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Abstract

In modern Natural Language Processing, document categorisation tasks can achieve success
rates of over 95% using fine-tuned neural network models. However, so-called “zero-shot” sit-
uations, where specific training data is not available, are researched much less frequently. The
objective of this thesis is to investigate how pre-trained Finnish language models fare when
classifying documents in a completely unsupervised way: by relying only on their general
“knowledge of the world” obtained during training, without using any additional data.

Two datasets are created expressly for this study, since labelled and openly available datasets
in Finnish are very uncommon: one is built using around 5k news articles from Yle, the Finnish
Broacasting Company, and the other, 100 pieces of Finnish legislation obtained from the Se-
mantic Finlex data service. Several language representation models are built, based on the vec-
tor space model, by combining modular elements: different kinds of textual representations
for documents and category labels, different algorithms that transform these representations
into vectors (TF-IDF, Annif, fastText, LASER, FinBERT, S-BERT), different similarity measures
and post-processing techniques (such as SVD and ensemble models). This approach allows for
a variety of models to be tested.

The combination of Annif for extracting keywords and fastText for producing word embed-
dings out of them achieves F1 scores of 0.64 on the Finlex dataset and 0.73-0.74 on the Yle
datasets. Model ensembles are able to raise these figures by up to three percentage points.
SVD can bring these numbers to 0.7 and 0.74-0.75 respectively, but these gains are not neces-
sarily reproducible on unseen data.

These results are distant from the ones obtained from state-of-the-art supervised models, but
this is a method that is flexible, can be quickly deployed and, most importantly, do not depend
on labelled data, which can be slow and expensive to make. A reliable way to set the input
parameter for SVD would be an important next step for the work done in this thesis.
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Chapter 1

Introduction

Text classification can be considered one of the success stories in current Natural Language

Processing: results vary depending on models and datasets, but many papers present accuracy

rates above 95%, and in some cases close to 100%, especially in tasks such as News Categori-

sation and Topic Classification (cf. survey in Minaee et al. (2020, 27–29)). That is the case at

least under ideal circumstances: a solid pre-trained deep learning-based language model with

abundance of high-quality training data for fine-tuning.

These conditions might not always be present in real-life situations, however. This thesis

aims at exploring feebler situations, in which only some of the elements above occur: most of

the language models featured here are indeed pre-trained based on deep learning techniques,

but appropriate data for fine-tuning is missing. This work researches how these language

models fare in text categorisation taskswhen there is no training data to rely upon. Extensively

learning on already-existing texts hopefully imbues the models with enough “knowledge of

the world” and allow them to statistically model language accurately. This thesis probes the

semantic payload contained in the language models under study, and explores possible ways

to enhance them.

This work sprang up from a project that intends to create an exploratory search engine for

Finnish laws; this accounts for many of the decisions taken. The focus is thus on pre-trained

Finnish language models and data, which limits the choices about materials and models. Since

Natural Language Processing (NLP) as a global endeavour is dominated by English, far less

resources are dedicated to other languages, even well-established European languages with
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millions of native speakers. Moreover, as a language, Finnish stands recognisably apart from

the so-called “Standard Average European”, since it is largely agglutinative, has 15 nominal

cases and traditionally no articles. According to Schwartz et al. (2020, 1), “[w]ithin the NLP

literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme

examples of morphological complexity that challenge common modelling assumptions”. On

the other hand, Finnish is not polysynthetic, a trait common among American indigenous lan-

guages in which words are composed of many semantic morphemes: its concept of “word”

might be not too far removed from the major Indo-European language for standard NLP mod-

els – which are built mainly with those in mind – to work. Indeed, an important advancement

in recent NLPmodels is subword segmentation, which is able to bettermodel the kind of bound

morphemes so pervasive in agglutinative languages.

Another recent breakthrough in NLP is the development of transfer learning, which converts

the knowledge obtained in one task to another. Mastering transfer learning opened the doors

for the creation of large language models that can be tailored afterwards for specific tasks,

which usually perform better than those created for specific purposes. It is in this context that

the commonly called “zero-shot” classification takes place.

According to Wang et al. (2019), zero-shot learning aims to learn a classifier that is able to

categorise instances belonging to an unknown class when given labelled training instances

(i.e., belonging to “known” classes). This definition makes it clear that zero-shot classification

is usually implemented within a transfer learning framework, from “seen” classes to “unseen”

ones, using class descriptions, relations among classes and domain knowledge (Zhang, Lertvit-

tayakumjorn, and Guo 2019). In this case, zero-shot can be considered a specific case of trans-

fer learning, and one that is widely used in the field of computer vision. However, this is not

the case for the present project, since there is an acute lack of open labelled data in Finnish –

hence the term “unsupervised”, which means that the algorithms cannot rely on guidance (for

example from a gold standard) to correct its behaviours and outcomes.

The development of massive language models has also created the possibility to explore them

in alternative ways: directly accessing their internal representations for the data they are mod-

elling. This thesis makes use of these techniques on newermodels, as well as older alternatives,

to research the possibility of classifying texts without the need for training examples or human

supervision, given a pool of possible category labels: do Finnish pre-trained language models
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contain enough semantic information to allow for zero-shot classification without any train-

ing data? Is it possible to enhance the semantic payload in these models by using different

algorithms or combinations of algorithms? How can the semantic similarity best be assessed?

The main mechanism used in this thesis is the creation of vector space models in which texts

and class labels are represented. On the one hand, a common vector space simplifies the

comparison among these disparate elements, and is very flexible when it comes to altering

the set of class labels used. On the other hand, however, this means that the same space

has to contain representations for different linguistic levels (words, sentences, paragraphs),

so building it is far from an obvious process. A common vector space also facilitates multi-

label categorisation, in which one document can belong to different categories. Although

this is a very useful feature for the search engine mentioned above, this thesis concentrates

on multi-class classification, in which the documents are classified into one of the multiple

classes available.

Architecturally, this project consists of four independent modules that can be assembled in

different combinations, which allows for a variety of test scenarios. Document extractors

are responsible for representing the document textually: they may output the whole text, a

part of it, or for example transform it into keywords. This representation is turned into a

vector using one of the language representation models available. Category retrievers are

also responsible for textual representation, in this case for the category labels: they can be

yielded as-is, or semantically enhanced. These category representations are also transformed

into vectors using the same language representation model. Finally, a classifier compares

documents to categories using a similarity algorithm and predicts a category for each of the

documents.

These predictions are tested in this thesis using two custom-made datasets: one smaller, more

experimental, containing Finnish law sections, and a larger one (split up in two) containing

news articles from Yle, the public Finnish Broadcasting Company.

Chapter 2 describes the theoretical background of this thesis and the algorithms used in it.

Chapter 3 illustrates past research in the field of zero-shot classification. Chapter 4.2 discusses

how the datasets are created and how these algorithms are used to build the different modu-

lar blocks describes above, while chapter 5 reports how well they fare when faced with the

datasets and their ground truths. Finally, chapter 6 summarises the overall conclusions.
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The code used in this project is available at https://version.aalto.fi/gitlab/seco/zeroshot-

classifier.
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Chapter 2

Background

This section describes the foundations on which this work is based: its main algorithms, meth-

ods and theoretical structures.

2.1 Vector Space Model

VSM can be considered the overarching theoretical framework for this thesis. This is a Natural

Language Processing method in which linguistic elements (usually words or sentences) are

mapped onto an Euclidean space, so that each feature corresponds to a dimension in that space.

Linguistic elements are thus represented by a numeric vector corresponding to the values of

its features. This leaves room for using mathematical measures such as Euclidean distance

or cosine similarity to measure element similarity or finding correlations among terms. This

method was developed for the field of Information Retrieval by Gerard Salton on the second

half of the 20th century (Dubin 2004).

In the categorisation work carried out by Wang et al. (2019), vector spaces can be engineered

(designed by humans), in which case the dimensions have an explicit meaning, or learned, i.e.,

obtained via machine learning, so that the meaning of the different dimension are implicit in

the model used. The former are more amenable to transformations and incorporations, but

harder to set up, while the opposite is true for the latter.

In its most basic implementation, a vector space model can be built with word counts: each

word constitutes its own dimension, and the corresponding vector position can be a boolean

value (to indicate presence) or a frequency count. This method does not take synonymity into
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account: texts with similar content but dissimilar words end up with completely unrelated

representations. Distributional semantics offer a solution to this problem by consideringwords

as the sum of their contexts: since semantically equivalent words usually appear in similar

sentences, a statistical model that takes context into account will tend to represent them in a

roughly equivalent manner. However, in using this technique the amount of data is crucial:

these semantic correspondences only come to the fore when a sufficient amount of examples

is used.

The remaining challenge when dealing with a vector space model for semantic text classifica-

tion is in how to embed different levels of linguistic elements (words, sentences, texts) into the

same space. Their features are inherently different, and language models are usually geared

towards one of these levels. In order to be able to categorise texts using class labels, an effec-

tive solution to this must be found, since the similarity measures all work on linear algebra

principles, which require the same dimensionality.

2.2 Similarity measures

These measures indicate how closely related the elements are from one another. These are

measures taken on a geometrical space: the assumption is that in the case of a vector space built

with semantic features inmind, a high similarity valuemight also reveal semantic similarities –

in the case of this thesis, how closely related the document representations are to each category

representation.

2.2.1 Dot product

This measure is simply the sum of the pairwise product of the elements of two vectors. The

length of the vectors must be the same:

𝐴 ⋅ 𝐵 =
𝑛

∑
𝑖=1

𝐴𝑖𝐵𝑖 (2.1)

Geometrically, this measure is equivalent to projecting one vector onto the other and multiply-

ing their lengths. It tests if the two vectors tend to point in the same direction: perpendicular

vectors have a dot product of zero and vectors pointing in a different direction will have a

negative dot product.
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2.2.2 Cosine similarity

Cosine similarity is one of the most widely used distance measures when working with vector

spaces: Manning, Raghavan, and Schütze (2008) call it the “standard way” of measuring sim-

ilarity. It indicates how acute the angle between two 𝑛-dimensional vectors is: a result of 1

means that the vectors are overlapping (pointing in the exact same direction) and -1 indicates

opposite directions (regarding the origin point), while a cosine of 0 indicates orthogonality (no

relation between the vectors).

The formula for cosine similarity is the following:

𝑐𝑜𝑠(𝜃) = 𝐴 ⋅ 𝐵
‖𝐴‖‖𝐵‖ (2.2)

where the numerator 𝐴 ⋅ 𝐵 is the dot product between the two vectors and the denomina-

tor ‖𝐴‖‖𝐵‖ is the product between their magnitudes. The magnitude of a vector, also called

Euclidean length, is the sum of its squared components. Expanding equation 2.2:

𝑐𝑜𝑠(𝜃) =

𝑛
∑
𝑖=1

𝐴𝑖𝐵𝑖

√
𝑛

∑
𝑖=1

𝐴2
𝑖√

𝑛
∑
𝑖=1

𝐵2
𝑖

(2.3)

The denominator has the effect of length-normalising the vectors, dampening their differences.

This is important for example in the case of a standard count matrix, where document length

may unduly influence the results. This is not necessarily the case for deep-learning model

vectors, where these differences might be important. For this reason, both are being tested in

this thesis.

2.2.3 Pearson’s correlation

Pearson’s correlation is a measure commonly used in statistics to indicate if two variables vary

together, i.e., it measures the strength and direction of the relationship between the elements of

two variables. The results vary from -1 to 1: a number closer to zero indicates a weaker linear

correlation, while the extremes mark a stronger one. The polarity indicates if the correlation

is in the same direction or in opposition.
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Mathematically, it is defined as the covariance of two variables divided by the product of their

individual standard deviations (𝜎):

𝜌(𝑋, 𝑌 ) = 𝑐𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

(2.4)

While covariance is calculated element-wise as follows:

𝑐𝑜𝑣(𝑋, 𝑌 ) =
𝑛

∑
𝑖=1

(𝑋𝑖 − 𝜇𝑋)(𝑌𝑖 − 𝜇𝑌 ) (2.5)

𝜇𝑋 and 𝜇𝑌 are their respective means. Thus, Pearson’s correlation is directly proportional to

the position of each component of a vector relative to the same component in another vector.

It can then be used as a measure of how alike these vectors are.

2.3 SVD

Singular Value Decomposition is a matrix decompositionmethod that transforms amatrix into

the product of three matrices:

𝑀𝑚×𝑛 = 𝑈𝑚×𝑚Σ𝑚×𝑛(𝑉 𝑇 )𝑛×𝑛 (2.6)

𝑈 contains the left-singular vectors of the original matrix, Σ is a diagonal matrix consisting of

its singular values and 𝑉 𝑇 holds its right-singular vectors. The outer product of the left-most

column of 𝑈 with the uppermost row of 𝑉 𝑇 , multiplied by the first (top left) value of Σ, yields

a matrix that has some of the information contained in 𝑀 : it is the best approximation of the

original matrix using only two vectors and a value. Adding this first matrix to another one,

calculated by the outer product of the second elements (second column of 𝑈 , second value in

Σ, second row in 𝑉 𝑇 ) adds more of the information: it becomes the best approximation to the

original using that many elements (two left-singular vectors, two right-singular vectors, and

two single values). The more of these “triplets” are added, the more the final matrix resembles

the original 𝑀 matrix. And since the single values contained in Σ are ordered from highest

to lowest, the first “triplets” are the ones that have the most impact, while the last ones will

be comparatively – or even in real terms – insignificant.
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Consequently, 𝑀 gets decomposed into multiple Rank 1 matrices by finding linear depen-

dences (or approximations) in the existing data. By disregarding the last elements of 𝑈 , Σ
and 𝑉 𝑇 , it is possible to reconstruct most of the information found in the original matrix, but

with the advantage of having highly correlated data. This feature is used in the Truncated

SVD method to reduce the dimensionality of the original matrix by only considering the first

𝑘 single vectors:

𝑀𝑚×𝑛 ≈ 𝑈𝑚×𝑘Σ𝑘×𝑘(𝑉 𝑇 )𝑘×𝑛 (2.7)

The result is thus an approximation of the original matrix, containing most of its variance,

that is nevertheless more compact. This may improve the final representations and, as a con-

sequence, the results of the categorisation. The size of this resulting matrix depends on the

chosen value for 𝑘. There are different techniques for choosing 𝑘, for example plotting the

percentage of variance it explains and spotting sudden breaks.

A common application of SVD in NLP is in Latent Semantic Analysis, where it is used to

obtain “hidden” topics from a document-term (frequency) matrix: the 𝑈 matrix represents

how each document correlates with each topic and the 𝑉 𝑇 matrix reveals how the topics

relate to the terms, while the Σ matrix contains the importance of each topic – i.e., how much

of the variance in the data can be explained by this particular “topic” or singular vector.

2.4 Linked Data

Linked Data ontologies are structured data that systematically link concepts, properties and

relationships in order to recreate human knowledge in computer-friendly format. It is usually

formatted using the Resource Description Framework (RDF) data model, which guarantees

inter-operability among the different data providers. In many cases, the data portals offer

freely available Open Data and an endpoint that can be queried using the SPARQL query

language.

In this thesis, Linked Data provides both the raw Finnish Legislation text data and a means to

augment the category labels using semantic information. The former is explained in the 4.1

Data section in the next chapter. For the latter, the specific ontology used in this project, KOKO

(Frosterus et al. 2013), is a collection of Finnish ontologies published by the National Library
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of Finland and located at the Finto service1. It links concepts to one another in three different

categories: broader, narrower and related concepts (as well as translations and resources in

other languages). For example, when queried, the term “linguistics” appears linked to the

following concepts:

broader concept humanities

narrower concepts applied linguistics, biolinguistics, cognitive linguistics, etc.

related concepts colloquial language, grammar, history of linguistics, language research, etc.

These relations are used in this thesis as a tool to semantically augment class labels.

2.5 Language Representation Models

Language representation models are computational models that provide statistical representa-

tions of a language. They are used in this thesis to transform textual representations of both

documents and category labels into vectors on a vector space.

2.5.1 TF-IDF

TF-IDF is a simple algorithmwidely used in Information Retrieval. It finds statistically relevant

words from a collection of texts based on two measures: term frequency, which measures how

relevant a term is to a text (usually a raw or scaled count of the word frequency in a text), and

the inverse document frequency, which provides a measure of how rare a term is within the

whole collection of texts, under the assumption that frequent words carry less information

than rarer ones (Jurafsky and Martin 2019).

The calculations are performed with the scikit-learn tools in Python (Pedregosa et al. 2011).

This implementation defines tf(𝑡) as the number of times the term 𝑡 appears in the document

and idf(𝑡) as the following:

idf(𝑡) = log 1 + 𝑛
1 + df(𝑡) + 1 (2.8)

where 𝑁 is the total number of documents and df(𝑡) is the total number of documents con-

taining the term 𝑡. The additions serve as smoothing, i.e., to prevent mathematical errors that
1https://finto.fi/fi/
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can occur with null values. The final equation is then:

tfidf(𝑡, 𝑑) = tf(𝑡, 𝑑) × idf(𝑡) (2.9)

As a final step, TF-IDF vectors are normalised by their Euclidean norm, also known as the L2

norm, in order to make frequencies relative within each document:

‖𝑥‖2 = √𝑥2
1 +⋯+ 𝑥2𝑛 (2.10)

2.5.2 fastText

fastText (Bojanowski et al. 2017) is a tool developed by the Facebook Research team that

utilises word2vec word embeddings, adding to it subword information. This addition makes

the embeddings more robust for unseen words.

2.5.2.1 word2Vec

The highly influential word2vec framework (Mikolov, Sutskever, et al. 2013) uses shallow

neural networks (containing one hidden layer) to extract word vectors from a text. This model

follows the distributional hypothesis (Harris 1954), using the textual contexts in which the

words appear as the basis to calculate its representation. The model is trained using a sliding

window that peeks at each word’s in-reach neighbours as it slides through the text and updates

the joint probabilities for the words in question.

Word2Vec comes in two different versions: Continuous Bag-of-Words (CBOW), whose purpose

is to find context words given an input word, and skip-gram, whose aim is the contrary, i.e.,

find a word given a context. For each step taken by the sliding window, words not in context

must also be updated. However, instead of using all leftover words as negative examples, the

word2vec framework uses either Hierarchical Softmax or Negative Sampling as a means to

decrease the workload. The former takes into account only a specific path in a binary tree,

while the latter samples a limited amount of randomly chosen negative examples out of the

not-in-context words. This makes the training much faster while mostly retaining the quality

of the representations (Mikolov, Sutskever, et al. 2013). Subsampling of frequent words is also

used, so that frequent words above a certain threshold may be discarded during training. Once
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again, this speeds up the training step while significantly improving the accuracy of the model

(Mikolov, Sutskever, et al. 2013, 5).

One important innovation brought by this paper was capitalising on the hidden states present

inside the neural networks as a source of information. While the network is trained for the

specific task of finding contexts for words or vice-versa, it was observed that these internal

representations carry in themselves semantic information that can be used for other purposes.

They show regularities that allow for certain kinds of inferences and vector compositionality,

especially regarding inflectional morphology and named entities (Finley, Farmer, and Pakho-

mov 2017).

2.5.2.2 fastText

Bojanowski et al. (2017) introduced an extension to the skip-gram model in order to improve

on one main shortcoming of the word2vec framework: it ignores word morphology, assigning

a different vector to each word form instead of grouping paradigms together. The fastText

model, on the other hand, represents words as a bag of n-grams; each n-gram receives its own

vector, and the words are represented by the sum of these n-gram vectors. This mechanism

also provides the means to build representations for words that are not in the training data,

by breaking them up into chunks that the model is able to recognise. The smallest chunks are

the letters present in the source texts.

Special symbols are added to the beginning and end of the words, which makes possible to

distinguish prefixes and suffixes from other letter sequences. Each word is then decomposed

into n-grams. For example, the word <woman> becomes <wo, wom, oma, man, an>.

In the end, each word vector is calculated as the sum of its n-grams representations. Given a

word 𝑤, its 𝑛-grams 𝐺𝑤 ⊂ {1, ..., 𝐺} and their representations (𝑧𝑔):

𝑠(𝑤, 𝑐) = ∑
𝑔∈𝐺𝑤

𝑧𝑇𝑔 𝑣𝑐 (2.11)

In the standard implementation, the vectors have a dimension of 300, which means that this

many neurons are being used internally to represent each word.

The authors report superior results to both skipgram and CBOW in a variety of tasks and lan-

guages, including human similarity judgements (for Arabic, German, English, Spanish, French,
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Romanian and Russian, except in a dataset containing common English words), word syntac-

tic analogy tasks (in Czech, German, English and Italian) and word semantic analogy tasks (in

Czech and English, but not Italian or German – the latter suffered a significant drop).

Naturally, this model carries over some of the shortcomings presents in word2vec. For exam-

ple, there is no mechanism to effectively track the order of the words (although the sliding

window provides an idea about neighbouring words, which is the basis of the algorithm). And

beyond the sliding window, there is essentially no mechanism at all, so longer-distance rela-

tionships are ignored.

