“Sampo” Model and Semantic Portals for Digital Humanities on the Semantic Web

Eero Hyvönen

University of Helsinki, Helsinki Centre for Digital Humanities (HELDIG), and Aalto University, Semantic Computing Research Group (SeCo)

Abstract. This paper presents the vision and longstanding work in Finland on creating a national Cultural Heritage ontology infrastructure and semantic portals based on Linked Data on the Semantic Web. In particular, the “Sampo” series of semantic portals is considered, including CultureSampo (2009), TravelSampo (2011), BookSampo (2011), WarSampo (2015), BiographySampo (2018), NameSampo (2019), WarVictimSampo (2019), FindSampo (2019), and LawSampo (2020). They all share the “Sampo model” for publishing Cultural Heritage content the Semantic Web that typically involves three components: 1) A model for harmonizing, aggregating, and publishing heterogeneous, distributed contents based on a shared ontology infrastructure. 2) An approach to interface design, where the data can be re-used and accessed independently from multiple application perspectives, while the data resides in a single SPARQL endpoint. 3) A two-step model for accessing and analyzing the data where the focus of interest is first filtered out using faceted semantic search, and then visualized or analyzed by ready-to-use Digital Humanities tools of the portal. This model has been proven useful in practise: Sampo portals have attracted lots users from tens of thousands to millions depending the Sampo. It is argued that the next step ahead could be portals for serendipitous knowledge discovery where the tools, based on Artificial Intelligence techniques, are able to find automatically serendipitous, “interesting” phenomena and research questions in the data, and even solve problems with explanations.

1 Vision: Cultural Heritage on the Semantic Web

A fundamental semantic problem in publishing and using Cultural Heritage (CH) data on the Web is how to make the heterogeneous CH contents semantically interoperable, so that they can be searched, interlinked, and presented in a harmonized way across the boundaries of the datasets and data silos. The problem is related to the way CH content is created: the data is collected, maintained, and published by different museums, libraries, archives, and other actors using their own standards and best practices that may not be compatible with each other. Semantic Web technologies [2] and Linked Data [1,3] are a promising approach for addressing the problems of semantic interoperability in a distributed content creation environment. Based on computer “understandable” linked big data, intelligent applications for Digital Humanities (DH) researchers and the public can be created.
This paper presents an approach for making these promises of Linked (Open) Data and the Semantic Web to come true: the “Sampo model” is presented and how it has been applied in practice in creating a series of semantic portals in use in Finland. The model is based on what is today called FAIR principles\(^1\). In the following, the Sampo model is first outlined and after that the Sampo-series of semantic portals is presented. In conclusion, a vision ahead towards a next “third generation” of semantic portals based on serendipitous knowledge discovery and Artificial Intelligence is presented, based on [6].

2 Sampo Model for Publishing and Using Linked Data

![Fig. 1. Publishing heterogeneous distributed data in the Semantic Web](image)

The “Sampo model” includes three components related to 1) the model for creating and publishing heterogeneous, distributed Linked Data, 2) to providing the end user with multiple application perspectives to the contents, and 3) how the application perspectives can be used in two basic steps. I call this model “Sampo” according to the Finnish epic Kalevala, where Sampo is a mythical machine giving riches and fortune to its holder, a kind of ancient metaphor of technology\(^2\).

1. **Data creation and publishing model.** The ideas of the Semantic Web and Linked Data can be applied to address the problems of semantic data interoperability and distributed content creation at the same time, as depicted in Fig. 1. Here the publication system is illustrated by a circle. A shared semantic ontology infrastructure is situated in

\(^1\) Findable, Accessible, Interoperable, and Re-usable, cf., https://www.go-fair.org/fair-principles/

\(^2\) https://en.wikipedia.org/wiki/Sampo
the middle. It includes mutually aligned shared domain ontologies and core metadata, modeled by using SW standards. If content providers outside of the circle provide the system with metadata about their contents, the data is automatically linked and enriched with each other and forms a knowledge graph. For example, if metadata about a painting created by Picasso comes from an art museum, it can be enriched (linked) with, e.g., biographies from Wikipedia and other sources, photos taken of Picasso, information about his wives, books in a library describing his works of art, related exhibitions open in museums, and so on. At the same time, the contents of any organization in the portal having Picasso related material get enriched by the metadata of the new artwork entered in the system. This is a win-win business model for everybody to join; collaboration pays off. The knowledge graph can be published as a data service in a SPARQL end-point using the principles of Linked Data [1].

2. Multiple perspective interface design. On top of the data service different applications can be created by re-using the data service, without modifying the data. For example, in WarSampo [7] the data about the Second World War can be accessed from the point of view of historical events, people, units, places, articles, death records, photographs, and cemeteries. In Sampo portals the application perspectives are provided on the landing page of the system. By selecting one of them the corresponding application is opened. It is also possible that only one perspective is provided.

2. Filter-analyze two-step usage cycle. In many Sampos, the application perspectives can be used by a two-step cycle for research purposes: First the focus of interest, the target group, is filtered out using faceted semantic search [18]. Second, the target group is visualized or analyzed by using ready-to-use Digital Humanities tools of the application perspectives. For example, in BiographySampo [9] a group of people, such as the clergy of the 19th century Duchy of Finland can be filtered out first. After this, the life charts of the priests from places of birth to death can be visualized for analyzing their mobility, their mutual network be visualized, various statistics of the group be viewed, and so on.

