuation cande-shex:Company ;

cande:has_ticker_symbol xsd:string ;

cco:designated_by @cande-shex:StockListingIdentifier * ;

cande:listed_in IRI // orm:continuation cande-shex:StockExchange ;

cande:is_primary_listing xsd:boolean ;

}

cande-shex:StockListingIdentifier {

a [cande:SEDOL cande:ISIN cande:CUSIP] ;

common:id_literal xsd:string ;

}

From this the developers and engineers can quickly identify the relevant pred-
icates for accessing information about stock listings, e.g., they can access the
ticker symbol via the cande:has ticker symbol predicate, and for navigating
to other entities, e.g., they can navigate to the relevant company entity via the
cande:lists company predicate; moreover, they can see that the structure of
companies is specified by the shape expression cande-shex:Company.

As mentioned above, ShEx could in principle be used for data validation,
but it is not supported by RDFox. However, it would be an easy matter to
translate ShEx into SHACL, which is supported by RDFox, if data validation
were required.

2.2 Knowledge Graph Applications

The knowledge graph can be used to answer questions that would be difficult
or impossible to answer without integrating multiple data sources. For example,
given a company C specified by <companyIri>, the following query Q1 retrieves
competitor companies that are listed in the stock exchange and are in the same
or related sector as C or that are in the exact same sector as one of C’s direct
subsidiaries:

432 I. Horrocks et al.

SELECT DISTINCT ?competitor ?industryCode ?industryCodeType

WHERE {

BIND(?company AS <companyIri>)

{

?company cande:has_industry_code/skos:relatedMatch/^skos:relatedMatch

?industry .

} UNION {

[] cco:is_subsidiary_of ?company ;

cande:has_industry_code ?industry .

}

?industry a ?industryCodeType ;

cande:has_id ?industryCode .

FILTER(?industryCodeType IN (djid:DJIDCode, djn:DJNCode, naics2017:NAICSCode))

?competitor cande:has_industry_code ?industry .

[] cande:lists_company ?competitor ;

}

Answering this query requires integrating basic company data, company hierar-
chy data, competitor relationships data and stock listings data. Such queries can
be relatively easily constructed by consulting the ShEx specification outlined in
Sect. 2.1 above.

The knowledge graph can power a wide range of internal processes and market
intelligence products. One such internal process is the construction of the knowl-
edge graph itself, and in particular the extraction of signals from news articles.
Here the knowledge graph is used to support validation and disambiguation; for
example, if the we find a potential signal of the form A is buying B, then A and
B should both be companies, and should be identified with specific companies
represented in the knowledge graph.

Another example is the identification of competitor relationships between
companies. As already mentioned in Sect. 2.1, data about competitor relation-
ships is stored in the knowledge graph and is presented to customers in “quote
pages” which provide detailed information about given companies. Dow Jones
researchers continuously curate this competitor data using a tool that supports
identifying and exploring possible competitors. Users can specify a range of
different search parameters and filters, and these are converted into SPARQL
queries over the knowledge graph which return (details about) relevant compa-
nies; see, for example, query Q1 above. Queries are constructed using templates
whose slots can be filled with values derived from the user-specified search and
filter parameters; in the case of Q1, the company of interest can be specified in
<companyIri>. The system is designed so that it is easy to add new parameters,
filters and query templates as needed to meet user requirements.

An example of a product in which the knowledge graph will be used is the
Wall Street Journal (WSJ) Bankruptcy Pro.6 This product provides a searchable
archive of relevant articles, and supplements articles with important data such
as competitor analyses, risk factor identification, capital structure, credit ratings
and recent filings. Users can specify a range of different search parameters and

6 https://wsjpro.com/.

https://wsjpro.com/

The Dow Jones Knowledge Graph 433

filters, and these will be converted into SPARQL queries over the knowledge
graph which return (pointers to) relevant articles and data. Queries will be con-
structed using templates in the same way as for the competitor research tool
described above.

The knowledge graph will also enable a range of new and more powerful
applications that are currently under development including, e.g., personalised
recommendations for customers, including recommending relevant authors and
news articles, analysis of investment risk factors, and checks on regulatory com-
pliance. Many of these applications will involve heavy use of RDFox’s reasoning
capabilities.

3 RDFox

As we have seen in Sects. 2.1 and 2.2, construction and maintenance of the knowl-
edge graph depends on fast loading and updating of triples, while applications of
the knowledge graph depend on fast responses to SPARQL queries. These were
the main considerations that led Dow Jones to select the RDFox system.

RDFox is a high performance knowledge graph and semantic reasoning
engine. Originally the result of research at the University of Oxford [14], RDFox is
now developed and marketed by Oxford Semantic Technologies.7 RDFox exploits
a patented in-memory architecture and parallelised computation to provide high
performance for data loading, reasoning and query answering. Key features of
RDFox include:8

– RDF triples, rules, and OWL 2 [17] and SWRL [8] axioms can be imported
either programmatically or from files in a range of formats including tur-
tle, datalog and OWL. RDF data can also be validated using the SHACL
constraint language.

– Information can be accessed directly from external data sources, such as CSV
files, relational databases, and Apache Solr.9

– Triples, rules and axioms can be exported into a number of different formats,
and the contents of the system can also be (incrementally) saved into a binary
file, which can later be used to restore the system’s state.

– Multi-user support with ACID transactional updates [5].
– Access control allows for individual information elements in the system to be

assigned different access permissions for different users.
– Full support for SPARQL 1.1, and functionality for monitoring query answer-

ing and accessing query plans.
– Materialization-based reasoning, where all triples that logically follow from

the triples and rules in the system are materialized as new triples.
– Incremental update of materialized graphs: reasoning does not need to be

performed from scratch when the information in the system is updated.

7 https://www.oxfordsemantic.tech/.
8 See https://arxiv.org/pdf/2102.13027.pdf for a survey of RDF stores and their
features.

9 https://solr.apache.org/.

https://www.oxfordsemantic.tech/
https://arxiv.org/pdf/2102.13027.pdf
https://solr.apache.org/

434 I. Horrocks et al.

– Explanation of reasoning results: RDFox is able to return a proof for any new
fact added to the store through materialization.

Fig. 1. RDFox architecture

Figure 1 illustrates RDFox’s basic features and functionality. At startup,
RDFox can load data, rules, axioms and constraints in a range of different for-
mats as described above. It is also possible to import data directly from external
legacy sources including relational databases, CSV files and Apache Solr. Alter-
natively, the system can be restored from a previous state saved in a binary file.
An important feature in the Dow Jones application is that RDFox can import
multiple sources in parallel, and we will discuss this in more detail below.

After loading,RDFoxperformsmaterialization-based reasoning and constraint
validation using a parallelized variant of the seminäıve algorithm [1,13] (see
Sect. 3.1). Once the initial materialization process is complete the store is ready for
subsequent operations including querying and incremental updating. Access con-
trol and ACID transactions allow for control over user access to data and ensure
predictable behaviour when multiple users are updating the store. The state of the
system can also be saved in a binary file for subsequent reloading.

Incremental updates can include deletion and addition of data, and also
deletion and addition of rules, axioms and constraints. RDFox deals with such
updates using FBF, a novel extension of the delete and rederive (DRed) view
maintenance algorithm that avoids excessive overdeletion [11,12]. Like data load-
ing, incremental updates are parallelized for improved performance. RDFox uses
a highly optimised SPARQL engine with sideways information passing; this is
another important feature in the Dow Jones application that we will discuss
in more detail below. Each query is evaluated on a single thread, but multiple
queries can be evaluated in parallel using multiple threads.

3.1 Parallelized Materialization

As already mentioned, RDFox materializes all implied triples using a parallelized
variant of the seminäıve algorithm [1,13]. The triples that make up the RDF

The Dow Jones Knowledge Graph 435

Fig. 2. Data Structure for Storing RDF Triples

graph are stored in a table. The triples are considered one at a time and matched
to the rules, with parallelization being achieved by assigning triples to available
threads. For example, given the following rules

〈?x,C, ?y〉 ∧ 〈?y,E, ?z〉 → 〈?x,D, ?z〉 (R1)
〈?x,D, ?y〉 ∧ 〈?y,E, ?z〉 → 〈?x,C, ?z〉 (R2)

and a triple 〈a,E, b〉, a thread will match it to the triple E(?y, ?z) in rule (R1)
and evaluate subquery 〈?x,C, a〉 to derive triples of the form 〈?x,D, b〉, and it
will handle rule (R2) analogously. We thus obtain independent subqueries, each
of which is evaluated on a distinct thread. The difference in subquery evaluation
times is irrelevant because of the large number of queries (i.e., proportional to
the number of triples) so threads are fully loaded.

A näıve application of this idea would be inefficient: if we have triples 〈a,C, b〉
and 〈b, E, c〉, then we would derive the triple 〈a,D, c〉 twice—that is, we would
consider the same rule instance twice. To address this source of inefficiency, the
seminäıve algorithm evaluates subqueries only over the triples that appear before
the triple being processed. For example, if 〈a,C, b〉 is processed first, then 〈b, E, c〉
will not be visible to the subquery and 〈a,D, c〉 will not be derived; however,
when 〈b, E, c〉 is processed, 〈a,C, b〉 will be visible to the subquery and 〈a,D, c〉
will be derived.

To support this idea in practice, RDFox uses patented data structures that
support both efficient evaluation of subqueries and efficient parallel updates
[9,13]. Like systems such as Hexastore [20] and RDF-3X [16], RDFox maintains
indexes over stored triples to support efficient (sub)query evaluation; RDFox,
however, uses hash-based indexes that allow for efficient ‘mostly’ lock-free par-
allel updates [7]: most of the time, at least one thread is guaranteed to make
progress regardless of the remaining threads.

RDFox stores triples in a six-column triple table as shown in Fig. 2. As usual
in RDF systems, resources are encoded as integer IDs using a dictionary, with
IDs produced by a counting sequence so they can be used as array indexes.
Columns Rs, Rp, and Ro contain the integer encodings of the subject, predicate,
and object of each triple. Each triple participates in three linked lists: an sp-list
connects all triples with the same Rs grouped (but not necessarily sorted) by

436 I. Horrocks et al.

Rp, an op-list connects all triples with the same Ro grouped by Rp, and a p-list
connects all triples with the same Rp without any grouping; columns Nsp, Nop,
and Np contain the next-pointers. Triple pointers are implemented as offsets into
the triple table.

RDFox maintains various indexes to support matching triples with different
binding patterns (i.e., different configurations of variables in the triple). For
example, index Is maps each s to the head Is[s] of the respective sp-list; to
match a triple 〈s, ?y, ?z〉 in I, we look up Is[s] and traverse the sp-list to its
end; if ?y =?z, we skip triples with Rp �= Ro. Index Isp maps each s and p to
the first triple Isp[s, p] in an sp-list with Rs = s and Rp = p; to match a triple
〈s, p, ?z〉 in I, we look up Isp[s, p] and traverse the sp-list to its end or until we
encounter a triple with Rp �= p. Index Ispo contains each triple in the table, and
so it can match fully specified triples 〈s, p, o〉. Other indexes include Ip, and Io
and Iop. Indexes Is, Ip, and Io are realised as arrays indexed by resource IDs.
Indexes Isp, Iop, and Ispo are realised as open addressing hash tables storing
triple pointers.

Lock-freedom is achieved using compare-and-set (CAS) instructions:
CAS(loc, exp, new) loads the value stored at location loc into a temporary vari-
able old, stores the value of new into loc if old = exp, and returns old; hardware
ensures that all steps are atomic (i.e., without interference). CAS can be used
directly to update the linked lists in the triple table. For example, if thread T 1

has added a triple 〈1, 3, 6〉 to the table and is trying to add it to the Nsp list after
the triple 〈1, 3, 2〉, then T 1 will set the Nsp pointer of the 〈1, 3, 6〉 entry to point
to the Nsp pointer from the 〈1, 3, 2〉 entry and will use a CAS instructions to
try to set the Nsp pointer from the 〈1, 3, 2〉 entry to point to the 〈1, 3, 6〉 entry;
if the CAS instruction fails, then some other thread must have changed the Nsp

pointer, in which case T 1 repeats the insertion procedure.
The process of adding a new triple to the table is more complex as one must

atomically query Ispo (to check for duplicates), add the triple to the table, and
update Ispo. To do this, RDFox implements a form of localised locking: if a
thread does not find the new triple in Ispo, then it identifies a suitable empty
bucket and tries to lock it by using a CAS instruction to store a special marker
in the bucket. If this fails then some other thread may have already inserted the
same triple, and so the whole operation is repeated beginning with the query
to Ispo. If the CAS instruction succeeds, then we can add the new triple to the
table, store it in the bucket (effectively releasing the localised lock), and then
update all remaining indexes. In the meantime, we make sure that other threads
do not skip over the bucket until the marker is removed.

3.2 Parallelized Data Loading

Although originally designed to support parallelized materialization, the lock-
free data structures described in Sect. 3.1 also allow for the parallelization of
data loading. This can be achieved simply by assigning a thread to each data
source to be loaded. Each thread can then add triples to the triple table in the
same way as the multiple threads used for materialization.

The Dow Jones Knowledge Graph 437

Additionally, when data is being loaded from files containing RDF triples in
turtle format, each file can use one thread for parsing and multiple threads for
adding parsed triples to the triple table. Parsing is single threaded because the
syntax of IRIs makes it difficult to parallelize, and in any case parsing is typically
much faster than adding triples to the data structures, so a single parser thread
can keep several data addition threads fully occupied. If the data is split into
multiple files, then these can be loaded in parallel using multiple threads.

3.3 SPARQL Query Answering

The indexed triple table described in Sect. 3.1 is designed to support efficient
(sub)query evaluation during materialisation and so already supports efficient
join evaluation in SPARQL query answering. However, SPARQL queries can be
(heavily) nested; i.e., the outer level query can have sub-queries as components.
A simple example is a query Q = Q1 MINUS Q2. In this case query Q is made
up of two sub-queries Q1 and Q2, with the answer to Q being the answer to Q1
minus the answer to Q2. Note that Q1 and Q2 could themselves contain sub-
queries and that this nesting of queries can continue to arbitrary depth. In order
to make query answering be more efficient and to use less memory we want to
evaluate the query “top-down”, that is, starting with the outer level queries and
working inwards. In our example, a näıve “bottom-up” method would compute
the answers to Q1 and Q2, and then subtract the answer to Q2 from the answer
to Q1; however, this would require computing and storing the full answers to both
sub-queries. In our “top-down” method we would iterate through the answers
to Q1, and for each such answer we would check if it is also an answer to Q2,
retaining it as an answer to Q only if it is not an answer to Q2. This requires
very little storage, and only requires us to check Q2 for tuples that we already
identified as answers to Q1. This technique is known in the literature as Sideways
Information Passing (SIP) [1]; in our example, information about answers to Q1
is passed “sideways” to Q2.

The above example is relatively simple, but SPARQL is a large language
containing many operators for modifying and combining queries (Filter, Bind,
And, Union, Minus, Distinct, Project, etc.) as well as a large number of built-
in functions for manipulating values including, e.g., arithmetic functions (plus,
minus, etc.), aggregation (sum, max, min, etc.) and string manipulation (con-
catenate, sub-string, etc.). It is extremely challenging to design a SPARQL query
evaluation algorithm that maximises the efficiency benefits of SIP while at the
same time guarantees to conform to the SPARQL semantics, i.e., to compute the
same answers as would be computed by a näıve bottom-up method. Neumann
and Weikum presented a SIP algorithm for basic SPARQL pattern matching
queries [15], but this doesn’t consider nested queries using some or all of the
above mentioned features. RDFox uses a patented algorithm that extends SIP
optimisation to arbitrary queries by compiling the query into a tree and intro-
ducing variable normalisation and expansion nodes as needed to ensure safe
application of SIP [10]. The combination of SIP and the optimised data struc-
tures discussed in Sect. 3.1 allow for extremely efficient evaluation of SPARQL

438 I. Horrocks et al.

queries: most queries used in applications of the Dow Jones knowledge graph
can be answered in only a few milliseconds, and even the most complex queries
require only a few seconds (see Sect. 4).

4 Performance

In this section we present some performance data for RDFox using both standard
benchmarks and the Dow Jones knowledge graph.

4.1 Test Data and Environments

For standard benchmarks we used both LUBM and WatDiv [2,4]. We used a ver-
sion of LUBM with 10,000 universities (LUBM-10k), which comprises approxi-
mately 1.3 billion asserted triples, with a further approximately 0.5 billion triples
added via materialisation of (rules derived from) the LUBM ontology; the graph
for query answering therefore comprises approximately 1.8 billion triples. We
used WatDiv 100M, which comprises approximately 150 million asserted triples;
WatDiv does not have an ontology. Each benchmark comes with a standard set
of test queries. These tests used RDFox 5.4.0 running on a c5.18xlarge AWS
instance with 3.0 GHz Intel Xeon processors, 72 vCPUs and 144 GiB of RAM.

For the knowledge graph tests we used the Dow Jones Knowledge Graph
(DJKG) described in Sect. 2.1, which comprises approximately 2.6 billion triples,
and a set of three test queries:

Q1 retrieves all the signals and their properties that were derived from an English
language article that was published between 2020-05-24 and 2020-05-26, and
that talks about either Africa or North America.

Q2 retrieves all the signals and their properties that were derived from an English
language article that was published between 2020-01-01 and 2020-09-28, and
that talks about a company with a given identifier.

Q3 retrieves the number of different companies in the knowledge graph grouped
by identifier type, industry, and country.

Q1 and Q2 are typical application queries; Q3 is not a realistic application query
but is designed to stress-test SPARQL query engines. The SPARQL for these
queries is too verbose to be given here, but they are available at https://bit.
ly/3qGJS9I along with all non-confidential data. These tests used RDFox 4.0.0
running on a Google Cloud N1 with 4 vCPUs and 125 GB of RAM.

4.2 Data Loading

The data was split into multiple files to facilitate parallel loading. In the case of
WatDiv and LUBM the data was split into 72 files and loaded using 72 threads;
in the case of DJKG the data was split into 4 files and loaded using 4 threads.
Table 1 shows the loading time for the three data sets (Time) as well as the
number of threads (Threads), the loading rate in triples per second (T/s), the

https://bit.ly/3qGJS9I
https://bit.ly/3qGJS9I

The Dow Jones Knowledge Graph 439

Table 1. Data loading times

Dataset Time Threads T/s T/T/s Speedup

DJKB 1,560.0 4 1,666,667 416,667 —

LUBM 273.0 72 4,761,905 66,138 —

WatDiv 272.3 1 400,285 400,285 1.00

WatDiv 85.7 4 1,271,852 317,963 3.18

WatDiv 26.6 16 4,097,658 256,104 10.24

WatDiv 17.5 32 6,242,710 195,085 15.56

WatDiv 17.5 64 6,228,441 97,319 15.56

WatDiv 16.8 72 6,487,959 90,111 16.21

relativised loading rate in triples per thread per second (T/T/s), and the speedup
relative to a single thread (Speedup) in the WatDiv case.

The same DJKB loading test was repeated using several other knowledge
graph systems. RDFox was at least an order of magnitude faster than any of
these other systems; unfortunately the licence conditions of these systems mean
that we are not able to present their results here.

Fig. 3. Number of threads vs. loading speed (triples per second)

Even the relativised (T/T/s) loading rates are not directly comparable across
different datasets as there may be a large difference in, e.g., the cost of parsing,
which can depend on many factors (such as the structure of URIs). In order to
give a clearer idea of the effectiveness of parallel loading we therefore repeated
the WatDiv loading test using different numbers of threads; these results are also
presented in Table 1, and we have additionally plotted T/s against the number
of threads in Fig. 3. As we can see, the speedup from 1–32 threads is relatively
consistent, with 32 threads giving a nearly 16 times speedup, but there is little or
no additional speedup after that. The reasons for this are not fully understood,
and are difficult to investigate in a cloud computing environment; however, we
believe that there are only 36 physical cores, with the 72 vCPUs coming from
hyper-threading, so significant speedup beyond 36 times is not necessarily to be
expected.