2.5.3 Annif

Annif (Suominen 2019) is an open-source tool developed by the National Library of Finland

for automating subject indexing and classification. By default, it uses bibliographic metadata

from works found in the Finna portal (‘Finna.Fi’ n.d.), which aggregates digital databases pro-

vided by different Finnish organisations – as of this writing, 11 archives, 60 museums and

73 libraries, including special, public and University libraries. This software works as a multi-

label classifier, which means that each document may be assigned a number of different labels.

This differs from the more traditional multi-class classification methods, which aims to classify

by choosing only the best-fitting class out of a list.

Annif leverages the subject headings found in manually indexed documents. The training

dataset consists of for example book titles and their corresponding metadata in YSO keywords:

Horace is paired with antiquity, literary research, etc. After training, it can be used to propose

subject headings for documents. The National Library of Finland also maintains a REST API

which offers access to automatic subject indexing frompre-trained projects in Finnish, Swedish

and English.

Annif is able to use a number of different algorithms: some of those, such as TF-IDF or Maui,

use a lexical approach, matching terms representing a document to a vocabulary of terms. This

type of algorithm can only find word forms that are present in the texts: they are not able to

extrapolate to related concepts or overall interpretations. Associative approaches, for example

Parabel or Bonsai, may be able to find indirect correlations. Often, a combination of these

algorithms via ensembles or fusion architectures yield the best results (Toepfer & Seifert(2018),

cited in Suominen (2019)), since individual algorithms may make mistakes that end up be-
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ing overruled by the ensemble. A decision function merges the predictions from the different

algorithms and returns a combined result.

Two of the projects are used in this thesis: one is an ensemble of Parabel, Maui and TF-IDF,

and the other is made up by Parabel alone. This algorithm is explained in the next subsection.

Parabel is an extrememulti-label classification algorithm developedwith advertising inmind:

the developer’s objective is primarily to predict queries that might lead to an advertise-

ment click on a search engine. This explains the focus of the algorithm on extremely

large datasets (the pool of non-mutually-exclusive labels from which the algorithm an-

notates the data can be composed of millions of items) and speed (both during training

and prediction).

This algorithm follows the 1-vs-All approach, in which a separate linear classifier is

learned for each label. However, it organises the data points into a hierarchy so that

similar labels are grouped together at the leaves. The labels in a leaf act as negative

examples for each other’s classifier. Negative examples as thus restricted to the most

confusing labels in the pool.

Parabel uses an ensemble of 3 label trees, all of which work in a similar way. In each

internal node, two independent linear classifiers decide if the data point should be sent

left, right or in both directions. A data point may therefore be sent to multiple leaves in

each tree. All the relevant 1-vs-All classifiers are then activated, and the final prediction

is the average of the probabilities gathered from the different label trees.

2.5.4 LASER

The Language-Agnostic SEntence Representations (LASER) toolkit (Artetxe and Schwenk

2019) was developed by the Facebook Research team to create massively multilingual sentence

representations. The aim of this project is to create language-independent embeddings by

using the same vectorial representations for all 93 languages it integrates. The list includes

mostly European and Asian languages from different language families2. For the purposes of

this thesis, it is important to note that both English and Finnish are included in the list, and

that the purpose of this project is to create sentence embeddings, not word embeddings.
2The list of supported languages can be found at https://github.com/facebookresearch/LASER#supported-

languages.
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The LASER toolkit uses an encoder-decoder architecture with a single Bidirectional LSTM.

These Long Short-TermMemory neural networks (Hochreiter and Schmidhuber 1997) are spe-

cial types of Recurrent Neural Networks (RNNs), which means that they process the input

sequentially, one element after another, using the previous state as well as the new element.

LSTMs are designed to mitigate the so-called exploding of gradients that can occur in RNNs,

especially long ones, and result in loss of information. This is mitigated by equipping each cell

in the network with a cell state vector, which control the flow of information from one cell to

another, actively deciding what to remember and what to forget.

The encoder is responsible for transforming the sentences into vectorial representations, while

the corresponding decoder, which is not used for obtaining embeddings, is capable of doing

the inverse job. The embeddings are built using the same encoder for all languages. The

vocabulary, also shared by all languages, consists of 50k tokens of byte-pair encoding obtained

from the concatenation of the whole training corpora: similarly to fastText, each word is

represented by subword chunks available in the model’s dictionary. The encoder does not

take into account the language of the training sentences in order to create language-agnostic

representations. This architecture is trying to represent the pure meaning of the sentences by

disregarding their encoding – i.e., language (Schwenk 2019).

Each direction of the bidirectional encoder (left-to-right and right-to-left, as input sentences

are processed) has a dimension of 512; the final representations concatenates both directions,

which results in a dimension of 1024. A bidirectional architecture is a method used to take

into account both preceding and following words in a sentence. The authors believe that

fixed-length embeddings are more versatile and compatible (Artetxe and Schwenk 2019).

The training is done via aligned bitexts with two target languages. A total of 223 million par-

allel sentences were created by combining the Europarl, United Nations, OpenSubtitles2018,

Global Voices, Tanzil and Tatoeba corpora from the OPUS project (Tiedemann 2012). The loss

function used in training is cross-entropy, which computes the difference between the loga-

rithm of two probabilities: the estimate obtained from the model and the gold standard.

Relevantly to this thesis, the authors also tested how the addition of English Natural Language

Inference (NLI) training data affected the embeddings. They report a better performance in the

English NLI test but worse cross-language performance.
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2.5.5 BERT

BERT (Devlin et al. 2019), or the Bidirectional Encoder Representations from Transformers,

represents an evolution in neural network architecture for Natural Language Processing com-

pared to LSTMs. At launch, it achieved state-of-the-art results in 11 NLP tasks, including

named entity recognition, question answering and paraphrasing (Devlin et al. 2019). This

model is thought out to provide a general representation of language, and as such it is able to

achieve high grades in such different tasks.

This model makes use of the Transformer architecture (Vaswani et al. 2017) by stacking sev-

eral transformer layers (12 in the base model and 24 in the large model). The transformer

architecture innovated in two important aspects: multi-headed self-attention and positional

encoding. In NLP, attention is a mechanism that allows for modelling dependencies within a

sentence regardless of their distance (Vaswani et al. 2017). The Transformer is an attention-

based model, replacing recurrence or convolution; by using many attention heads, it allows

language models to track different kinds of dependencies between the tokens.

Another important aspect of the BERT architecture is the split between pre-training and fine-

tuning: the language models are trained in such a fashion that it is possible to adapt them

to specific tasks afterwards. The goal of the pre-training phase is to create models capable

of tracking general linguistic information for different NLP functions, while the fine-tuning

adjusts them into task-specific models.

The pre-training phase consists of simple tasks tailored to its goals and architecture. On the

one hand, they do not require specific pre-constructed data: the procedures are unsupervised

and use current, monolingual, unlabelled – but, importantly, contiguous – text documents (the

English version of BERT was trained on texts fromWikipedia and the BooksCorpus adding up

to 3.3Mwords). On the other, the training techniques bring context awareness both within the

sentences and among them. And since the Transformer architecture is not sequential, it is not

limited to processing the data one token at a time (as do LSTMs), which allows for parallelism

and, consequently, speed.

The general training procedure starts with the Masked Language Model task, in which 15% of

the tokens in a sentence are masked and the task is to predict them, as in the so-called cloze

task. This is analogous to word2vec’s skip-gram model; however, unlike the bag-of-words

approach of word2vec, in which the position of a word is not important, only its neighbours,
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the positional encoding of the Transformer brings awareness about the location of the words

in the sentence and in relation to each other. The second task is Next Sentence Prediction, in

which the model is required to predict if sentence B follows sentence A or not. This can bring

document-level awareness to the language model.

Fine-tuning is the process of adapting the general BERT model to a specific task, such as sen-

tence classification or question answering. This means that the training of the basic models,

which takes time and resources, are performed only once. The fine-tuning is much less expen-

sive: according to the authors, the state-of-the-art results in the paper “can be replicated in at

most 1 hour on a single Cloud TPU, or a few hours on a GPU, starting from the exact same

pre-trained model”. This transfer learning is one of the key reasons for BERT’s success in dif-

ferent kinds of NLP tasks. However, BERT is not engineered to yield semantically meaningful

embeddings: its usage for the specific task performed in this thesis, especially without any

fine-tuning, is an extrapolation of its architecture and outside its main purpose.

BERT uses a WordPiece vocabulary of 30.000 tokens. This is a similar mechanism to the ones

used by fastText and LASER, in which unknown words are split into recognisable chunks.

Since the attention mechanism requires all word tokens to be matched with all others, the

memory and runtime requirements for BERT are quadratic. Thus, the input texts are limited

to a maximum of 512 word pieces.

2.5.5.1 FinBERT

The Google AI Language team also released a multilingual version of BERT, covering a total

of 104 languages (including Finnish). However, the TurkuNLP Group from the University of

Turku released their own from-scratch version of the BERT language model, called FinBERT

(Virtanen et al. 2019). According to them, the language-specific version performed better on

all fine-tuned tasks (part-of-speech tagging, named entity recognition, dependency parsing,

text classification and probing tasks modelled to capture linguistic properties).

FinBERT was trained on three genres of text in Finnish: news (the Yle and the STT corpora),

online discussion (Suomi24) and internet crawl (Common Crawl), which were cleaned and fil-

tered, totalling 3.3B tokens in 234M sentences. A byte-pair encoding vocabulary of 50k tokens

was used. A version of the models with lowered case and stripped accents was also released.
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2.5.5.2 XLM-R

TheXLM-Rmodel (Conneau et al. 2020) was released by the FacebookAI research team in 2019

to provide cross-language text representations. It is a transformer-based model pre-trained on

text in 100 languages. This number was chosen as the result of what the authors call the curse

of multilinguality, in which adding more languages eventually leads to degraded performance

on monolingual and cross-lingual benchmarks (Conneau et al. 2020).

The training is performed on monolingual texts from a clean CommonCrawl corpus using

subword tokenisation with a common SentencePiece vocabulary of 250K tokens, which cir-

cumvents language-specific pre-processing (Reimers and Gurevych 2020). The Masked Lan-

guage Modeling (Devlin et al. 2019) is performed by sampling text from all languages in ac-

cordance with the XML model in Lample and Conneau (2019) with changes for performance

at scale. This fully unsupervised method obtains an average accuracy of 71.5% on zero-shot

cross-lingual classification on the XNLI dataset, outperforming Artetxe and Schwenk (2019)

by 1.3%. Using parallel data, the average accuracy jumps to 75.1, and further to 76.7 when

using an NLI dataset machine-translated from English to the other languages.

2.5.5.3 SBERT

Sentence-BERT (Reimers and Gurevych 2019) is a modification of the BERT model, meant to

derive “semantically meaningful” sentence embeddings. According to the authors, the stan-

dard practices used when obtaining BERT embeddings are computationally too expensive and

do not produce satisfactory results.

SBERT uses the pre-trained BERT (or RoBERTa) models, fine-tuning it on NLI data using

siamese and triplet networks – whose objective is to minimise the distance for similar sen-

tence embeddings while maximising the distance for dissimilar ones – in order to produce

semantically more meaningful embeddings.

The same authors have also published a method (Reimers and Gurevych 2020) that extends

sentence embedding models to new languages. It requires a ready-made “teacher” model in a

language 𝑥 and parallel sentences in this language 𝑥 and one – or multiple – target languages.

The new (“student”) model is trained on both the original language and a translated one using

mean squared loss, so that its embeddings are aligned to those of the teacher model.
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The paper uses BERT as teacher model and XLM-R as student, and fine-tunes the model on

English NLI and STS data.
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Chapter 3

Related Work

According to Zhang, Lertvittayakumjorn, and Guo (2019), three main types of semantic knowl-

edge are used in zero-shot learning: semantic attributes (colour, behaviour); concept ontology

(e.g., knowledge graphs), which relates classes and their features; and semantic word embed-

dings. The latter are used extensively in this work, while concept ontologies make a brief ap-

pearance. Regarding zero-shot learning main methods, Wang et al. (2019) describe two types:

classifier-based and instance-based. The former learns classifiers directly from the available

data, while the latter aims to “obtain labeled instances of the unseen classes and learn classi-

fiers from them” (2019, 25). The work on this thesis situates itself mostly on the outskirts this

classification, since it does not learn classifiers.

Indeed, entirely unsupervised zero-shot classification is not a common research subject. This

means that only a small pool of papers can be considered direct precursors to the present thesis.

The following authors use methods that require no ready-made training data:

• Dauphin et al. (2013) train a classifier on search engine click data (queries and their

subsequent clicks) to build a vector based on semantic features for the classes. Another

classifier is used to calculate the best class using a distance measure. They suggest that

minimising the overlap of the semantic categories (via their conditional entropy) pro-

duces a better classifier, since the resulting embeddings are farther away from each

other.

• Sappadla et al. (2016) use only semantic similarity between a label and the given docu-

ments, without any training step, formulti-label classification. They use skip-gramword
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embeddings to compute semantic similarity via cosine similarity. This thesis builds on

these same methods, but goes beyond it with new kinds of embeddings, other similarity

measures and alternative methods for building the vector space.

• Yin, Hay, and Roth (2019) describe 0SHOT-TC, an algorithm designed to bypass what

they consider frequent problems in zero-shot studies: restrictive use (mainly topic cate-

gorisation), preconditions (the existence of training classes), the lack of semantic under-

standing of the labels, and the lack of standardised datasets and evaluations. 0SHOT-TC

treats zero-shot as a textual entailment problem, answering questions like “this text is

about ?” with class label candidates. This entailment approach is also tested in the

present work.

As discussed before, most of the work in the field of zero-shot classification is geared towards

the so-called zero-shot learning, which aims to create methods to transfer knowledge from

known classes to unknown ones. So while these methods do not require the specific set of

labels used in the classification task, labelled datasets are still required. Transfer learning

from existing classes to new ones is usually done with neural networks, which facilitates the

cross-over between the fields of computer vision – where most of the research is carried out

– and Natural Language Processing. While the present work does not utilise neural networks

directly, some of the existing research is highlighted in this section. These are meant as a

survey of the possibilities within zero-shot classification, not as direct precursors to this thesis:

• Yogatama et al. (2017) use a generative LSTM (Long Short-Term Memory, a type of

neural network) to assign labels to texts. The label pool is created during training, and

the assignment is based on maximised joint probabilities of labels and texts. The system

uses the generative abilities of themodel to predict if the documents belong to an unseen

class. Its accuracy drops remarkably when two hidden classes are used instead of one.

• Pushp and Srivastava (2017) concatenate word embeddings with their label embedding,

pass them through a LSTM and take the last hidden state; or, alternatively, pass the word

embeddings through the LSTM and take the concatenation of the resulting hidden state

to the label embedding. The results are then used to classify if sentence and label are

related.

• Romera-Paredes and Torr (2017) describe an “embarrassingly simple” approach that

builds a semantic attribute matrix out of the training classes, which are represented
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as a list of those attributes. New classes are described in similar terms, and a domain

adaptation algorithm is used to carry out the knowledge transfer.

• Rios and Kavuluru (2018) build a four-step multi-label classification framework with

Graph CNNs (Convolutional Neural Networks). The descriptions/glosses for each label

are transformed into vectors via averaging of their embeddings, used as attention vec-

tors for the documents and passed through a CNN that incorporates information from

a hierarchical structure and then matched to the document vectors. Both label descrip-

tions and hierarchical information must be provided for the zero-shot classifier to work.

• Rabut, Fajardo, and Medina (2019) train a Word2Vec model using part-of-speech tags

assigned to each word.

• Puri and Catanzaro (2019) train GPT-2, which is a so-called generative model – it models

language in a way that makes it capable of generating texts –, to answers questions

about the input texts. For example, they ask which of 𝑋 categories best describe the

text.

• Zhang, Lertvittayakumjorn, and Guo (2019) propose a two-phase framework with data

and feature augmentation. They used class descriptions (alongside the labels), class hier-

archy and the ConceptNet general knowledge graph. One CNN classifier is created for

each seen class. Topic translation is performed via word embedding analogy from a seen

to an unseen class: 𝑠𝑒𝑒𝑛_𝑐𝑙𝑎𝑠𝑠 ∶ 𝑤𝑜𝑟𝑑 ∶∶ 𝑢𝑛𝑠𝑒𝑒𝑛_𝑐𝑙𝑎𝑠𝑠 ∶ ?. This zero-shot classifier is

binary and uses a sigmoid output.

• Ye et al. (2020) developes a semi-supervised framework to automatically select the best

predictions the system makes and use them in reinforced self-training. They claim that

integration of unlabelled data is usually not done in zero-shot learning contexts, and

report significant improvements over BERT-only with this framework.
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Chapter 4

Methods

4.1 Data

Two different custom datasets were used in this thesis. This section describes how they are

built.

4.1.1 Finlex

The texts used in this dataset are sections of the Finnish Legislation as presented by the Seman-

tic Finlex portal1 (Oksanen et al. 2019), a Linked Open Data service that also includes some

instances of Finnish jurisdiction (Supreme Court and Supreme Administrative Court).

Finnish Legislation is divided hierarchically, so that each Statute can be progressively decom-

posed into lower levels (Parts, Chapters, Sections, Subsections, Paragraphs, Subparagraphs).

Legislation may also be amended or invalidated; the Semantic Finlex portal keeps track of

these changes and allows for downloading only legislation in force, using SPARQL queries.

Sections were chosen as the standard level of representation for legislative texts because they

are probably the best carriers of semantic meaning: they sit in between the broad and long

Chapters and the brief and specific Paragraphs. However, Sections do not follow a specific

size pattern: their average length in characters for the whole dataset (containing sections up

to July 11th 2019) is 894 with a standard deviation of 763.

Since there is no labelled version of these legislative texts, a small sample of the database was
1https://data.finlex.fi
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tagged by me as a gold standard for this thesis. A total of 100 random law sections were

labelled according the following categories (all the multi-word labels consist of independent

words chained together. The number in parentheses indicate the number of instances in this

database):

• asuminen kiinteistö ‘housing, real state’ (9)

• ihmisoikeudet perusoikeudet ‘human rights, basic rights’ (3)

• omaisuus kaupankäynti kuluttajansuoja ‘property, commerce, consumer protection’ (9)

• julkishallinto valtiohallinto ‘public administration’ (7)

• rahoitus ‘finance’ (8)

• verotus ‘taxation’ (5)

• yritykset yhteisöt työelämä ‘business, organizations, working life’ (14)

• liikenne kuljetus ‘traffic’ ‘transportation’ (14)

• perheoikeus perintöoikeus ‘family law, inheritance’ (8)

• rikosasiat oikeudenkäynti ‘crime, legal proceedings’ (14)

• koulutus ‘education’ (2)

• ympäristö ‘environment’ (7)

The labelling is tentative, due to the complex nature of legislation – which often relate to

different categories in a single section –, my lack of training in legal matters, and the fact that

Finnish is not my mother tongue. As a result, many sections were skipped while building

this dataset: those touching mainly themes outside the list of categories, deemed too short

– lacking in semantic information – or too complex to have one single category assigned to

them. The outcome is a simplified catalogue of law sections that cannot necessarily be taken

as a faithful representation of the legislation.

Moreover, a sample of 100 items is not large enough to draw firm conclusions from. This

dataset is presented as a small window into the behaviour of the algorithms for this kind of

documents.

This dataset is available for download at this project’s repository. The list its document URIs,

alongside their assigned labels, can also be found in Appendix B.

27



4.1.2 Yle

There is an acute lack of openly available labelled datasets in Finnish, so an adequate text

collection had to be created from scratch. This was achieved using material from Finland’s

national broadcasting company, Yle (Yleisradio Oy), via their Articles API, which offers written

news articles alongside their metadata; access to it demands a personal token granted by Yle.

The intention in creating this dataset was to produce a labelled collection of texts in which the

tags are short, preferably composed of one word only, and semantically expressive.

A total of 11 different topics were chosen to be featured in the dataset, most of which can

be found on Yle’s homepage menu as main topics: politiikka ‘politics’, talous ‘economy’, kult-

tuuri ‘culture’, luonto ‘nature’, tiede ‘science’, terveys ‘health’, liikenne ‘transportation’, urheilu

‘sports’, sää ‘weather’; additionally, the items parisuhde ‘intimate relationships’ and rikokset

‘crimes’ were chosen despite not appearing as main topics. These words were manually cho-

sen to represent different classes of news. This manual triage was necessary because even

the articles’ main tags vary from broad concepts (such as the categories mentioned above) to

proper names (“Stanley Cup”, “Tarja Halonen”) and specific concepts such as puurakennuk-

set ‘wooden buildings’ or ‘#Metoo’: only a small subset of them was deemed fit for general

document categorisation.

Once the categories were chosen, two different datasets were built, separated by a date

(01.01.2015, which has no specific meaning). The first dataset contains around 300 news arti-

cles for each category and a total of 3140 articles, and the second one around 200 per category

and a total of 1960. Both are slightly imbalanced, since not all categories yield enough entries.