3 Sampo Series of Semantic Portals

To develop, test, and demonstrate the model, a series of “Sampo” portals have been created and are in use on the Semantic Web in Finland. These living lab prototypes and applications have been created as part of research projects at the Semantic Computing Research Group (SeCo) active at Aalto University and the University of Helsinki, Helsinki Centre for Digital Humanities (HELDIG), and are based on collaborations with a large network of Finnish memory and other organizations as data providers and cultural heritage domain experts. The systems are examples of utilizing a national level FinnONTO ontology and Linked Open Data infrastructure [5] that has been developed in conjunction with the portals:

1. CultureSampo – Finnish Culture on the Semantic Web 2.0³ (online since 2009) [4,14], demonstrates how CH content of tens of different kinds can enrich each other, including a semantic model of the Kalevala epic narrative at the center.

³ https://seco.cs.aalto.fi/applications/kulttuurisampo/
2. **BookSampo** – Finnish Fiction Literature on the Semantic Web\(^4\) (online since 2011) [13] publishes metadata about virtually all Finnish fiction literature as a knowledge graph on top of which a portal was created. BookSampo data was originally part of CultureSampo. BookSampo is today maintained by the Public Libraries of Finland and is used by ca. 2 million users in a year.

3. **TravelSampo** – Mobile Contextualized Services of Cultural Tourism\(^5\) (published in 2011) [15] pioneered the idea of providing cultural content to mobile travelers in real world context.

4. **WarSampo** – Finnish World War II on the Semantic Web\(^6\) (online since 2015) [7] is a popular Finnish service of ca. 230 000 annual users. It provides information about the ca. 100 000 casualties and significant soldiers of the WW2 in Finland and various datasets, such as 160 000 photographs from the fronts, war diaries, maps etc. A key idea in WarSampo is to reassemble the life stories of the soldiers based on data linking from different data sources. See the online video “WarSampo”\(^7\) illustrating the system.

5. **BiographySampo** – Finnish Biographies on the Semantic Web\(^8\) (online since 2018) [9] is yet another popular service with thousands of users. It is based on mining out a large knowledge graph (over 120 million connections) from ca. 13 100 Finnish biographies of the Finnish Literature Society, authored by 1000 scholars. The data is interlinked and enriched internally and by some 16 external datasources. See the online video “BiographySampo – Artificial Intelligence Reading Biographies for the Semantic Web”\(^9\) for the underlying vision and the actual system.

6. **NameSampo** – A Linked Open Data Infrastructure and Workbench for Toponymatic Research\(^10\) (online since 2019) [11] publishes data about over 2 million place names and places in Finland with old maps. It soon attracted tens of thousands of users on the Web. The data originates from the Institute of Languages of Finland, National Survey of Finland, Getty Thesaurus of Geographical Names, and various map services.

In addition, there are several new Sampos to be published in the near future: **FindSampo**\(^11\) (on archaeology and citizen science) [19], **WarVictimSampo**\(^12\) (on Finnish wars 1914–1922) [17], **AcademySampo**\(^13\) (on Finnish academic people 1640–1899) [12], and **LawSampo**\(^14\) (on Finnish legislation and case law) [10]. Also the MMM portal [8], a result of the international Mapping Manuscript Migrations\(^15\) project is based on the Sampo model.

\(^4\) https://seco.cs.aalto.fi/applications/kirjasampo/

\(^5\) https://seco.cs.aalto.fi/applications/travelsampo/

\(^7\) https://vimeo.com/212249404

\(^9\) https://vimeo.com/328419960

\(^12\) https://seco.cs.aalto.fi/projects/sotasurmat-1914-1922/

\(^13\) https://seco.cs.aalto.fi/projects/yo-matrikkelit/

\(^14\) https://seco.cs.aalto.fi/projects/lawlod/

4 Towards Knowledge Discovery and Artificial Intelligence

Early Sampos and current CH portals, such as Europeana\(^{16}\) and Digital Public Library of America\(^{17}\), have focused on semantic data aggregation, enrichment, validation, search, and exploration of data. However, there are also systems for not only searching and browsing but also inspecting the data using visualizations and data-analysis. Visualizations were used already in CultureSampo, and in WarSampo data-analysis of casualties of war is possible. In BiographySampo and NameSampo the idea on providing data analytic tooling for Digital Humanities researchers is already the main focus, and semantic search is seen more like a filtering phase of the data so that data analytic tools can be focused on selected target data. Searching and browsing are only tools among others.

What is still largely missing in the DH methodology and tools in semantic portals is the next conceptual level of automatic knowledge discovery and Artificial Intelligence [16]. Why not create DH tools that are able not only to present the data to the human researcher in useful ways but also to 1) find, address, or solve the DH research problems \textit{automatically by themselves} and 2) also explain its reasoning or solution to the researcher? Artificial Intelligence techniques would also be useful when creating and enriching the knowledge graph underlying a semantic portal. First steps towards these goals have been taken in the BiographySampo where the underlying knowledge graph has been used for finding and explaining serendipitous semantic connections between places and persons to the end-user [9].

Acknowledgments Tens of people have been working in developing the Sampo series, funded by ca. 50 organizations in 2003–2020 in Finland. The sites referred to in the footnotes contain full sets of publications online related to the systems, authored by the project members, as well as links to data, data services, and software.

References

\(^{16}\) http://europeana.eu

\(^{17}\) https://dp.la/