440 I. Horrocks et al.

Table 2. Results on WatDiv 100M benchmark (times in ms)

Query #ans R1 R2 R3 R4 R5 Avg ms/ans

L1 2 1 1 1 1 1 1 <1

L2 595 16 210 24 60 7 63 <1

L3 24 1 1 1 1 1 1 <1

L4 603 20 11 9 8 7 11 <1

L5 958 16 41 5 12 1 15 <1

S1 6 1 1 1 1 1 1 <1

S2 249 10 12 19 50 5 19 <1

S3 0 29 26 33 30 29 29 –

S4 13 113 333 233 15 30 145 11

S5 68 15 13 11 17 10 13 <1

S6 81 4 15 11 1 6 7 <1

S7 0 1 1 1 1 1 1 –

F1 7 7 6 11 11 4 8 1

F2 58 1 6 9 4 1 4 <1

F3 128 1 7 12 5 1 5 <1

F4 382 6 5 4 5 6 5 <1

F5 43 1 1 1 1 1 1 <1

C1 201 30 23 34 23 20 26 <1

C2 22 140 65 75 62 59 80 4

C3 4,244,261 1,830 1,640 1,380 1,360 1,450 1,532 <1

4.3 Query Answering

The results on the WatDiv queries are presented in Table 2. For each query we
give the number of answers (#ans), the time to return all answers in 5 separate
runs (R1–R5), and the average time (Avg); we also give the average time per
answer (ms/ans). All times are in milliseconds. As can be seen, RDFox answers
most queries in only a few milliseconds; query C3 takes an average of 1,532ms,
but this is mainly due to the time taken to return over 4 million answers. The
average time per answer is less than 1ms in most cases, and never more than
11 ms.

The Dow Jones Knowledge Graph 441

Table 3. Results on LUBM 10k benchmark (times in ms)

Query #ans t–1 t–10 t–100 t-all ms/ans

q1 4 2 1 1 1 0.21

q2 2,528 1,440 2,210 17,800 459,000 181.57

q3 6 1 1 1 1 0.11

q4 34 1 1 1 1 0.01

q5 719 1 1 1 1 0.00

q6 104,403,077 1 1 1 68,933 0.00

q7 67 1 1 1 1 0.01

q8 7,790 1 1 1 39 0.01

q9 2,721,773 1 1 5 128,000 0.05

q10 4 1 1 1 1 0.13

q11 224 1 1 1 1 0.00

q12 15 2 1 1 1 0.03

q13 46,366 1 1 1 303 0.01

q14 79,211,095 1 1 1 37,733 0.00

The results on the LUBM queries are presented in Table 3. For each query
we give the number of answers (#ans), the time to return the first answer (t-
1), the first 10 answers (t-10), the first 100 answers (t-100) and all answers
(t-all); we also give the average time per answer (ms/ans). All times are in
milliseconds. Most of the queries are relatively easy for RDFox, with all answers
being returned within 1s, and in most cases in less than 1ms. Queries q6, q9 and
q14 take several seconds to fully evaluate, but this is only because of the very
large numbers of answers, ranging from 2.7 million up to more than 104 million;
the times to return the first 100 answers, and the times per answer, are still in
the (sub) millisecond range. Query q2 is the only query that can be considered
non-trivial; this is a “triangle” query, where there is no query plan that can avoid
computing a very large intermediate result that is subsequently pruned by other
query atoms. Even on this query, RDFox returns the first answer in only 1.4 s,
and returns subsequent answers at a rate of approximately one every 180 ms.

For the three DJKB test queries, the average execution time for RDFox was
300 ms for Q1, 12 ms for Q2 and 10,700 ms for Q3. As mentioned in Sect. 4.1,
Q3 is not a realistic query but has been designed as a stress test. The same test
was again repeated with several other knowledge graph systems; RDFox was
always at least an order of magnitude faster and in some cases several orders of
magnitude faster.

5 Discussion and Future Directions

Using a knowledge graph at Dow Jones has had many advantages: it facilitates
the integration of data from multiple heterogeneous sources, SPARQL queries

442 I. Horrocks et al.

provide a powerful and flexible mechanism for accessing information, and this
can be used to power a wide range of internal processes and user facing products.

Constructing and maintaining a large knowledge graph can be computation-
ally challenging, as can answering SPARQL queries over the graph. However,
RDFox boasts several features that help it to perform well on these tasks, in
particular lock-free data structures, parallelised data loading, incremental data
updates and a highly optimised SPARQL engine. As a result it can load the
entire 2.6 billion triple data set in only 26 min and can answer typical applica-
tion queries in only a few milliseconds.

Currently, the majority of the data in the knowledge graph is kept up to
date by simply reloading it on a regular basis (once per month). This is feasible
given RDFox’s fast loading time, but is clearly not ideal. Dow Jones developers
are therefore working an a rearchitected system in which RDFox is connected
directly to data sources (a feature already supported by RDFox) and the graph
is automatically updated whenever the source data changes.

So far the knowledge graph has mainly been used as part of internal processes
such as the extraction of signals from news feed articles and the maintenance
of competitor relationships data. Work is underway to integrate the knowledge
graph into a wider range of internal processes, for example to support the Risk
and Compliance team, and into existing customer facing products. It is also
planned to develop several new and more powerful applications that were previ-
ously infeasible due to data integration issues and/or query performance issues.
One specific goal is to increase customer engagement by providing user specific
recommendations for relevant articles in news feeds.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
Publ. Co., Reading (1995)

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 197–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-
9 13

3. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of
relational data to RDF. W3C Recommendation (2012). http://www.w3.org/TR/
rdb-direct-mapping/

4. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

5. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4), 287–317 (1983)

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation
(2013). https://www.w3.org/TR/sparql11-query/

7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, Boston (2008)

8. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: a semantic web rule language combining OWL and RuleML. W3C Member
Submission (2004). http://www.w3.org/Submission/SWRL/

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/sparql11-query/
http://www.w3.org/Submission/SWRL/

The Dow Jones Knowledge Graph 443

9. Motik, B., Nenov, Y., Horrocks, I.: Parallel materialisation of a set of logical rules
on a logical database (US Patent 10817467) (2020)

10. Motik, B., Nenov, Y., Horrocks, I.: Complex query evaluation using sideways infor-
mation passing (US Patent 11216456) (2022)

11. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mate-
rialisation: the backward/forward algorithm. In: Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI 15), pp. 1560–1568. AAAI Press (2015)

12. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Maintenance of datalog materialisa-
tions revisited. Artif. Intell. 269, 76–136 (2019)

13. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of Datalog programs in centralised, main-memory RDF systems. In: Proceedings
of the 28th National Conference on Artificial Intelligence (AAAI 14), pp. 129–137.
AAAI Press (2014)

14. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-
scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp.
3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6 1

15. Neumann, T., Weikum, G.: Scalable join processing on very large RDF graphs. In:
SIGMOD Conference, pp. 627–640. ACM (2009)

16. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB J. 19(1), 91–113 (2010)

17. OWL 2 Web Ontology Language Overview (Second Edition). W3C Recommenda-
tion (2012). http://www.w3.org/TR/owl2-overview/

18. Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellogg, G.: Shape expres-
sions language 2.1. W3C Community Group Report (2019). http://shex.io/shex-
semantics/

19. Shapes Constraint Language (SHACL). W3C Recommendation (2017). https://
www.w3.org/TR/shacl/

20. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. PVLDB 1(1), 1008–1019 (2008)

https://doi.org/10.1007/978-3-319-25010-6_1
http://www.w3.org/TR/owl2-overview/
http://shex.io/shex-semantics/
http://shex.io/shex-semantics/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

CONSTRUCT Queries Performance
on a Spark-Based Big RDF Triplestore

Adam Sanchez-Ayte(B), Fabrice Jouanot, and Marie-Christine Rousset

Université Grenoble Alpes, Saint-Martin-d’Hères, France
{adam.sanchez,fabrice.jouanot,

marie-christine.rousset}@univ-grenoble-alpes.fr

Abstract. Despite their potential, CONSTRUCT queries have gained
little attraction so far among data practitioners, vendors and researchers.
In this paper, we first exhibit performance bottlenecks of existing triple-
stores for supporting CONSTRUCT queries over large knowledge graphs.
Then, we describe a novel Spark-based architecture for big triplestores,
called TESS, that we have designed and implemented to overcome the
above limitations by using parallel computing. TESS ensures ACID prop-
erties that are required for a sound and complete implementation of
CONSTRUCT-based forward-chaining rules reasoning.

Keywords: CONSTRUCT queries · Big knowledge graphs · Spark

1 Introduction

CONSTRUCT queries are SPARQL queries that enable ETL1 data pipelines
(to reduce large datasets to workable datasets), graph interoperability (to merge
graphs from different sources) and are a key component in several W3C specifi-
cations (e.g., SPIN2, and later SHACL3) for supporting rule-based inference.

However, despite their potential, CONSTRUCT queries have gained little
attraction so far among data practitioners, vendors and researchers. In fact,
CONSTRUCT queries are available since the first SPARQL specification (2008)
but their usage has been very limited in public SPARQL endpoints. According to
an analytical study of large SPARQL query logs conducted in [3], CONSTRUCT
queries represented only 1.84% from a total of 90 millions of unique queries
collected from 14 datasets between 2013 and 2017.

Query performance evaluation has been centered on SELECT queries and
have been neglected for CONSTRUCT queries for which no performance bench-
mark on large datasets is available. For example, from 29 SPARQL queries pro-
posed to measure performance of different types of queries in Task 2 of the
MOCHA 2018 Challenge4, none of them was a CONSTRUCT query.
1 Extraction, Transformation, Load.
2 https://spinrdf.org/spin.html.
3 https://www.w3.org/TR/shacl-af/#rules.
4 https://project-hobbit.eu/challenges/mighty-storage-challenge2018/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 444–460, 2022.
https://doi.org/10.1007/978-3-031-06981-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_26&domain=pdf
https://spinrdf.org/spin.html
https://www.w3.org/TR/shacl-af/#rules
https://project-hobbit.eu/challenges/mighty-storage-challenge2018/
https://doi.org/10.1007/978-3-031-06981-9_26

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 445

For current SPARQL implementations, the output size of CONSTRUCT
queries is restricted. For example, in Virtuoso, while millions of rows can be
fully streamed for SELECT queries, CONSTRUCT query results cannot be fully
outputted beyond 1 million triples5.

In this paper, we first exhibit (Sect. 3) performance bottlenecks of exist-
ing triplestores (namely Virtuoso and GraphDB) for supporting CONSTRUCT
queries over large knowledge graphs, even when we decompose their computa-
tion into the evaluation of SELECT queries followed by the construction and the
storage of the graph output. For this, in the absence of appropriate benchmarks,
we have set up an experimental protocol (described in Sect. 3.2) on top of a big
knowledge graph, called OntoSIDES [13], at the core of a learning management
system used in medical studies in France.

Then, we describe (Sect. 4) a novel Spark-based architecture for big triple-
stores, called TESS, that we have designed and implemented to overcome the
above limitations by using parallel computing. TESS ensures a part of ACID
properties that are required for a sound and complete implementation of CON-
STRUCT-based forward-chaining rules reasoning. We report in Sect. 4.2 the
experimental results on the performance of TESS that we have obtained.

Beforehand, Sect. 2 provides the background of this work. Finally, Sect. 5
positions it w.r.t. the related work and Sect. 6 concludes the paper.

2 Background

Let I, L, B, and V be pairwise disjoint sets of IRIs, literals, blank nodes, and
variables, respectively. An RDF graph is a set of RDF triples (s, p, o) ∈ (I∪B)×
I× (I ∪L∪B). A named graph is a pair consisting of an IRI and an RDF graph.
An RDF dataset is a collection of RDF named graphs. The CONSTRUCT and
SELECT queries that we consider are built on SPARQL 1.1 graph patterns [5].

Definition 1 (SPARQL 1.1 graph pattern).

– A basic graph pattern is a set of triple patterns (s, p, o) ∈ (I ∪ V) × (I ∪ V) ×
(I ∪ L ∪ V).

– A SPARQL 1.1 graph pattern is an expression P generated from the following
grammar:

P :: = BGP | (P1 Union P2) | (P1 And P2) | (P1 Opt P2) | P FILTER R

| Graph g P | FILTER NOT EXISTS P

where BGP is a basic graph pattern, g ∈ V ∪ I and R is a constraint expression
over variables in P .

Definition 2 (SELECT queries). By x we denote a vector of variables.

5 https://community.openlinksw.com/t/sparql-query-limiting-results-to-100000-
triples/2131.

https://community.openlinksw.com/t/sparql-query-limiting-results-to-100000-triples/2131
https://community.openlinksw.com/t/sparql-query-limiting-results-to-100000-triples/2131

446 A. Sanchez-Ayte et al.

– A simple SELECT query is of the form:
SELECT x WHERE { GP } where GP is a SPARQL 1.1 graph pattern includ-
ing variables in x . When evaluated over an RDF graph (or dataset) G, there
are as many answers µ(x̄) as mappings µ allowing to match GP with a sub-
graph of G.

– An aggregate SELECT query is of the form

SELECT x, f(y) WHERE { GP } GROUP BY x

where f is an aggregate function and GP a SPARQL 1.1 graph pattern includ-
ing variables in x ∪ y. When evaluated over G, there are as many groups as
mappings allowing to match the tuple x̄ with tuples of values v̄ and as many
answers (v̄, av) where av is computed by the aggregate function on the cor-
responding group.

– A nested SELECT query is a SELECT query for which the WHERE clause
is of the form { GP { SQ } } where GP is a SPARQL 1.1 graph pattern and
SQ is a (simple or aggregate) SELECT query. The inner SELECT query is
called a subquery and is evaluated first. The subquery result variable(s) can
then be used in the outer SELECT query.

Definition 3 (CONSTRUCT queries). A CONSTRUCT query is written:

CONSTRUCT { Template } WHERE { GP [{ SQ }] }

where GP is a SPARQL 1.1 graph pattern, Template is a basic graph pattern
(possibly containing blank nodes) with variables appearing in GP , and SQ is an
optional SELECT subquery.
The result of the evaluation over an RDF graph G is the union of graphs obtained
by instantiating the variables x in Template with values µ(x) for each mapping
µ satisfying the WHERE clause.
The induced SELECT query is: SELECT x̄ WHERE {GP [{ SQ }] }
where x̄ is made of all the variables in the graph pattern GP .

Based on Definitions 2 and 3, the computation of the result of a CON-
STRUCT query can be decomposed into the evaluation of its induced SELECT
query followed by the construction of the output graph as the union of the tem-
plate instances obtained by replacing each variable by its corresponding value
in the answer set of the SELECT query. Figure 1 shows an example of a CON-
STRUCT query and of its induced SELECT query.

CONSTRUCT-Based Forward-Chaining Rules Reasoning
Like in SHACL and SPIN specifications, CONSTRUCT queries can be used to
express rules that allow to derive inferred RDF triples from existing asserted
triples. For example, the CONSTRUCT query in Fig. 1 participates to the rule-
based definition of two properties for answers in the e-learning setting of Onto-
SIDES (see Sect. 3.1): the numerical property has_for_result and the boolean
property stronglyWrong.

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 447

Fig. 1. Example of a CONSTRUCT query and of its induced SELECT query

A forward-chaining reasoner can thus be implemented on top of any RDF
triplestore by iterating the triggering of the CONSTRUCT queries and the
adding of their results in the triplestore. The termination is guaranteed when
the rules are safe, i.e., when no new blank nodes appear in the the template of
the corresponding CONSTRUCT queries. In addition, when the rules are non
recursive, i.e., when the underlying dependency graph [8] is acyclic, they can
be organized in independent reasoning layers that can be computed at compile
time. Then, rule triggering can be ordered in a serial or parallel manner so that
each corresponding CONSTRUCT query is evaluated only once.

3 Performance Evaluation of Virtuoso and GraphDB

In the absence of appropriate benchmarks (for CONSTRUCT queries or for
SELECT queries on big knowledge graphs), we have chosen to conduct our
performance evaluation on the OntoSIDES knowledge graph the size of which
(12 Billions triples) is comparable to that of Wikidata (14 billions triples as of
2020) and DBpedia (21 billions triples as of 2021).

3.1 OntoSIDES Benchmark for CONSTRUCT Queries

OntoSIDES is a big knowledge graph at the core of an ontology-based learn-
ing management system used in medical studies in France, in which the edu-
cational content, the traces of students’ activities and the correction of exams
are described in RDF using a lightweight ontology [13]. Thanks to an automatic
mapping-based data materialization and rule-based data saturation, OntoSIDES
contains about 12 Billions triples to date, and describes training and assessments
activities performed by more than 145,000 students over almost 6 years. Students
activities are described at the granularity of time-stamped clicks of answers done
by students for choosing among the proposals of answers associated to multiple
choices questions.

448 A. Sanchez-Ayte et al.

Q1

CONSTRUCT
{?question sides:has for number of proposals
?np}
WHERE { select ?question (COUNT (?p) As
?np)
{?question
sides:has for proposal of answer?p}
group by ?question
}

Q2

CONSTRUCT {
?answer sides:has for number of wrong tick
?nw }
WHERE {
select ?answer (COUNT (?a) As ?nw)
{?a sides:is part of ?answer.
?a sides:has wrongly ticked ?p}
group by ?answer
}

Q3

CONSTRUCT
{?answer
sides:has for number of missed right tick
?nm}
WHERE {select ?answer (COUNT(?p) As
?nm)
{?answer sides:correspond to question ?q.
?q sides:has for proposal of answer ?p.
?p sides:has for correction
”true”ˆˆxsd:boolean.
FILTER NOT EXISTS {?a sides:is part of
?answer.
?a sides:has rightly ticked ?p}
}
group by ?answer
}

Q4

CONSTRUCT
{?answer sides:has for number of discordance
”0”ˆˆxsd:integer}
WHERE {?answer a sides:answer.
FILTER NOT EXISTS {?answer
sides:has for number of wrong tick ?nw}
FILTER NOT EXISTS {?answer
sides:has for number of missed right tick
?nm}
}

Q5

CONSTRUCT
{?answer sides:has for number of discordance
?count}
WHERE {
select ?answer (?nw + ?nm as ?count)
{
?answer sides:has for number of wrong tick
?nw.
?answer
sides:has for number of missed right tick ?nm
}
}

Q6

CONSTRUCT
{?answer sides:has for number of discordance
?nw}
WHERE {?answer
sides:has for number of wrong tick ?nw.
FILTER NOT EXISTS {?answer
sides:has for number of missed right tick
?nm}
}

Q7

CONSTRUCT
{?answer sides:has for number of discordance
?nm}
WHERE {?answer
sides:has for number of missed right tick ?nm.
FILTER NOT EXISTS {?answer
sides:has for number of wrong tick ?nw. }
}

Q8

CONSTRUCT
{?answer sides:has for result 1}
WHERE {?answer
sides:has for number of discordance
”0”ˆˆxsd:integer
}

Q9

CONSTRUCT
{ ?answer sides:has for result
”0”ˆˆxsd:integer .
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .}
WHERE {
?a sides:is part of ?answer.
?a sides:has wrongly ticked ?p.
?p sides:has for weight of correction
”Unacceptable”ˆˆxsd:string
}

Q10

CONSTRUCT
{?answer sides:has for result ”0”ˆˆxsd:integer
.
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .
}
WHERE {
?answer sides:correspond to question ?q.
?q sides:has for proposal of answer ?p.
?p sides:has for correction
”true”ˆˆxsd:boolean .
?p sides:has for weight of correction
”Indispensable”ˆˆxsd:string .
FILTER NOT EXISTS {
?a sides:is part of ?answer.
?a sides:has rightly ticked ?p }
}

Q11

CONSTRUCT
{ ?answer sides:has for result
”0”ˆˆxsd:integer .
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean .
}
WHERE {
?answer sides:correspond to question ?q.
?q rdf:type sides:QUA.
?answer sides:has for number of discordance
?d.
FILTER (?d > 0)
}

Q12

CONSTRUCT
{?answer sides:has for result
0.5ˆˆxsd:decimal}
WHERE {
?answer sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”5”ˆˆxsd:integer.
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }
}

Q13

CONSTRUCT
{?answer sides:has for result
”0.2”ˆˆxsd:decimal}
WHERE {?answer
sides:has for number of discordance
”2”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”5”ˆˆxsd:integer .
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }
}

Q14

CONSTRUCT
{?answer sides:has for result
”0.425”ˆˆxsd:decimal}
WHERE {?answer
sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”4”ˆˆxsd:integer .
FILTER NOT EXISTS {?answer
sides:stronglyWrong ”true”ˆˆxsd:boolean }}

Q15

CONSTRUCT
{ ?answer sides:has for result
”0.1”ˆˆxsd:decimal
}
WHERE
{?answer sides:has for number of discordance
”2”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”4”ˆˆxsd:integer .
FILTER NOT EXISTS {
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean }
}

Q16

CONSTRUCT
{?answer sides:has for result
”0”ˆˆxsd:integer}
WHERE
{?answer sides:correspond to question ?q.
?q sides:has for number of proposals ?np.
?answer sides:has for number of discordance
?n.
FILTER (?np > 3 && ?np < 6 && ?n > 2).
}

Q17

CONSTRUCT
{?answer sides:has for result
”0.3”ˆˆxsd:decimal}
WHERE {
?answer sides:has for number of discordance
”1”ˆˆxsd:integer .
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”3”ˆˆxsd:integer .
FILTER NOT EXISTS {
?answer sides:stronglyWrong
”true”ˆˆxsd:boolean }
}

Q18

CONSTRUCT
{?answer sides:has for result ”0”ˆˆxsd:integer
}
WHERE
{?answer sides:has for number of discordance
?n.
?answer sides:correspond to question ?q.
?q sides:has for number of proposals
”3”ˆˆxsd:integer.
FILTER (?n > 1)
}

Fig. 2. 18 CONSTRUCT queries over OntoSIDES knowledge graph

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 449

Table 1. Classification by category

Category Queries

Simple (BGP) Q5, Q8, Q9

Aggregate subquery Q1, Q2, Q3

FILTER on terms (FRT) Q11, Q16, Q18

FILTER NOT EXISTS on graph
patterns (FGP)

Q3, Q4, Q6,
Q7, Q10, Q12,
Q13, Q14, Q15,
Q17

Table 2. Classification by their
template size

Template
size

Queries

1 Q1, Q2, Q3, Q4, Q5,
Q6, Q7, Q8, Q12, Q13,
Q14, Q15, Q16, Q17,
Q18

2 Q9, Q10, Q11

Among the 48 properties defined in the OntoSIDES ontology, 6 properties
are defined by 18 rules expressed as CONSTRUCT queries provided in Fig. 2.