They were built using the Yle API, sorted by relevance, using the primary_subject tag as

target, which corresponds to the main topic of the article. Moreover, corresponding datasets

containing (1) only the headlines and (2) the headlines and leads for each article were also

built.

Since no statistical analysis is being performed in this work, splitting the data into two sets

allows for checking if the scores obtained are at least somewhat consistent. Although the data

is very similar in both, this gives more assurance that the scores are not obtained by mere

chance. A small-scale test using this split is also performed (see 5.8).

This dataset cannot be redistributed. A list of identifiers for all the texts used in this dataset

can be found in Appendix B.
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4.2 Models

This chapter describes how the different vector spaces are created and which methods are

used for handling them. The overall architecture of this project consists of four elements: a

text extractor, a category retriever, a languagemodel, and a classifier. This opens up alternative

paths for exploration of the data, since most of these components are modularly built and can

integrate freely with the other layers: a text represented as keywords may be paired up with

a semantic enhancement category retriever, or a text summary can be classifier via semantic

entailment. More details about each of these component types are given in their respective

sections.

Figure 4.1 summarises the general architecture of these experiments.

Figure 4.1: General architecture. Dotted arrows indicate alternative pathways

4.2.1 Document extractors

Extractors are responsible for representing the text. Besides the default full-text representa-

tion, an extractor may for example transform a text into keywords or into its summary.
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Standard Yields the whole text of the document without any processing.

TF-IDF This is the only algorithm that does not require pre-training – but it does require

text pre-processing. The documents are tokenised, split into sentences and lemmatised

using the Finnish dependency parser pipeline by the TurkuNLP research group (Pyysalo

et al. 2015). This extractor yields a list of terms and their respective weights for each

document.

Annif The Annif team has released a Python command-line tool, called Annif-client, that ac-

cesses the Annif REST API and returns subject suggestions for the input text, alongside

their weights. There are different pre-trained projects to choose from. Two different

projects are used in this work: Parabel-only and an ensemble TFIDF-Parabel-Maui with

equal weights. This extractor represents the documents as a list of keywords. Alter-

natively, it may also yield their weights, but this feature is used only when the whole

vector space model is Annif-based.

Summarisation Miller (2019b) presents a simple extractive text summarisation pipeline,

which obtains sentence embeddings from BERT and selects the closest representations

to 𝐾 centroids as candidate summary sentences. The selection is made via K-Means,

which re-calculates the position of the centroids via Euclidean distance until a balance

is reached. Euclidean distance is a close relative to Euclidean norm (equation 2.10) and

has the following formula:

𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 +…+ (𝑥𝑛 − 𝑦𝑛)2 (4.1)

for any two vectors in 𝑅𝑛. The chosen sentences are thus the ones closest to the 𝐾
“centers of mass” of the vectorial representations in the Euclidean space, and are used as

representatives for the whole text. The implementation used, available on GitHub, was

done by the author of the paper (Miller 2019a). In it, is is possible to specify a number

of sentences or a ratio for summarisation. The default of 0.2 sentences per document is

used in this thesis. This tool can also directly return the embeddings obtained from the

specified BERT model.

The intention behind using this method is to find out if summaries are better suited

than multi-paragraph texts for zero-shot classification using a space vector model. This
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could be the case if their representation lie closer to the single word embedding than

the whole-text representation.

4.2.2 Language representation models

The language representation models are responsible for creating a vectorial representation for

each document in the collection. They accept a text representation of the document or class

and transform them into a vector in the vector spacemodel, so that all objects have comparable

representations. Models that are geared towards word representations – fastText, for example

– might not be able to represent sentences effectively, let alone multi-paragraph text docu-

ments. Two main pooling strategies are regularly used in research in order to transform word

vectors into sentence vectors without changing their dimensions: in mean pooling, the word

vectors in the sentence are averaged element-wise. For all vector representations 𝑣0 …𝑣𝑁 and

all vector features 𝑣𝑠0 …𝑣𝑠𝐾 :

𝑣𝑚𝑒𝑎𝑛𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = [𝑚𝑒𝑎𝑛(𝑣𝑠00 ,… , 𝑣𝑠0𝑁 ),𝑚𝑒𝑎𝑛(𝑣𝑠10 ,… , 𝑣𝑠1𝑁 ),… ,𝑚𝑒𝑎𝑛(𝑣𝑠𝐾0 ,… , 𝑣𝑠𝐾𝑁 )] (4.2)

While in max pooling, the maximum value for each component is chosen out of all word vec-

tors:

𝑣𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔 = [𝑚𝑎𝑥(𝑣𝑠00 ,… , 𝑣𝑠0𝑁 ),𝑚𝑎𝑥(𝑣𝑠10 ,… , 𝑣𝑠1𝑁 ),… ,𝑚𝑎𝑥(𝑣𝑠𝐾0 ,… , 𝑣𝑠𝐾𝑁 )] (4.3)

The intuition behind the former is that the average of the word vectors will bring about a mean

vector that is a good representation of the text; for the latter, that representation will be the

sum of its most salient features.

Vectorial representation for multi-sentence documents are obtained in a similar fashion: sen-

tence vectors are pooled together to generate a final depiction of the contents of the text.

TF-IDF The vector representations for a document consist of its TF-IDF score for each key-

word, which is, as a rule of thumb, a very sparse representation of the data, since a

document only contains a fraction of the total number of keywords in the vector space.

fastText The fastText package (Grave et al. 2018) offers a command for acquiring sentence
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vectors. It works by averaging the word vectors in the sentence after the vectors are

divided by their l2 norm (see equation 2.10). In this thesis, the text documents are split

into sentences via the nltk python package (Bird, Klein, and Loper 2009).

Annif In order to build this vector space, all the documents in the dataset are first processed

using the Annif extractor. Next, a matrix is built in which each keyword found by the

model constitutes one dimension, and the corresponding Annif weights are their values.

In other words, a matrix is built in which the rows correspond to the documents and the

columns are the different keywords.

The vector space built using this technique is similar to the counter matrices used in

TF-IDF, using weights instead of counts. Different parameters can be set: a minimum

weight threshold, a limit in the number of results per text – only the top 𝑋 results are

considered, which can make each vector roughly equal in the number of non-negative

values – and a project (for example Parabel-only, or an ensemble with Parabel + Maui +

TF-IDF, called yso-fi). The defaults are a threshold of 0.01, a limit of 100 and the previ-

ously mentioned ensemble.

As with TF-IDF, the matrices created by this model are usually very sparse. The default

settings yield around 2 to 3 values per every 1000 entries.

LASER The corresponding vector space model is created using the unofficial laserembeddings

package (yannvgn 2019).

BERT Two versions of FinBERT are used in this project: one without modifications, and an-

other with a further round of pre-training on a larger Finlex dataset containing 65k law

sections. The parameters used for fine-tuning are the recommended ones: max_seq_len

of 128, masked_lm_prob of 0.15, num_train_steps of 10k and a learning rate of 2e-5.

The internal representation of FinBERT’s models were obtained via the bert-as-a-service

project (Xiao 2018), which is in its essence an API for extracting embeddings from BERT

(and derivative) models. It encodes text into a fixed-length vector: padding and trunca-

tion are used to adjust the length of the text so that the resulting length is fixed.

The type of pooling strategy can be set as a parameter. Besides mean and max, it is pos-

sible to get a concatenation of these two or the hidden state corresponding to the [CLS]

or [SEP] tokens (respectively first and last tokens, which contain information about
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the whole sentence. These are also used in research). In this work, the embeddings for

single-word labels are by default obtained using the pooling strategy NONE, which yields

a vector for the word (or sentence) queried, without any pooling; text representations

are obtained using NONE or MEAN. The max_seq_len parameter is set to 45 instead of the

default 25, in a bid to balance speed and efficacy.

It is also possible to extract embeddings from different layers of the model, but the tests

reported in Devlin et al. (2019) show that using the output of the second-to-last layer is

a good balance between effectiveness and performance, and this is the default in bert-

as-a-service. The best-performing strategy reported in the paper is the concatenation of

the four last layers, resulting in 3072-dimensional vectors (up from the default 768), but

for an 𝐹1 score gain of only 0.4%.

SBERT Some models were also created with Sentence-BERT, which provides its own API

for obtaining embeddings. The scripts for the training were adapted from the sentence-

transformers GitHub page2 otherwise using the standard parameters:

• An English-Finnishmodel with XLM-R base as student, and 300k parallel sentences

(EN-FI) from the Europarl, EUbookshop and TildeMODEL datasets in the OPUS

collection (Tiedemann 2012). The standard parameters were used: 20 epochs, 1000

evaluation steps, and a learning rate of 2e-5. (S-BERT XLMR)

• The FinBERT fine-tuned model trained on the English NLI dataset. (S-BERT NLI)

4.2.3 Post-processing and composite mechanisms

These mechanisms combine different language models or process the available representation

after they are created:

TruncatedSVD This technique can be used with any of the language models. It is initially

applied over the matrix representing the documents, which yields a model that can then

be applied to any vector or matrix with the same number of dimensions in 𝑅 – the cate-

gory matrix in this case. Both matrices are then compared following normal procedures.

These models are created using scikit-learn (Pedregosa et al. 2011).

Projection Following Davison (2020), this classifier takes the 𝐾 most common words in the
2https://github.com/UKPLab/sentence-transformers
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documents and learns a least-squares linear projection𝑍 from a sentence-oriented word

embedding model onto a word-oriented model, for example from BERT onto fastText,

with L2 regularisation. This projection is then used to transform the sequence-oriented

embeddings for both text sequences and class labels.

This projection model works as a kind of dimensionality reduction that “makes the la-

bel embeddings much better aligned with their corresponding data clusters” (Davison

2020). This projection theoretically adapts sentence-oriented embeddings to a more

word-oriented space, resulting in possible improvement of the overall model. This is

implemented using the Ridge model availale in scikit-learn.

Ensemble models These models pool together the results of two or more classifiers. Their

classification matrices are first normalised, so that the document vectors, which contain

the predictions given to every category for each document, sum up individually to one;

the matrices are then averaged together and the result is a new classification matrix that

can be scored without any further processing.

4.2.4 Category retrievers

Category retrieval mechanisms are responsible for textually representing the categories. In

this classification task, each dataset is paired with a set of categories given as input. Some

retrievers use semantic enhancement, transforming each category label into a list of related

words.

Standard This mechanism simply yields the category labels as-is. E.g.: in the case of the Yle

dataset, the labels are ‘politics’, ‘economy’, ‘culture’, etc (in their original Finnish form:

see 4.1.2).

Annif The Annif retriever retrieves similar words by feeding the class label into the Annif

API with a default threshold of 0.01 and a limit of 100 words. For example, for the label

politiikka ‘politics’, the first elements returned are, besides the label itself, poliittiset jär-

jestelmät ‘political organisations’, politiikantutkimus ‘political studies’, poliitikot ‘politi-

cians’, poliittinen osallistuminen ‘political participation’, valtiofilosofia ‘political philoso-

phy’, valta ‘power, authority’, etc.

Each element of the list receives a vectorial representation using the language representation

model; these vectors are then pool them together (using mean pooling by default), resulting
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in a vectorial representation for the category.

Finto For each class identifier, this classifier retrieves broader, narrower and related key-

words from the KOKO ontology (see Linked Data). For example, the narrower results for

the ‘politics’ label include ammattiyhdistyspolitiikka ‘trade union politics’, biopolitiikka

‘biopolitics’ and data politiikka ‘data policy’, while its related concepts are, among others,

anarkismi ‘anarchy’, ideologiat ‘ideologies’ and kansallisuusaate ‘nationalist ideology’.

These concepts are then returned as a list of words, which are processed analogously to the

ones yielded by the Annif retriever.

Entailment The semantic entailment approach discussed in Ye et al. (2020) is tested in this

thesis. For each class, the retrieval mechanism obtains representations for the sentence

“Tämän tekstin aihe on {class}” ‘The subject of this text is {class}’, in which the token

{class} is replaced by the class identifier. This proceeding is used with Sentence-BERT,

since this model is trained on Natural Language Inference data.

An example of semantic retriever that is not tested in this work is dictionary-based: the cat-

egory labels can be transformed into their dictionary definition(s), for which an embedding

can be obtained.

4.2.5 Classifier

The classifier is the element that puts the previously discussed pieces together. It receives

the textual representations from the category retriever and creates vectorial representations

for them, using the appropriate language representation model. As explained above, in case

the representation is a list of words, a pooling mechanism is used to unify them into a single

category vector. All the category vectors are then stacked together to form the categorymatrix.

The final classification is then carried out by comparing the document matrix and the category

matrix via a similarity measure (see next subsection): each text is compared to each category,

scores are calculated for all these pairings, and the final prediction is obtained via argmax (the

highest-scoring category is chosen for each document being classified).

4.2.5.1 Similarity measures

These are the similarity algorithms used for comparing documents and categories. Their inner

workings are explained in the 2.2 Similarity measures section.

35



• Dot product

• Cosine similarity

• Pearson’s correlation
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Chapter 5

Results and Discussion

This section reports on how the different models fare when effectively faced with the task of

categorising documents. The tests are described and their results analysed.

The scores given here are calculated as the harmonic mean between Precision and Recall, also

known as the 𝐹1 score. Precision only takes into account the answers effectively given by the

model, and calculates the percentage of right answers out of them; Recall looks at all right

answers, globally, and measures the answers given by the model against them. It is theoreti-

cally easy to obtain a high Precision score by setting a high threshold, so that the model only

gives results it is very confident about. That is why the 𝐹1 measure is used: it penalises large

disparities between its two components, enforcing balanced results and avoiding domination

by one of the factors over the other, which may occur when using a simple average.

The harmonic mean is calculated as per equation 5.1:

𝐹1 = 2 × Precision× Recall
Precision+ Recall (5.1)

Almost all𝐹1 scores presented here are nevertheless equal to their Precision and Recall compo-

nents, which happens because the models outputs a result for every pairing of document and

class label, so the “answers effectively given by the model” are the same as the total possible

answers. As a result, by default Precision and Recall are not mentioned in this discussion. The

figures given are thus 𝐹1 scores unless otherwise noted.

The default category representation is the normal textual label and the default similarity mea-
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sure is cosine similarity. The Annif language model and the Annif document extractor use

by default the yso-fi ensemble with a threshold of 0.01 and a limit of 100; the TF-IDF model

uses the corresponding TF-IDF extractor (with tokenized versions of the datasets, which yield

much better results). The other models use the full text of the documents, otherwise noted.

The default S-BERT model is XLM-R and the default FinBERT uses the ‘none’ pooling strategy

for both documents and categories. SVD refers to the Truncated SVD model. The names of

the datasets are at times shortened to Y1, Y2 and FL for Yle 1, Yle 2 and Finlex respectively.

5.1 Basic language models

This subsection is an overview of the basic results, which use default values, default document

extractors, and no enhancement for the category labels. Only the internal parameters of the

different models are tested.

Table 5.1: Basic results for all datasets

Yle 1 Yle 2 Finlex

Annif 0.504 0.458 0.47

TF-IDF 0.354 0.307 0.2

LASER 0.104 0.102 0.09

fastText 0.63 0.649 0.45

FinBERT 0.492 0.503 0.38

S-BERT 0.417 0.401 0.28

The main tendencies are already visible in table 5.1: LASER performs much worse than the TF-

IDF baseline, and indeed obtains results very close to random (around 0.09 for the Yle datasets

and 0.08 for Finlex). From these results, it is already clear that this model is unsuitable for

unsupervised text classification. FastText is the best-performing out-of-the-box model.

The Finlex dataset proves to be a greater challenge than the Yle-based ones for these algorithms.

As discussed in the Data section, this may be due to the nature of the dataset as well as its

method of creation: the language of legislative texts is unusual, containing specific terms, and

the category labels used for this dataset are sometimes composed of multiple words, which can

add to the challenge. Moreover, it is possible that considering only themost relevant prediction
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lowers the scores, since each section of the law usually touches upon different categories - and

even in case they are all recognised, their relative rank may vary. A scorer that is able to check

multiple categories per document would possibly show a somewhat brighter picture – but it

would demand a much more expertly built dataset.

5.2 SVD

Table 5.2 shows the effect that SVD has in this classification task. Since the number of SVD

components is an input parameter, several different figures are probed and tested indepen-

dently for each model and dataset. By default, the numbers are 3, 5, 10, 15, 20, 30, 45, 70, 85,

100, 120, 150, 175, 200, 250, 300, 400, 500, 600, 720, 850 and 1000 – as long as they are lower

than the original size of the model. Since this sequence of numbers leaves many gaps, the

highest SVD figures presented in these sections are just rough approximations.

The figures after the slash (“/”) indicate the number of components (the original size of the

embeddings are 768 for BERT, 300 for fastText and 1024 for LASER; for Annif and TF-IDF,

they vary according to the dataset: respectively from 510 to over 6k, and from over 2k to over

66k). The Base (“B”) and “SVD” numbers are 𝐹1 scores; “Dif” is the improvement rate of SVD

over the base value.

Table 5.2: Basic SVD results

Y1 B Y1 SVD Diff Y2 B Y2 SVD Diff FL B FL SVD Diff

Annif 0.504 0.604 / 70 +19.8% 0.458 0.616 / 45 +34.5% 0.47 0.49 / 120 +4.2%

TF-IDF 0.354 0.696 / 30 +96.2% 0.307 0.627 / 30 +104.3% 0.2 0.29 / 20 +45%

LASER 0.104 0.113 / 45 +8.2% 0.102 0.157 / 3 +54.8% 0.09 0.09 / 70 0%

fastText 0.63 0.636 / 45 +1% 0.649 0.678 / 100 +4.4% 0.45 0.58 / 70 +28.9%

FinBERT 0.492 0.58 / 200 +17.9% 0.503 0.577 / 250 +14.7% 0.38 0.44 / 85 +15.8%

S-BERT 0.417 0.427 / 120 +2.4% 0.401 0.418 / 120 +4.5% 0.28 0.29 / 70 +3.6%

SVD is capable of improving the scores of almost all models – in many cases substantially,

including a boost of 91-104% to TF-IDF’s capabilities on the Yle datasets, resulting in a very

competitive score. The average rate of improvement over all scores is ~25%, and as a general

rule it is felt more intensely with sparse models (Annif and TF-IDF), which give much more
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leeway for matrix decomposition as explained in the Background section. TF-IDF, which can

be considered a baseline algorithm, yields the highest results in this group for Yle 1 and the

second-highest for Yle 2 when SVD is applied. This shows that matrix decomposition can help

distill semantic meaning into more meaningful representations.

Figure 5.1: Number of SVD components vs score. FinBERT and fastText w/ TF-IDF on Yle 1

Figure 5.1 plots the scores for two languagemodels against the number of possible SVD compo-

nents (more about the second model in a subsequent section). As the number of components

grow, the figures gets closer to the base score, since adding back SVD components amounts to

progressively rebuilding the decomposed matrix. The “peak” at around 20 components (which

is missed by the probing algorithm) in the left-most plot may be a fluke, considering the deep

valley that comes right after it, but, the “plateau” is quite typical, as the right-most plot shows,

and this points to a reassuring stability in SVD outcomes.

It is important to point out that SVD brings about changes that are entirely based on existing

features, even though it acts externally and after the model’s matrix has been built. There is no

knowledge added, only knowledge distilled. Its consistency in improving all models in almost

all settings tested grants SVD the potential to improved unseen data as well, and because of

this its results are reported here.

However, the fact that SVD demands an input parameter (number of components) means that

it cannot be used as such with unseen data: the “peaks” in figure 5.1 are not necessarily the

same for different datasets. So, while non-SVD results reported here probably give a good

idea of how unseen datasets would be scored using a corresponding model, the same is not

necessarily true for SVD, so its results cannot be generalised. Section 5.8 tries to assess how
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transferable this parameter is.

5.3 Similarity measures

Table 5.3 summarises the results obtained for different similarity measures using the basic

settings. There is little difference among cosine and correlation: the mean scores are 0.369 for

cosine, 0.351 for dot product and 0.369 for Pearson’s correlation. When LASER is excluded, the

averages are respectively 0.423, 0.405 and 0.417. Cosine similarity has a slight edge, augmented

by convention and tradition. It seems that the lack of normalisation in dot product’s formula

prevents it from performing at the same level as the other algorithms. Their computational

expense is not assessed in this thesis.

Table 5.3: Cosine similarity, dot product and Pearson’s correlation as similarity measures

Y1 Cos Y1 Dot Y1 Cor Y2 Cos Y2 Dot Y2 Cor FT Cos FT Dot FT Cor

Annif1 0.48 0.481 0.509 0.457 0.456 0.491 0.34 0.35 0.32

TF-IDF 0.354 0.355 0.333 0.307 0.304 0.238 0.2 0.2 0.17

LASER 0.104 0.098 0.083 0.102 0.059 0.169 0.09 0.08 0.13

fastText 0.63 0.63 0.634 0.649 0.649 0.643 0.45 0.45 0.45

FinBERT 0.492 0.389 0.491 0.503 0.36 0.503 0.38 0.27 0.38

S-BERT 0.417 0.445 0.418 0.401 0.432 0.402 0.28 0.31 0.28

Average 0.413 0.4 0.411 0.403 0.377 0.408 0.29 0.277 0.288

5.4 Text extraction techniques

One of the tests realised was the summarisation of the texts, according to section 4.2.1 Docu-

ment extractors. The headlines and leads of the Yle datasets were also used as a summarisation

proxy. The results for these tests are shown in table 5.4. Only dense, word embedding-based

models were tested, which excludes TF-IDF and Annif. LASER’s output is not taken into ac-

count in this analysis, since it is too close to the random baseline to be useful.