As summarized in Table 1 and Table 2, the considered CONSTRUCT queries
cover a variety of SPARQL 1.1 features.

3.2 Experimental Protocol

The goal is to study how CONSTRUCT query evaluation performance is
impacted by the growing size of the input RDF datasets. We first explain how we
have built the different RDF datasets over which the 18 CONSTRUCT queries
described above will be evaluated. Then, we describe the measures that we con-
sider for evaluating the performance of each CONSTRUCT query in isolation as
well as for the whole process of forward-chaining reasoning.

RDF Datasets. We have extracted 10 datasets from the whole OntoSIDES
knowledge graph (before saturation) which growing sizes ranging from 121 mil-
lions of triples to 1.6 billion triples as shown in Table 3.

Table 3. Ontosides datasets

Dataset Size (millions triples)

D1 121

D2 194

D3 273

D4 380

D5 497

D6 633

D7 791

D8 977

D9 1209

D10 1604

450 A. Sanchez-Ayte et al.

For doing so, we have adapted the notion of traversal views introduced in
[11] and we have structured the OntoSIDES knowledge graph (before saturation)
as the union of named graphs whose IRI is a given student’s IRI, so that each
of these named graph contains the RDF description of all the answers done by
the student and of all the corresponding questions. The 10 datasets have been
obtained by grouping increasing numbers of students’ named graphs (from 880
students’ named graphs for the D1 dataset to 8845 students’ named graphs for
the D10 dataset). By doing so, each extracted dataset contains the required data
for each of the 18 CONSTRUCT queries to produce a sound and complete result
for the computation of the inferred properties on meaningful fragments of the
full OntoSIDES knowledge graph.

Performance Measures
For each CONSTRUCT query, in addition to measuring its execution time that
we denote the construct execution time, we will also measure:

– the body execution time, the time to evaluate its induced SELECT query
– the template execution time, the time to instantiate the template. Since triple-

stores do not provide the template execution time, we will compute it as the
difference between the construct execution time and the body execution time

– the construct storing time, the update time needed to add the output of a
CONSTRUCT query to the triplestore

– the inference time, the sum of the construct execution time and the construct
storing time, which estimates the cost of a CONSTRUCT query used as an
update rule.

Given the set of the 18 CONSTRUCT queries in Fig. 2 used as rules, we will
also evaluate the performance of both serial and parallel implementations of
CONSTRUCT-based forward-chaining reasoning. Based on their dependency
graph, the rules can be structured in 4-depth layers of reasoning:

– Layer 1 = {Q1, Q2, Q3, Q9, Q10}
– Layer 2 = {Q4, Q5, Q6, Q7}
– Layer 3 = {Q8, Q12, Q11}
– Layer 4 = {Q13, Q14, Q15, Q16, Q17, Q18}
The serial versus parallel implementations of CONSTRUCT-based forward-
chaining reasoning differ in the sequential versus parallel execution of the CON-
STRUCT queries within each layer. The layers are themselves handled by
increasing depth. We will measure and compare:

– the serial forward-chaining reasoning time, as the sum of inference times of
all the queries applied sequentially in the order induced by the different layers,

– the parallel forward-chaining reasoning time, as the sum of the parallel exe-
cution and update times for each of the 4 reasoning layers.

Hardware. The server used in our experiments has the following characteristics:

– Processor: 32 cores, Intel(R) Xeon(R) Gold 6144 CPU @ 3.50Ghz.
– Disk: 7 disks, 2 Terabytes size each.
– Memory: 566 Gigabytes RAM.

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 451

3.3 Limitations of Virtuoso and GraphDB

Virtuoso is a column-store triplestore where SPARQL queries are translated into
SQL to be executed. GraphDB is a native triplestore where SPARQL queries are
executed directly on data. In our experiments, we used Virtuoso 07.20.3229 Com-
munity Edition, GraphDB 9.0.0 Enterprise Edition and Docker 19.03.8. Both
have been configured for optimal parallelization and memory usage according
their online documentation. Blazegraph was not considered because it was out-
performed by Virtuoso in 3 of 4 tasks in Mocha 2018 (RDF data ingestion, data
storage, versioning).

Each dataset from Table 3 was stored in a Virtuoso and a GraphDB triple-
store. Each triplestore run on top of a Docker container configured for 32 CPU
cores and 128 GB RAM.

Figure 3a shows how the forward-chaining reasoning time (y axis) evolves in
function of the sizes (x axis) of the 10 datasets reported in Table 3:

– for GraphDB, the CONSTRUCT-based forward-chaining rules reasoning can
be completed in a reasonable time for D1, D2 and D3 datasets only.

– Virtuoso does not show up at all because the output of each of the 18 CON-
STRUCT queries was greater than 1 million triples which is the maximum
limit for a CONSTRUCT query output in Virtuoso.

In Fig. 3b, the y axis corresponds to the sum of the execution times of the
SELECT queries induced by the 18 CONSTRUCT queries. Virtuoso does not
suffer of the above limitations on output size for SELECT queries. However,
we have discovered that for the datasets greater than D4 (380 million triples),
Virtuoso does not compute the correct answers for aggregate queries like Q3
(and others aggregate queries outside the strict setting of our experiment). We
have used PostgreSQL as reference to validate the correctness of the results after
transforming the SELECT queries into SQL queries.

0

0.
5 1

1.
5 2

2.
5

0

20

40

60

Size (billion triples)

T
im

e(
m
in
)

(3.a) Forward-chaining completeness

0

0.
5 1

1.
5 2

2.
5

0

20

40

60

Size (billion triples)

T
im

e(
m
in
)

(3.b) Correctness of the induced SELECT queries

Virtuoso GraphDB

Fig. 3. Forward chaining reasoning time performance. Best viewed in color

452 A. Sanchez-Ayte et al.

These experiments show the limitation of Virtuoso for outputting CON-
STRUCT results of more than 1 million triples, and to compute correct answers to
aggregate SELECT queries over datasets of size greater than 380 millions triples.
They also show the limitation of GraphDB to compute SELECT or CONSTRUCT
queries in a reasonable time over datasets of size greater than 275 millions triples.
This motivates the needs for an architecture supporting parallel computing.

4 TESS Architecture and Performance

In this section, we describe TESS, a novel architecture for big RDF triplestores,
and we provide experimental results on its performance. TESS has been designed
to support CONSTRUCT queries. Since CONSTRUCT queries can be used
to update triplestores, it is important to guarantee data integrity during this
updating step. This is particularly important when CONSTRUCT queries are
used for supporting rule-based reasoning. For this reason, we have included in the
TESS architecture a transactional management module that enforces atomicity
property.

4.1 TESS Architecture

TESS is based on a modular architecture that supports log-based transactions
for data updates. Transactions in TESS are highly scalable and enables key data
management features like query point-in-time and rollback operations.

For the implementation, we chose Spark [18], (the leading platform for large-
scale SQL and batch processing as of today [9]), as base technology to select the
proper software for each architecture component.

Figure 4 shows the 5 layers of the TESS architecture with the selected tech-
nologies for each component (on the right side) and two inputs types supported
by TESS: at the top, the Spark Application for CONSTRUCT-based forward-
chaining reasoning and, on the left side, a SPARQL query. However, only the
SPARQL query has an external output since the outcome of the forward chaining
reasoning is meant to be stored in the distributed storage for later querying.

Fig. 4. TESS triplestore architecture

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 453

We now describe each component. The modular architecture makes possible
to disable some of them, like the transactions manager or the cluster resource
manager if they are not useful, for instance if the CONSTRUCT queries are not
used for updates or if parallel computation is not necessary.

Distributed Storage. We define a schema of 4 columns (i.e. <s, p, o, g>)
to store RDF data. One-table layout is very efficient for updates because an
update does not need to be normalized into the many tables of other layouts. In
addition, ACID properties provided by Delta Lake only supports transactions
on one table at a time [22]. This structure, using a column storage format for
performance purpose (a collection of versioned Parquet [19] files), is referenced
as the ACID table. The storage is based on Hadoop Distributed FileSystem
(HDFS) cluster [20] which operates in a fully distributed mode. It comprises a
namenode (master) and a datanode (slave) servers.

Cluster Resource Management. This component allows to execute a query
plan using high parallel computing based on standalone Spark cluster. It com-
prises a master and workers nodes, usually as many workers as queries/rules
to manage with. The master receives Spark applications and schedules worker
resources to be run among them. A Spark application is organized around jobs,
the top level work unit. By default, Spark jobs within an application are exe-
cuted serially, but they can also be run in parallel if concurrency is enabled at
application level.

Transactions Management. This layer is in charge of the reliability and the
correctness of RDF data with update transactions. Based on Delta Lake [21]
that adds ACID service to Spark: a) keep track of all the commits made to the
ACID table and b) use time travel for loading the ACID table at a given version
or timestamp [10].

Parallel Query Engine. A query optimization/execution component based on
Spark SQL which starts from the logical query plan to generate an optimized
physical query plan. Then, the optimized query plan is used to generate efficient
code to exploit modern compilers and CPUs.

Query Translator. This component is needed to rewrite SPARQL queries into
SQL in order to use Spark SQL, a Spark module for dataframe-based structured
data processing. We retained sparql to sql text() Virtuoso [12] function to gen-
erate self-joins queries for the ACID table.

4.2 TESS Performance Evaluation

For our experiments, we used Spark 3.1.1, Delta Lake 0.8.0 and HDFS 2.9.2.
Each dataset from Table 3 was stored in the HDFS as an ACID table.

454 A. Sanchez-Ayte et al.

Serial Forward-Chaining Reasoning Time
For this experiment, TESS run on top of a network of 5 Docker containers: 2
containers for the Hadoop namenode and datanode. 2 containers for the Spark
Standalone cluster (1 for the master node, 1 for the worker node) and 1 container
for sending the Spark Application to the Spark Standalone Cluster in client
mode. We assign 128GB RAM and 32 CPU cores to each container member of
the Spark Standalone cluster.

Figure 5 shows that TESS completes the forward-chaining reasoning for all
datasets in reasonable time and that the time grows linearly w.r.t the size of
the input datasets. (see black curve CONSTRUCT with square shaped dots).
It also makes explicit how the construct execution time is split into the body
execution time (see blue curve with triangle shaped dots) and the template exe-
cution time (see red curve with circle shaped dots). We observe that the impact
of body execution time is much greater than the template execution time for
CONSTRUCT-based forward-chaining reasoning.

0 0.5 1 1.5 2

0

10

20

30

40

50

Size (billion triples)

T
im

e(
m
in
)

Body execution time
Template execution time
Construct execution time

Fig. 5. Evaluation of serial forward-chaining reasoning time. Best viewed in color.

Figure 6 shows the individual performance of each of the 18 queries. We
observe that for most of the queries, the coefficient of the linear progression of
time in function of dataset size is very small (for Q1, Q14, Q15, Q17 and Q18)
or small (for Q5, Q6, Q7, Q9, Q11, Q12, Q13 and Q16). The same figure shows
that the difference between construct execution time and body execution time
may be important when the graph output of the CONSTRUCT queries is not
restricted to a single triple pattern, like in the queries Q9, Q10 and Q11.

In Fig. 7, we focus on the 5 most expensive queries, namely Q2, Q3,Q4, Q8
and Q10, and we show the correlation between the query output size and the

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 455

0

0.
5 1

1.
50

2

4

6

8
Q1

0

0.
5 1

1.
50

2

4

6

8
Q2

0

0.
5 1

1.
50

2

4

6

8
Q3

0

0.
5 1

1.
50

2

4

6

8
Q4

0

0.
5 1

1.
50

2

4

6

8
Q5

0

0 .
5 1

1.
50

2

4

6

8
Q6

0

0.
5 1

1.
50

2

4

6

8
Q7

0

0.
5 1

1.
50

2

4

6

8
Q8

0

0.
5 1

1 .
5 20

2

4

6

8
Q9

0

0.
5 1

1.
5 20

2

4

6

8
Q10

0

0.
5 1

1.
5 20

2

4

6

8
Q11

0

0.
5 1

1.
5 20

2

4

6

8
Q12

0

0.
5 1

1.
5 20

2

4

6

8
Q13

0

0.
5 1

1.
5 20

2

4

6

8
Q14

0

0.
5 1

1.
5 20

2

4

6

8
Q15

0

0.
5 1

1.
5 20

2

4

6

8
Q16

0

0.
5 1

1.
5 20

2

4

6

8
Q17

0

0.
5 1

1.
5 20

2

4

6

8

Size (billion triples)

T
im

e(
m
in
)

Q18

Body execution time Template execution time Construct execution time

Fig. 6. CONSTRUCT queries performance. Best viewed in color.

456 A. Sanchez-Ayte et al.

construct execution time. In this Figure, the center of each circle represents the
construct execution time (y axis) of a query for a given dataset size (x axis),
and the radius of each circle represents the size of the query output size. For
Q2,Q3,Q4, the query cost can be explained both by the complexity of graph
patterns in their body and the size of their output. For Q8, the cost is due to the
size of its output since its graph pattern is very simple: a single triple pattern
with a single variable. Yet, its execution time is close to the execution time of
Q2 (whose body has an aggregate subquery) or of Q3 and Q4 (whose body has
FILTER NOT EXISTS clauses).

Figure 7 also shows that for queries like Q10 with a template size > 1, the
CONSTRUCT performance can be costly despite a small query output size. We
have analyzed that its high cost is due to join operations between tables of very
different size (with a ratio of 1/453), and the fact that the query plan computed
by Spark SQL did not choose the most efficient type of joins.

0

0.
5 1

1 .
5 2

0

2

4

6

Size (billion triples)

T
im

e(
m
in
)

Queries

Q2
Q3
Q4
Q8
Q10

Fig. 7. The 5 most expensive queries performance. Best viewed in color.

Parallel Forward-Chaining Reasoning Time. For the experiment with the
parallel algorithm, TESS runs on top of a network of 10 Docker containers: 2
containers for the Hadoop namenode and datanode. 7 containers for the Spark
Standalone cluster (1 for the master node, 6 for the worker nodes) and 1 container
for sending the Spark Application to the Spark Standalone Cluster in client
mode. We deployed 6 worker nodes because it is the maximum number of queries

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 457

in a layer of reasoning. The Spark Application executes a query per worker node.
We reduce the number of workers from 6 to 1 for setting up the experiment with
the serial algorithm for comparison purposes. Furthermore, we assign 64 GB
RAM and 4 CPU cores to each container member of the Spark Standalone
cluster.

Figure 8 shows how the TESS implementation of the parallel forward-
chaining algorithm outperforms the serial algorithm for all the datasets. The
execution time seems to grow linearly but with a much smaller coefficient than
for the serial case.

0 0.5 1 1.5 2
0

20

40

60

80

Size (billion triples)

T
im

e(
m
in
)

Parallel
Serial

Fig. 8. Parallel vs Serial performance. Best viewed in color.

The source code of the Spark cluster and CONSTRUCT-based forward chain-
ing implementation along with the 18 CONSTRUCT queries used in the exper-
iments are available in https://github.com/asanchez75/ontosides-bpe.

5 Related Work

To the best of our knowledge, CONSTRUCT queries performance has been
barely covered in two benchmarks: the Berlin SPARQL Benchmark (BSBM)
[2] and the Featured-Based SPARQL Benchmark Generation Framework (FEA-
SIBLE) [15]. However, it was restricted to centralized triplestores (e.g. Virtuoso,
Sesame, Jena Fuseki and OWLIM-SE) and the size of the biggest dataset was
232.5 millions triples.

SELECT queries performance has received more attention. In [16], an exten-
sive analysis of eleven SPARQL benchmarks has been carried out on central-
ized triplestores (e.g. Virtuoso and Fuseki). Despite one of the benchmarks
(BowlognaBench [6]) included aggregate queries, they were not considered and

https://github.com/asanchez75/ontosides-bpe

458 A. Sanchez-Ayte et al.

the survey only covered SELECT queries without aggregate. The size of the
biggest dataset in the survey was 232 millions triples.

An exhaustive evaluation of Big RDF frameworks is performed in [4]. The
survey shows how distributed storage and parallel query processing for RDF data
have evolved over time. For SPARQL parallel query processing, MapReduce
has been replaced gradually by Spark, whereas for distributed storage, Hive
and HBase has been superseeded by HDFS and Parquet. Although some of the
frameworks considered aggregate queries in their performance studies, none of
them dealt with FILTER NOT EXISTS queries. None of the approaches provided
ACID support for RDF data transactions.

Big RDF frameworks based on Spark has been studied in [1]. In contrast
with SANSA [17], Bellman [7] loads RDF data directly into Dataframes and
execute SPARQL queries (even CONSTRUCT queries) translated into Spark-
SQL. However, it does not support full SPARQL 1.1 and it is not clear if it
supports aggregate queries due to lack of documentation.

Regarding RDF storage layouts, even though the experiments reported in
[14] show that vertical partitioning and property tables outperform single table
layout for some scenarios, single table layout remains as the dominant layout in
real-world deployments (e.g. Virtuoso). The implementation of the other layouts
is a time consuming task that requires data normalization and query rewriting.

6 Conclusion

We have first shown in a real-world application that existing triplestores have
intrinsic limitations for supporting CONSTRUCT queries at big scale. Then, we
have described TESS, a novel modular Spark-based infrastructure for big RDF
triplestores that we have designed and implemented based on modern technolo-
gies for distributed computing over big data. We have built on components
offered by the growing ecosystem of Big Data SQL management tools.

A distinguishing point of TESS is that it implements part of ACID properties,
namely atomicity, which is required to reliably support CONSTRUCT-based
updates of triplestores. This is particularly crucial when CONSTRUCT queries
are used to implement forward-chaining rules reasoning.

Our experiments have demonstrated that TESS triplestores can manage full
SPARQL 1.1 CONSTRUCT queries on large datasets. We have also shown
the performance gain when we exploit TESS components to implement parallel
CONSTRUCT-based forward-reasoning. As future work, we plan to conduct a
query performance comparison between CPU-based and GPU-based TESS archi-
tecture, and a performance study of workload (supporting thousands of queries
per second) for CONSTRUCT-based ontology modularization.

Acknowledgements. This work has been supported by the the French National
Research Agency with projects LabEx PERSYVAL Lab (11-LABX-0025-01), DUNE
SIDES 3.0 (ANR-16-DUNE -0002-02), P3IA MIAI@Grenoble Alpes (ANR-19-P3IA-
0003) and CE23 CQFD (ANR-18-CE23-0003).

CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore 459

References

1. Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.:
Rdf query answering using apache spark: review and assessment. In: 2018 IEEE
34th International Conference on Data Engineering Workshops (ICDEW), pp. 54–
59 (2018). https://doi.org/10.1109/ICDEW.2018.00016

2. Bizer, C., Schultz, A.: The berlin sparql benchmark. Int. J. Semantic Web Inf.
Syst. 5, 1–24 (2009). https://doi.org/10.4018/jswis.2009040101

3. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL
query logs. VLDB J. 29(2–3), 655–679 (2020) https://doi.org/10.1007/s00778-019-
00558-9, https://hal.archives-ouvertes.fr/hal-03118422

4. Chawla, T., Singh, G., Pilli, E.S., Govil, M.: Storage, partitioning, indexing
and retrieval in big rdf frameworks: a survey. Comput. Sci. Revi. 38, 100309
(2020). https://doi.org/10.1016/j.cosrev.2020.100309, https://www.sciencedirect.
com/science/article/pii/S1574013720304093

5. Chen, Y., Kokar, M., Moskal, J.: Sparql query generator (SQG). J. Data Semant.
10, 1–17 (2021). https://doi.org/10.1007/s13740-021-00133-y

6. Demartini, G., Enchev, I., Wylot, M., Gapany, J., Cudre-Mauroux, P.:
Bowlognabench-benchmarking RDF analytics, vol. 116 (2012). https://doi.org/10.
1007/978-3-642-34044-4 5

7. (GSK), G.: Project bellman. https://gsk-aiops.github.io/bellman/, Accessed 27
Nov 2021

8. Hassanpour, S., O’Connor, M.J., Das, A.K.: Visualizing logical dependencies in
SWRL rule bases. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML
2010. LNCS, vol. 6403, pp. 259–272. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16289-3 22

9. Pointer, I.: Infoword. What is apache spark? the big data platform that crushed
hadoop. https://www.infoworld.com/article/3236869/what-is-apache-spark-the-
big-data-platform-that-crushed-hadoop.html, Accessed 05 Dec 2021

10. Laskowski, J.: The internals of delta lake. https://books.japila.pl/delta-lake-
internals/, Accessed 05 Dec 2021

11. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
713–725. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-
3 49

12. OpenLink Software: Virtuoso universal server. https://virtuoso.openlinksw.com/,
Accessed 05 Dec 2021

13. Palombi, O., Jouanot, F., Nziengam, N., Omidvar-Tehrani, B., Rousset, M.C.,
Sanchez, A.: Ontosides: ontology-based student progress monitoring on the
national evaluation system of French medical schools. Artif. Intell. Med. 96, 59–67
(2019)

14. Ragab, M., Sakr, S., Tommasini, R.: Benchmarking spark-SQL under alliterative
rdf relational storage backends (2019)

15. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE: a feature-based
SPARQL benchmark generation framework. In: Arenas, M., et al. (eds.) ISWC
2015. LNCS, vol. 9366, pp. 52–69. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25007-6 4

https://doi.org/10.1109/ICDEW.2018.00016
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://hal.archives-ouvertes.fr/hal-03118422
https://doi.org/10.1016/j.cosrev.2020.100309
https://www.sciencedirect.com/science/article/pii/S1574013720304093
https://www.sciencedirect.com/science/article/pii/S1574013720304093
https://doi.org/10.1007/s13740-021-00133-y
https://doi.org/10.1007/978-3-642-34044-4_5
https://doi.org/10.1007/978-3-642-34044-4_5
https://gsk-aiops.github.io/bellman/
https://doi.org/10.1007/978-3-642-16289-3_22
https://doi.org/10.1007/978-3-642-16289-3_22
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://www.infoworld.com/article/3236869/what-is-apache-spark-the-big-data-platform-that-crushed-hadoop.html
https://books.japila.pl/delta-lake-internals/
https://books.japila.pl/delta-lake-internals/
https://doi.org/10.1007/978-3-540-30475-3_49
https://doi.org/10.1007/978-3-540-30475-3_49
https://virtuoso.openlinksw.com/
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1007/978-3-319-25007-6_4

460 A. Sanchez-Ayte et al.

16. Saleem, M., Szárnyas, G., Conrads, F., Bukhari, S.A.C., Mehmood, Q., Ngonga
Ngomo, A.C.: How representative is a sparql benchmark? an analysis of rdf triple-
store benchmarks. In: The World Wide Web Conference, WWW 2019, pp. 1623–
1633. Association for Computing Machinery, New York (2019). https://doi.org/10.
1145/3308558.3313556

17. Stadler, C., Sejdiu, G., Graux, D., 0001, J.L.: Querying large-scale RDF datasets
using the sansa framework. In: Suárez-Figueroa, M.C., Cheng, G., Gentile, A.L.,
Guéret, C., Keet, C.M., Bernstein, A. (eds.) Proceedings of the ISWC 2019 Satellite
Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas) co-located
with 18th International Semantic Web Conference (ISWC 2019), Auckland, New
Zealand, 26–30 October 2019. CEUR Workshop Proceedings, vol. 2456, pp. 285–
288. CEUR-WS.org (2019). http://ceur-ws.org/Vol-2456/paper74.pdf

18. The Apache Software Foundation: Apache spark. https://spark.apache.org/,
Accessed 05 Dec 2021

19. The Apache Software Foundation: Apache parquet. https://parquet.apache.org/,
Accessed 05 Dec 2021

20. The Apache Software Foundation: Hadoop cluster setup. https://hadoop.
apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.
html, Accessed 05 Dec 2021

21. The Linux Foundation: Delta lake documentation. https://delta.io/, Accessed 05
Dec 2021

22. Zaharia, M., Ghodsi, A., Xin, R., Armbrust, M.: Lakehouse: a new generation
of open platforms that unify data warehousing and advanced analytics. In: 11th
Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event,
Online Proceedings, 11–15 January 2021 (2021). www.cidrdb.org, http://cidrdb.
org/cidr2021/papers/cidr2021 paper17.pdf

https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1145/3308558.3313556
http://ceur-ws.org/Vol-2456/paper74.pdf
https://spark.apache.org/
https://parquet.apache.org/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://delta.io/
www.cidrdb.org
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

Matching Multiple Ontologies to Build
a Knowledge Graph for Personalized

Medicine

Marta Contreiras Silva(B), Daniel Faria, and Catia Pesquita

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal

mcdsilva@fc.ul.pt

Abstract. A rich biomedical knowledge graph can support the multi-
domain data integration necessary for the application of Artificial Intel-
ligence models in personalised medicine. Constructing such a knowl-
edge graph from already available biomedical ontologies relies on ontol-
ogy matching, however, current ontology matching systems are geared
towards the alignment of pairs of ontologies of the same domain one at
a time. This approach, when applied to a multi-domain problem such
as personalised medicine in an all vs. all fashion, poses scalability issues
while also ignoring the particularities of the multi-domain aspect.

In this work we evaluate a state-of-the-art ontology matching system,
AgreementMakerLight, in the task of building a network of 28 integrated
ontologies to construct a knowledge graph for Explainable AI in person-
alised oncology, highlighting its shortcomings. To address them, we have
developed a novel holistic ontology alignment strategy building on Agree-
mentMakerLight that clusters ontologies based on their semantic overlap
measured by fast matching techniques with a high degree of confidence,
and then applies more sophisticated matching techniques within each
cluster. We implemented two within cluster alignment strategies, one
based on pairwise alignment and another on incremental alignment.

The within-cluster incremental alignment reduced alignment time by
80% when compared with within-cluster pairwise alignment, achieving
88% coverage of its mappings. Compared to an all vs. all pairwise app-
roach, holistic approaches reduce total running time by up to 60%.

Keywords: Ontology matching · Holistic ontology matching ·
Biomedical ontologies · Knowledge graphs

1 Introduction

Data-centric approaches like personalized medicine have taken the forefront in
biomedical research, driven by the increasing availability of biomedical data. Arti-
ficial Intelligence (AI) is positioned as a promising solution to handle these large
heterogeneous datasets composed of various types of data (e.g. genomic, clinical
and image data). However, the evolution of AI has favored black-box approaches

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 461–477, 2022.
https://doi.org/10.1007/978-3-031-06981-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_27&domain=pdf
https://doi.org/10.1007/978-3-031-06981-9_27

462 M. C. Silva et al.

that, while effective, do not foster user trust or understanding—aspects which are
critical in personalized medicine, as it often involves life-or-death decisions.

To address this limitation of black-box AI approaches, there have been
renewed efforts towards developing explanatory mechanisms for AI [4]. Frequent
among the approaches proposed for explainable AI (XAI) is the use of Knowl-
edge Graphs (KG), which comprehensively encode the knowledge in a domain,
and can be leveraged to support user-friendly explanations when used in concert
with AI methods [3,16]. The challenge is that, the more complex the domain, the
more complex and comprehensive will be the KG needed to support XAI in that
domain, and few domains approach the complexity of personalized medicine.

The area of personalized medicine deals with knowledge stemming from many
specific subdomains that interact in various ways, ranging from molecules (e.g.
chemical compounds, genes, and proteins) to clinical and demographic factors[10].
Accordingly, ontological representations of these domains have been the subject of
intense investigation. In BioPortal [19], an online repository of biomedical ontolo-
gies, there are currently more than 800 ontologies (totalling almost 9 million
classes). Some of these ontologies are designed and developed as community efforts
that function as community-approved representations of reality, while others are
developed by single research teams and serve a more specific and localized pur-
pose. Thus, rather than build a KG from the ground up, we posit that one can
harness the wealth of publicly available knowledge through ontology matching to
build the ontological layer of a KG for personalized medicine [23].

The KATY project1 aims to develop an AI-empowered personalized medicine
system to assist medical professionals and researchers in diagnosing patients more
accurately, making predictions about their future health, and recommending bet-
ter treatments. KATY will tackle the challenge of translating AI-based sugges-
tions into practical decision-making processes and treatment strategies that clini-
cians can understand and trust by combining high performing black-box machine
learning approaches with a comprehensive knowledge graph. The KG will serve as
input to AI methods (e.g. directly, through embeddings) as well as encode the AI
outcomes themselves to create a shared semantic space for data, scientific context
and predictions capable of supporting explanation methods [31].

In a preliminary step, a careful selection of ontologies that span the domain
of interest was conducted, as the goal is to reconcile the ontologies into a sin-
gle cohesive knowledge model, through ontology matching techniques, to form
the backbone of the knowledge graph. This resulted in a catalogue of relevant
ontologies and controlled vocabularies which comprises 78 ontologies, of which
16 are referenced directly from the public data resources, and the remaining
62 were selected from our survey of BioPortal. Of these 78 ontologies, 28 were
considered core to the KATY project, and the remaining 50 were considered
potentially relevant, to be used only if the coverage of the 28 core ontologies is
found insufficient when integrating datasets into the KATY knowledge graph.

This paper describes the process of matching the 28 core ontologies to build
an integrated semantic backbone for the knowledge graph, focusing on finding

1 http://katy-project.eu/.

http://katy-project.eu/

Matching Multiple Ontologies to Build a KG for Personalized Medicine 463

simple equivalence mappings between pairs of entities belonging to the set of
ontologies. We further detail the requirements for ontology matching in this
application, discuss the challenges found when applying a state of the art ontol-
ogy matching system, and present a novel approach for holistic ontology match-
ing that builds on an existing system, AML [9], addressing the requirements and
challenges in biomedical ontology holistic matching. We performed a series of
experiments to demonstrate the impact of the holistic approach and measure
improvements over the baseline state of the art system.

2 Challenges in Holistic Biomedical Ontology Matching

Ontology matching (or alignment) is the process of establishing mappings (or
correspondences) relating the entities (classes, properties or individuals) of two
ontologies with overlapping domains. A mapping is usually represented as a
tuple < e1, e2, r, c > where e1 and e2 are entities of the two ontologies, r is the
semantic relation between them (e.g. ≡, ≥, ≤, ⊥) and optionally c is a confidence
score indicating how certain about the mapping is the person or algorithm who
produced it [7]. A collection of mappings between two ontologies is called an
alignment, and is typically stored in a file external to the ontologies, in the
Alignment RDF format2 that is the de facto standard in the field.

Matching biomedical ontologies is a challenging task on its own [8], both
in terms of computational resources (as they are typically quite large) and
in terms of the richness and complexity of the information available to match
them, including a substantial lexical component where homonyms and synonyms
abound [25], the presence of cross-references that establish correspondences but
with no formal semantics, and the presence of logical definitions which corre-
spond to complex ontology mappings [15,20].

Holistic ontology matching is an extension of the pairwise ontology matching
process for a set Ω = {O1, ..., ON} of ontologies with N ≥ 2, where a final
alignment A is produced between all of them [18]. The basic approach to do
this consists of uniting the alignments between all pairwise combinations of the
ontologies to align, which is evidently a sub-optimal strategy computationally
as in implies performing a quadratic number of ontology alignment steps.

This holistic matching challenge has been recognized by the ontology match-
ing, schema matching and linked data communities [22,27], with strategies to
address it being usually based on exploring two different concepts: partitioning
the search space in groups within which pairwise alignment is employed [11] or
applying incremental matching according to a predefined order [13,30]. Gruetze
et al. [11] proposed grouping of linked data concepts by topic using Wikipedia
and then running an alignments only between concepts in the same group.
Saleem et al. [30] developed a method to incrementally create an integrated
schema encompassing all input schema trees, by first clustering the nodes based
on linguistic label similarity and then applying a tree mining technique. Hertling
et al. [13] analyzed the impact of the ordering of ontologies in linear executions
2 https://moex.gitlabpages.inria.fr/alignapi/format.html.

https://moex.gitlabpages.inria.fr/alignapi/format.html

464 M. C. Silva et al.

of alignments to produce an alignment of multiple ontologies and demonstrated
that near-optimal results can be achieved with linear efforts. Orthogonally to
these works, Megdiche et al. [18] developed an approach based on linear pro-
gramming that is able to find a stable alignment between multiple ontologies
independently of the order of alignment tasks.

Building an integrated KG containing multiple ontologies requires, not only
holistic matching to produce an external alignment between them, but actually
merging the ontologies. Osman et al. [21] categorized ontology merging works
according to whether they are applied after all pairwise alignments are found [1,
5] or integrated into an incremental matching approach starting from a seed
ontology [2,32].

Thus, aligning and integrating the 28 selected KATY ontologies to form
the backbone of a KG for precision oncology requires tackling challenges at
these three levels: biomedical ontology matching, holistic ontology matching, and
holistic ontology integration. Moreover, it also requires addressing requirements
in terms of quality, coverage and scalability.

Ensuring high quality mappings between the ontologies is a strong require-
ment for a system that must work with a minimal human involvement due to the
size of the task, but has a high-stakes target application in healthcare. Align-
ments need to achieve both high precision and high recall, since both types of
errors can compromise XAI approaches, either by proposing wrong explanations
or not finding suitable ones.

Achieving a sufficient coverage of all domains in personalized oncology is
mandatory to make sure that all data required to train the AI models is well-
described according to domain ontologies in a way that supports building expla-
nations. The integration of molecular and clinical data is the key to personalized
medicine, which seeks to understand the play between genotype, phenotype and
environment and how it bears on the effectiveness of treatments or the prognosis
of diseases. This aspect requires that not only the KG covers multiple domains
but that it also includes sufficient granularity.

Finally, scalability must also be considered. Matching 28 ontologies means
that there are nearly 1.2 million classes plus their associated properties and
individuals that need to be processed. Moreover, since ontologies evolve and
new relevant data may be added to the KG, the time required to build the
network of ontologies should not be a limiting factor in updating the system.

To build a high quality network of biomedical ontologies we need to strike
a balance between quality, coverage and scalability. Filtering out lower quality
mappings may result in lower coverage, higher coverage requires the ability to
align more ontologies, but more sophisticated ontology matching algorithms that
are able to produce higher quality and higher coverage alignments are harder to
scale.

Matching Multiple Ontologies to Build a KG for Personalized Medicine 465

3 Enhancing AML for Holistic Ontology Matching

3.1 AgreementMakerLight

AgreementMakerLight (AML) is an automated ontology matching system predi-
cated on the design principles of scalability and extensibility [9]. It has been one
of the best performing systems in the yearly Ontology Alignment Evaluation
Initiative (OAEI) for the past eight years, excelling particularly in tracks involv-
ing biomedical ontologies [26]. This is thanks to features such as the weighting
system it uses to differentiate labels and synonyms enabling fine-grained lexical
matching, or its use of cross-references and logical definitions (which are singular
to the biomedical domain) [8]. Given the stellar performance of AML’s matching
algorithms in biomedical ontology matching, using it as the baseline matching
system is an added guarantee of the quality of the produced mappings.

Of note, AML’s lexical matching, cross-reference matching and logical-
definition matching algorithms are all implemented using a hash-search strategy
that means they run in linear time [8], and therefore can be used for profiling the
suite of ontologies to match with regard to their overlap, in a holistic matching
scenario.

However, like all matching systems participating in the OAEI, AML is only
prepared to perform pairwise matching of ontologies, and produces ontology align-
ments that are external to the ontologies, in the Alignment RDF format. It
doesn’t include the functionality of integrating ontologies through their alignment,
which would be required to build a KG automatically through ontology matching.
Indeed, building a KG automatically through the alignment of multiple ontologies
is beyond the state of the art in ontology matching evidenced by the OAEI.

3.2 Extensions to AML

Setting aside the possibility of matching multiple ontologies simultaneously, and
contemplating only the scenarios of pairwise matching or incremental matching,
the only core functionality missing from AML for holistic ontology matching is
the ability to merge two ontologies through their alignment, with a simple merge,
as defined by [21].

We extended AML by implementing the functionality of converting an RDF
alignment into an OWL ontology that imports the aligned ontologies and adds
the axioms corresponding to the mappings: equivalentClass or subClass for equiv-
alence or subsumption mappings between classes; equivalentProperty or subProp-
erty for equivalence or subsumption mappings between properties; and sameIn-
dividual axioms for equivalence mappings between individuals. To enable the
pairwise strategy, we also implemented the functionality of merging two or more
ontologies (or OWL alignments) into a single ontology, which will be necessary
to combine multiple pairwise alignments into a single KG. Furthermore, for both
the pairwise and the incremental strategies, we implemented the functionality
of merging an ontology with all its imports, as it would be unwieldy to have a
knowledge graph with OWL import statements for several local OWL ontology
and/or alignment files.

466 M. C. Silva et al.

3.3 Implementing Holistic Matching Strategies Using AML

Using AML and the extensions detailed above, we implemented two distinct
holistic matching strategies: pairwise and incremental, which can be preceded
by a clustering step and applied within-cluster, or applied globally to the full
suite of ontologies to match. Since the global algorithms are the same as the
within-clustering algorithms in the particular case where the number of clus-
ters is 1, we present only the more general within-cluster algorithms. The use
of clustering is motivated by the fact that there are multiple near-orthogonal
sub-domains in the biomedical domain, and we can isolate groups of ontologies
from each sub-domain, for which performing sophisticated ontology matching
against ontologies of other sub-domains would likely produce more erroneous
than correct mappings.

To enable clustering, we perform an initial anchoring step for all pairwise
combinations of ontologies using linear-time matching algorithms, whereby we
calculate the fraction of classes of the smallest ontology of each pair that have
the same URI, direct cross-references, shared cross-references, overlapping logical
definitions, or equivalent labels or synonyms to classes in the largest ontology of
the pair. This anchoring is substantially quicker than performing a full pairwise
matching strategy, and has the objective of determining the overlap between
all ontologies with a high degree of confidence. From the anchoring results, we
build an affinity matrix indicating the semantic overlap between each pair of
ontologies, which we use as input for spectral clustering, to define groups of
ontologies with a higher level of overlap and therefore likely within the same
sub-domain.

In the within-Cluster Pairwise Alignment (CPA) strategy, each pairwise com-
bination of the ontologies in each cluster is matched then merged, then all the
merged ontology pairs of a cluster are combined and merged into a KG3, and
finally the KGs of each cluster are merged into a final single KG using the
anchoring algorithm, as detailed in Algorithm 1.