The Headlines dataset contains about 65 characters in average, and yields a mean score ap-
1Using Parabel and a limit of 0.01
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proximately equal to 80.5/79.8% (Base/SVD) of those for the full text datasets, which contain

~2111 characters (a ratio of 3%). The figures for Headlines + Leads are: around 11% of the size

(233 characters) and 90.4/89% of the scores. The summarisation technique yields 93.7/94.6%

of the base results in roughly 680 characters (~32% – around 6 sentences against ~21). These

numbers indicate that larger documents might be a better target than shorter ones. The gains

are progressively smaller as the size of the texts grow: diminishing returns are a constant in

Machine Learning and related NLP tasks.

Table 5.4: Headlines, Headlines + Leads and Summary: Yle 1 and Yle 2 average values

Base Avg Hl Avg Hl+L Summ Base SVD Hl SVD Hl+L SVD Summ SVD

LASER 0.103 0.111 0.11 0.108 0.135 0.112 0.112 0.121

fastText 0.64 0.509 0.599 0.617 0.657 0.542 0.641 0.643

FinBERT 0.497 0.427 0.453 0.441 0.578 0.478 0.48 0.521

S-BERT 0.409 0.308 0.354 0.392 0.423 0.314 0.365 0.405

On a similar note, but with different outcomes, another NLP text extraction technique con-

sists in reducing documents to their representative keywords: this has been in use since the

inception of TF-IDF. This technique can also be combined with word embedding algorithms:

the embedding for each of the keywords for a text is pooled together to form the document

representation, without the need to form sentence representations. Table 5.5 shows the re-

sults for this combination using two keyword-based text extractors: TF-IDF with a threshold

of 0.7 (only the 30% globally highest-scoring words are taken into account) and Annif using

the Parabel-only project with a threshold of 0.01. FinBERT is using the “no pooling” strategy:

it directly extracts the vectors corresponding to the category label, without any pooling. This

means that one of the phases in the “typical” BERT setup, creating sentence vectors, is skipped.

In other words, it behaves more alike word2vec and fastText.

Table 5.5: Text extraction with TF-IDF at 0.7 and Annif at 0.01 compared to base values

Y1 B TF07 Y1 Ann Y1 Y2 B TF07 Y2 Ann Y2 FL B TF07 FL Ann FL

LASER 0.104 0.096 0.364 0.102 0.102 0.352 0.09 0.1 0.41

fastText 0.63 0.575 0.735 0.649 0.606 0.727 0.45 0.4 0.64
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Y1 B TF07 Y1 Ann Y1 Y2 B TF07 Y2 Ann Y2 FL B TF07 FL Ann FL

FinBERT 0.492 0.277 0.694 0.503 0.251 0.669 0.38 0.06 0.61

Table 5.6: SVD-enhanced text extraction with TF-IDF at 0.7 and Annif at 0.01 compared to
base SVD values

Y1

SVD

TF07

Y1

SVD

Ann

Y1

SVD

Y2

SVD

TF07

Y2

SVD

Ann Y2

SVD

FL

SVD

TF07

FL

SVD

Ann

FL

SVD

LASER 0.113 /

45

0.096 /

100

0.372 /

45

0.157 /

3

0.102 /

85

0.358 /

70

0.09 /

70

0.1 / 30 0.45 /

15

fastText0.636 /

45

0.684 /

45

0.743 /

20

0.678 /

100

0.735 /

30

0.731 /

20

0.58 /

70

0.54 /

30

0.7 /

30

FinBERT 0.58 /

200

0.357 /

15

0.711 /

20

0.577 /

250

0.421 /

20

0.689 /

20

0.44 /

85

0.22 /

70

0.62 /

70

TF-IDF as a document extractor yields results that are mostly worse in comparison to the base

scores, except in combination with fastText and SVD – despite the fact that with fastText alone,

without SVD, the scores are lower. However, the results obtained using the Annif extractor

show a very significant increase in all tests realised. The average ratio of increase over baseline

is around 34%, or 117% when including LASER. Even this latter model, the worst-performing

of them all, manages to achieve a score of 0.41 on the worst-performing dataset, Finlex, while

FastText manages to correctly classify 64% of its items.

Thus, describing documents as a list of representative keywords and pooling these keyword’s

vectors together seem to be a relatively effective way to categorise texts. Annif works better

than TF-IDF because it brings its own “knowledge of the world” acquired during training,

which TF-IDF lacks, since it can only notice what is written in the datasets. Annif is able

to extrapolate from one concept to another, filling gaps that TF-IDF cannot. And fastText is

geared towards producing effective word embeddings: combining the two seems like a natural

option.
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5.5 Category enhancement

A logical progression in this research is to also semantically enhance the category labels. This

can be done for example via the Finto or Annif category retrievers. Tables 5.7 and 5.8 show

the average score for each method across all three datasets. (These tests were also carried out

using max pooling for the category vectors, but mean pooling fared much better – by a margin

of almost 80% in average, reduced to 20% with SVD. The results shown use mean pooling. The

Annif extractor is using Parabel).

Table 5.7: Semantically enhancing the category labels on Yle 1

TFIDF TFIDF+Finto Annif Annif+Finto Annif+Annif

LASER 0.082 0.095 0.364 0.256 0.237

fastText 0.507 0.497 0.735 0.67 0.72

FinBERT 0.199 0.274 0.694 0.51 0.54

Table 5.8: Semantically enhancing the category labels (SVD) on Yle 1

TFIDF TFIDF+Finto Annif Annif+Finto Annif+Annif

LASER 0.096 0.14 0.372 0.259 0.234

fastText 0.606 0.564 0.742 0.70 0.739

FinBERT 0.296 0.285 0.711 0.61 0.627

The non-enhanced versions fare invariably better. It seems that the abundance of concepts

confounded the models instead of helping them. Maybe a more restrictive approach, with just

a handful of extra concepts, would be more appropriate, but this line of enquiry is not followed

up in the present work.

5.6 Compound models

5.6.1 Projection

The projection explained in Davison (2020) (see 4.2.3) is carried out with FinBERT and fastText,

so that FinBERT’s vectors were mapped onto fastText’s. This model scores 0.463 and 0.469 (the
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latter for SVD with 50 components) for the Yle 1 dataset, which is lower than base results for

the models (0.492 and 0.63).

5.6.2 Ensembles

In this section, some of the best-scoring models are brought together as ensembles. There is

some improvement to be had in combining different models, as table 5.9 (Yle 1) shows on rows

3 and 4, table 5.10 (Yle 2) on its only row, and table 5.11 (Finlex) on row 2. The combination

of fastText and fastText with the Annif extractor achieves the highest scores reported in this

thesis for all datasets (see analysis in 5.9 for some analysis and visualisation). Ensembles

containing SVD do not seem to be able to improve on its components’ scores.

Table 5.9: Ensemble scores for the Yle 1 dataset

Model 1 Model 2 M1 score M2 score Ensemble score

fastText SVD TF-IDF SVD 0.636 0.695 0.718

fastText w/ Annif-ext SVD FinBERT w/ Annif-ext SVD 0.743 0.711 0.741

fastText w/ Annif-ext FinBERT w/ Annif-ext 0.721 0.694 0.738

fastText fastText w/ Annif-ext 0.630 0.735 0.760

Table 5.10: Ensemble scores for the Yle 2 dataset

Model 1 Model 2 M1 score M2 score Ensemble score

fastText fastext w/ Annif-ext 0.649 0.731 0.763

Table 5.11: Ensemble scores for the Finlex dataset

Model 1 Model 2 M1 score M2 score Ensemble score

FinBERT w/ Annif-ext SVD FastText w/ Annif-ext SVD 0.62 0.7 0.67

fastText fastext w/ Annif-ext 0.45 0.64 0.65

fastText fastext w/ Annif-ext SVD 0.45 0.7 0.65
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5.7 Individual models

This section collects model-specific results.

5.7.1 FinBERT

Four different pooling combinations are tested alongside two different versions of FinBERT,

one pre-trained and one fine-tuned. The pre-trained model fares almost invariably better,

which may be due to the fact that only one fine-tuned version was produced, without fur-

ther parameter-tuning. The best-performing models, once again, use the Annif extractor and

SVD. Considering only BERT’s internal strategies, pooling sentences with mean pooling and

comparing them to category labels extracted with “no pooling”, which returns embeddings

akin to sentence embeddings, fares best – but only when enhanced via SVD; otherwise, no

pooling for both sentences and labels is the best option. This finding shows that mean pool-

ing, despite being the default option in bert-as-a-service (Xiao 2018), does not necessarily build

the best semantic vectors when dealing with BERT. In any case, fastText embeddings seem to

be more suitable for this categorisation task.

Table 5.12: FinBERT pre-trained model (PT) compared to its fine-tuned (FT) version on Yle 1

Pooling strategy PT B PT SVD FT B FT SVD

NONE (Annif ext) 0.577 0.64 / 20 0.535 0.57 / 30

MEAN 0.45 0.52 / 20 0.385 0.565 / 30

MEAN + NONE 0.469 0.639 / 150 0.322 0.546 / 30

NONE 0.492 0.58 / 200 0.353 0.5 / 30

Table 5.13: FinBERT pre-trained model (PT) compared to its fine-tuned (FT) version on Finlex

Pooling strategy PT B PT SVD FT B FT SVD

NONE (Annif ext) 0.61 0.62 / 70 0.535 0.574 / 20

MEAN 0.28 0.38 / 30 0.109 0.109 / 85

MEAN + NONE 0.22 0.55 / 85 0.277 0.475 / 30

NONE 0.38 0.44 / 85 0.25 0.32 / 70
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5.7.2 S-BERT

S-BERTwas taken up on its promise of better semantic vectors, but failed to deliver. Almost all

results are worse than FinBERT’s above, and the entailment approach yielded at most mixed

results.

Table 5.14: S-BERT using different models

Y1 Y2 FL Y1 SVD Y2 SVD FL SVD

S-BERT 0.417 0.401 0.28 0.427 / 120 0.418 / 120 0.29 / 70

S-BERT + entailment 0.343 0.293 0.27 0.347 / 120 0.299 / 120 0.32 / 20

S-BERT NLI 0.395 0.39 0.47 0.418 / 20 0.401 / 70 0.47 / 30

S-BERT NLI + entailment 0.437 0.416 0.3 0.439 / 200 0.417 / 175 0.34 / 5

5.8 Prediction using SVD components

In table 5.15, the number of components in some SVD-enhanced models on Yle 1 is used to

build corresponding models for the other datasets. The results obtained are then compared to

the best predictions on those datasets, in order to assess how transferable this machine-learned

parameter is from one dataset to another.

Table 5.15: Number of components in Yle 1’s best SVD model used to build corresponding
models for Yle 2 and Finlex

Model

Y1 SVD

comp

Y2

Base

Y2 SVD

Pred

Y2 SVD

Best

FL

Base

FL SVD

Pred

FL SVD

Best

Annif 70 0.458 0.566 /

70

0.616 /

45

0.47 0.43 / 70 0.49 /

120

fastText 45 0.649 0.655 /

45

0.678 /

100

0.45 0.52 / 45 0.58 / 70

fastText w/

Annif-ext

20 0.73 0.75 / 20 0.75 / 20 0.64 0.63 / 20 0.7 / 30

FinBERT2 150 0.446 0.609 /

150

0.637 /

100

0.22 0.55 /

150

0.55 / 85
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Model

Y1 SVD

comp

Y2

Base

Y2 SVD

Pred

Y2 SVD

Best

FL

Base

FL SVD

Pred

FL SVD

Best

FinBERT3 w/

Annif-ext

20 0.554 0.615 /

20

0.615 /

20

0.61 0.57 / 20 0.62 / 70

Based on this small number of data points, it seems that this approach works for Yle 2, a very

similar dataset, but falters when it comes to Finlex. All the predicted results for Yle 2 are higher

than the base value, and sometimes as high as the best score. In the case of Finlex, all models

involving Annif as an extractor yield values lower than the baseline, while the other raise the

score. This can be explained by the different plot shapes in figures 5.2 and 5.3: with Annif,

the initial curve of the Yle datasets rises very steeply, leaving Finlex behind. For both fastText

and FinBERT4, the peak of the Finlex plot was missed by a very small number of components

(around 10: the plots are more reliable than the tables, because a much greater numbers of

components is tested in them. Base score means without SVD). Given enough data, perhaps a

machine learning algorithm could make the SVD predictions more stable and thus allow them

to be used on unseen data.

Figure 5.2: SVD components plot: fastText w/ Annif and SVD (cropped)

2Using mean pooling for the documents and ‘none’ for the categories
3Using mean pooling for the documents and ‘none’ for the categories
4Plots for FinBERT, which are quite similar, can be found in Appendix A, figures 6.4 and 6.5.
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Figure 5.3: SVD components plot: fastText w/ SVD (cropped)

5.9 Error analysis

The graphs in this section, commonly called “confusion matrices”, help visualise the predic-

tions made by the models. Each row shows the distribution of predictions for a label, and

each column corresponds to a different prediction. Scores in the main diagonal indicate the

percentage of correct predictions. A visible vertical column means that documents belonging

to different categories are erroneously being classified into one and the same category.

Figure 5.4 shows the results for fastText, by itself (𝐹1 = 0.63) and using Annif as document

extractor (𝐹1 = 0.735) on Yle 1. It explains why their ensemble works: since they use different

kinds of document extraction methods, part of their individual weaknesses are counterbal-

anced by strong numbers on the other side5. FastText alone is unable to identify two of the

categories: tiede ‘science’ and terveys ‘health’, assigning around one third of them to kulttuuri

‘culture’: there are no significant error patterns that make semantic sense (around 16% of

talous ‘economy’ is assigned to ‘politics’, but also as much is labelled as ‘culture’). Regarding

the second model, where Annif keywords are used, only ‘science’ is significantly problematic,

with only 17% of correct predictions; this and sää ‘weather’ are the only categories below 70%.

Its errors are scattered, without a clear pattern (except 19% of ‘weather’ being classified as

‘nature’, which makes sense semantically). The results for Yle 2 are very similar (see fig. 6.3 in
5The confusion matrix for this ensemble can be found in Appendix A, figure 6.1
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Appendix A).

Figure 5.4: Confusion matrices: fastText by itself and using the Annif extractor ( 0.01) on Yle
1

Figures 5.5 and 5.6 stand in contrast. The first one shows the results for the TF-IDF model,

by itself and with SVD, on Yle 1. Without matrix decomposition, the model classifies most

documents as politiikka ‘politics’, although a diagonal line –mostly faint, but occasionally well-

defined – can be seen. With SVD, this diagonal is well-defined. ‘Science’ is once again themost

challenging label. LASER, as can be seen from figure 5.6, does not behave the same way with

SVD: its “column”, standing on liikenne ‘traffic, transportation’, gets even more marked than

before (and on Yle 2, it changes place, from ‘relationships’ to ‘sport’ and ‘nature’. See figure

6.2 on Appendix A). This probably means that the LASER model does not carry by itself the

necessary semantic information needed for this task, while TF-IDF does. These columns mean

that a category is getting a disproportionate amount of predictions, i.e., its representation is

numerically too strong and drowns out other categories. This is why by itself LASER is unable

to classify correctly: most of its predictions land on the same category.
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Figure 5.5: Confusion matrices: TF-IDF by itself and with 30-component SVD on Yle 1

Figure 5.6: Confusion matrices: LASER by itself and with 45-component SVD on Yle 1

Finally, figure 5.7 shows the results for FinBERT (with “none” pooling) and fastText on Finlex,

both with Annif extractor and SVD. The former has an 𝐹1 score of 0.58 and the second, 0.7.

This comparison aims to show how models’ results differ despite having the same document

extractor. The models provide their own internal representation for the words given by An-

nif and for the category labels. There is some overlap: faint columns over certain categories

(ihmisoikeudet perusoikeudet ‘human rights, basic rights’, julkishallinto valtiohallinto ‘public

administration’ and verotus ‘taxation’), but FinBERT shows an additional, relatively consistent,

column over omaisuus kaupankäynti kuluttajansuoja ‘property, commerce, consumer protec-

tion’, which is absent from fastText. This is the main cause for the differences in score between

the two models.
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Based on 5.7, it does not seem that multi-word labels negatively affect the predictions, but a

more in-depth examination would be required in order to draw conclusions.

Figure 5.7: Confusion matrices: FinBERT and fastText, both w/ Annif extractor and SVD, on
Finlex

In summary, these confusion matrices show two main types of errors: “rows”, which happen

when the predictions for a certain label are more or less evenly spread among the targets

and might be associated with a weak representation for the corresponding source label; and

“columns”, when a target label gets a disproportionate amount of predictions to itself. One

possible cause for this could be unbalanced training data: too few examples might produce a

weaker vector and vice versa.
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Chapter 6

Conclusions

The results presented in this work show that, by using pre-trained Finnish language models in

an unsupervised manner, it is possible to build models able to classify texts correctly 65-76%

of the time in a multi-class categorisation task. The scores can be brought up to 70-76% by

using SVD, but this method is not necessarily reproducible as-is. These figures demonstrate

that some of the algorithms tested carry a substantial amount of semantic information that

can be drawn upon for document categorisation, even though they are not built specifically

for the Finnish language.

These results – even the best ones – are in any case far from the near-perfect scores that can be

obtained via supervised algorithms. Yet, unsupervised zero-shot methods offer near-instant

flexibility and, above all, bypass the need for specific training data – which may not exist in

large enough quantities to produce scores closer to 100%.

The best 𝐹1 scores for the Finlex dataset are consistently lower than for the Yle datasets. This

is probably due to different factors: the small number of documents in it, its inexpert construc-

tion, the kind of language it contains. A multi-label setting, which is closer to the intended

real-life application for this model (in an exploratory search engine setting), would possibly

yield better results by also taking into account secondary categories present in the documents

– which can end up, in the eyes of these algorithms, exchanging places with the primary.

The best scores reported in this work are the result of different algorithms working in tan-

dem: fastText provides strong baselines and Annif helps focus the efforts, and SVD potentially

distills the knowledge obtained into a compact and highly-correlated matrix. It seems to be ad-
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vantageous to pool keywords together into text representations, bypassing sentence represen-

tations. Moreover, the ensemble consisting of fastText and fastText using the Annif extractor

seem to complement each other, so they raise the figures by around one to three percentage

points. Other models achieve higher scores at times: even the venerable TF-IDF proved to be a

challenge at a specific point, when paired with SVD. However, unlike other combinations, the

best mixture provides a consistency the others lack. These results also show that it is theoreti-

cally possible to enhance the semantic payload of the basic models by using only information

they already contain, and by filtering this information with the right text representation meth-

ods. Regarding similarity measures, no significant difference was found when applying cosine

similarity, Pearson’s correlation or dot product.

Word embeddings prove to be useful also due to their adaptability: they ultimately accept

different kinds of document representations, from single words to multi-paragraph texts. Pre-

training is indeed able to imbue them with enough linguistic knowledge to perform a reason-

ably good document categorisation. Some worked better than the others, however: LASER

proved to be unsuitable for the task, and the different versions of BERT, middling. FastText,

the best-performing word embedding algorithm in almost all tests reported here, is bound to

be surpassed in the future, with increasingly more sophisticated algorithms being developed

and more data available for training, and so is Annif. Ultimately, however, the main findings

in this thesis call attention to the fact that single models may not be the best solution when it

comes to unsupervised text categorisation.

Due to the sheer amount of possible combinations, many of them are left untested. It would be

useful to experiment with these – different thresholds and limits for Annif, different pooling

strategies and maximum sequence lengths for BERT, different ensembles – as well as other

methods, such as dictionary definitions as semantic enhancements or fastText fine-tuning, in

order to find possible better-performing combinations that could bring this unsupervised task

closer to supervised levels. However, two main tasks stand out at this point: developing a

reliable way to determine the “peak” of the SVD according to its number of components, and

testing these models in a multi-label environment, instead of a multi-class one.
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Appendix A

Figure 6.1: Confusion matrix: Ensemble of fastText and fastText with Annif extractor
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Figure 6.2: Confusion matrices: LASER by itself and with 45-component SVD on Yle 2

Figure 6.3: Confusion matrices: fastText by itself and using the Annif extractor ( 0.01) on Yle
2

1With the ‘none’ pooling strategy
2With the ‘none’ pooling strategy
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fastText with SVD on Finlex

Figure 6.4: SVD components plot: FinBERT1 w/ Annif and SVD

64



Figure 6.5: SVD components plot: FinBERT2 w/ SVD (part)
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Appendix B

These are the ids of the news articles that make up both Yle datasets.

Dataset: Yle 1

20-121178 20-121198 20-123679 20-123876 20-124067 20-127515 20-127849 20-131109 20-131536

20-131707 20-132992 20-133888 20-134736 20-134946 20-135406 20-137733 20-139003 20-139156

20-139745 20-140149 20-140931 20-141460 20-142165 20-142931 20-143562 20-144455 20-154226

20-154926 20-155114 20-155300 20-155913 20-156006 20-156881 20-158683 20-158943 20-164415

20-164849 20-165584 20-183742 20-184656 20-186044 20-187791 20-190842 20-191685 20-191752

20-192236 20-192873 20-193311 20-195029 20-196841 20-203489 20-211837 20-212187 20-212575

20-213224 20-251409 20-253388 20-253843 20-254895 20-255781 20-256293 20-257265 20-258496

20-258544 20-259364 20-261566 20-262958 20-263459 20-268030 20-268160 20-274596 20-275416

20-275840 20-276958 20-279424 20-279506 20-284661 20-289804 20-301448 20-303874 20-75608

20-77535 3-10001012 3-10001109 3-10001559 3-10003543 3-10017822 3-10017895 3-10019695 3-

10023890 3-10028628 3-10029191 3-10032960 3-10034474 3-10035505 3-10038016 3-10038889

3-10039941 3-10048301 3-10048510 3-10049214 3-10050969 3-10051922 3-10052699 3-10053047

3-10054389 3-10055138 3-10058238 3-10058982 3-10059231 3-10059261 3-10060617 3-10060703

3-10061125 3-10061596 3-10062455 3-10063680 3-10065602 3-10078268 3-10082961 3-10092216

3-10093588 3-10094055 3-10095260 3-10096576 3-10099840 3-10114705 3-10120671 3-10128135

3-10128885 3-10130200 3-10134969 3-10135243 3-10142527 3-10149787 3-10152631 3-10154306

3-10160145 3-10164036 3-10164844 3-10166495 3-10167758 3-10168278 3-10169373 3-10171507

3-10178461 3-10181581 3-10187043 3-10187788 3-10195891 3-10197164 3-10203428 3-10207436

3-10209189 3-10216080 3-10217016 3-10219849 3-10237116 3-10245274 3-10247979 3-10248125

3-10249627 3-10251730 3-10254908 3-10260664 3-10265561 3-10265977 3-10275703 3-10291643

3-10304022 3-10312193 3-10317028 3-10319530 3-10320350 3-10329263 3-10330024 3-10336371
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3-10339901 3-10341443 3-10342644 3-10342888 3-10343379 3-10346760 3-10351394 3-10351643

3-10355485 3-10357511 3-10362190 3-10368389 3-10369102 3-10373528 3-10375043 3-10380721

3-10386052 3-10387183 3-10388310 3-10396146 3-10398743 3-10398791 3-10405723 3-10405840

3-10410432 3-10415530 3-10419673 3-10421618 3-10424424 3-10431787 3-10433825 3-10438426

3-10441652 3-10442726 3-10466088 3-10474406 3-10474971 3-10475556 3-10476752 3-10478948

3-10479095 3-10479882 3-10480871 3-10498512 3-10499372 3-10501516 3-10501882 3-10504175

3-10505719 3-10514330 3-10517839 3-10522401 3-10526933 3-10529369 3-10531971 3-10533655

3-10533968 3-10534206 3-10541213 3-10541388 3-10541890 3-10541985 3-10542143 3-10542567

3-10542947 3-10552531 3-10554348 3-10560733 3-10565693 3-10566212 3-10575804 3-10575840

3-10580791 3-10582120 3-10586896 3-10589874 3-10591974 3-10603445 3-10611329 3-10613293

3-10621156 3-10625171 3-10626182 3-10627137 3-10632078 3-10633694 3-10637260 3-10646829

3-10652999 3-10656500 3-10656568 3-10661815 3-10666375 3-10671943 3-10689023 3-10695256

3-10697746 3-10698367 3-10702766 3-10703156 3-10709353 3-10713361 3-10718725 3-10722736

3-10723486 3-10725776 3-10729917 3-10734559 3-10744859 3-10777226 3-10785929 3-10793578

3-10795369 3-10797810 3-10805959 3-10806426 3-10806700 3-10808846 3-10818721 3-10823778

3-10830452 3-10830496 3-10838873 3-10850233 3-10850900 3-10851168 3-10853187 3-10857644

3-10872192 3-10873436 3-10874475 3-10879997 3-10881289 3-10888124 3-10890153 3-10894557

3-10894936 3-10894937 3-10895005 3-10898697 3-10899306 3-10907273 3-10908896 3-10915444

3-10918129 3-10919262 3-10919613 3-10919859 3-10920492 3-10924711 3-10929943 3-10931047

3-10934686 3-10934743 3-10935752 3-10940451 3-10946656 3-10946781 3-10947779 3-10958598

3-10972661 3-10977670 3-10979276 3-10979373 3-10981847 3-10983728 3-10984246 3-10986809

3-10988049 3-11003533 3-11006895 3-11010009 3-11011693 3-11014590 3-11019116 3-11022998

3-11026269 3-11028598 3-11029556 3-11033544 3-11035754 3-11043733 3-11047938 3-11050052

3-11054975 3-11072811 3-11075648 3-11076993 3-11099401 3-11119510 3-11142955 3-11148466

3-11149258 3-11154638 3-11172913 3-11178746 3-11179239 3-11179832 3-11186156 3-11198069

3-11198166 3-11198248 3-11198714 3-11204544 3-11206836 3-11234323 3-11235553 3-11237754

3-11253053 3-11254930 3-11261699 3-11272444 3-11276997 3-11281836 3-11286515 3-11293044

3-11294921 3-11310674 3-11310702 3-11311430 3-11313978 3-11315004 3-11316203 3-11317149

3-11317167 3-11317376 3-11317933 3-11323933 3-11324310 3-11325901 3-11325987 3-11328629

3-11329424 3-11332728 3-11334311 3-11336002 3-11337349 3-11338448 3-11339582 3-11340258

3-11340402 3-11340819 3-11340855 3-11345811 3-11346103 3-11353549 3-11353572 3-11359127

3-11366788 3-11371465 3-11371768 3-11374856 3-11375575 3-11375675 3-11378608 3-11381912
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3-11382336 3-11387318 3-11404472 3-11408745 3-11412369 3-11417734 3-11421444 3-11425796

3-11445677 3-11445992 3-11446302 3-11446592 3-11447574 3-11450809 3-11455916 3-11456046

3-11466590 3-11472555 3-11474327 3-11477291 3-11477357 3-11477914 3-11480353 3-11499767

3-11503755 3-11506100 3-11514515 3-11515157 3-11534185 3-11538875 3-11541326 3-11544922

3-11552559 3-11556190 3-11557120 3-11559376 3-11562590 3-11568225 3-11569643 3-11576258

3-7641717 3-7662554 3-7700889 3-7702316 3-7703183 3-7705387 3-7709796 3-7712802 3-7714202

3-7714787 3-7716056 3-7716278 3-7716399 3-7716406 3-7716661 3-7716766 3-7716920 3-7716978

3-7717389 3-7717972 3-7719767 3-7720570 3-7720747 3-7720898 3-7721616 3-7721635 3-7721828

3-7721973 3-7722382 3-7722939 3-7723009 3-7723042 3-7723213 3-7723224 3-7723388 3-7723851

3-7723868 3-7723879 3-7724844 3-7724853 3-7724958 3-7725759 3-7725821 3-7725952 3-7725984

3-7726275 3-7726405 3-7726795 3-7727170 3-7727263 3-7727360 3-7727374 3-7727529 3-7727750

3-7727919 3-7727984 3-7728200 3-7728261 3-7728878 3-7729837 3-7730059 3-7730560 3-7731189

3-7731308 3-7731565 3-7731622 3-7731938 3-7731962 3-7732105 3-7733688 3-7733778 3-7734497

3-7734602 3-7734661 3-7734765 3-7735298 3-7735400 3-7735789 3-7735833 3-7735906 3-7736141

3-7736171 3-7736358 3-7736650 3-7736767 3-7736773 3-7736785 3-7737287 3-7737557 3-7738030

3-7738295 3-7738330 3-7738655 3-7739237 3-7739400 3-7739402 3-7739618 3-7739746 3-7740026

3-7740468 3-7740625 3-7740705 3-7740736 3-7741023 3-7741066 3-7741145 3-7741152 3-7741332

3-7741867 3-7741942 3-7742699 3-7743031 3-7743143 3-7743221 3-7743420 3-7743621 3-7743695

3-7743755 3-7744715 3-7744831 3-7745016 3-7745261 3-7745854 3-7746218 3-7746343 3-7746500

3-7746613 3-7747678 3-7748786 3-7748814 3-7748892 3-7749226 3-7749562 3-7750107 3-7750234

3-7751114 3-7751585 3-7751735 3-7751927 3-7752529 3-7752913 3-7753199 3-7753534 3-7753804

3-7755030 3-7755129 3-7755217 3-7755420 3-7755616 3-7755672 3-7755723 3-7755801 3-7756452

3-7757086 3-7759317 3-7759468 3-7760409 3-7760644 3-7761059 3-7761400 3-7761782 3-7761835

3-7761894 3-7761957 3-7761967 3-7761990 3-7762646 3-7762736 3-7762789 3-7762806 3-7762828

3-7763072 3-7763403 3-7763719 3-7763945 3-7764060 3-7765096 3-7765134 3-7765445 3-7765549

3-7765682 3-7765892 3-7766186 3-7766206 3-7766284 3-7766329 3-7767028 3-7767356 3-7767496

3-7767858 3-7768560 3-7768579 3-7768713 3-7768725 3-7768737 3-7769636 3-7769764 3-7769828

3-7770221 3-7770249 3-7770273 3-7770942 3-7770951 3-7771164 3-7772693 3-7773132 3-7773257

3-7773974 3-7774199 3-7774479 3-7774613 3-7774693 3-7774792 3-7775112 3-7775130 3-7775131

3-7775676 3-7776150 3-7776997 3-7777709 3-7777849 3-7777988 3-7778048 3-7778060 3-7778331

3-7778576 3-7778596 3-7778712 3-7778818 3-7779386 3-7779623 3-7780552 3-7780816 3-7781492

3-7781640 3-7781711 3-7781712 3-7781918 3-7782262 3-7783229 3-7783389 3-7783401 3-7783448
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3-7783839 3-7783913 3-7784411 3-7784542 3-7784667 3-7785175 3-7785548 3-7786383 3-7786405

3-7786681 3-7787112 3-7787143 3-7787181 3-7787267 3-7787294 3-7787314 3-7788103 3-7789074

3-7789700 3-7789798 3-7790091 3-7790381 3-7790612 3-7790724 3-7791128 3-7791326 3-7791773

3-7792095 3-7792159 3-7792196 3-7792716 3-7793675 3-7793795 3-7793907 3-7793918 3-7793965

3-7794145 3-7794234 3-7794327 3-7795410 3-7796758 3-7797262 3-7797292 3-7797501 3-7797586

3-7798349 3-7798563 3-7798689 3-7798899 3-7799046 3-7799246 3-7799555 3-7800031 3-7800081

3-7800220 3-7800324 3-7800497 3-7800575 3-7800873 3-7800911 3-7801240 3-7801248 3-7802150

3-7802671 3-7802678 3-7802912 3-7802947 3-7803151 3-7803553 3-7804034 3-7804381 3-7804746

3-7805022 3-7805426 3-7806021 3-7806667 3-7807175 3-7807205 3-7807332 3-7807842 3-7808152

3-7808162 3-7809004 3-7809641 3-7809841 3-7809987 3-7810573 3-7810575 3-7810752 3-7811559

3-7811795 3-7812513 3-7813049 3-7813053 3-7813224 3-7813244 3-7813401 3-7813561 3-7813618

3-7813633 3-7813803 3-7814486 3-7814879 3-7814946 3-7815369 3-7815900 3-7816699 3-7816716

3-7816760 3-7816769 3-7816795 3-7817490 3-7818052 3-7818103 3-7818123 3-7819181 3-7819185

3-7819656 3-7819722 3-7820070 3-7822857 3-7823313 3-7823321 3-7823563 3-7823566 3-7824191

3-7824488 3-7824950 3-7825156 3-7825242 3-7825314 3-7825368 3-7825543 3-7825598 3-7825653

3-7826015 3-7826097 3-7826295 3-7826330 3-7826338 3-7826480 3-7827184 3-7827297 3-7827740

3-7827893 3-7828007 3-7828165 3-7828222 3-7828392 3-7828424 3-7828428 3-7828573 3-7828645

3-7828769 3-7828771 3-7828911 3-7829130 3-7829813 3-7830493 3-7830560 3-7830631 3-7830705

3-7830707 3-7830825 3-7830833 3-7830884 3-7831278 3-7831310 3-7831759 3-7831777 3-7832049

3-7832095 3-7832127 3-7832259 3-7833045 3-7833084 3-7833307 3-7833524 3-7834038 3-7834284

3-7834625 3-7834736 3-7835580 3-7836664 3-7838310 3-7838447 3-7838867 3-7838964 3-7839291

3-7839328 3-7839544 3-7839696 3-7839716 3-7840833 3-7841005 3-7841016 3-7841854 3-7841920

3-7841977 3-7842116 3-7842317 3-7842465 3-7843165 3-7843933 3-7844164 3-7844167 3-7844339

3-7844365 3-7844424 3-7844435 3-7844556 3-7845018 3-7845284 3-7845381 3-7845455 3-7846754

3-7846835 3-7846868 3-7847026 3-7847864 3-7848006 3-7848121 3-7848530 3-7849339 3-7849586

3-7849731 3-7849881 3-7850152 3-7850363 3-7850469 3-7850600 3-7850902 3-7851298 3-7851510

3-7851851 3-7853358 3-7853844 3-7854037 3-7854260 3-7854883 3-7855226 3-7855243 3-7855631

3-7855926 3-7855967 3-7856837 3-7856928 3-7856956 3-7857174 3-7857277 3-7857341 3-7857500

3-7857554 3-7857657 3-7857785 3-7858130 3-7858182 3-7858351 3-7858578 3-7858958 3-7859182

3-7859750 3-7860316 3-7860365 3-7860394 3-7860741 3-7860852 3-7861714 3-7861723 3-7862367

3-7862506 3-7862828 3-7862858 3-7862973 3-7863180 3-7863185 3-7863583 3-7863746 3-7863821

3-7864650 3-7864880 3-7864972 3-7864996 3-7865070 3-7865249 3-7865332 3-7865420 3-7865493
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3-7865715 3-7866061 3-7866767 3-7866861 3-7867379 3-7867639 3-7867661 3-7867690 3-7867962

3-7868672 3-7868739 3-7869541 3-7869553 3-7869602 3-7869758 3-7870107 3-7870217 3-7870365

3-7870485 3-7870643 3-7870683 3-7870769 3-7870831 3-7870839 3-7870842 3-7871133 3-7871779

3-7871889 3-7872507 3-7872672 3-7872943 3-7872982 3-7873283 3-7873319 3-7873545 3-7873561

3-7873895 3-7874385 3-7874708 3-7874909 3-7874995 3-7875193 3-7875246 3-7875712 3-7876044

3-7876061 3-7876094 3-7876239 3-7876276 3-7877127 3-7877306 3-7877961 3-7877966 3-7878045

3-7879140 3-7879155 3-7879216 3-7879266 3-7879425 3-7879434 3-7880651 3-7880884 3-7880985

3-7880991 3-7880999 3-7881283 3-7881383 3-7881580 3-7882759 3-7883147 3-7883309 3-7883324

3-7884204 3-7884759 3-7884814 3-7885330 3-7885415 3-7886668 3-7886916 3-7886927 3-7887330

3-7887559 3-7887578 3-7887869 3-7888231 3-7888251 3-7888343 3-7888386 3-7888635 3-7888690

3-7889053 3-7889196 3-7890734 3-7890736 3-7890837 3-7891284 3-7891415 3-7891827 3-7893222

3-7893231 3-7893454 3-7893590 3-7893608 3-7894668 3-7894724 3-7898084 3-7898157 3-7899448

3-7899565 3-7900076 3-7900120 3-7900279 3-7900282 3-7900330 3-7900515 3-7901079 3-7901092

3-7901098 3-7901337 3-7901387 3-7901412 3-7901487 3-7902125 3-7902237 3-7902501 3-7902711

3-7903074 3-7903663 3-7904911 3-7905033 3-7906322 3-7907298 3-7907727 3-7908771 3-7909977

3-7910558 3-7910695 3-7910755 3-7911175 3-7911482 3-7911603 3-7911794 3-7911928 3-7912198

3-7912424 3-7912664 3-7913011 3-7914052 3-7914191 3-7915218 3-7915335 3-7916084 3-7916389

3-7916434 3-7917124 3-7917339 3-7917388 3-7917979 3-7918531 3-7918621 3-7919630 3-7919639

3-7920174 3-7920243 3-7920301 3-7920605 3-7921409 3-7921773 3-7921930 3-7922689 3-7923454

3-7924058 3-7924595 3-7924621 3-7924917 3-7925426 3-7925705 3-7925747 3-7925754 3-7926122

3-7926847 3-7926999 3-7927033 3-7927137 3-7927709 3-7927719 3-7927915 3-7927919 3-7927970

3-7928134 3-7928192 3-7928276 3-7928376 3-7928953 3-7928960 3-7929097 3-7929323 3-7929383

3-7929783 3-7929884 3-7930492 3-7930568 3-7930985 3-7932354 3-7932396 3-7932846 3-7933310

3-7933673 3-7934008 3-7934536 3-7935003 3-7935269 3-7935665 3-7935711 3-7936183 3-7936851

3-7937134 3-7937696 3-7941443 3-7941854 3-7942063 3-7942889 3-7942983 3-7943335 3-7943622

3-7944010 3-7944057 3-7944203 3-7945757 3-7946018 3-7946462 3-7946833 3-7947120 3-7948511

3-7949055 3-7949321 3-7949416 3-7949627 3-7950747 3-7951288 3-7951330 3-7951391 3-7952542

3-7952608 3-7952771 3-7953030 3-7953143 3-7953383 3-7953442 3-7954268 3-7954755 3-7955339

3-7955726 3-7956151 3-7956944 3-7958155 3-7958366 3-7958549 3-7958821 3-7959242 3-7960899

3-7961395 3-7962176 3-7962192 3-7963252 3-7963563 3-7964293 3-7964319 3-7964688 3-7965272

3-7969321 3-7969445 3-7969459 3-7969473 3-7970190 3-7970250 3-7970480 3-7970767 3-7971485

3-7972695 3-7973963 3-7974617 3-7974733 3-7975178 3-7975303 3-7975435 3-7975613 3-7975711
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3-7975811 3-7977426 3-7977686 3-7977879 3-7977951 3-7977965 3-7978171 3-7978290 3-7978495

3-7978586 3-7979042 3-7980105 3-7981853 3-7984935 3-7985585 3-7985841 3-7985973 3-7986240

3-7987151 3-7987540 3-7987752 3-7987800 3-7988595 3-7988741 3-7988851 3-7989060 3-7990023

3-7990607 3-7990621 3-7990999 3-7991452 3-7992018 3-7992262 3-7993093 3-7993356 3-7994361

3-7994910 3-7995427 3-7995648 3-7995899 3-7997664 3-7997913 3-7998856 3-7999662 3-7999712

3-8000375 3-8000924 3-8001347 3-8001412 3-8001454 3-8001484 3-8002069 3-8002415 3-8002862

3-8003200 3-8003211 3-8003689 3-8004251 3-8004870 3-8004888 3-8004945 3-8005473 3-8006321

3-8006900 3-8007034 3-8008016 3-8008546 3-8008819 3-8009082 3-8009470 3-8009570 3-8009727

3-8010743 3-8011370 3-8012946 3-8013590 3-8014739 3-8015394 3-8015962 3-8016838 3-8017786

3-8017841 3-8018686 3-8018810 3-8019086 3-8019467 3-8020068 3-8021554 3-8022334 3-8023759

3-8024134 3-8024829 3-8025608 3-8025793 3-8026055 3-8026282 3-8027523 3-8028147 3-8028586

3-8029645 3-8029670 3-8033237 3-8033507 3-8033518 3-8033698 3-8034654 3-8034681 3-8035330

3-8036367 3-8037843 3-8038126 3-8039255 3-8039943 3-8040957 3-8041424 3-8041760 3-8042427

3-8042447 3-8042575 3-8042708 3-8043783 3-8044214 3-8044672 3-8044855 3-8045076 3-8045588

3-8045612 3-8045922 3-8046347 3-8046694 3-8048407 3-8049218 3-8049886 3-8050092 3-8050256

3-8055187 3-8055629 3-8055999 3-8056529 3-8057155 3-8057390 3-8057999 3-8058855 3-8061928

3-8062995 3-8063071 3-8063454 3-8063967 3-8064019 3-8064519 3-8065685 3-8066028 3-8067127

3-8067249 3-8067307 3-8067658 3-8069850 3-8070009 3-8070012 3-8070057 3-8070083 3-8070150