In thewithin-Cluster IncrementalAlignment (CIA) strategy, the pair of ontolo-
gies within each cluster that has the greatest overlap is matched and merged, then
the resulting merged ontology is matched against the next ontology in the cluster,
and so on until all ontologies in the cluster have been matched. Then, anchoring
is performed also incrementally between the KG produced from each cluster, to
produce a final single KG. The algorithm is detailed in Algorithm 2.

In both strategies, we used AML’s automatic matching with default config-
urations, but with no ontologies used as background knowledge, and with the
alignment repair step switched off. Using ontologies as background knowledge
would be nonsensical in this setting, as any ontology that could be used effec-
tively as background knowledge source should be, in principle, included in the
suite of ontologies to match (as the goal is to build a comprehensive knowledge
graph) and therefore will be merged with the other ontologies which is effectively

3 We use KG to denote the integrated network of ontologies which constitute the
semantic backbone of the full fledged KG.

Matching Multiple Ontologies to Build a KG for Personalized Medicine 467

Algorithm 1. Within-cluster pairwise alignment (CPA)

input: C->O (map of clusters to ontologies)

init: CM ->OM = new map of cluster to ontologies

init: KG = new list of ontologies

init: OK = new list of ontologies

for Ci in C:

Oi = C.get(Ci)

for j = 0 to Oi.length -1:

for k in j+1 to Oi.length:

A = AML.match(Oi[j],Oi[k])
O = merge(convert(A))

OMi.add(O)

CM ->OM .put(Ci,OMi)

KG[i] = OMi[0]

for j = 1 to OMi.length:

merge(KG[i],OMi[j])
for i = 0 to KG.length -1:

for j = i+1 to KG.length:

A = AML.anchor(KG[0],KG[0])
O = merge(convert(A))

OK.add(O)

init: KGF = OK[0]
for i = 1 to OK.length:

merge(KGF ,OK[i])
output: KGF

Algorithm 2. Within-cluster incremental alignment (CIA)

input: C->O (map of clusters to sorted ontologies)

init: KG = new list of ontologies

for Ci in C:

Oi = C.get(Ci)

KG[i] = Oi[0]

for j = 1 to Oi.length:

A = AML.match(KG[i],Oi[j])
KG[i] = merge(convert(A))

init: KGF = KG[0]
for i = 1 to KG.length:

A = AML.anchor(KGF ,KG[i])
KGF = merge(convert(A))

output: KGF

equivalent to having it as a source of background knowledge. As for the choice
not to perform repair, it is predicated on our desire for completeness of the
alignment over coherence [24]. Furthermore, alignment repair algorithms take
arbitrary choices when faced with conflicting mappings to remove, so while it is

468 M. C. Silva et al.

critical to ensure the final KG is coherent, this should involve human revision to
ensure the mappings removed or edited are indeed inaccurate.

4 Integrating Biomedical Ontologies in a Personalized
Oncology KG

4.1 Ontologies

The goal of our study is the integration of the 28 ontologies selected to cover
the personalized oncology domain into a single KG4. These ontologies are listed
in Table 1, together with the biomedical sub-domains they cover, which total
19, from molecular biology to drug-side effects. Taken together, these ontologies
contain 1,191,785 classes, 2,634 properties and 397,535 individuals.

4.2 Alignment Strategies

To integrate the 28 KATY ontologies, we compared the two holistic matching
strategies, CPA and CIA. Additionally, as a reference point, we also tested the
global pairwise alignment (GPA) strategy, which corresponds to a naive use of
the state of the art in ontology matching (and algorithmically, as detailed in
Sect. 3, is the same as CPA when the number of clusters is 1) (Fig. 1).

Fig. 1. Overview of the alignment strategies

4.3 Results

The global pairwise alignment (GPA) of the 28 ontologies translated into 378
alignment runs resulting in 378 pairwise alignments with a total of more than
half a million mappings. The duration of the loading and matching processes5

and total number of mappings found are presented in Table 3.

4 Although the UMLS provides mappings between some of our ontologies, its usage
license does not allow public reuse.

5 Experiments were run in a machine with 100Gb of available RAM.

Matching Multiple Ontologies to Build a KG for Personalized Medicine 469

Table 1. Ontologies used and their domains

Acronym Ontology Domains Classes

ACGT-
MO

Cancer Research and Manage-
ment ACGT Master Ontology

Clinical feature, sample status 1769

ATC Anatomical Therapeutic Chem-
ical Classification

Drug 6567

CCTOO Cancer Care: Treatment Out-
come Ontology

Response to treatment, drug
screening

1133

ChEBI Chemical Entities of Biological
Interest Ontology

Metabolic, drug 171058

CL Cell Ontology Cellular 10984

CLO Cell Line Ontology Cell line 44873

CMO Clinical Measurement Ontology Clinical feature, sample status 3054

DCM DICOM Controlled Terminol-
ogy

Histological images 4561

DOID Human Disease Ontology clinical feature 17642

DTO Drug Target Ontology drug target interaction 10075

EFO Experimental Factor Ontology Experimental 28816

FMA Foundational Model of
Anatomy

Anatomical data 78977

GENO Genotype Ontology Genomic 425

GO Gene Ontology Genomic, biological pathway 50713

HCPCS Healthcare Common Procedure
Coding System

Clinical feature, drug sampling 7094

HGNC HUGO Gene Nomenclature Genomic 32917

HP Human Phenotype Ontology Biological feature 27482

ICDO International Classification of
Diseases Ontology

Clinical feature 1313

LOINC Logical Observation Identifier
Names and Codes

Clinical feature 268552

MONDO Mondo Disease Ontology Clinical feature 43735

NCIT National Cancer Institute The-
saurus

Biological feature, clinical fea-
ture

166884

OAE Ontology of Adverse Events Drug side effect, response to
treatment

5762

OMIM Online Mendelian Inheritance in
Man

Biological feature 97261

OPMI Ontology of Precision Medicine
and Investigation

Clinical feature, clinical trial 2939

ORDO Orphanet Rare Disease Ontol-
ogy

Clinical feature 14886

PDQ Physician Data Query Clinical feature, drug screening 13452

PMAPP-
PMO

PMO Precision Medicine Ontol-
ogy

Genomic, clinical feature, clini-
cal trial, sampling

76154

SO Sequence Ontology Genomic, transcriptomic 2707

470 M. C. Silva et al.

The two clustering-based approaches, CPA and CIA, require ontologies to
be clustered, which involves an initial step of anchoring followed by spectral
clustering, as detailed in Sect. 3. The anchoring step also translated into 378
(lightweight) alignment runs resulting in a set of 378 pairwise alignments, as
well as in an affinity matrix computed based on these alignments. The duration
and total mappings found by the anchoring step are also presented in Table 3.

Figure 2 presents a heatmap representation of the semantic overlap computed
by the anchoring step. Individual heatmaps for each component of the anchoring
process are available as supplementary materials6. A few ontologies have a high
number of direct cross-references between them or reuse classes from each other
extensively. Logical definitions are less relevant to establish the semantic overlap
between ontologies, since the majority of ontologies used does not declare them.
The Lexical Matcher is the method that is able to find more correspondences
for more ontology pairs.

Fig. 2. Heatmap of the semantic overlap between ontologies

6 https://github.com/liseda-lab/holistic-matching-aml.

https://github.com/liseda-lab/holistic-matching-aml

Matching Multiple Ontologies to Build a KG for Personalized Medicine 471

The affinity matrix was then used as input to clustering with spectral clus-
tering. We tested cluster numbers between 3 and 6, and empirically selected 4
clusters, with the aid of the constructed heatmaps, which are shown in Table 2.

Table 2. Ontologies organized by cluster

Cluster Ontologies Classes

C1 NCIT, PDQ, LOINC, ChEBI, CCTOO 621079

C2 PMAPP-POM, GO, HP, ATC, FMA, CL, CLO,
OAE, ACGT-MO, ICDO, SO, HCPCS, GENO

314820

C3 CMO, OPMI 5993

C4 MONDO, ORDO, DOID, OMIM, EFO, HGNC,
DTO, DCM

249893

We applied the CPA and CIA strategies on the four clusters. In the CPA, the
alignment tasks are run between all pairwise combinations of ontologies within
each cluster, in the same manner as the GPA strategy. This translated into 117
pairwise alignment tasks and output alignments, which were merged within each
cluster to produce 4 intermediate cluster KGs. In the CIA, only n-1 alignment
tasks are required to integrate the n ontologies in each cluster incrementally,
so 24 alignment tasks were necessary in total to produce 4 intermediate cluster
KGs. The final step of each strategy was the merging of the cluster KGs through
the anchoring algorithm to create a fully integrated KG. Again, the statistics of
the alignment processes are summarized in Table 3.

Since we employed the GPA strategy only as a reference point for the state
of the art, we did not perform the merging of the pairwise alignments into a
single KG (as it would be beyond the state of the art). Thus, the GPA runtime
is directly comparable to the sum of anchoring and within-cluster alignment
runtimes for the CPA and CIA strategies. We note that, while the GPA takes
more than 31 h to complete, anchoring+CPA takes less than 24 h and anchor-
ing+CIA less than 16 h. It is obvious that although matching times are greatly
reduced in CPA (by nearly 12 h) and CIA (by nearly 19 h) when compared with
GPA, the process of loading the ontologies using the OWL API is responsible a
considerable portion of the time spent in running the alignment processes.

Table 4 presents the final alignment sizes produced by each strategy7, where
for CPA and CIA, the final alignment size results in combining the within-
cluster mappings with between-cluster anchoring mappings, where the latter
contributed over 200,000 mappings for both strategies. CPA produced a final
KG that is 60% smaller than the total GPA mappings, while CIA produced
one that is 65% smaller. We note that CPA strategy led to a greater number
of mappings than the original global anchoring, whereas the CIA strategy led
to a number of mappings just under the global anchoring. While this might

7 Individual statistics available in the supplementary materials.

472 M. C. Silva et al.

Table 3. Alignment results

Strategy Runtime (hh:mm) Alignment

Load Match Total Mappings Tasks

GPA 11:47 19:51 31:37 554547 378

Anchoring 11:47 01:59 13:46 427300 378

CPA 02:25 07:42 10:07 219021 117

CIA 01:05 01:05 02:10 193503 24

GPA: global pairwise alignment. CPA: within-
cluster pairwise alignment. CIA: within cluster
incremental alignment.

suggest that the CIA strategy is losing relevant mappings, it is in fact a natural
consequence of the incremental strategy, due to the fact that AML is configured
to produce (mostly) 1 to 1 alignments. Thus, if in the pairwise strategy we
have 3 mappings between equivalent classes c1A, c1B and c1C of ontologies A,
B and C, in the incremental strategy we would have only 2 mappings, since
once ontologies A and B are combined into AB in a first iteration, AML will
generally produce only 1 mapping between each class of AB and C, so c1C would
be mapped to either c1A or c1B, but not both. We note, however, that the third
mapping would be semantically redundant, as it is implied by other two. Thus,
the CIA strategy is expected to capture less mappings than the CPA strategy,
but most of the missing mappings will be semantically redundant. A comparison
of the alignments produced by CPA and CIA revealed that all CIA mappings
are contained in the CPA alignment, with CIA covering 88% of the mappings
found by CPA.

Table 4. Merged alignments results

Strategy Total Mappings

GPA 554547

CPA+anchoring 442649

CIA+anchoring 417131

GPA: global pairwise alignment.
CPA: within-cluster pairwise align-
ment. CIA: within cluster incremen-
tal alignment.

4.4 Discussion

The holistic alignment of real world ontologies is a challenge that state of the
art ontology matching systems that compete in the OAEI have yet to address.
The very good performance of systems such as AML[17] and LogMap[14] in
the biomedical tracks at OAEI[12] is impressive, but pales in comparison to the
challenges of matching ontologies that have not stood the scrutiny applied to

Matching Multiple Ontologies to Build a KG for Personalized Medicine 473

benchmark ontologies in organized challenges. In the course of this work, we
encountered several hurdles due to syntactical issues in the ontologies or unex-
pected uses of some properties that had to be solved to ensure adequate coverage.
As an example we highlight the case of the Experimental Factor Ontology (EFO)
ontology that establishes cross-references between a single class and 77 classes in
the Human Disease Ontology (DOID). A cross-reference is usually interpreted
as an equivalent or closely related class, and this is explored by AML to produce
equivalence mappings, but in this case the underlying relation between the one
class and the 77 is one of subsumption. Addressing such cases correctly, will
require adapting AML.

A recognized challenge in holistic matching is that the order of the matching
tasks can impact the quality of the final alignment [13]. To circumvent this issue,
[18]) developed a method that performs simultaneous matching of ontologies
but unfortunately results in substantial losses in performance when compared to
pairwise methods. The cost of determining the order for incremental matching
is not considered by other works (e.g. [13]), however we argue that it must be
considered a part of the alignment process. Moreover, employing simply lexical
similarity is less than ideal in the biomedical domain where there is a high level of
synonymy that is not always captured by the lexical component of the ontologies.
In this work, we employ the same method to determine cluster affiliation and
matching order, which is based on the semantic overlap between ontologies as
measured by very high lexical similarity but also based on cross-references and
logical definitions, which are particular to the biomedical domain. While in other
works, clustering or tree mining is employed to determine the order of matching,
we chose to apply clustering to actually partition the search space. This not
only allowed a reduction of the matching tasks, but since clusters are based
on semantic overlap and group together ontologies of the same domain, it can
also mitigate the problem of false positives caused by homonyms. Let’s take
the example of the class Gingiva in the Foundational Model of Anatomy (FMA)
ontology and the class Gum in the National Cancer Institute Thesaurus (NCIT).
While ‘gum’ and ‘gingiva’ are synonymous words, in this case Gum actually refers
to a type of chemical. However, since NCIT and FMA were actually placed in
different clusters, the impact of these type of mappings can be minimized.

Although it is not possible to directly measure the quality of the resulting
alignments short of a manual evaluation (as no reference alignments exist for
these ontologies), an analysis of the number of mappings obtained can shed light
on some interesting aspects. The GPA represents an upper bound on the num-
ber of mappings. It finds 120 thousand more mappings that anchoring, which
we hypothesize to have a lower precision but increased recall, since the extra
method employed by the full AML pipeline compared to anchoring are mostly
methods that were designed to increase recall, assuming that the performance of
AML in these ontologies is comparable to its performance in the OAEI biomed-
ical benchmarks. One advantage of the clustering-based approaches is that they
have the potential to increase the precision of mappings between clusters, by only
establishing mappings based on the high precision and lower recall anchoring

474 M. C. Silva et al.

strategy, while increasing recall within the clusters, by employing more sophisti-
cated alignment methods. Moreover, as detailed in Sect. 4.2, the CIA strategy is
expected to find less mappings than the CPA strategy, but these will be mostly
semantically redundant mappings.

5 Conclusions

The rich panorama of both publicly available data and ontologies in the biomed-
ical domain represents an opportunity for developing explainable knowledge-
enabled systems. In multi-domain areas, such as personalized medicine, this
requires the integration of multiple data sources and ontologies. Holistic ontology
matching and integration holds the promise to scale semantic data integration
to multiple sources [28], however holistic ontology matching in the biomedical
domain is still an open challenge.

We have developed a novel approach for holistic ontology matching that
builds on an existing system, AML[9], addressing the requirements and chal-
lenges of the biomedical domain. We demonstrated that the straightforward
application of the pairwise alignment approach to all ontology pairs takes up to
100% more time than the novel clustering-based approaches. We further demon-
strated that the within-cluster incremental alignment approach is five times
faster than the within-cluster pairwise alignment approach. All approaches were
able to generate a fully integrated KG, meaning that all ontologies have mappings
to one or more of the other ontologies, effectively responding to the coverage
requirement. The quality assessment of the resulting alignment is not straight-
forward, since there are no holistic reference alignments within the biomedical
domains, and out of the 378 pairwise alignments, only one pair is covered by
an existing reference (FMA-NCI) but it employs an outdated version of the
ontologies and was produced semi-automatically.

The proposed approach can be extended with further refinements. To increase
the coverage and semantic richness of the KG, complex mappings can be applied
to more accurately capture the relations between their entities. While the KG
construction will be mostly automated, expert feedback will be paramount to
ensure an accurate KG that can support explanations. To make the most effi-
cient use of feedback, we will develop algorithms to identify potentially doubtful
mappings that require user validation, and algorithms that propagate the user
feedback automatically [6].

The experience of applying a state of the art ontology matching system to a
large set of real world biomedical ontologies for holistic matching and integration
resulted in lessons learnt for future endeavours. One of the identified challenges
was the comparative evaluation of the alignment quality produced by pairwise
and holistic approaches. One future opportunity is to build upon the set of
reference alignments made available by the OAEI to create a holistic reference
alignment following the approach described by Roussille et al.[29]. Another
lesson was the fact that the ontology loading times slow down the alignment
process substantially, also this was partly due to the fact that AML still employs

Matching Multiple Ontologies to Build a KG for Personalized Medicine 475

an older version (3.4) of the OWL API. Preliminary testing showed that a new
version of the OWL API (5.1) speeds up the loading by a factor of 2. Perhaps the
biggest challenge was in handling the varying degrees of quality of the ontologies,
with formatting issues and non-standard uses of the cross-reference property that
required ad hoc solutions to circumvent, and will require further extensions to
AML to handle more adequately.

Building on decades of work by the semantic web and biomedical ontologies
communities, we have developed an approach for holistic matching and inte-
gration of ontologies from multiple domains to build KG to support AI-based
personalized cancer therapy. The size, diversity and complexity of the under-
lying ontologies and overarching domain represented significant challenges that
required evolving the current state of the art in ontology matching.

Acknowledgments. This work was supported by FCT through the LASIGE Research
Unit (UIDB/00408/2020 and UIDP/00408/2020). It was also partially supported by
the KATY project which has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No. 101017453.