3-8070322 3-8071000 3-8071329 3-8072728 3-8073288 3-8074786 3-8074817 3-8074856 3-8075423

3-8075507 3-8076406 3-8078192 3-8078450 3-8078741 3-8078859 3-8079593 3-8079710 3-8079895

3-8080096 3-8082110 3-8082719 3-8082825 3-8083193 3-8083264 3-8083311 3-8084546 3-8085985

3-8086199 3-8086212 3-8086242 3-8086256 3-8086886 3-8087052 3-8087324 3-8089367 3-8091727

3-8092398 3-8093859 3-8093891 3-8094225 3-8094570 3-8095048 3-8095398 3-8095578 3-8095836

3-8095886 3-8096701 3-8097487 3-8099836 3-8100162 3-8100572 3-8101212 3-8102882 3-8102925

3-8103525 3-8104141 3-8104400 3-8104915 3-8105865 3-8106206 3-8106251 3-8106709 3-8107332

3-8108739 3-8109371 3-8109880 3-8110382 3-8110539 3-8111084 3-8114461 3-8114903 3-8116101

3-8117663 3-8118276 3-8118423 3-8119127 3-8119642 3-8119944 3-8120909 3-8120929 3-8120955

3-8121476 3-8121495 3-8121993 3-8122023 3-8122713 3-8123069 3-8123335 3-8123480 3-8124816

3-8125019 3-8127677 3-8128670 3-8130529 3-8131146 3-8131322 3-8132092 3-8132139 3-8132243

3-8132260 3-8132468 3-8132519 3-8135621 3-8136323 3-8137792 3-8138012 3-8138351 3-8138510

3-8138540 3-8138978 3-8139050 3-8139643 3-8141897 3-8142395 3-8143543 3-8144344 3-8145384

3-8145937 3-8149151 3-8150996 3-8153025 3-8153687 3-8154013 3-8154654 3-8155087 3-8155211
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3-8156735 3-8156935 3-8157012 3-8157476 3-8157682 3-8157789 3-8157947 3-8158196 3-8158383

3-8160228 3-8160846 3-8162101 3-8162570 3-8162600 3-8162902 3-8163043 3-8163170 3-8163449

3-8163691 3-8163824 3-8164837 3-8165004 3-8165014 3-8166608 3-8167196 3-8167296 3-8167514

3-8167667 3-8168219 3-8168413 3-8169603 3-8170606 3-8170735 3-8170908 3-8170934 3-8171899

3-8172340 3-8172698 3-8172716 3-8173314 3-8173452 3-8174818 3-8175441 3-8175623 3-8175668

3-8175678 3-8176087 3-8176146 3-8176538 3-8178311 3-8178799 3-8178950 3-8179170 3-8179742

3-8180063 3-8183118 3-8183145 3-8184390 3-8184815 3-8186381 3-8186391 3-8187901 3-8188282

3-8189290 3-8189764 3-8191578 3-8191608 3-8191917 3-8192659 3-8193647 3-8194875 3-8194944

3-8195595 3-8195737 3-8196759 3-8198424 3-8199850 3-8199929 3-8200430 3-8200597 3-8200640

3-8200663 3-8201316 3-8201860 3-8201881 3-8202064 3-8202920 3-8203336 3-8204323 3-8207244

3-8207474 3-8207554 3-8207972 3-8208032 3-8208101 3-8208369 3-8209034 3-8209295 3-8209705

3-8210091 3-8210462 3-8210753 3-8210994 3-8211298 3-8212498 3-8213151 3-8213355 3-8214797

3-8215330 3-8216045 3-8216089 3-8216506 3-8217045 3-8217167 3-8217201 3-8217299 3-8217627

3-8217661 3-8218353 3-8218420 3-8219236 3-8220689 3-8221276 3-8222337 3-8223311 3-8223666

3-8224653 3-8225431 3-8227384 3-8227721 3-8227989 3-8228139 3-8228598 3-8229571 3-8231329

3-8231381 3-8232089 3-8232773 3-8232856 3-8233041 3-8233335 3-8233420 3-8233427 3-8233590

3-8234401 3-8234681 3-8234762 3-8234887 3-8235030 3-8235921 3-8235965 3-8235994 3-8236187

3-8236351 3-8237919 3-8238060 3-8239053 3-8239536 3-8241788 3-8241867 3-8244349 3-8244865

3-8246412 3-8247448 3-8248256 3-8249796 3-8249899 3-8249961 3-8250362 3-8251599 3-8252266

3-8252483 3-8252920 3-8254036 3-8254148 3-8255143 3-8255388 3-8255950 3-8257500 3-8258656

3-8258657 3-8258683 3-8259290 3-8259409 3-8261529 3-8261839 3-8262811 3-8263168 3-8265562

3-8266472 3-8266556 3-8266911 3-8267870 3-8268074 3-8268366 3-8268608 3-8269892 3-8270027

3-8270184 3-8271056 3-8271200 3-8271253 3-8271962 3-8272766 3-8272861 3-8272957 3-8273443

3-8274505 3-8274606 3-8276316 3-8276347 3-8276944 3-8279320 3-8279417 3-8279771 3-8280079

3-8280123 3-8280321 3-8281486 3-8281967 3-8282629 3-8282736 3-8283000 3-8284535 3-8285275

3-8285589 3-8286614 3-8287092 3-8288707 3-8289629 3-8291901 3-8294062 3-8294110 3-8295154

3-8295183 3-8295205 3-8295323 3-8296006 3-8296152 3-8296251 3-8296452 3-8297723 3-8297987

3-8298512 3-8299717 3-8299984 3-8300449 3-8300789 3-8301190 3-8303281 3-8303326 3-8303360

3-8303662 3-8303935 3-8304653 3-8306531 3-8307505 3-8308806 3-8309188 3-8309583 3-8309627

3-8311415 3-8311806 3-8312095 3-8312347 3-8312382 3-8312986 3-8313137 3-8313691 3-8314251

3-8314345 3-8315301 3-8315574 3-8315814 3-8317229 3-8317672 3-8319324 3-8319849 3-8320199

3-8320619 3-8320806 3-8321885 3-8322757 3-8323319 3-8324910 3-8325294 3-8325845 3-8326432

72



3-8328379 3-8328863 3-8329134 3-8329497 3-8329608 3-8329728 3-8331135 3-8331192 3-8331718

3-8331722 3-8331815 3-8331865 3-8332518 3-8334472 3-8336147 3-8336596 3-8337084 3-8337648

3-8337798 3-8338591 3-8339149 3-8340178 3-8340452 3-8341305 3-8341849 3-8342471 3-8342927

3-8343212 3-8343669 3-8344300 3-8344802 3-8344813 3-8345221 3-8346397 3-8346539 3-8347646

3-8347703 3-8348042 3-8348346 3-8348474 3-8348674 3-8349192 3-8349418 3-8350484 3-8350689

3-8351121 3-8351806 3-8352927 3-8354472 3-8354628 3-8354707 3-8354870 3-8355076 3-8357797

3-8358367 3-8358783 3-8359380 3-8359575 3-8360117 3-8360183 3-8360620 3-8361252 3-8361718

3-8362884 3-8363501 3-8363764 3-8364593 3-8364737 3-8365251 3-8365419 3-8365739 3-8366107

3-8367926 3-8368300 3-8368754 3-8369156 3-8369428 3-8370166 3-8371087 3-8371117 3-8373200

3-8373708 3-8374049 3-8374723 3-8375589 3-8376122 3-8376309 3-8376410 3-8379821 3-8380701

3-8380763 3-8381542 3-8381768 3-8382668 3-8384444 3-8384896 3-8384930 3-8385551 3-8387844

3-8388282 3-8389908 3-8390427 3-8390478 3-8391029 3-8391084 3-8391833 3-8391889 3-8392412

3-8392485 3-8392979 3-8393126 3-8393197 3-8393235 3-8395254 3-8396095 3-8396252 3-8396452

3-8396482 3-8396696 3-8396840 3-8398201 3-8399693 3-8400861 3-8401356 3-8402461 3-8402714

3-8402749 3-8402795 3-8404452 3-8407507 3-8407701 3-8408538 3-8409315 3-8410286 3-8410317

3-8410796 3-8411325 3-8411759 3-8412914 3-8413347 3-8413556 3-8413660 3-8414347 3-8414359

3-8414663 3-8414699 3-8415475 3-8415528 3-8415639 3-8415740 3-8416234 3-8416241 3-8416502

3-8416879 3-8417582 3-8417760 3-8418600 3-8418778 3-8419256 3-8419674 3-8420875 3-8421412

3-8421651 3-8423372 3-8424251 3-8424382 3-8425351 3-8425381 3-8427719 3-8427817 3-8427825

3-8427830 3-8428473 3-8428956 3-8428976 3-8428988 3-8429135 3-8429957 3-8430210 3-8431084

3-8431228 3-8431669 3-8431690 3-8431752 3-8432865 3-8432924 3-8433092 3-8433324 3-8433450

3-8434096 3-8434529 3-8435032 3-8435738 3-8436114 3-8436305 3-8437081 3-8437402 3-8438413

3-8440321 3-8440414 3-8440478 3-8441193 3-8441463 3-8441905 3-8442335 3-8443798 3-8444318

3-8444692 3-8445047 3-8445079 3-8445783 3-8448139 3-8448310 3-8448851 3-8450338 3-8450790

3-8450855 3-8451639 3-8451835 3-8452874 3-8453549 3-8455091 3-8456057 3-8459607 3-8460684

3-8460707 3-8461856 3-8463368 3-8463448 3-8464049 3-8464801 3-8466423 3-8466590 3-8466885

3-8467047 3-8467078 3-8467190 3-8468126 3-8468573 3-8468957 3-8469519 3-8469830 3-8471494

3-8471793 3-8473134 3-8473466 3-8474382 3-8474466 3-8479504 3-8479862 3-8480725 3-8480926

3-8481282 3-8482672 3-8482690 3-8483975 3-8484215 3-8484223 3-8485971 3-8487297 3-8487324

3-8487441 3-8487843 3-8487944 3-8488308 3-8490937 3-8491680 3-8492053 3-8492181 3-8494132

3-8494783 3-8496633 3-8497064 3-8498170 3-8498589 3-8499324 3-8500153 3-8500966 3-8501345

3-8501734 3-8502520 3-8503015 3-8506792 3-8507166 3-8510818 3-8513027 3-8513418 3-8514459
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3-8515369 3-8515600 3-8517891 3-8519059 3-8526083 3-8526887 3-8527956 3-8528740 3-8529475

3-8533667 3-8534497 3-8534739 3-8534755 3-8535855 3-8536865 3-8537245 3-8537946 3-8538302

3-8541767 3-8542892 3-8543035 3-8544079 3-8544459 3-8544650 3-8545762 3-8547568 3-8547652

3-8550814 3-8552677 3-8553163 3-8553757 3-8554714 3-8554739 3-8554906 3-8555855 3-8555887

3-8556009 3-8557235 3-8560045 3-8563473 3-8563493 3-8564921 3-8565199 3-8565379 3-8568380

3-8568935 3-8569918 3-8571577 3-8577263 3-8578589 3-8579388 3-8585784 3-8587594 3-8587650

3-8588216 3-8588274 3-8590443 3-8590606 3-8591889 3-8593652 3-8593655 3-8594682 3-8595115

3-8597007 3-8598181 3-8598657 3-8599615 3-8602893 3-8604565 3-8608567 3-8609498 3-8613204

3-8615265 3-8616210 3-8616480 3-8616727 3-8617905 3-8617932 3-8622113 3-8622379 3-8624040

3-8624124 3-8624457 3-8626775 3-8628299 3-8628983 3-8634211 3-8640116 3-8640801 3-8642849

3-8643574 3-8645924 3-8648353 3-8652259 3-8659054 3-8663011 3-8663587 3-8665927 3-8666092

3-8668479 3-8669446 3-8669447 3-8672452 3-8673600 3-8674102 3-8677332 3-8681382 3-8682154

3-8682483 3-8683061 3-8686172 3-8686519 3-8687275 3-8689895 3-8693246 3-8696767 3-8697271

3-8698250 3-8699341 3-8702324 3-8703837 3-8705879 3-8706821 3-8709814 3-8712113 3-8712983

3-8714499 3-8714588 3-8716172 3-8716634 3-8717242 3-8717390 3-8719975 3-8720012 3-8724474

3-8725751 3-8726843 3-8727358 3-8731263 3-8732416 3-8732429 3-8733108 3-8734952 3-8736989

3-8739267 3-8741000 3-8742297 3-8742589 3-8749415 3-8752855 3-8757069 3-8758763 3-8759678

3-8759701 3-8761111 3-8762809 3-8763014 3-8763286 3-8763525 3-8765432 3-8768840 3-8769992

3-8772226 3-8773315 3-8774131 3-8775701 3-8778004 3-8778232 3-8782153 3-8783702 3-8784530

3-8784981 3-8785183 3-8786727 3-8788986 3-8789786 3-8790555 3-8792174 3-8792281 3-8793508

3-8795012 3-8802856 3-8803484 3-8805216 3-8805259 3-8806224 3-8807285 3-8807923 3-8808589

3-8811284 3-8811820 3-8813722 3-8816408 3-8816583 3-8817494 3-8822054 3-8822962 3-8824157

3-8824603 3-8825332 3-8827532 3-8829477 3-8830358 3-8830647 3-8830987 3-8833159 3-8834235

3-8834348 3-8834753 3-8837070 3-8839712 3-8840894 3-8841534 3-8842494 3-8842735 3-8843591

3-8844634 3-8844797 3-8844828 3-8847375 3-8850228 3-8850649 3-8850873 3-8851498 3-8851963

3-8852401 3-8854935 3-8858281 3-8858790 3-8861439 3-8861592 3-8862097 3-8862368 3-8862427

3-8866270 3-8867474 3-8868185 3-8869979 3-8870639 3-8871555 3-8873671 3-8876601 3-8877025

3-8877615 3-8881334 3-8885296 3-8887751 3-8888311 3-8890006 3-8890245 3-8891104 3-8893105

3-8893397 3-8894922 3-8895551 3-8898069 3-8898203 3-8900251 3-8900857 3-8903789 3-8908266

3-8911089 3-8911326 3-8911541 3-8914029 3-8916011 3-8917038 3-8917047 3-8920819 3-8921015

3-8922526 3-8924838 3-8924888 3-8926713 3-8927876 3-8928685 3-8928989 3-8932805 3-8936716

3-8938907 3-8939295 3-8940190 3-8940578 3-8941158 3-8941432 3-8942068 3-8942612 3-8942671
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3-8948283 3-8948968 3-8950197 3-8951744 3-8953789 3-8954947 3-8955056 3-8955219 3-8955478

3-8955536 3-8956068 3-8956503 3-8956544 3-8958133 3-8958639 3-8958691 3-8959296 3-8961176

3-8962161 3-8964462 3-8964474 3-8965884 3-8966044 3-8968217 3-8968320 3-8973534 3-8975174

3-8975460 3-8975539 3-8975651 3-8975732 3-8977109 3-8977539 3-8983483 3-8983899 3-8984533

3-8984823 3-8988111 3-8989189 3-8990909 3-8995432 3-8996393 3-8999087 3-9000452 3-9001129

3-9001415 3-9001425 3-9002658 3-9004354 3-9004828 3-9005248 3-9005419 3-9006039 3-9006719

3-9008351 3-9012522 3-9013533 3-9015681 3-9018390 3-9019084 3-9019729 3-9020349 3-9020572

3-9026011 3-9026608 3-9036207 3-9037374 3-9041568 3-9045163 3-9050906 3-9051400 3-9052067

3-9052555 3-9053987 3-9054394 3-9055617 3-9056112 3-9056412 3-9059703 3-9060410 3-9061050

3-9061380 3-9062475 3-9062971 3-9063005 3-9063809 3-9064013 3-9064112 3-9064329 3-9064419

3-9064542 3-9064684 3-9064737 3-9064883 3-9064979 3-9065060 3-9065169 3-9065450 3-9065471

3-9066096 3-9066422 3-9068654 3-9069924 3-9070643 3-9070664 3-9080019 3-9080506 3-9081153

3-9081200 3-9082776 3-9084739 3-9084815 3-9085716 3-9086502 3-9087768 3-9088662 3-9089172

3-9089643 3-9091500 3-9095004 3-9095132 3-9095603 3-9097675 3-9097990 3-9098539 3-9099000

3-9099962 3-9104710 3-9106239 3-9110387 3-9110584 3-9111036 3-9111936 3-9114164 3-9115195

3-9116139 3-9117587 3-9117981 3-9119787 3-9120233 3-9120698 3-9122599 3-9124072 3-9124551

3-9124646 3-9124683 3-9124989 3-9125133 3-9128777 3-9130037 3-9130321 3-9130996 3-9133198

3-9133304 3-9133373 3-9133384 3-9133389 3-9133424 3-9133649 3-9133654 3-9133819 3-9133830

3-9133863 3-9134019 3-9134174 3-9134260 3-9134279 3-9134470 3-9134550 3-9134571 3-9134748

3-9134993 3-9135207 3-9135319 3-9136032 3-9136325 3-9136532 3-9136666 3-9136801 3-9136941

3-9137057 3-9137107 3-9137201 3-9137334 3-9137848 3-9138163 3-9139279 3-9144652 3-9146697

3-9147292 3-9147564 3-9147598 3-9147898 3-9152690 3-9153431 3-9154961 3-9160276 3-9160692

3-9161378 3-9162291 3-9164471 3-9164548 3-9164631 3-9165992 3-9166915 3-9168877 3-9169402

3-9170133 3-9177509 3-9177777 3-9177862 3-9178911 3-9180206 3-9180355 3-9180784 3-9180858

3-9181460 3-9182261 3-9183097 3-9183279 3-9184857 3-9185269 3-9185428 3-9186015 3-9186271

3-9186843 3-9187077 3-9187146 3-9187296 3-9187743 3-9188234 3-9188323 3-9188334 3-9188409

3-9189000 3-9189683 3-9190002 3-9190520 3-9190935 3-9191260 3-9191265 3-9191320 3-9191411

3-9191472 3-9191506 3-9191720 3-9191736 3-9191749 3-9191978 3-9192695 3-9193175 3-9193819

3-9193840 3-9193901 3-9194023 3-9194060 3-9194161 3-9194206 3-9194462 3-9194464 3-9194582

3-9194715 3-9194723 3-9194770 3-9194799 3-9194807 3-9195128 3-9195171 3-9195211 3-9195256

3-9196050 3-9196303 3-9196350 3-9196457 3-9196493 3-9196594 3-9196639 3-9196688 3-9196714

3-9197061 3-9197184 3-9197206 3-9197688 3-9197917 3-9197943 3-9198344 3-9198951 3-9199038
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3-9199066 3-9199206 3-9199263 3-9199317 3-9199584 3-9199652 3-9199659 3-9199682 3-9199872

3-9199933 3-9200086 3-9200168 3-9200195 3-9200197 3-9200414 3-9200442 3-9200595 3-9200667

3-9200937 3-9200991 3-9201142 3-9201441 3-9201661 3-9201663 3-9201754 3-9202000 3-9202093

3-9202446 3-9202462 3-9202743 3-9203021 3-9203379 3-9203955 3-9203966 3-9204198 3-9204530

3-9204564 3-9205843 3-9205858 3-9205905 3-9205917 3-9205959 3-9206047 3-9207832 3-9208177

3-9208806 3-9209393 3-9210363 3-9210535 3-9211622 3-9211788 3-9212438 3-9213888 3-9214682

3-9215760 3-9215914 3-9216066 3-9219814 3-9221080 3-9221516 3-9224605 3-9224692 3-9224897

3-9226236 3-9227136 3-9227808 3-9229142 3-9229714 3-9229804 3-9229859 3-9231440 3-9234454

3-9234632 3-9235038 3-9237532 3-9237736 3-9240278 3-9241255 3-9242255 3-9243366 3-9243474

3-9243966 3-9246653 3-9247664 3-9248496 3-9249222 3-9249271 3-9249997 3-9250307 3-9250522

3-9250887 3-9251208 3-9252438 3-9253929 3-9255268 3-9255298 3-9255984 3-9256011 3-9256154

3-9256977 3-9257528 3-9257707 3-9258633 3-9260583 3-9264566 3-9264827 3-9264850 3-9265705

3-9268708 3-9270804 3-9272947 3-9274884 3-9275917 3-9276402 3-9277535 3-9278150 3-9278541

3-9278584 3-9279009 3-9279545 3-9279572 3-9281571 3-9281875 3-9282787 3-9282890 3-9283618

3-9284234 3-9285678 3-9286689 3-9287880 3-9288463 3-9288795 3-9292240 3-9292878 3-9293227

3-9294921 3-9295016 3-9296451 3-9299191 3-9302978 3-9304452 3-9307620 3-9310329 3-9310641

3-9311850 3-9313553 3-9314034 3-9314128 3-9315449 3-9315512 3-9315525 3-9315750 3-9318320

3-9319219 3-9321958 3-9323252 3-9324979 3-9325332 3-9328676 3-9330378 3-9336004 3-9340179

3-9343601 3-9343971 3-9345238 3-9347153 3-9349715 3-9351116 3-9351792 3-9352187 3-9356654

3-9362355 3-9364171 3-9366454 3-9377454 3-9377827 3-9378905 3-9383999 3-9385814 3-9386744

3-9386913 3-9389205 3-9391304 3-9393567 3-9397870 3-9399665 3-9400379 3-9400858 3-9401883

3-9408106 3-9409717 3-9412468 3-9412782 3-9412920 3-9413312 3-9414006 3-9414710 3-9415114

3-9416451 3-9417384 3-9418364 3-9419782 3-9419948 3-9419986 3-9420451 3-9421310 3-9423558

3-9424686 3-9425624 3-9427502 3-9427524 3-9427898 3-9430273 3-9433012 3-9435365 3-9435419

3-9437295 3-9442426 3-9442530 3-9442771 3-9443354 3-9444039 3-9446127 3-9446613 3-9447593

3-9449101 3-9451912 3-9452721 3-9455325 3-9456573 3-9457227 3-9457305 3-9457718 3-9460014

3-9460943 3-9461260 3-9464188 3-9465891 3-9467936 3-9468001 3-9468778 3-9469892 3-9471231

3-9471276 3-9475563 3-9478442 3-9482849 3-9493279 3-9494281 3-9497101 3-9498328 3-9500734

3-9503056 3-9505337 3-9511997 3-9514444 3-9516507 3-9520198 3-9521556 3-9523977 3-9524220

3-9524420 3-9524545 3-9526646 3-9533265 3-9539555 3-9540630 3-9543402 3-9544820 3-9549043

3-9550197 3-9550383 3-9550920 3-9559551 3-9562678 3-9564265 3-9567387 3-9567513 3-9571449

3-9573832 3-9576347 3-9577805 3-9578248 3-9581180 3-9581355 3-9581819 3-9585399 3-9586845
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3-9588803 3-9591076 3-9591875 3-9592988 3-9594360 3-9603871 3-9606557 3-9610316 3-9617267

3-9617763 3-9619676 3-9630533 3-9633138 3-9641387 3-9648368 3-9648857 3-9651673 3-9651857

3-9655375 3-9664165 3-9664278 3-9664574 3-9665828 3-9668646 3-9671332 3-9674996 3-9677788

3-9686556 3-9696968 3-9697093 3-9699030 3-9699128 3-9702846 3-9706261 3-9706472 3-9706476

3-9707754 3-9721875 3-9726756 3-9729958 3-9729999 3-9730805 3-9735517 3-9739722 3-9747510

3-9748987 3-9763317 3-9773472 3-9781047 3-9781155 3-9781594 3-9784061 3-9787243 3-9791489

3-9791720 3-9792786 3-9793526 3-9793996 3-9794718 3-9808224 3-9809925 3-9825037 3-9829395

3-9831136 3-9831659 3-9834415 3-9837263 3-9837470 3-9837915 3-9838337 3-9845941 3-9847376

3-9847837 3-9848830 3-9848859 3-9849920 3-9851152 3-9855890 3-9856240 3-9858054 3-9860067

3-9863618 3-9863914 3-9874904 3-9879396 3-9879616 3-9882895 3-9885054 3-9891044 3-9891399

3-9891412 3-9892453 3-9896997 3-9899367 3-9901128 3-9901367 3-9908060 3-9914817 3-9914910

3-9915196 3-9915923 3-9924343 3-9927307 3-9928910 3-9929068 3-9929146 3-9929847 3-9935629

3-9940767 3-9949408 3-9953464 3-9956092 3-9973331 3-9977602 3-9979896 3-9980896 3-9981855

3-9983712 3-9987284 3-9998670

Dataset: Yle 2

20-100929 20-101113 20-101500 20-101577 20-102407 20-103154 20-103574 20-105040 20-106831

20-107055 20-109756 20-113164 20-113555 20-114718 20-115975 20-115991 20-116012 20-116446

20-116853 20-117484 20-118091 20-118151 20-118597 20-119340 20-120124 20-120388 20-120412

20-162485 20-162517 20-216881 20-218690 20-220702 20-227746 20-232381 20-235215 20-236094

20-236660 20-236876 20-243309 20-246013 20-246935 20-248203 20-248697 20-249853 20-249991

20-250599 20-250960 20-30754 20-30762 20-34888 20-34930 20-41431 20-42035 20-55654 20-

55792 20-55914 20-56161 20-56346 20-56476 20-56477 20-56510 20-56710 20-56850 20-56983

20-57001 20-57957 20-58713 20-58739 20-60211 20-60379 20-61923 20-63173 20-63419 20-63601

20-63662 20-65019 20-67968 20-69137 20-69734 20-73687 20-74155 20-74442 20-79319 20-79634

20-81405 20-82172 20-82207 20-82384 20-82479 20-82553 20-82571 20-82637 20-82681 20-82686

20-82724 20-84165 20-84191 20-84714 20-85750 20-86569 20-86868 20-88233 20-88236 20-89285

20-89606 20-89872 20-90495 20-93078 20-93874 20-94125 20-95003 20-95869 20-96011 20-97734

20-98935 20-99350 20-99353 20-99366 20-99570 3-5052495 3-5052568 3-5052596 3-5052666 3-

5052800 3-5052912 3-5052924 3-5052928 3-5052943 3-5052949 3-5052950 3-5052952 3-5052955

3-5053168 3-5053208 3-5053255 3-5053309 3-5053351 3-5054063 3-5054502 3-5054503 3-5054507
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3-5054529 3-5054531 3-5054572 3-5054582 3-5054592 3-5054766 3-5054768 3-5054769 3-5054771

3-5054818 3-5055160 3-5055765 3-5056331 3-5057873 3-5059577 3-5063263 3-5064029 3-5064971

3-5067507 3-5071771 3-5073016 3-5077880 3-5078076 3-5078108 3-5079129 3-5079367 3-5079516

3-5081323 3-5083616 3-5092561 3-5092707 3-5093000 3-5093675 3-5093755 3-5094133 3-5094465

3-5095817 3-5097547 3-5098267 3-5236136 3-5236142 3-5236147 3-5236151 3-5236160 3-5236604

3-5236674 3-5239295 3-5239364 3-5241305 3-5241311 3-5241315 3-5241350 3-5241440 3-5248408

3-5252212 3-5260670 3-5284527 3-5285124 3-5285145 3-5285170 3-5291195 3-5291405 3-5291531

3-5291834 3-5292130 3-5292260 3-5292481 3-5295473 3-5299185 3-5299427 3-5299775 3-5299798

3-5301741 3-5307417 3-5307504 3-5307727 3-5311863 3-5311929 3-5317502 3-5317511 3-5317515

3-5317516 3-5341971 3-5342817 3-5368443 3-5380928 3-5384555 3-5405704 3-5405848 3-5407569

3-5421675 3-5430860 3-5432856 3-5437588 3-5439551 3-5471836 3-5488589 3-5493231 3-5493235

3-5493246 3-5503022 3-5504026 3-5508295 3-5508300 3-5530778 3-5534645 3-5539609 3-5545809

3-5546042 3-5555945 3-5580199 3-5584185 3-5609068 3-5614011 3-5621360 3-5625243 3-5626329

3-5627099 3-5630176 3-5631880 3-5633637 3-5652312 3-5652361 3-5654469 3-5666622 3-5685194

3-5686891 3-5690254 3-5690985 3-5691277 3-5691661 3-5711151 3-5711710 3-5712867 3-5713991

3-5714012 3-5714311 3-5715608 3-5716937 3-5730083 3-5738791 3-5741676 3-5742233 3-5742747

3-5742856 3-5742913 3-5743085 3-5743835 3-5743884 3-5743892 3-5743906 3-5765569 3-5765570

3-5766270 3-5766275 3-5766864 3-5767088 3-5767527 3-5767886 3-5768454 3-5768818 3-5769147

3-5770557 3-5773254 3-5773262 3-5773336 3-5773348 3-5773933 3-5773953 3-5774501 3-5774559

3-5775075 3-5775328 3-5775597 3-5775713 3-5776013 3-5853601 3-5853621 3-5853705 3-5853774

3-5853787 3-5853810 3-5853881 3-5859463 3-5864773 3-5872225 3-5875896 3-5875907 3-5876119

3-5879918 3-5890635 3-5899499 3-5900870 3-5916280 3-5921007 3-5990676 3-5997759 3-6001120

3-6006186 3-6006511 3-6007035 3-6007275 3-6007390 3-6007490 3-6007569 3-6007855 3-6007971

3-6008034 3-6008180 3-6008251 3-6008490 3-6008709 3-6009060 3-6009213 3-6009483 3-6009792

3-6009800 3-6015845 3-6020081 3-6021731 3-6072153 3-6072343 3-6072371 3-6072458 3-6072526

3-6072829 3-6072980 3-6073030 3-6073079 3-6073466 3-6073909 3-6073910 3-6073940 3-6074131

3-6074154 3-6074365 3-6074590 3-6074699 3-6074807 3-6074848 3-6074943 3-6075065 3-6075510

3-6075622 3-6076060 3-6076649 3-6077325 3-6077463 3-6078280 3-6078435 3-6078518 3-6078705

3-6078776 3-6078824 3-6079009 3-6079695 3-6080021 3-6080056 3-6080274 3-6080403 3-6080405

3-6080449 3-6080501 3-6080902 3-6081762 3-6081860 3-6082283 3-6082935 3-6082958 3-6083683

3-6083774 3-6084747 3-6084811 3-6085730 3-6085751 3-6085808 3-6086104 3-6086496 3-6086871

3-6087068 3-6087111 3-6088014 3-6088018 3-6088226 3-6088255 3-6088274 3-6088350 3-6088574
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3-6089703 3-6089706 3-6089809 3-6089826 3-6089844 3-6089847 3-6090225 3-6090722 3-6090817

3-6091166 3-6091391 3-6091409 3-6091499 3-6091888 3-6092012 3-6092349 3-6094301 3-6094515

3-6094645 3-6094996 3-6095268 3-6095449 3-6095463 3-6095482 3-6095586 3-6095809 3-6095829

3-6096022 3-6096056 3-6096147 3-6096178 3-6096254 3-6096707 3-6096746 3-6097309 3-6097477

3-6098208 3-6098953 3-6099184 3-6099774 3-6100190 3-6100199 3-6101749 3-6101777 3-6101779

3-6101863 3-6102957 3-6103703 3-6103822 3-6104321 3-6104748 3-6104781 3-6104959 3-6104986

3-6105502 3-6105643 3-6105695 3-6106469 3-6106944 3-6107162 3-6107270 3-6107342 3-6108028

3-6108135 3-6108621 3-6108742 3-6109097 3-6109138 3-6109153 3-6109506 3-6111550 3-6131415

3-6134765 3-6134940 3-6135219 3-6135272 3-6135497 3-6135679 3-6135921 3-6135986 3-6136234

3-6136397 3-6137207 3-6137502 3-6138553 3-6138590 3-6139319 3-6139491 3-6139783 3-6140358

3-6140649 3-6141007 3-6143443 3-6143615 3-6143629 3-6144334 3-6144746 3-6145376 3-6145449

3-6145631 3-6145666 3-6145670 3-6145786 3-6145928 3-6146093 3-6146166 3-6146607 3-6147479

3-6147698 3-6147704 3-6147706 3-6147913 3-6148199 3-6148254 3-6148287 3-6148795 3-6148988

3-6149282 3-6152849 3-6154976 3-6160055 3-6160594 3-6160618 3-6160897 3-6161445 3-6161490

3-6161830 3-6163618 3-6165303 3-6165367 3-6166128 3-6166697 3-6167786 3-6168153 3-6168390

3-6169704 3-6170412 3-6170807 3-6171131 3-6171193 3-6171260 3-6171547 3-6172252 3-6172284

3-6174345 3-6174480 3-6174911 3-6174959 3-6174972 3-6175011 3-6175590 3-6176005 3-6176288

3-6176345 3-6176348 3-6176432 3-6177198 3-6177365 3-6177782 3-6178075 3-6178100 3-6179191

3-6179245 3-6179310 3-6179499 3-6179626 3-6179956 3-6180182 3-6180335 3-6180591 3-6180720

3-6180955 3-6181053 3-6181072 3-6181130 3-6181152 3-6181294 3-6181353 3-6181434 3-6181834

3-6182114 3-6182176 3-6182300 3-6182332 3-6182447 3-6182730 3-6183003 3-6183503 3-6183509

3-6183601 3-6183622 3-6184182 3-6184462 3-6184729 3-6184990 3-6185549 3-6185722 3-6185863

3-6186050 3-6186887 3-6186902 3-6187239 3-6187446 3-6188804 3-6188940 3-6189174 3-6189345

3-6189577 3-6189783 3-6190042 3-6190216 3-6191131 3-6191279 3-6191299 3-6191519 3-6191612

3-6191659 3-6191788 3-6192230 3-6192581 3-6193575 3-6194747 3-6195003 3-6195355 3-6195793

3-6195819 3-6196606 3-6197106 3-6197487 3-6197537 3-6198128 3-6198168 3-6198439 3-6198543

3-6198691 3-6200397 3-6200677 3-6200831 3-6201338 3-6201576 3-6203285 3-6203609 3-6203732

3-6203790 3-6203797 3-6204155 3-6204453 3-6204474 3-6204996 3-6205156 3-6205193 3-6205718

3-6206303 3-6206435 3-6206951 3-6207057 3-6207290 3-6207344 3-6207556 3-6207918 3-6207995

3-6209029 3-6209671 3-6211444 3-6211999 3-6212019 3-6212029 3-6212123 3-6212239 3-6212666

3-6212838 3-6213640 3-6214694 3-6215166 3-6215318 3-6216000 3-6216163 3-6216202 3-6216553

3-6216576 3-6217242 3-6219725 3-6219852 3-6220280 3-6220322 3-6220404 3-6220510 3-6221157
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3-6221594 3-6221953 3-6222202 3-6222847 3-6222984 3-6223163 3-6223889 3-6224012 3-6224533

3-6224541 3-6224691 3-6225016 3-6225046 3-6226083 3-6226319 3-6226637 3-6226711 3-6226938

3-6227334 3-6227691 3-6227923 3-6228076 3-6228436 3-6229687 3-6229820 3-6230086 3-6230488

3-6230538 3-6230634 3-6230666 3-6230684 3-6230699 3-6230874 3-6230954 3-6231011 3-6231027

3-6231464 3-6231927 3-6232175 3-6232329 3-6232416 3-6232500 3-6233073 3-6233761 3-6234343

3-6234348 3-6235352 3-6235711 3-6235807 3-6235840 3-6236200 3-6236317 3-6236520 3-6236605

3-6237067 3-6238094 3-6238227 3-6238419 3-6239297 3-6239383 3-6239504 3-6239611 3-6239912

3-6240496 3-6240752 3-6240943 3-6240954 3-6241147 3-6241393 3-6241894 3-6243542 3-6243902

3-6243948 3-6244009 3-6244664 3-6244669 3-6245406 3-6245426 3-6245445 3-6245574 3-6246385

3-6247232 3-6247725 3-6248278 3-6248919 3-6249162 3-6249195 3-6249734 3-6250257 3-6250721

3-6250914 3-6251171 3-6251438 3-6251631 3-6254001 3-6255158 3-6255262 3-6255578 3-6255932

3-6256126 3-6256567 3-6257395 3-6257459 3-6258304 3-6258539 3-6258790 3-6258808 3-6258887

3-6258954 3-6259099 3-6259348 3-6260797 3-6261265 3-6262737 3-6262767 3-6262798 3-6263697

3-6265134 3-6265221 3-6265725 3-6265731 3-6265732 3-6266465 3-6266576 3-6266668 3-6266788

3-6267166 3-6268554 3-6268676 3-6269260 3-6270303 3-6271223 3-6271510 3-6273327 3-6273700

3-6273940 3-6273981 3-6274257 3-6275250 3-6275328 3-6275509 3-6276996 3-6277268 3-6277564

3-6278403 3-6279740 3-6280029 3-6280809 3-6281043 3-6281309 3-6281614 3-6281712 3-6281808

3-6282300 3-6282338 3-6282407 3-6283111 3-6283217 3-6283244 3-6286102 3-6286187 3-6286216

3-6287002 3-6288336 3-6288744 3-6289707 3-6290498 3-6291055 3-6291649 3-6292261 3-6292482

3-6292810 3-6293302 3-6294776 3-6294828 3-6294930 3-6295213 3-6297137 3-6297154 3-6297284

3-6297446 3-6298010 3-6298390 3-6298626 3-6299178 3-6299381 3-6301157 3-6301431 3-6301875

3-6302051 3-6302600 3-6302923 3-6303733 3-6303786 3-6304043 3-6304049 3-6304465 3-6304710

3-6306723 3-6306812 3-6308267 3-6308642 3-6308709 3-6309309 3-6309442 3-6309479 3-6309712

3-6310530 3-6311662 3-6311711 3-6311922 3-6312262 3-6312287 3-6312296 3-6312786 3-6312797

3-6313287 3-6313921 3-6316790 3-6318621 3-6318974 3-6319247 3-6319544 3-6319859 3-6320007

3-6320924 3-6321844 3-6322085 3-6322713 3-6322786 3-6322788 3-6322826 3-6322979 3-6323300

3-6325508 3-6325555 3-6325786 3-6326379 3-6327241 3-6327639 3-6327721 3-6328494 3-6329903

3-6330574 3-6331166 3-6331276 3-6331638 3-6332610 3-6333674 3-6335660 3-6335744 3-6335797

3-6336042 3-6336526 3-6336531 3-6336561 3-6336771 3-6336971 3-6337250 3-6337426 3-6338358

3-6339265 3-6339312 3-6339971 3-6342280 3-6342442 3-6342791 3-6344556 3-6345142 3-6345364

3-6345758 3-6345883 3-6346859 3-6346975 3-6347147 3-6347515 3-6348032 3-6348356 3-6348424

3-6348873 3-6349636 3-6349694 3-6349856 3-6350115 3-6350139 3-6350317 3-6354901 3-6355494
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3-6355757 3-6356500 3-6359307 3-6359505 3-6360116 3-6360321 3-6362072 3-6363772 3-6364240

3-6364778 3-6364939 3-6365052 3-6365256 3-6365278 3-6367361 3-6367935 3-6368030 3-6368171

3-6368502 3-6368831 3-6369141 3-6369379 3-6370563 3-6370588 3-6372354 3-6372507 3-6372708

3-6373359 3-6374296 3-6374497 3-6374890 3-6375607 3-6375617 3-6375704 3-6376412 3-6377308

3-6377455 3-6377564 3-6377773 3-6378264 3-6379250 3-6379803 3-6380563 3-6382656 3-6382971

3-6382993 3-6383001 3-6383546 3-6384200 3-6384433 3-6384968 3-6385032 3-6385154 3-6386701

3-6386751 3-6387094 3-6387335 3-6387857 3-6390060 3-6390895 3-6391092 3-6391155 3-6392137

3-6392449 3-6392920 3-6393198 3-6394091 3-6394138 3-6394192 3-6394319 3-6395516 3-6395748

3-6395944 3-6395981 3-6396008 3-6396408 3-6396603 3-6397164 3-6397536 3-6399029 3-6400196

3-6400378 3-6400532 3-6400962 3-6401758 3-6401869 3-6401950 3-6402960 3-6403235 3-6403723

3-6405183 3-6405600 3-6406618 3-6407074 3-6407886 3-6408042 3-6409376 3-6409427 3-6409549

3-6410661 3-6410915 3-6411634 3-6413020 3-6413366 3-6413621 3-6413949 3-6414040 3-6414475

3-6414566 3-6414631 3-6415624 3-6416383 3-6416573 3-6417513 3-6418227 3-6418373 3-6418809

3-6419461 3-6420029 3-6420687 3-6420782 3-6421354 3-6421704 3-6422412 3-6422649 3-6423190

3-6423309 3-6423889 3-6424213 3-6424758 3-6425990 3-6426546 3-6426917 3-6427014 3-6428923

3-6429468 3-6429484 3-6430147 3-6430487 3-6430906 3-6432319 3-6432694 3-6434400 3-6434429

3-6434626 3-6434970 3-6435123 3-6435363 3-6435578 3-6435915 3-6435946 3-6436109 3-6436465

3-6437420 3-6437886 3-6438313 3-6439807 3-6440205 3-6440292 3-6440384 3-6440394 3-6440486

3-6440715 3-6441272 3-6441864 3-6441930 3-6442260 3-6442599 3-6442651 3-6443360 3-6443633

3-6444108 3-6444317 3-6444785 3-6445684 3-6446850 3-6447388 3-6448289 3-6449446 3-6449485

3-6449718 3-6449849 3-6450362 3-6450399 3-6450865 3-6450885 3-6451075 3-6451618 3-6453318

3-6453388 3-6453841 3-6454076 3-6454220 3-6454830 3-6455056 3-6455059 3-6455098 3-6455414