References

1. Babalou, S., Grygorova, E., König-Ries, B.: CoMerger : a customizable online tool
for building a consistent quality-assured merged ontology. In: Harth, A., et al.
(eds.) ESWC 2020. LNCS, vol. 12124, pp. 19–24. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-62327-2 4

2. Caldarola, E.G., Rinaldi, A.M.: An approach to ontology integration for ontology
reuse. In: 2016 IEEE 17th International Conference on Information Reuse and
Integration (IRI), pp. 384–393. IEEE (2016)

3. Chari, S., Gruen, D.M., Seneviratne, O., McGuinness, D.L.: Directions for explain-
able knowledge-enabled systems. arXiv preprint arXiv:2003.07523 (2020)

4. Chari, S., Gruen, D.M., Seneviratne, O., McGuinness, D.L.: Foundations of
explainable knowledge-enabled systems. arXiv preprint arXiv:2003.07520 (2020)

5. Chatterjee, N., Kaushik, N., Gupta, D., Bhatia, R.: Ontology merging: a practical
perspective. In: Satapathy, S.C., Joshi, A. (eds.) ICTIS 2017. SIST, vol. 84, pp.
136–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63645-0 15

6. Cruz, I.F., Stroe, C., Palmonari, M.: Interactive user feedback in ontology matching
using signature vectors. In: ICDE 2012, pp. 1321–1324. IEEE (2012)

7. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38721-0

8. Faria, D., Pesquita, C., Mott, I., Martins, C., Couto, F.M., Cruz, I.F.: Tackling
the challenges of matching biomedical ontologies. J. Biomed. Semant. 9(1), 1–19
(2018)

9. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The
AgreementMakerLight ontology matching system. In: Meersman, R., et al. (eds.)
OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41030-7 38

10. Ferreira, J.D., Teixeira, D.C., Pesquita, C.: Biomedical ontologies: coverage,
access and use. In: Wolkenhauer, O. (ed.) Systems Medicine Integrative, Qual-
itative and Computational Approaches, pp. 382–395. Academic Press, Else-

https://doi.org/10.1007/978-3-030-62327-2_4
https://doi.org/10.1007/978-3-030-62327-2_4
http://arxiv.org/abs/2003.07523
http://arxiv.org/abs/2003.07520
https://doi.org/10.1007/978-3-319-63645-0_15
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38

476 M. C. Silva et al.

vier (2020). https://doi.org/10.1016/B978-0-12-801238-3.11664-2, http://www.
sciencedirect.com/science/article/pii/B9780128012383116642

11. Gruetze, T., Böhm, C., Naumann, F.: Holistic and scalable ontology alignment for
linked open data. LDOW 937, 1–10 (2012)

12. Harrow, I., et al.: Matching disease and phenotype ontologies in the ontology align-
ment evaluation initiative. J. Biomed. Semant. 8(1), 1–13 (2017)

13. Hertling, S., Paulheim, H.: Order matters: matching multiple knowledge graphs.
arXiv preprint arXiv:2111.02239 (2021)

14. Jiménez-Ruiz, E.: Logmap family participation in the OAEI 2020. In: Proceedings
of the 15th International Workshop on Ontology Matching (OM 2020), vol. 2788,
pp. 201–203. CEUR-WS (2020)

15. Köhler, S.: Improving ontologies by automatic reasoning and evaluation of logical
definitions. BMC Bioinf. 12, 418 (2011)

16. Lecue, F.: On the role of knowledge graphs in explainable AI. Semantic Web 11(1),
41–51 (2020)

17. Lima, B., Faria, D., Couto, F.M., Cruz, I.F., Pesquita, C.: Oaei 2020 results for
aml and amlc. (2020)

18. Megdiche, I., Teste, O., Trojahn, C.: An extensible linear approach for holistic
ontology matching. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M.,
Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 393–410.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4 24

19. Noy, N.F., Shah, N.H., Whetzel, P.L., et al.: Bioportal: ontologies and integrated
data resources at the click of a mouse. Nucleic Acids Res. 37(2), W170–W173
(2009)

20. Oliveira, D., Pesquita, C.: Improving the interoperability of biomedical ontologies
with compound alignments. J. Biomed. Semant. 9(1), 1–13 (2018)

21. Osman, I., Ben Yahia, S., Diallo, G.: Ontology integration: approaches and chal-
lenging issues. Inf. Fusion 71, 38–63 (2021)

22. Otero-Cerdeira, L., Rodŕıguez-Mart́ınez, F.J., Gómez-Rodŕıguez, A.: Ontology
matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

23. Pesquita, C.: Towards semantic integration for explainable artificial intelligence in
the biomedical domain. In: BIOSTEC 2021, vol. 5, pp. 747–753 (2020)

24. Pesquita, C., Faria, D., Santos, E., Couto, F.M.: To repair or not to repair: rec-
onciling correctness and coherence in ontology reference alignments. In: Ontology
Matching (2013)

25. Pesquita, C., Faria, D., Stroe, C., Santos, E., Cruz, I.F., Couto, F.M.: What’s in
a ‘nym’? synonyms in biomedical ontology matching. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 526–541. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41335-3 33

26. Pour, N., Algergawy, A., Amini, R., Faria, D., et al.: Results of the ontology align-
ment evaluation initiative 2020. In: OM 2020, vol. 2788, pp. 92–138. CEUR-WS
(2020)

27. Rahm, E.: Towards large-scale schema and ontology matching. In: Schema Match-
ing and Mapping, pp. 3–27. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-16518-4 1

28. Rahm, E.: The case for holistic data integration. In: Pokorný, J., Ivanović, M.,
Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 11–27. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44039-2 2

29. Roussille, P., Megdiche, I., Teste, O., Trojahn, C.: Boosting holistic ontology
matching: generating graph clique-based relaxed reference alignments for holis-
tic evaluation. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.)

https://doi.org/10.1016/B978-0-12-801238-3.11664-2
http://www.sciencedirect.com/science/article/pii/B9780128012383116642
http://www.sciencedirect.com/science/article/pii/B9780128012383116642
http://arxiv.org/abs/2111.02239
https://doi.org/10.1007/978-3-319-46523-4_24
https://doi.org/10.1007/978-3-642-41335-3_33
https://doi.org/10.1007/978-3-642-41335-3_33
https://doi.org/10.1007/978-3-642-16518-4_1
https://doi.org/10.1007/978-3-642-16518-4_1
https://doi.org/10.1007/978-3-319-44039-2_2

Matching Multiple Ontologies to Build a KG for Personalized Medicine 477

EKAW 2018. LNCS (LNAI), vol. 11313, pp. 355–369. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03667-6 23

30. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: performance oriented schema medi-
ation. Inf. Syst. 33(7–8), 637–657 (2008)

31. Silva, M.C., Faria, D., Pesquita, C.: Integrating knowledge graphs for explain-
able artificial intelligence in biomedicine? In: Ontology Matching Workshop at the
International Semantic Web Conference (2021)

32. Stoilos, G., Geleta, D., Shamdasani, J., Khodadadi, M.: A novel approach and
practical algorithms for ontology integration. In: Vrandečić, D., et al. (eds.) ISWC
2018. LNCS, vol. 11136, pp. 458–476. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00671-6 27

https://doi.org/10.1007/978-3-030-03667-6_23
https://doi.org/10.1007/978-3-030-00671-6_27
https://doi.org/10.1007/978-3-030-00671-6_27

FindSampo: A Linked Data Based Portal
and Data Service for Analyzing

and Disseminating Archaeological Object
Finds

Heikki Rantala1(B) , Esko Ikkala1 , Ville Rohiola3 , Mikko Koho1,2 ,
Jouni Tuominen1,2 , Eljas Oksanen2 , Anna Wessman4 ,

and Eero Hyvönen1,2

1 Semantic Computing Research Group (SeCo), Aalto University, Espoo, Finland
{heikki.rantala,esko.ikkala,mikko.koho,jouni.tuominen,

eero.hyvonen}@aalto.fi
2 HELDIG – Helsinki Centre for Digital Humanities, University of Helsinki,

Helsinki, Finland
{mikko.koho,jouni.tuominen,eljas.oksanen,eero.hyvonen}@helsinki.fi

3 Finnish Heritage Agency, Helsinki, Finland
ville.rohiola@museovirasto.fi

4 University Museum of Bergen, Bergen, Norway
anna.wessman@uib.no

http://seco.cs.aalto.fi, http://heldig.fi

Abstract. This paper presents the FindSampo system for analyzing
and disseminating archaeological object finds made by the public. The
system is based on Linked Open Data (LOD), and consists of a web portal
and an open data service. The underlying knowledge graph contains data
of some 3000 archaeological object finds catalogued in the archaeological
collection of the Finnish Heritage Agency (FHA) from 2015 to 2020. The
portal and LOD service have been open to public use since May 2021.

1 Introduction

1.1 Web Services for Citizens and Researchers

The popularity of recreational metal detecting has grown rapidly in many coun-
tries such as in Finland during the last decade, creating a large amount of new
archaeological data. This paper demonstrates how archaeological object finds
made by the public can be analyzed using the Linked Open Data (LOD) based
FindSampo service [14,20]. FindSampo research prototype has been created
by the SuALT project1 aiming to study and improve the reporting process and
analysis of archaeological finds based on collaboration of the public, academic
researchers, archaeologists, and the Finnish Heritage Agency (FHA) [6,22,29].

A demonstrator based on data of some 3000 archaeological object finds cata-
logued in the archaeological collection of FHA from 2015 to 2020 has been open
1 SuALT project: https://blogs.helsinki.fi/sualt-project.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Groth et al. (Eds.): ESWC 2022, LNCS 13261, pp. 478–494, 2022.
https://doi.org/10.1007/978-3-031-06981-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06981-9_28&domain=pdf
http://orcid.org/0000-0002-4716-6564
http://orcid.org/0000-0002-9571-7260
http://orcid.org/0000-0002-7844-5312
http://orcid.org/0000-0002-7373-9338
http://orcid.org/0000-0003-4789-5676
http://orcid.org/0000-0002-7468-9256
http://orcid.org/0000-0001-6886-5455
http://orcid.org/0000-0003-1695-5840
https://blogs.helsinki.fi/sualt-project
https://doi.org/10.1007/978-3-031-06981-9_28

FindSampo 479

to public use since May 2021, and has had over 3000 users during it’s first six
months. The FindSampo demonstrator consists of a data service2 and a seman-
tic portal3 with search functions and analytical tools. Figure 1 shows the front
page of the FindSampo portal with various perspectives to the data, and quick
links to selected featured finds.

FindSampo responds to a need for digital solutions to improve the manage-
ment, accessibility and democratisation in cultural heritage management that
stem from the recent popularity of recreational metal-detecting. In Finland,
metal detecting is permitted but the Finnish Antiquities Act (295/1963) stipu-
lates acts of law that must be followed also when metal detecting. There are also
gerenal guidelines provided for recreational metal detectorists to prevent illegal
acts and to protect cultural heritage. The Antiquities Act prohibits strictly metal
detecting and especially digging at the ancient monuments and other archaeo-
logical sites. Certain areas are also protected by the Nature Conservaton Act.
The Antiquities Act also requires that archaeological objects, including metal
detected finds are expected to be at least 100 years old and do not have any
known owner must be reported immediately to the FHA. The reporting of finds
is guided to be done easily through FHA’s electronic reporting service. In Fin-
land, the FHA has the right to redeem archaeological finds to the national col-
lections.4 In the management process of the finds, the find information will also
be entered into an electronic database that will feed the FindSampo. Metal-
detecting is therefore a form of crowd-sourcing information about the past. For
the more serious (or avocational) metal-detectorists this activity is citizen sci-
ence, where the citizen participates in the creation and discovery of new archae-
ological knowledge [30].

Metal-detecting in Finland has increased significantly in popularity in the
last decade. The vastly increased amount of information generated challenges the
heritage management. The larger context that this topic consequently links to is
the pan-European need to develop an internationally operable and harmonised
data infrastructure for using cultural heritage data from different countries in
research.

In order to respond to the challenges in contemporary cultural heritage man-
agement, FindSampo supports three overlapping stakeholder groups: 1) the
public in analysing their finds and learning about archaeology, 2) cultural her-
itage professionals in analysing, managing, and publishing collection data, and
3) researchers in knowledge discovery using metal-detected citizen science data.
In keeping with the ethos of open science and democratising access to cultural
heritage the service has been designed to transfer knowledge from profession-
als to citizen scientists, and to provide a powerful set of digital tools for new
knowledge discovery and creation among its users.

2 https://www.ldf.fi/dataset/findsampo.
3 https://loytosampo.fi/en.
4 https://www.museovirasto.fi/uploads/Arkisto-ja-kokoelmapalvelut/Julkaisut/

muinaisjaannokset-ja-metallinetsin-2017.pdf.

https://www.ldf.fi/dataset/findsampo
https://loytosampo.fi/en
https://www.museovirasto.fi/uploads/Arkisto-ja-kokoelmapalvelut/Julkaisut/muinaisjaannokset-ja-metallinetsin-2017.pdf
https://www.museovirasto.fi/uploads/Arkisto-ja-kokoelmapalvelut/Julkaisut/muinaisjaannokset-ja-metallinetsin-2017.pdf

480 H. Rantala et al.

Fig. 1. Front page of the FindSampo portal.

The archaeological finds included in the service have been recovered by
the public mainly by metal-detecting and reported to the FHA for recording.
The FindSampo data constitutes an unprecedented reservoir of citizen science-
generated archaeological heritage in Finland, equally accessible to researchers
and to the broader public interested in heritage. The new archaeological object
finds material it contains has proven to hold the potential for substantially
adding to our understanding of the Finnish prehistorical and historical peri-
ods. Our goal is to allow the end users to improve themselves and also learn
more about archaeology. In this way, archaeological data becomes more quickly
and comprehensively available and accessible for research purposes and Digital
Humanities [5].

This paper presents an overview of the service and the technical design princi-
ples and implementation of the FindSampo Portal and it’s underlying data ser-
vice. FindSampo Portal is yet another member in the “Sampo” series5 of Linked
Open Data services and semantic portals [12], based on a national Semantic Web
infrastructure [11].

1.2 Related Work

Our work was motivated by the growing popularity of metal detecting in recent
years. As a result, many countries are developing web services to collect, analyse,
and study archaeological data.

5 For a list of Sampo portals, see https://seco.cs.aalto.fi/applications/sampo/.

https://seco.cs.aalto.fi/applications/sampo/

FindSampo 481

1. The largest of them, Portable Antiquities Scheme (PAS)6, records7 archae-
ological discoveries found by members of the public in England and Wales
since 1997 [1].

2. Digital Metal Finds (DIME)8 is an online platform for reporting metal detect-
ing finds in Denmark [28].

3. Portable Antiquities of the Netherlands (PAN)9 is an online portal in use in
the Netherlands [26].

4. Metal-Detected Artefacts (MEDEA)10 is an online portal developed in Flan-
ders for metal detectors [2,28];

5. ILPPARI11 is a service of the Finnish Heritage Agency (FHA) for reporting
archaeological object finds found by the public in Finland. The service also
includes tools for public to report archaeological sites and possible damages
concurred to them [29].

Nomisma.org [23] is an example of an international project that concentrates
on a specific type of objects, in this case coins. Nomisma.org uses a detailed
model to describe various aspects of numismatic data using LOD. Numerous
datasets have been published using the data model, and some of these datasets
include also citizen finds.

FindSampo is an application of the “Sampo model” [13], a collection of
principles that have evolved gradually when creating a series of semantic por-
tals12. The principles behind the Sampo model in use in FindSampo have been
explored and developed before in different contexts. For example, the notion of
collaborative content creation by data linking is a fundamental idea behind the
Linked Open Data Cloud movement13 and has been developed also in various
other settings, e.g., in ResearchSpace14. The idea of providing multiple analy-
ses and visualizations to a set of filtered search results has been used in other
portals, such as the ePistolarium15 [21] for epistolary data, and using multiple
perspectives have been studied as an approach in decision making [16]. Faceted
search [24,25], also known as “view-based search” and “dynamic ontologies”, is
a well-known paradigm for explorative search and browsing [17] in computer sci-
ence and information retrieval, based on S. R. Ranaganathan’s original ideas of
faceted classification in Libary Science in the 1930’s. The two step filter-analyse
usage model is used in prosopographical research [27] (without the faceted search
component). The novelty of the Sampo model lies in consolidating several ideas

6 PAS: https://finds.org.uk/database.
7 1.4 million finds have been reported by more than 14,000 citizens by now.
8 DIME: https://www.metaldetektorfund.dk.
9 PAN: https://portable-antiquities.nl.

10 MEDEA: https://vondsten.be.
11 ILPPARI: https://www.kyppi.fi/ilppari.
12 This series is explained with references in https://seco.cs.aalto.fi/applications/

sampo/.
13 https://lod-cloud.net.
14 https://www.researchspace.org.
15 http://ckcc.huygens.knaw.nl.

https://finds.org.uk/database
https://www.metaldetektorfund.dk
https://portable-antiquities.nl
https://vondsten.be
https://www.kyppi.fi/ilppari
https://seco.cs.aalto.fi/applications/sampo/
https://seco.cs.aalto.fi/applications/sampo/
https://lod-cloud.net
https://www.researchspace.org
http://ckcc.huygens.knaw.nl

482 H. Rantala et al.

and in operationalizing them for developing applications in Digital Humanities;
something that the field of the Semantic Web seems to be missing as argued in
[8].

1.3 Applying the Sampo Model on a Framework Level

The Sampo model principles can be used directly for creating semantic por-
tals. However, it is also possible to apply them first to create an application
domain specific framework and reuse it for developing different related applica-
tion instances, which is arguably cost-efficient. Figure 2 illustrates the idea with
FindSampo and LetterSampo [9] frameworks as examples. The highest concep-
tual layer includes the Sampo model with its principles based on domain agnos-
tic, logical Semantic Web standards of the W3C and Linked Data publishing
principles. On the next, domain specific level, model level solutions and princi-
ples are applied to create a domain specific framework by using a domain specific
data model that can be populated using domain specific vocabularies and ontolo-
gies (e.g., archaeological object types, archives involved, historical places, etc.).
This layer includes also a domain specific template designed using the Sampo-
UI framework [15] that can be copied and used as a starting point for creating
application instances. The template tells, e.g., what thematic application per-
spectives, data-analysis tools, and ready-to-use UI components are available in
this application domain. Finally, applications can be created by adding in spe-
cific datasets into the framework, by creating a Sampo-UI implementation of
the portal interface, and by publishing the data in a Linked Data service with
a SPARQL endpoint. In the figure, the LetterSampo framework has been used
for two such applications corresponding to the epistolary datasets of CKCC (ca.
20 000 letters related to the Republic of Letters provided by the Huygens Insti-
tute [7,18], the Netherlands, and correspSearch (ca. 151 000 letter dataset [3,4]
aggregated by the Berlin-Brandenburg Academy of Sciences [9]. In the case of
FindSampo, archaeological find collections from the Finnish Heritage Agency
(FHA) are used in one instance and another one is based of the Portable Antiq-
uities Schema (PAS) of the British Museum is being developed using the same
framework16 [19].

2 FindSampo Data Model and Data Service

2.1 Data Model

For the heritage agencies in Finland, and presumably around the world, a cen-
tral problem are the limited available resources for information technology. We
have therefore tried to use as simple model17 for the data as possible. The data
model is also constructed so that the faceted search for finds is efficient. The data

16 https://seco.cs.aalto.fi/projects/diginuma/.
17 The documentation of the data model, and other information, can be accessed at

www.ldf.fi/dataset/findsampo.

https://seco.cs.aalto.fi/projects/diginuma/
www.ldf.fi/dataset/findsampo

FindSampo 483

Fig. 2. Three conceptual layers for creating Sampo portals: Sampo Model, Sampo
frameworks, and applications [9]. The idea is to re-use generic solutions of the model
layer in domain specific frameworks and then frameworks for application instances in
different domains.

points are attached to the Find entities, that are central to the data, with short
property paths. We generally use a purpose build data model. In some cases we
use certain relevant elements from well known standards, such as CIDOC Con-
ceptual Reference Model (CRM)18. However these are mainly used as property
names, and we do not implement, for example, full event structure of CIDOC
CRM.

We created a FindSampo Core ontology for representing the most relevant
data relating to the object finds. Most important part of the data are the Find
entities representing the object finds, and almost all the data is directly attached
to those with either data type properties or object properties. The FindSampo
core properties include properties for object type, material, dating, and so on.
We would expect any data relating to citizen science object finds would gener-
ally include these properties. In addition to the core properties we use specific
properties to represent the data as it is in it’s original source. These properties
would be different for all different sources, and represent the data in the for-
mat used in that source. There can also be various properties for types of data
that is not included as part of core properties. While the core properties aim
to use ontologized object values, and standard data types, these source specific
properties are only literal can can use various different data types.

Below is presented a simplified example, with selected properties, of a RDF
representation of a single Find in Turtle format. Most of the properties here are
either core properties, represented with prefix “findsampo-core” or properties
specific to the FHA finds database, that are represented with the prefix “ltk-s”.
For example, in the Turtle notation below the property “ltk-s:length” denotes
the original value for the object length in the FHA database as it is written
there. The property “findsampo-core:length” on the other hand expresses the
object length in standard decimal format. We also use SKOS prefLabel property

18 https://www.cidoc-crm.org/.

https://www.cidoc-crm.org/

484 H. Rantala et al.

for the main human readable label of the find, and we use Dublin Core source
property to represent the source of data for the Find. Most properties attach
the data directly to the Find, but with time spans and coordinate points we use
a more complex representation where they are separate entities. Time spans are
modelled with properties based on CIDOC CRM and for coordinates we use the
W3C basic geographic vocabulary19. This is to make it easier to integrate with
various existing tools.

@prefix crm: <http://erlangen-crm.org/current/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix ltk-s: <http://ldf.fi/schema/findsampo/extended/ltk/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix findsampo-core: <http://ldf.fi/schema/findsampo/core/> .
@prefix finds: <http://ldf.fi/findsampo/finds/> .

finds:km_39824-45 a findsampo-core:Find ;
findsampo-core:find_site_coordinates

<http://ldf.fi/findsampo/find_sites/find_site_of_39824-45> ;
findsampo-core:has_creation_time_span

[crm:P82a_begin_of_the_begin "-0500-01-01"^^xsd:date ;
crm:P82b_end_of_the_end "1300-12-31"^^xsd:date] ;

findsampo-core:identifier "KM39824:45" ;
findsampo-core:length 56.0 ;
findsampo-core:material

<http://ldf.fi/findsampo/materials/p10> ;
findsampo-core:object_type

<http://ldf.fi/findsampo/object_types/hevosenkenkaesoljet> ;
findsampo-core:period

<http://ldf.fi/findsampo/periods/p17> ;
findsampo-core:weight 35.0 ;
findsampo-core:width 10.0 ;
ltk-s:amount "1" ;
ltk-s:find_name "Hevosenkenksolki" ;
ltk-s:find_number "39824:45" ;
ltk-s:length "56" ;
dct:source "Museoviraston lyttietokanta" ;
skos:prefLabel "Hevosenkenksolki KM39824:45" .