3-6455672 3-6456878 3-6456906 3-6457052 3-6457110 3-6457370 3-6458118 3-6458300 3-6458887

3-6459797 3-6460032 3-6460112 3-6461190 3-6461301 3-6461759 3-6463081 3-6463196 3-6463198

3-6465386 3-6465539 3-6466550 3-6466633 3-6466679 3-6466793 3-6467193 3-6467497 3-6468935

3-6469292 3-6470334 3-6470569 3-6470936 3-6470992 3-6471030 3-6471048 3-6471943 3-6472550

3-6473748 3-6473793 3-6474274 3-6475095 3-6476734 3-6478332 3-6479634 3-6480043 3-6480690

3-6481096 3-6481550 3-6481973 3-6482018 3-6483436 3-6484088 3-6484841 3-6486784 3-6489377

3-6490089 3-6490997 3-6491882 3-6491942 3-6492307 3-6492943 3-6493220 3-6494050 3-6496301

3-6496613 3-6497402 3-6498003 3-6498610 3-6499332 3-6499730 3-6500263 3-6500284 3-6500376

3-6500605 3-6501088 3-6501548 3-6501751 3-6501960 3-6502899 3-6503143 3-6503911 3-6505961

3-6507039 3-6508858 3-6510210 3-6513230 3-6514893 3-6515331 3-6516585 3-6516731 3-6517224
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3-6517395 3-6517512 3-6518977 3-6519688 3-6519720 3-6520836 3-6521025 3-6522000 3-6522009

3-6524123 3-6525238 3-6525538 3-6525946 3-6527191 3-6527385 3-6527397 3-6528683 3-6528705

3-6531748 3-6532515 3-6532725 3-6533474 3-6534242 3-6534520 3-6535145 3-6535464 3-6535489

3-6535880 3-6537361 3-6537630 3-6538119 3-6539488 3-6539672 3-6541536 3-6542785 3-6543086

3-6544168 3-6545226 3-6545507 3-6545885 3-6546104 3-6548050 3-6548324 3-6549486 3-6549827

3-6550000 3-6550087 3-6551181 3-6552833 3-6553140 3-6554317 3-6556350 3-6556626 3-6557178

3-6557240 3-6560808 3-6560845 3-6561057 3-6561701 3-6562273 3-6562600 3-6563904 3-6565035

3-6566150 3-6566385 3-6566947 3-6567746 3-6569100 3-6569695 3-6569741 3-6569742 3-6569875

3-6570751 3-6572034 3-6573354 3-6573427 3-6573583 3-6573797 3-6575538 3-6576356 3-6576406

3-6578266 3-6578915 3-6580090 3-6580145 3-6580843 3-6581681 3-6583923 3-6584827 3-6586011

3-6587432 3-6590387 3-6590520 3-6591387 3-6591575 3-6591713 3-6591806 3-6592616 3-6606840

3-6606947 3-6611493 3-6615336 3-6617194 3-6618276 3-6624047 3-6628020 3-6634552 3-6634933

3-6636017 3-6636485 3-6638455 3-6638674 3-6638950 3-6640436 3-6640549 3-6641137 3-6641393

3-6642504 3-6644603 3-6647796 3-6648462 3-6648912 3-6650063 3-6650368 3-6650532 3-6651179

3-6651518 3-6651564 3-6652671 3-6652896 3-6653020 3-6653428 3-6654092 3-6655261 3-6655537

3-6657022 3-6658354 3-6658368 3-6658668 3-6660831 3-6662313 3-6662347 3-6662532 3-6663447

3-6664444 3-6666049 3-6666888 3-6666889 3-6666929 3-6667038 3-6667140 3-6667209 3-6668115

3-6670886 3-6672074 3-6672304 3-6672950 3-6673416 3-6674204 3-6675938 3-6675998 3-6676410

3-6678922 3-6682759 3-6683527 3-6683687 3-6685961 3-6689455 3-6691170 3-6691858 3-6691894

3-6692045 3-6692441 3-6693553 3-6693663 3-6694273 3-6696990 3-6698532 3-6699964 3-6699966

3-6700825 3-6704126 3-6705958 3-6706345 3-6706380 3-6706513 3-6706555 3-6706562 3-6706720

3-6706907 3-6707295 3-6707430 3-6707937 3-6709560 3-6713417 3-6714425 3-6714522 3-6714557

3-6716628 3-6720175 3-6720378 3-6721765 3-6723836 3-6724698 3-6725076 3-6726075 3-6727278

3-6727572 3-6730256 3-6731998 3-6732081 3-6733791 3-6734778 3-6735938 3-6736679 3-6736713

3-6742634 3-6744915 3-6746262 3-6747938 3-6749114 3-6749702 3-6749757 3-6750101 3-6751363

3-6752413 3-6755882 3-6758112 3-6761711 3-6767197 3-6767902 3-6768131 3-6768316 3-6768714

3-6769262 3-6769457 3-6769480 3-6770361 3-6770843 3-6772967 3-6773991 3-6774381 3-6774492

3-6774711 3-6775816 3-6777069 3-6777240 3-6777562 3-6778386 3-6778559 3-6778706 3-6778747

3-6778937 3-6783459 3-6785069 3-6785298 3-6785319 3-6785383 3-6788381 3-6789256 3-6790781

3-6794418 3-6795305 3-6797162 3-6797285 3-6809768 3-6810289 3-6813600 3-6816960 3-6817920

3-6819621 3-6820276 3-6820907 3-6821598 3-6821726 3-6822906 3-6824359 3-6825787 3-6828373

3-6829242 3-6829617 3-6830644 3-6832613 3-6836737 3-6836920 3-6837136 3-6839933 3-6841044
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3-6844733 3-6845137 3-6846253 3-6848179 3-6848898 3-6849699 3-6850436 3-6850514 3-6850907

3-6852047 3-6853715 3-6855499 3-6857112 3-6859190 3-6862125 3-6865598 3-6869219 3-6873605

3-6873610 3-6875567 3-6876673 3-6877007 3-6880387 3-6880564 3-6882484 3-6882486 3-6884905

3-6888669 3-6889273 3-6889277 3-6889286 3-6889588 3-6892740 3-6894717 3-6895508 3-6898022

3-6899527 3-6900586 3-6903133 3-6903815 3-6904387 3-6906251 3-6907994 3-6908878 3-6910702

3-6912388 3-6912460 3-6912714 3-6913238 3-6913331 3-6915288 3-6918000 3-6918470 3-6918501

3-6918733 3-6918770 3-6919427 3-6920027 3-6920146 3-6920331 3-6921074 3-6921096 3-6921100

3-6921654 3-6921823 3-6927342 3-6927414 3-6928169 3-6929354 3-6929543 3-6929904 3-6930100

3-6931612 3-6931795 3-6931873 3-6932155 3-6934822 3-6934889 3-6935477 3-6936203 3-6936229

3-6936407 3-6936447 3-6938844 3-6941521 3-6942630 3-6942851 3-6943686 3-6943863 3-6944067

3-6944074 3-6945777 3-6945858 3-6947063 3-6948177 3-6949441 3-6952746 3-6953158 3-6954114

3-6955714 3-6955980 3-6957007 3-6958013 3-6959269 3-6959474 3-6960158 3-6960627 3-6960665

3-6960853 3-6961690 3-6963552 3-6963875 3-6963958 3-6964351 3-6965123 3-6966034 3-6966709

3-6968100 3-6970026 3-6971611 3-6971849 3-6972108 3-6972230 3-6974266 3-6977770 3-6979298

3-6980601 3-6981056 3-6981279 3-6981440 3-6981785 3-6982353 3-6984423 3-6987409 3-6987647

3-6989265 3-6992055 3-6992509 3-6992794 3-6992941 3-6992993 3-6994440 3-6995206 3-6998776

3-7001867 3-7004723 3-7007119 3-7008196 3-7008876 3-7009527 3-7010846 3-7013113 3-7021132

3-7021144 3-7022065 3-7023612 3-7024349 3-7025758 3-7025993 3-7027307 3-7027748 3-7031390

3-7031392 3-7032382 3-7033942 3-7034869 3-7037648 3-7037780 3-7038261 3-7039374 3-7039822

3-7041338 3-7042145 3-7044039 3-7044109 3-7051166 3-7054096 3-7054476 3-7056681 3-7060528

3-7060850 3-7061728 3-7066219 3-7066246 3-7066996 3-7068132 3-7068329 3-7068562 3-7069973

3-7071076 3-7071423 3-7071500 3-7073542 3-7074514 3-7074782 3-7074859 3-7078973 3-7080098

3-7080561 3-7080706 3-7081090 3-7081549 3-7082894 3-7083405 3-7088985 3-7092361 3-7093786

3-7094027 3-7094702 3-7096455 3-7102130 3-7103992 3-7104558 3-7104820 3-7105024 3-7106227

3-7108733 3-7111770 3-7114790 3-7114952 3-7116624 3-7117808 3-7118335 3-7123258 3-7123315

3-7123537 3-7127238 3-7127502 3-7127588 3-7128700 3-7131402 3-7131734 3-7132724 3-7132898

3-7133154 3-7133181 3-7134916 3-7135341 3-7135716 3-7137030 3-7137051 3-7137293 3-7141202

3-7142123 3-7142260 3-7142608 3-7143256 3-7143533 3-7144342 3-7144520 3-7145723 3-7146240

3-7149470 3-7152893 3-7156445 3-7156469 3-7157085 3-7157239 3-7157492 3-7157562 3-7159718

3-7160310 3-7161642 3-7161845 3-7163565 3-7168557 3-7170308 3-7171187 3-7171309 3-7171593

3-7173478 3-7183559 3-7185694 3-7190793 3-7192862 3-7194889 3-7199365 3-7200460 3-7208798

3-7209635 3-7215013 3-7216865 3-7223738 3-7225138 3-7227640 3-7230581 3-7236953 3-7242080
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3-7242857 3-7248191 3-7249989 3-7257714 3-7258713 3-7259650 3-7261050 3-7268504 3-7272373

3-7278926 3-7299324 3-7299452 3-7300019 3-7303121 3-7303622 3-7305335 3-7317317 3-7323944

3-7327284 3-7327896 3-7338282 3-7338295 3-7341144 3-7348497 3-7350564 3-7352824 3-7359320

3-7366227 3-7368688 3-7375702 3-7378934 3-7383913 3-7385250 3-7385273 3-7390214 3-7392995

3-7393168 3-7396771 3-7399068 3-7405549 3-7405628 3-7409595 3-7416128 3-7422500 3-7434727

3-7440054 3-7443983 3-7457779 3-7458779 3-7465348 3-7467400 3-7470375 3-7470921 3-7476802

3-7481449 3-7484129 3-7484296 3-7485215 3-7486817 3-7487020 3-7495421 3-7499449 3-7502829

3-7502917 3-7515413 3-7531420 3-7531936 3-7536252 3-7539414 3-7539529 3-7550404 3-7555194

3-7574114 3-7595422 3-7605988 3-7609756 3-7613027 3-7640047 3-7640165 3-7640643 3-7641050

3-7641629 3-7646029 3-7664961 3-7665257 3-7667657 3-7674219 3-7678882 3-7687363 3-7706324

3-7713690

6.1 Dataset: Finlex

http://data.finlex.fi/eli/sd/1734/4/luku/17/pykala/22/ajantasa/20160101 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/sd/1734/4/luku/2/pykala/8/ajantasa/20190101 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/sd/1734/4/luku/8/pykala/4/ajantasa/20090101 perheoikeus perin-

töoikeus

http://data.finlex.fi/eli/sd/1889/39/luku/12/pykala/11/ajantasa/19950901 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/sd/1889/39/luku/45/pykala/3/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/1889/39/luku/8/pykala/2/ajantasa/20060101 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/sd/1929/234/osa/1/luku/4/pykala/16/ajantasa/19880101 perheoikeus

perintöoikeus

http://data.finlex.fi/eli/sd/1946/436/pykala/5/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/1965/40/luku/20/pykala/4/ajantasa/20080101 perheoikeus perin-

töoikeus
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http://data.finlex.fi/eli/sd/1966/91/pykala/3/ajantasa/20101201 omaisuus kaupankäynti kulut-

tajansuoja

http://data.finlex.fi/eli/sd/1968/360/osa/3/luku/1/pykala/27b/ajantasa/19880701 verotus

http://data.finlex.fi/eli/sd/1972/666/pykala/11/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/1981/418/luku/4/pykala/20/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/1985/314/luku/4/pykala/29/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/1987/355/luku/8/pykala/43/alkup omaisuus kaupankäynti kulutta-

jansuoja

http://data.finlex.fi/eli/sd/1987/395/luku/5/pykala/35a/ajantasa/20090101 omaisuus kau-

pankäynti kuluttajansuoja

http://data.finlex.fi/eli/sd/1989/354/pykala/2/alkup julkishallinto valtionhallinto

http://data.finlex.fi/eli/sd/1992/1257/luku/2/pykala/5/ajantasa/19921204 liikenne kuljetus

http://data.finlex.fi/eli/sd/1993/1054/luku/6/pykala/41/ajantasa/19931126 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/1993/47/luku/3/pykala/10/ajantasa/20070601 rahoitus

http://data.finlex.fi/eli/sd/1993/770/pykala/2/ajantasa/20180101 rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/1994/1072/luku/6/pykala/44/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/1994/674/luku/16/pykala/12/ajantasa/19940715 rahoitus

http://data.finlex.fi/eli/sd/1994/719/luku/3/pykala/11d/ajantasa/20190101 liikenne kuljetus

http://data.finlex.fi/eli/sd/1994/843/luku/6/pykala/24/ajantasa/20190101 omaisuus kau-

pankäynti kuluttajansuoja

http://data.finlex.fi/eli/sd/1995/1710/luku/1/pykala/1/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/1995/540/luku/16/pykala/4a/ajantasa/19950412 asuminen kiinteistö

http://data.finlex.fi/eli/sd/1995/554/luku/3/pykala/14/ajantasa/20140101 asuminen kiinteistö

http://data.finlex.fi/eli/sd/1998/986/luku/7/pykala/22a/ajantasa/20040101 julkishallinto

valtionhallinto
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http://data.finlex.fi/eli/sd/1999/1084/pykala/14/ajantasa/20111231 rahoitus

http://data.finlex.fi/eli/sd/1999/731/luku/2/pykala/23/ajantasa/20120301 ihmisoikeudet peru-

soikeudet

http://data.finlex.fi/eli/sd/2002/1290/luku/5/pykala/12/ajantasa/20110801 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/2002/194/luku/5/pykala/26/ajantasa/20190101 liikenne kuljetus

http://data.finlex.fi/eli/sd/2002/241/luku/8/pykala/32/alkup omaisuus kaupankäynti kulutta-

jansuoja

http://data.finlex.fi/eli/sd/2002/257/luku/2/pykala/10/ajantasa/20091201 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/sd/2003/1197/luku/10/pykala/46/alkup julkishallinto valtionhallinto

http://data.finlex.fi/eli/sd/2003/1197/luku/6/pykala/27/alkup julkishallinto valtionhallinto

http://data.finlex.fi/eli/sd/2003/1286/luku/2/pykala/31/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/2003/304/luku/8/pykala/37b/ajantasa/20170101 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/2004/1224/luku/12/pykala/2/ajantasa/20170101 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/2004/629/luku/3/pykala/17/ajantasa/20100101 liikenne kuljetus

http://data.finlex.fi/eli/sd/2005/1142/luku/4/pykala/21/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/2005/767/luku/18/pykala/9/ajantasa/20150501 rikosasiat oikeu-

denkäynti

http://data.finlex.fi/eli/s/2006/1233/pykala/6/ajantasa/20130101 yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/2006/1280/luku/5/pykala/59e/ajantasa/20170101 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/2006/624/luku/3/pykala/1/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/2006/624/luku/5/pykala/9/alkup yritykset yhteisöt työelämä

86



http://data.finlex.fi/eli/sd/2007/273/luku/2/pykala/20d/ajantasa/20160101 liikenne kuljetus

http://data.finlex.fi/eli/sd/2007/370/luku/5/pykala/27/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/2007/417/luku/3/pykala/13a/ajantasa/20100301 perheoikeus perin-

töoikeus

http://data.finlex.fi/eli/sd/2007/705/luku/5/pykala/27/alkup omaisuus kaupankäynti kulutta-

jansuoja

http://data.finlex.fi/eli/sd/2009/228/pykala/4/ajantasa/20140701 liikenne kuljetus

http://data.finlex.fi/eli/sd/2009/299/pykala/10/alkup verotus

http://data.finlex.fi/eli/sd/2010/934/luku/5/pykala/34/alkup rahoitus

http://data.finlex.fi/eli/sd/2011/210/pykala/3/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/2011/379/luku/2/pykala/6/ajantasa/20110429 ympäristö

http://data.finlex.fi/eli/sd/2011/386/luku/7/pykala/68/ajantasa/20190601 liikenne kuljetus

http://data.finlex.fi/eli/sd/2011/439/luku/1/pykala/4/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/2011/646/luku/12/pykala/114/alkup ympäristö

http://data.finlex.fi/eli/sd/2011/715/pykala/20/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/2011/756/luku/2/pykala/3/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/2011/756/luku/8/pykala/11/ajantasa/20170101 yritykset yhteisöt

työelämä

http://data.finlex.fi/eli/sd/2012/100/luku/9/pykala/65/ajantasa/20190101 julkishallinto valtion-

hallinto

http://data.finlex.fi/eli/sd/2012/22/luku/10/pykala/86/alkup perheoikeus perintöoikeus

http://data.finlex.fi/eli/sd/2012/22/luku/2/pykala/3/alkup perheoikeus perintöoikeus

http://data.finlex.fi/eli/sd/2012/391/luku/1/pykala/3/alkup ympäristö

http://data.finlex.fi/eli/sd/2013/1201/luku/2/pykala/6/alkup omaisuus kaupankäynti kulutta-

jansuoja

http://data.finlex.fi/eli/sd/2013/781/pykala/2/alkup verotus
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http://data.finlex.fi/eli/sd/2014/1174/luku/4/pykala/19/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/2014/416/luku/4/pykala/84/alkup julkishallinto valtionhallinto

http://data.finlex.fi/eli/sd/2014/527/luku/16/pykala/154/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/2014/527/luku/21/pykala/237/alkup ympäristö

http://data.finlex.fi/eli/sd/2015/1083/pykala/2/alkup ympäristö

http://data.finlex.fi/eli/sd/2015/11/luku/3/pykala/18/alkup perheoikeus perintöoikeus

http://data.finlex.fi/eli/sd/2015/1426/pykala/1/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/2015/1696/pykala/8/alkup omaisuus kaupankäynti kuluttajansuoja

http://data.finlex.fi/eli/sd/2015/216/pykala/11/alkup asuminen kiinteistö

http://data.finlex.fi/eli/sd/2015/327/luku/4/pykala/17/ajantasa/20170316 ympäristö

http://data.finlex.fi/eli/sd/2015/400/luku/3/pykala/10/alkup rikosasiat oikeudenkäynti

http://data.finlex.fi/eli/sd/2015/685/luku/3/pykala/9/alkup ympäristö

http://data.finlex.fi/eli/sd/2015/80/luku/4/pykala/17/alkup rahoitus

http://data.finlex.fi/eli/sd/2016/304/luku/3/pykala/12/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/2016/549/luku/5/pykala/40/alkup omaisuus kaupankäynti kulutta-

jansuoja

http://data.finlex.fi/eli/sd/2016/734/luku/4/pykala/15/alkup rahoitus

http://data.finlex.fi/eli/sd/2016/768/luku/4/pykala/22/alkup verotus

http://data.finlex.fi/eli/sd/2016/872/pykala/6/alkup koulutus

http://data.finlex.fi/eli/sd/2017/320/osa/5/luku/2/pykala/5/ajantasa/20190101 liikenne kuljetus

http://data.finlex.fi/eli/sd/2017/907/pykala/14/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/2017/946/luku/3/pykala/22/alkup perheoikeus perintöoikeus

http://data.finlex.fi/eli/sd/2018/11/luku/4/pykala/29/alkup verotus

http://data.finlex.fi/eli/sd/2018/1302/luku/21/pykala/162/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/2018/714/luku/10/pykala/63/alkup koulutus
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http://data.finlex.fi/eli/sd/2018/729/luku/6/pykala/163/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/2019/213/luku/20/pykala/8/alkup rahoitus

http://data.finlex.fi/eli/sd/2019/213/luku/6/pykala/1/alkup yritykset yhteisöt työelämä

http://data.finlex.fi/eli/sd/2019/213/luku/9/pykala/10/ajantasa/20190610 rahoitus

http://data.finlex.fi/eli/sd/2019/590/luku/1/pykala/9/alkup ihmisoikeudet perusoikeudet

http://data.finlex.fi/eli/sd/2019/650/luku/2/pykala/8/alkup ihmisoikeudet perusoikeudet

http://data.finlex.fi/eli/sd/2019/782/luku/7/pykala/113/alkup liikenne kuljetus

http://data.finlex.fi/eli/sd/2019/808/luku/2/pykala/9/alkup julkishallinto valtionhallintod
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