In the end, creating a simple model for the relevant properties of object finds
is relatively easy. Internationally the central properties of the data seem to be
mostly similar, and the data from other countries could be represent with this
model as well. We have already created an initial conversion of PAS data to
FindSampo model to run tests with it using our system. This can be done with

19 https://www.w3.org/2003/01/geo/.

https://www.w3.org/2003/01/geo/

FindSampo 485

relatively little effort. What would be a more difficult question is the harmoniza-
tion of the various annotation ontologies used in the data.

2.2 Ontologies

Representing the properties of object finds requires specific ontologies20. These
include ontologies for object type, materials, and periods. We have used two
different kinds of ontologies to represent the data: “annotation ontologies” and
“facet ontologies”. Annotation ontologies are used to represent the concepts
in the data in shared and machine understandable manner, while the facet
ontologies are used to offer an easy to use hierarchy of concepts to the users.
We have used the Finnish Ontology for Museum Domain and Applied Arts
(MAO/TAO)21 ontology as the basis of our annotation ontologies, but instead of
using MAO identifiers directly, we have created new identifiers for the concepts,
that then have an exact match concept in MAO ontology. We have also created
mapping for the concepts to the Art and Architecture Thesaurus (AAT)22. We
also added some semantic information to the concepts, such as machine read-
able dates for periods. The reasoning capabilities offered are limited, but make it
possible to, for example, deduce the possible manufacture times of objects when
given only a period.

MAO/TAO includes a hierarchy for the concepts, but this hierarchy can be
unintuitive for users. For example “sword hilts” would not be under “swords”
in MAO/TAO hierarchy, but instead under “parts”, because sword hilt is not a
sword. With domain experts we have created separate “facet ontologies” for the
concepts that aim to make searching different types of finds easier for general
public, and even for archaeologists. For example when a researcher would like to
visualize find sites of iron age swords on a map, it isn’t usually relevant if the find
is a sword or only a part of a sword, and it is more convenient to simply select
swords than having to know to select the sword and parts of swords. The facets
ontologies can’t be used to make certain logical deductions, but can be useful
for quick analysis. It is obviously possible to classify archaeological objects in
various different ways, and researches might want to use different classifications
in different cases. One benefit of LOD is that it makes creating, using, and
sharing various new hierarchy classifications easy.

It would have been possible to create the facet ontologies with some ontology
editor. However, to make the creation easier, we opted to use a method where
the hierarchies were created using a spread sheet and hierarchy was indicated
using different column, so that the concepts on the first column is on the top
level of the hierarchy, and a concept on the second column is a narrower concept
of the first concept above it in the spreadsheet on the first column, and so on. We
then had a purpose built Python script to convert these spreadsheets to RDF

20 Note that we use the term “ontology” in a broad sense that does not make a clear
division between a “vocabulary” and an “ontology”.

21 https://finto.fi/maotao/en/.
22 https://www.getty.edu/research/tools/vocabularies/aat/.

https://finto.fi/maotao/en/
https://www.getty.edu/research/tools/vocabularies/aat/

486 H. Rantala et al.

format. Using such method meant that the archaeology expert creating the facet
ontology did not have to learn to use the often quite complex ontology editors.
On the other hand some issues became apparent only when the ontologies were
actually put to use. An ontology editor would better show how the hierarchy
actually operates and would also help to avoid some spelling errors.

We created mappings for the Finnish MAO terms to international ontolo-
gies, especially the Getty Art & Architecture Thesaurus23 (AAT), to allow easy
comparison of the Finnish find data to similar international data. A mapping to
ATT allows also linking to other international vocabularies through AAT. For
example we have used a mapping created by the Ariadne24 project between the
AAT and the Forum on Information Standards in Heritage (FISH) Archaeolog-
ical Objects Thesaurus25 to create mapping between the Finnish ontology and
the FISH ontology that is used for example by the The Portable Antiquities
Scheme (PAS) of the British Museum.

2.3 Data Conversion

Source data of FindSampo is received in CSV format and is converted to
RDF. The conversion pipeline consist of two main parts: the data conversion
and the ontology conversion. Both processes use Python scripts mainly based
on RDFLib26 library, that convert CSV files to RDF. Figure 3 shows the basic
steps in the conversion process. In addition to the Python libraries, we have not
used any of the various existing tools for converting CSV data to RDF format,
because we wanted to define the hierarchies for the ontologies in a specific for-
mat, but also because in our experience using the tools of Python, or some other
programming language, directly is generally more convenient when dealing with
imperfect data that needs cleaning.

First part of the pipeline is the ontology creation process, where the ontologies
defined in CSV are converted to RDF format. The pipeline then runs an initial
process that creates a simple RDF file with only literal values. Enriching process
is then run which cleans up data and creates ontologized values for data based on
the ontology definitions. After the data is updated, a triple store is automatically
built with the updated data.

The data and ontology conversions are done with similar Python scripts for
convenience, but the processes do not depended on each other and they could be
done separately and in different ways. Ideally the existing ontology infrastructure
would be so strong that we could use entirely ready made ontologies.

The most difficult part of the data conversion process was ontologization
the the terms used in the data. The find database used by the FHA allows
submitting data freely and no strict vocabulary had been used. It was relatively
easy to ontologize the terms used for periods and materials in the FHA data, but

23 https://www.getty.edu/research/tools/vocabularies/aat/.
24 http://legacy.ariadne-infrastructure.eu/.
25 http://www.heritage-standards.org.uk/fish-vocabularies/.
26 https://rdflib.readthedocs.io/en/stable/.

https://www.getty.edu/research/tools/vocabularies/aat/
http://legacy.ariadne-infrastructure.eu/
http://www.heritage-standards.org.uk/fish-vocabularies/
https://rdflib.readthedocs.io/en/stable/

FindSampo 487

Data CSV
from FHA

Data
conversion

Ontology
CSV

Ontology
conversion

Ontologies
RDF

Intitial RDF
with literal

values Enriching

Data RDF
Fuseki

Triplestore

Fig. 3. Conversion pipeline

the terms for object types required more work. We mapped the object types of
finds to MAO ontology using “object names” of each object. This was the most
detailed description of the type of the objects available in structured format in
the find database. An archaeology student was hired to manually do the mapping
for object names, as well as to do the mapping from annotation ontology to AAT.

We run the whole conversion pipeline again when the source data is updated
and the triple store is automatically build again with new data. The process
is fully repeatable, and makes it easy to also fix possible errors in the data. In
practice we expect to update the data only rarely. The LOD service27 is run on
the Linked Data Finland platform28 [10], which is powered by a combination of
the Fuseki SPARQL server29 and a Varnish Cache web application accelerator30

for routing URIs, content negotiation, and caching. Currently there are around
240 000 triples in the FindSampo main graph.

3 FindSampo Semantic Portal

The FindSampo Data Service includes currently over 3000 archaeological
finds made by the public. The FindSampo Portal queries this data service with
SPARQL, and offers search, exploration, and analysis tools for DH researchers
and hobbyists. The finds can be filtered using faceted search [24] with hierarchical
facets based on ontologies, and then visualized using maps with external layers

27 The service can be queried freely with SPARQL at http://ldf.fi/findsampo/sparql.
28 https://ldf.fi.
29 https://jena.apache.org/documentation/fuseki2/.
30 https://varnish-cache.org.

http://ldf.fi/findsampo/sparql
https://ldf.fi
https://jena.apache.org/documentation/fuseki2/
https://varnish-cache.org

488 H. Rantala et al.

Fig. 4. The main search view of FindSampo Portal showing finds as a paginated
table on the right, and search facets on the left.

from the GIS services31 of the FHA, various types of charts, and a timeline. On
the front page, see Fig. 1, the user is presented with tree different perspectives:
“Finds”, “Maps”, and “Sites”.

The Finds perspective allows for searching and analyzing the archaeological
object finds in the knowledge graph using facets and various visualizations. Maps
perspective here is just a quick link for user for map visualizations of this per-
spective. Faceted search can be used to get the information of some specific find,
and it can also be used to analyze and compare groups of finds. As default the
individual finds are presented as a table as the default option on wider screens,
or as a more mobile friendly list with mobile devices. The mobile friendly list
option was created after the initial publication of the portal based on feedback
from metal detectorists. Figure 4 shows one opened facet and results with pic-
tures of individual finds when available. The various charts and timelines can be
selected from tabs to visualize the relative distributions of the selected groups of
finds. Currently the user can select visualizations from clustered map, heatmap,
timeline, pie or bar charts, and line charts. In addition there is an option to
download the data in CSV format.

The clustered map shows interactive markers on a map based on the find
coordinates of each find. The clustering is made for performance reasons. The
finds can be visualized using different base maps and map layers (selected in
the box on the top right) including, e.g., street maps, satellite images, and a
lidar-based elevation model.

Heatmap is a more research oriented tool that shows the data about the finds
as a spatial heatmap. Figure 6 shows an example of a simple visualization for
data-analysis, that can be made easily. The user has selected prehistory period

31 https://kartta.museoverkko.fi/?lang=en.

https://kartta.museoverkko.fi/?lang=en

FindSampo 489

Fig. 5. An entity landing page of a single find.

from the period facet and the heatmap tab to view the results. It is easy to
see that the red area, that signify a lot of nearby finds, are concentrated in
Häme and close to the city of Turku, and large areas of Finland have only a
small number of finds. A researcher will have to determine if this tells something
about the prehistory of Finland, or if this is related more to the popularity of
metal-detecting hobby in certain areas.

The timeline tab can be used to visualize temporal spread of groups of finds
in certain areas. Timeline component groups the finds by province in which they
were found (y-axis), and by period (x-axis). The start and end years for the
periods are retrieved from the period ontology developed with domain experts,
instead of directly from the finds. Pie chart tab can be used to visualize distri-
butions as pie or bar charts. These can be used to easily visualize, for example,
the relative number of coins in finds from the medieval period.

Each individual object find has its own “home page” that contains detailed
information about the find. Figure 5 shows an example of an entity landing page
of a single find. This entity page of the find includes the detailed information of
the find, a map showing the find coordinates, and recommended links to similar

490 H. Rantala et al.

finds in Finland and abroad. The object types and periods have their own pages
in the same way. The collect information such as the time span of a certain
period and links to the related finds.

We have created links to PAS data as an example of connecting international
data. This feature shows the possibilities and challenges that a linked data app-
roach can have. The links to PAS as created through mapping FindSampo
object types to AAT vocabulary, that is then mapped the FISH vocabulary used
by PAS. This means that there is one extra step that can cause various issues for
the linking. In practice this can be seen in that in many cases a link is missing,
or it can be less than optimal. For example an entity page of a sword find, as
in Fig. 5, has a link to a certain object in PAS database that is determined to
be similar, based on it’s type “sword”. Similarly entity page of object type of
swords has a link to PAS database search for swords. In practice this can take
user to a page of a sword pommel, as those are expressed in PAS data to be
of type “sword”. The accuracy of this kind of mapping is limited to the least
accurate conceptualization.

Fig. 6. An example of using FindSampo Portal for data analysis: showing prehistoric
finds as a heatmap.

The Sites perspective can be used to show finds made by the public and the
registered archaeological sites of FHA. This data is received directly from FHA
API. As an example, Fig. 7 shows finds (green markers, one of which is opened)
and protected archaeological sites (red areas) along the Aura River in Turku,
the former capital of Finland. A buffer zone of 200 m where metal detecting is
not recommended is automatically calculated and shown around the sites with a

FindSampo 491

dashed line. The maps can be used by researchers for analysis, and by hobbyists
to get information on promising places to practice metal detecting as well as on
protected sites where detecting should be avoided. This kind of mobile friendly
map is particularly useful for metal-detectorists.

Fig. 7. Archaeological finds and protected sites along the Aura River in the City of
Turku as shown in the FindSampo portal.

The user interface of the portal is implemented with the Sampo-UI frame-
work [15], and the source code is available on GitHub32 with an open license.
The performance of the portal is limited mainly by the underlying SPARQL
endpoint. Faceted search can consume lot of computational resources, especially
when using hierarchical facets. Counting the hit counts every time the facets
are updated can be resource intensive. This is not an issue with the number of
finds currently in the FindSampo knowledge graph. However this would become
issue with when using larger data with perhaps millions of finds. When adapting
FindSampo framework for larger number of finds, the hierarchical facets can be
converted to flat ones, or perhaps counting the hit counts could be disabled.

4 Discussion

4.1 Contributions

The apps built into the FindSampo offer a powerful set of tools for examining
and analysing archaeological finds, and creating new knowledge and understand-
ing of the past. As an archaeological cultural heritage service FindSampo has

32 https://github.com/SemanticComputing/findsampo-web-app.

https://github.com/SemanticComputing/findsampo-web-app

492 H. Rantala et al.

been designed to organise, present and make widely available a complex form of
crowd-sourced and heterogenous data.

Metal-detected public archaeology is an inherently international field. Find
data cannot be viewed as restrictively national cultural heritage, and from a
research and knowledge discovery perspective the various public finds archaeo-
logical databases are natural partners to each other. LOD offers a natural way
of harmonizing international data in a way that makes interoperability possi-
ble. Mappings created to international vocabularies from FindSampo concepts
make it possible to create research of metal-detected finds that transcendents
data from single countries. The data model of FindSampo also offers a way to
represent such find data in simple and interoperable way.

4.2 Future Work

In future we aim to continue to update FindSampo with new finds made my
metal-detectorists in Finland. We also are starting a continuation project that
seeks to add a a new perspective to FindSampo that is concentrated to coins.
Coins are a special case of object finds as they are very numerous, and have
many coin specific properties, such as mint or ruler, that other finds generally
do not have.

FindSampo is part of a larger pan-European movement in digital cultural
heritage services. Major undertakings such as the EU-funded ARIADNEplus
project33 are presently developing data alignment methodology for combining
diverse national archaeological databases. Research for transnational data ser-
vices based on the FindSampo framework is currently being taken forward by
a new pilot project funded by the Helsinki Institute for Social Sciences and
Humanities at the University of Helsinki, which seeks to integrate the PAS
dataset within the FindSampo framework as a test case of its international
use-potential.

Acknowledgements. Our work was funded mostly by the Academy of Finland. The
authors wish to acknowledge CSC - IT Center for Science, Finland, for providing com-
putational resources.

References

1. Daubney, A., Nicholas, L.E.: Detecting heritage crime(s): what we know about
illicit metal detecting in England and Wales. Int. J. Cult. Prop. 26, 139–165 (2019).
https://doi.org/10.1017/S0940739119000158

2. Deckers, P., et al.: MEDEA: crowd-sourcing the recording of metal-detected arte-
facts in Flanders (Belgium). Open Archaeol. 2(1), 264–277 (2016). https://doi.
org/10.1515/opar-2016-0019

3. Dumont, S.: correspSearch - connecting scholarly editions of letters. J. Text Encod-
ing Initiat. (10) (2016). https://doi.org/10.4000/jtei.1742

33 https://ariadne-infrastructure.eu/.

https://doi.org/10.1017/S0940739119000158
https://doi.org/10.1515/opar-2016-0019
https://doi.org/10.1515/opar-2016-0019
https://doi.org/10.4000/jtei.1742
https://ariadne-infrastructure.eu/

FindSampo 493

4. Dumont, S., Grabsch, S., Müller-Laackman, J.: correspSearch - connect scholarly
editions of correspondence (2.0.0) [web service]. Berlin-Brandenburg Academy of
Sciences and Humanities (2021). https://correspSearch.net

5. Gardiner, E., Musto, R.G.: The Digital Humanities: A Primer for Students and
Scholars. Cambridge University Press, New York (2015)

6. Hassanzadeh, P.: FindSampo: A Citizen Science Platform for Archaeological Finds
on the Semantic Web. Master’s thesis, Aalto University, School of Science, Finland
(2019). http://urn.fi/URN:NBN:fi:aalto-201912226669

7. van den Heuvel, C.: Mapping knowledge exchange in early modern europe: intel-
lectual and technological geographies and network representations. Int. J. Human.
Arts Comput. 9(1), 95–114 (2015). https://doi.org/10.3366/ijhac.2015.0140

8. Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83 (2021).
https://doi.org/10.1145/3397512

9. Hyvönen, E., Leskinen, P., Tuominen, J.: Lettersampo - historical letters on the
semantic web: a framework and its application to publishing and using epistolary
data of the Republic of Letters (2022). https://seco.cs.aalto.fi/publications/2020/
hyvonen-et-al-lettersampo-2020.pdf, submitted for peer review

10. Hyvönen, E., Tuominen, J., Alonen, M., Mäkelä, E.: Linked data Finland: a 7-
star model and platform for publishing and re-using linked datasets. In: European
Semantic Web Conference, vol. 8798, pp. 226–230 (2014). https://doi.org/10.1007/
978-3-319-11955-7 24

11. Hyvönen, E.: Linked open data infrastructure for digital humanities in Finland. In:
Digital Humanities in Nordic Countries, 5th Conference (DHN 2020), Proceedings.
CEUR WS Proceedings, vol. 2612 (2020). http://ceur-ws.org/Vol-2612/

12. Hyvönen, E.: “Sampo” model and semantic portals for digital humanities on the
semantic web. In: Digital Humanities in Nordic Countries, 5th Conference (DHN
2020), Proceedings. CEUR WS Proceedings, vol. 2612 (2020). http://ceur-ws.org/
Vol-2612/

13. Hyvönen, E.: Digital humanities on the semantic web: Sampo model and
portal series (2022). http://semantic-web-journal.org/content/digital-humanities-
semantic-web-sampo-model-and-portal-series, submitted

14. Hyvönen, E., et al.: Citizen science archaeological finds on the semantic web:
the FindSampo framework. Antiquity Rev. World Archaeol. 95(382), e24 (2021).
https://doi.org/10.15184/aqy.2021.87

15. Ikkala, E., Hyvönen, E., Rantala, H., Koho, M.: Sampo-UI: a full stack javascript
framework for developing semantic portal user interfaces. Semant. Web Interoper-
abil. Usabil. Appl. 13(1), 69–84 (2022). https://doi.org/10.3233/SW-210428

16. Linstone, H.A.: Multiple perspectives: concept, applications, and user guidelines.
Syst. Pract. 2(3), 307–331 (1989). https://doi.org/10.1007/BF01059977

17. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006). https://doi.org/10.1145/1121949.1121979

18. van Miert, D.: What was the Republic of letters? a brief introduction to a long
history (1417–2008). Groniek 204(205), 269–287 (2016)

19. Oksanen, E., et al.: Digital humanities solutions for pan-European numismatic
and archaeological heritage based on linked open data. In: Digital Humanities in
Nordic and Baltic Countries conference (DHNB 2022) (2022). https://seco.cs.aalto.
fi/publications/2022/oksanen-et-al-diginuma-dhnb-2022.pdf

20. Rantala, H., Ikkala, E., Koho, M., Tuominen, J., Rohiola, V., Hyvönen, E.: Using
findsampo linked open data service and portal for spatio-temporal data analysis
of archaeological finds in digital humanities. In: ISWC-Posters-Demos-Industry

https://correspSearch.net
http://urn.fi/URN:NBN:fi:aalto-201912226669
https://doi.org/10.3366/ijhac.2015.0140
https://doi.org/10.1145/3397512
https://seco.cs.aalto.fi/publications/2020/hyvonen-et-al-lettersampo-2020.pdf
https://seco.cs.aalto.fi/publications/2020/hyvonen-et-al-lettersampo-2020.pdf
https://doi.org/10.1007/978-3-319-11955-7_24
https://doi.org/10.1007/978-3-319-11955-7_24
http://ceur-ws.org/Vol-2612/
http://ceur-ws.org/Vol-2612/
http://ceur-ws.org/Vol-2612/
http://semantic-web-journal.org/content/digital-humanities-semantic-web-sampo-model-and-portal-series
http://semantic-web-journal.org/content/digital-humanities-semantic-web-sampo-model-and-portal-series
https://doi.org/10.15184/aqy.2021.87
https://doi.org/10.3233/SW-210428
https://doi.org/10.1007/BF01059977
https://doi.org/10.1145/1121949.1121979
https://seco.cs.aalto.fi/publications/2022/oksanen-et-al-diginuma-dhnb-2022.pdf
https://seco.cs.aalto.fi/publications/2022/oksanen-et-al-diginuma-dhnb-2022.pdf

494 H. Rantala et al.

2021 International Semantic Web Conference (ISWC) 2021: Posters, Demos, and
Industry Tracks. CEUR Workshop Proceedings (2021). http://ceur-ws.org/Vol-
2980/paper330.pdf

21. Ravenek, W., van den Heuvel, C., Gerritsen, G.: The ePistolarium: origins and
techniques. In: van Hessen, A., Odijk, J. (eds.) CLARIN in the Low Countries, pp.
317–323. Ubiquity Press (2017). https://doi.org/10.5334/bbi

22. Thomas, S., et al.: SuALT: collaborative research infrastructure for archaeological
finds and public engagement through linked open data. In: Digital Humanities
in the Nordic Countries (DHN 2018), Book of Abtracts (2018). https://www2.
helsinki.fi/sites/default/files/atoms/files/dhn2018-book-of-abstracts.pdf

23. Tolle, K., Wigg-Wolf, D.: Improving data quality by rules: a numismatic example.
In: Digital Archaeologies, Material Worlds (Past and Present), Proceedings of the
45rd Annual Conference on Computer Applications and Quantitative Methods in
Archaeology, pp. 193–201 (2020)

24. Tunkelang, D.: Faceted search. Synth. Lect. Inf. Conc. Retrieval Serv. 1(1), 1–80
(2009)

25. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:
a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2017)

26. Veen, V.: The Netherlands during the Napoleonic Era (1794–1815). Using detector
finds to shed light on an under-researched period. In: Methods in Conflict Archae-
ology, 10th Fields of Conflict Conference, vol. 1, pp. 19–30. Mashantucket Pequot
Museum & Research Center (2018)

27. Verboven, K., Carlier, M., Dumolyn, J.: A short manual to the art of prosopog-
raphy. In: Prosopography Approaches and Applications: A handbook, pp. 35–70.
Unit for Prosopographical Research (Linacre College) (2007)

28. Wessman, A., et al.: Citizen science in archaeology: developing a collaborative web
service for archaeological finds in Finland. In: Jameson, J.H., Musteaţă, S. (eds.)
Transforming Heritage Practice in the 21st Century. OWA, pp. 337–352. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-14327-5 23

29. Wessman, A., et al.: A citizen science approach to archaeology: finnish archaeolog-
ical finds recording linked open database (SuALT). In: Digital Humanities in the
Nordic Countries 2019, pp. 469–478. CEUR WS Proceedings (2019)

30. Wessman, A.P.F., Thomas, S.E., Rohiola, V.: Digital archaeology and citizen sci-
ence: introducing the goals of FindSampo and the SuALT project. SKAS 1, 2–17
(2019)

http://ceur-ws.org/Vol-2980/paper330.pdf
http://ceur-ws.org/Vol-2980/paper330.pdf
https://doi.org/10.5334/bbi
https://www2.helsinki.fi/sites/default/files/atoms/files/dhn2018-book-of-abstracts.pdf
https://www2.helsinki.fi/sites/default/files/atoms/files/dhn2018-book-of-abstracts.pdf
https://doi.org/10.1007/978-3-030-14327-5_23

Author Index

Alam, Mirza Mohtashim 253
Alvarez-Coello, Daniel 406
An, Jingmin 39

Baader, Franz 130
Behrend, Andreas 253
Bento, Alexandre 289
Betz, Patrick 74
Bizer, Christian 113
Bobasheva, Anna 370
Both, Andreas 217
Breslin, John G. 93

Chávez-Feria, Serge 338
Chen, Jieying 56
Cocchi, Valerio 427
Curry, Edward 93

Daquino, Marilena 305
Delbecque, Stephanie 323
Demidova, Elena 353
Demir, Caglar 236
Deng, Chenglong 3
Dobriy, Daniil 21

Ehrich, Sofia Colette 387
Eltsova, Maria 217
Ettorre, Antonia 370

Faria, Daniel 461
Faron, Catherine 370
Ferranti, Nicolas 21
Frasincar, Flavius 183

Gänßinger, Merle 165
García-Castro, Raúl 338
Gashkov, Aleksandr 217
Giese, Martin 200
Gottschalk, Simon 353
Guan, Bei 3

Haller, Armin 21
Heindorf, Stefan 236

Hitzler, Pascal 323
Horrocks, Ian 427
Hyvönen, Eero 478

Ikkala, Esko 478

Janowicz, Krzysztof 323
Joshi, Unmesh 147
Jouanot, Fabrice 444

Kamburjan, Eduard 200
Kangyang, Yuxuan 3
Keil, Jan Martin 165
Khan, Md Tansen 253
Khan, Muhammad Jaleed 93
Klungre, Vidar Norstein 200
Koho, Mikko 478
Koopmann, Patrick 130
Kouagou, N’Dah Jean 236
Kriegel, Francesco 130
Kuculo, Tin 353

Laforest, Frédérique 289
Leemans, Inger 387
Lehmann, Jens 253
Le-Phuoc, Danh 406
Le-Tuan, Anh 406
Li, Guanyu 39
Lisena, Pasquale 387
Liu, Zilong 323

Ma, Yue 56
Mai, Gengchen 323
Marx, Lizzie 387
Médini, Lionel 289
Meilicke, Christian 74
Michel, Franck 370
Motik, Boris 427

Nayyeri, Mojtaba 253
Ngomo, Axel-Cyrille Ngonga 236
Nguyen-Duc, Manh 406
Nuradiansyah, Adrian 130

496 Author Index

Oksanen, Eljas 478
Olivares, Jordi 427

Peñaloza, Rafael 56
Perevalov, Aleksandr 217
Peroni, Silvio 305
Persiani, Simone 305
Pesquita, Catia 461
Pietrasik, Marcin 270
Polleres, Axel 21
Poveda-Villalón, María 338
Primpeli, Anna 113

Rademaker, Mark 183
Rantala, Heikki 478
Reformat, Marek 270
Regalia, Blake 323
Rodríguez Méndez, Sergio J. 21
Rohiola, Ville 478
Rousset, Marie-Christine 444
Roy, Dylan 427

Sanchez-Ayte, Adam 444
Schneider, Patrik 406
Schwabe, Daniel 387
Shi, Meilin 323
Silva, Marta Contreiras 461

Singh, Kamal 289
Stuckenschmidt, Heiner 74

Teurlings, Tom 183
Troncy, Raphaël 387
Tullett, William 387
Tuominen, Jouni 478

Urbani, Jacopo 147

Vahdati, Sahar 253
van Erp, Marieke 387
van Lookeren Campagne, Roos 183
van Ommen, David 183

Wang, Yongji 3
Wenige, Lisa 253
Wessman, Anna 478
Wu, Bingchao 3

Xu, Wenjie 270

Yang, Hui 56

Zhang, Yujia 270
Zhu, Rui 323
Zou, Changlong 39

	 Preface
	 Organization
	 Contents
	Research
	Enhancing Sequential Recommendation via Decoupled Knowledge Graphs
	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Knowledge-Enhanced Recommendation

	3 Problem Definition and Notation
	3.1 Cross-User Behavior-Based Graph (CRBGraph)
	3.2 Intrinsic Attribute-Based Graph (IAGraph)
	3.3 Task Description

	4 Method
	4.1 Knowledge Extractor
	4.2 Knowledge Aggregator
	4.3 Sequential Interactions Modeling (SIM)
	4.4 Model Learning and Prediction

	5 Experiment
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Ablation Study
	5.4 Effectiveness of Knowledge Extractor
	5.5 Impact of Knowledge Extractor Depth
	5.6 Compatibility of High-level Semantic Knowledge

	6 Conclusion
	References

	An Analysis of Links in Wikidata
	1 Introduction
	2 The Wikidata Ontology Schema
	2.1 Classes in Wikidata
	2.2 Properties in Wikidata

	3 Links in Wikidata
	3.1 Dataset Corpus and Authoritative Namespaces
	3.2 Ontology Corpus
	3.3 Link Type Analysis

	4 Evaluation of Links
	4.1 General Statistics of the Wikidata KG
	4.2 Ontology Links
	4.3 Instance Links

	5 Related Work
	6 Conclusion
	References

	Knowledge Graph Entity Type Prediction with Relational Aggregation Graph Attention Network
	1 Introduction
	2 Related Works
	2.1 Knowledge Graph Completion Models
	2.2 Knowledge Graph Entity Type Prediction Models

	3 Methods
	3.1 Problem Definition and Symbol
	3.2 Encoder: FRGAT
	3.3 Decoder: CE2T
	3.4 Training
	3.5 Performing

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Entity Type Prediction Experiments
	4.4 Attention Calculation Function Analysis
	4.5 Combination Mode Analysis
	4.6 the Number of Different Relations Analysis

	5 Conclusion and Future Work
	References

	Union and Intersection of All Justifications
	1 Introduction
	2 Preliminaries
	3 Computing the Intersection of All Justifications
	4 Computing the Union of All Justifications
	4.1 Black-Box Algorithm
	4.2 MUS Membership Algorithm (MUS-MEM)

	5 Repairing Ontologies
	6 Evaluation
	7 Conclusions
	References

	Supervised Knowledge Aggregation for Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 Rule-Based Knowledge Graph Completion
	3.1 Preliminaries
	3.2 AnyBURL
	3.3 Knowledge Aggregation

	4 Supervised Knowledge Aggregation
	4.1 Challenges
	4.2 Supervised Rule Aggregation

	5 Latent-Based Aggregation
	5.1 Sparse Aggregation
	5.2 Optimizing Mean-Rank Using Black-Box Optimization
	5.3 Dense Aggregation

	6 Experiments
	6.1 Datasets
	6.2 Experimental Settings
	6.3 Results

	7 Interpretability
	8 Conclusion
	A Experimental Details
	A.1 Model Input
	A.2 Hyperparameters
	A.3 Rule Sets

	References

	Expressive Scene Graph Generation Using Commonsense Knowledge Infusion for Visual Understanding and Reasoning
	1 Introduction
	2 Related Work
	2.1 Scene Graph Generation
	2.2 Commonsense Knowledge Sources and Infusion

	3 Proposed Method
	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	Impact of the Characteristics of Multi-source Entity Matching Tasks on the Performance of Active Learning Methods
	1 Introduction
	2 Related Work
	3 Profiling Dimensions for Multi-source EM Tasks
	4 ALMSERgen: A Multi-source EM Task Generator
	5 Experimental Setup and Analysis
	5.1 Experimental Setup
	5.2 Analysis of Experimental Results of Generated Tasks
	5.3 Analysis of Experimental Results of Benchmark Tasks

	6 Conclusion
	References

	Optimal ABox Repair w.r.t. Static E-1.618mu L TBoxes: From Quantified ABoxes Back to ABoxes
	1 Introduction
	2 Preliminaries
	3 Optimal ABox Repairs and Approximations
	3.1 Optimal IQ- and IRQ-Repairs
	3.2 Optimal ABox Approximations
	3.3 Optimal ABox Repairs

	4 Computing Optimal ABox Approximations
	5 Computing Optimal ABox Repairs
	6 Conclusion
	References

	Ensemble-Based Fact Classification with Knowledge Graph Embeddings
	1 Introduction
	2 Link Prediction with KGEs
	3 Our Proposal
	3.1 Classifiers
	3.2 Aggregation

	4 Evaluation
	4.1 Performance of Link Prediction

	5 Related Work
	6 Conclusion
	References

	The Problem with XSD Binary Floating Point Datatypes in RDF
	1 Introduction
	2 Background
	3 Properties of Binary Floating Point and Decimal Datatypes in RDF
	4 Implications for the Selection of Numeric Datatypes
	5 Automatic Distortion Detection
	6 Datatype Usage Survey
	7 Conclusion
	References

	DCWEB-SOBA: Deep Contextual Word Embeddings-Based Semi-automatic Ontology Building for Aspect-Based Sentiment Classification
	1 Introduction
	2 Related Work
	2.1 Hybrid Models
	2.2 Ontology Building Approaches
	2.3 Deep Contextual Word Embeddings

	3 Data
	4 Methodology
	4.1 Word Embeddings
	4.2 Skeletal Ontology Building
	4.3 Term Selection
	4.4 Sentiment Term Clustering
	4.5 Aspect Term Hierarchical Clustering

	5 Evaluation
	5.1 Ontology Building Results
	5.2 Hybrid Setting Results

	6 Conclusion
	References

	Never Mind the Semantic Gap: Modular, Lazy and Safe Loading of RDF Data
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 Modular Loading
	5 Inheritance
	6 Lazy Loading
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Improving Question Answering Quality Through Language Feature-Based SPARQL Query Candidate Validation
	1 Introduction
	2 Related Work
	3 Approach
	3.1 SPARQL Query Candidates Verbalization
	3.2 Query Validation Process
	3.3 Measures of Query Validation Efficiency

	4 Material and Methods
	4.1 The KGQA System QAnswer
	4.2 Datasets Overview
	4.3 Data Preparation Process
	4.4 BERT-Based Query Validator

	5 Experimental Setup
	6 Evaluation and Analysis
	6.1 Answer Validation Classifier Evaluation
	6.2 Question Answering Quality Improvement
	6.3 Discussion and Limitations

	7 Conclusions
	References

	Learning Concept Lengths Accelerates Concept Learning in ALC
	1 Introduction
	2 Background
	3 Related Work
	4 Concept Length Prediction
	4.1 Training Data for Length Prediction
	4.2 Concept Length Predictors

	5 Concept Learner with Integrated Length Prediction (CLIP)
	6 Evaluation
	6.1 Concept Length Prediction
	6.2 Concept Learning

	7 Conclusion and Future Work
	References

	Dihedron Algebraic Embeddings for Spatio-Temporal Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 Dihedron Algebra
	4 Proposed Approach
	5 Experiments
	6 Conclusion
	References

	Hierarchical Topic Modelling for Knowledge Graphs
	1 Introduction
	2 Related Works
	2.1 Tag Hierarchy Induction Methods
	2.2 Embeddings and Clustering Algorithms

	3 Proposed Model
	3.1 Problem Formulation
	3.2 Probabilistic Topic Models
	3.3 Model Description
	3.4 Inference

	4 Evaluation
	4.1 Datasets
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation

	5 Conclusion
	References

	Resources
	Do Arduinos Dream of Efficient Reasoners?
	1 Introduction
	2 Related Work
	2.1 The RETE Algorithm
	2.2 Incremental Reasoning
	2.3 Embedded Reasoning

	3 LiRoT: Improving RETE for the SWoT
	3.1 Term Indexing
	3.2 Merging Alpha Memories
	3.3 Optimizing Incremental Maintenance
	3.4 Implementation Details

	4 Evaluation and Results
	4.1 Dataset and Evaluation Method
	4.2 Correctness Verification
	4.3 Comparison with Other Reasoners
	4.4 Improvements of the RETE Algorithm
	4.5 Improvements on Embedded Devices

	5 Discussion
	5.1 Memory Usage
	5.2 Processing Time

	6 Conclusion and Future Works
	References

	A Programming Interface for Creating Data According to the SPAR Ontologies and the OpenCitations Data Model
	1 Introduction
	2 Related Works
	3 Model and Requirements
	4 Implementation
	4.1 Importing Data from a Persistent RDF Graph
	4.2 Data Manipulation
	4.3 Change Tracking
	4.4 Provenance Generation
	4.5 Data Synchronisation

	5 Potential Impact, Adoption and Community
	6 Conclusions
	References

	LD Connect: A Linked Data Portal for IOS Press Scientometrics
	1 Introduction
	2 LD Connect
	3 Embeddings
	3.1 Document Embeddings
	3.2 Knowledge Graph Embeddings

	4 IOS Press Scientometrics
	5 Conclusions and Future Work
	References

	Chowlk: from UML-Based Ontology Conceptualizations to OWL
	1 Introduction
	2 Visual Notation
	3 The Chowlk Converter
	3.1 Selecting a Diagramming Tool
	3.2 The Detection Module
	3.3 The Association Module
	3.4 The Writing Module
	3.5 Current Limitations

	4 Validation
	4.1 Adoption and Use
	4.2 Validation Tests

	5 Related Work
	6 Conclusions and Future Work
	References

	QuoteKG: A Multilingual Knowledge Graph of Quotes
	1 Introduction
	2 Potential Impact
	3 QuoteKG Schema
	4 Extraction and Alignment of Quotes
	4.1 Wikiquote
	4.2 Extraction of Page Trees
	4.3 Identification and Enrichment of Quotes
	4.4 Cross-Lingual Alignment of Quote Mentions
	4.5 RDF Triples Creation
	4.6 Implementation

	5 Statistics, Evaluation, Examples and Web Interface
	5.1 Statistics
	5.2 Evaluation of the Cross-Lingual Alignment
	5.3 Example Queries
	5.4 Web Interface

	6 Availability
	7 Related Work
	8 Conclusion
	References

	Stunning Doodle: A Tool for Joint Visualization and Analysis of Knowledge Graphs and Graph Embeddings
	1 Introduction
	2 Stunning Doodle
	2.1 Knowledge Graphs Visualization
	2.2 Graph Embeddings Visual Analysis
	2.3 Software Design and Limitations
	2.4 Software Availability and Reusability

	3 Use Cases: The OntoSIDES Scenario
	3.1 Understanding a Knowledge Graph
	3.2 Analyzing and Comparing GEs

	4 Related Work
	5 Conclusion and Future Work
	References

	Capturing the Semantics of Smell: The Odeuropa Data Model for Olfactory Heritage Information
	1 Introduction
	2 Related Work
	3 Design Methodology and Model Requirements
	4 The Odeuropa Data Model
	4.1 Extending Established Ontologies
	4.2 A Three-Layered Model
	4.3 Provenance Information

	5 Controlled Vocabularies
	6 Evaluation with Competency Questions
	7 Showcase: Modelling the Smell of a Location
	8 Conclusions and Future Work
	References

	Stream Reasoning Playground
	1 Introduction
	2 Platform - Stream Reasoning Playground
	3 Scenarios
	3.1 Scenario A - Traffic Management
	3.2 Scenario B - Vehicle Signals and Surrounding Objects
	3.3 Streaming a Custom Time-Series Scenario

	4 Case Study and Lessons Learned: SR Hackathon 2021
	4.1 Solutions of the Participants
	4.2 Lessons Learned

	5 Related Work
	6 Conclusion
	References

	In-Use Track
	The Dow Jones Knowledge Graph
	1 Background and Motivation
	2 Knowledge Graph Construction and Applications
	2.1 Knowledge Graph Construction
	2.2 Knowledge Graph Applications

	3 RDFox
	3.1 Parallelized Materialization
	3.2 Parallelized Data Loading
	3.3 SPARQL Query Answering

	4 Performance
	4.1 Test Data and Environments
	4.2 Data Loading
	4.3 Query Answering

	5 Discussion and Future Directions
	References

	CONSTRUCT Queries Performance on a Spark-Based Big RDF Triplestore
	1 Introduction
	2 Background
	3 Performance Evaluation of Virtuoso and GraphDB
	3.1 OntoSIDES Benchmark for CONSTRUCT Queries
	3.2 Experimental Protocol
	3.3 Limitations of Virtuoso and GraphDB

	4 TESS Architecture and Performance
	4.1 TESS Architecture
	4.2 TESS Performance Evaluation

	5 Related Work
	6 Conclusion
	References

	Matching Multiple Ontologies to Build a Knowledge Graph for Personalized Medicine
	1 Introduction
	2 Challenges in Holistic Biomedical Ontology Matching
	3 Enhancing AML for Holistic Ontology Matching
	3.1 AgreementMakerLight
	3.2 Extensions to AML
	3.3 Implementing Holistic Matching Strategies Using AML

	4 Integrating Biomedical Ontologies in a Personalized Oncology KG
	4.1 Ontologies
	4.2 Alignment Strategies
	4.3 Results
	4.4 Discussion

	5 Conclusions
	References

	FindSampo: A Linked Data Based Portal and Data Service for Analyzing and Disseminating Archaeological Object Finds
	1 Introduction
	1.1 Web Services for Citizens and Researchers
	1.2 Related Work
	1.3 Applying the Sampo Model on a Framework Level

	2 FindSampo Data Model and Data Service
	2.1 Data Model
	2.2 Ontologies
	2.3 Data Conversion

	3 FindSampo Semantic Portal
	4 Discussion
	4.1 Contributions
	4.2 Future Work

	References

	Author Index

