FindSampo Platform for Reporting and Studying Archaeological Finds Using Citizen Science

Pejam Hassanzadeh¹, Eero Hyvönen¹,², Esko Ikkala¹, Jouni Tuominen¹,², Suzie Thomas³, Anna Wessman³, and Ville Rohiola⁴

¹ Semantic Computing Research Group (SeCo), Aalto University, Finland
http://seco.cs.aalto.fi, firstname.lastname@aalto.fi
² HELDIG – Helsinki Centre for Digital Humanities, University of Helsinki, Finland
http://heldig.fi
³ University of Helsinki, Department of Cultures, Finland
suzie.e.thomas@helsinki.fi, firstname.lastname@helsinki.fi
⁴ Finnish Heritage Agency, Finland
http://www.nba.fi, firstname.lastname@museovirasto.fi

Abstract. This paper introduces the FindSampo platform for reporting and studying archaeological finds on the Semantic Web. FindSampo brings together members of the public, scientists, cultural heritage managers, and archaeologists utilising citizen science mediated by Linked Open Data and emerging Web development technologies. Our focus is on reporting technical results on designing the user interface and its evaluation in a field test.

Keywords: Citizen science · Semantic Web · Archaeological finds

1 Designing a Citizen Science Platform for Archaeological Finds

The popularity of metal detecting has grown rapidly in recent years and therefore many European countries have started to develop digital reporting services to collect, analyse and study archaeological data 1) Portable Antiquities Scheme (PAS)⁵ records⁶ archaeological discoveries found by members of the public in England and Wales since 1997 [1], 2) Digital Metal Finds (DIME)⁷ is an online platform for reporting metal detecting finds in Denmark [10], 3) Portable Antiquities of the Netherlands (PAN)⁸ is an online portal in use in the Netherlands [9], 4) Metal-Detected Artefacts (MEDEA)⁹ is an online portal developed in Flanders for metal detectors [2,10], 5) ILPPARI¹⁰ is a portal of the Finnish Heritage Agency (FHA) for reporting archaeological objects found by citizens in Finland [11].

⁵ PAS: https://finds.org.uk/database
⁶ 1.4 million finds have been reported by more than 14,000 citizens by now.
⁷ DIME: https://www.metaldetektorfund.dk
⁸ PAN: https://portable-antiquities.nl
⁹ MEDEA: https://vondsten.be
¹⁰ ILPPARI: https://www.kyppi.fi/palveluikkuna/ilmoitus.
FindSampo is a new research prototype of the SuALT project\footnote{SuALT project: \url{https://blogs.helsinki.fi/sualt-project}} aiming to study and improve the reporting process of archaeological finds with the collaboration of the public, academic researchers, archaeologists, and the FHA \cite{4,11,8}. The intent is to use citizen science in order to enable citizens to participate in and improve themselves in different stages of reporting, and to expedite processing of reports. Such involvement allows participants to improve themselves and also learn more about archaeology. Furthermore, archaeological data becomes more quickly available and accessible for research purposes and Digital Humanities \cite{3}.

This paper presents design principles of the FindSampo user interface and reports results of a first field test for evaluating it with metal detectorists. In contrast to the aforementioned related works, FindSampo is based on Linked Open Data. FindSampo is yet another member in the "Sampo" series of Linked Open Data services and semantic portals \cite{7}, based on a national Semantic Web infrastructure \cite{6}.

2 User Interface Design

FindSampo adopts a user-centred design approach in which users are at the centre of the design process. Hence, potential users were involved in the design process from the beginning to the end. Requirements were elicited at an early stage using online surveys and interviews, and they have been evaluated continuously through showing and reviewing mockup interface designs with end users and finally in field testings \cite{8}.

FindSampo also adopts a mobile-first strategy which optimises the design firstly for mobile devices and afterwards for others. Adopting a mobile-first approach is critical for FindSampo because it intended to be used in the field. Besides, FindSampo is designed with the aim of creating a clean and easy-to-use user interface that is consistent across different devices and also reduces the user’s cognitive load. Figure 1 shows how FindSampo adapts to different screen sizes. The mobile interface is needed especially on the field for reporting finds.
Additionally, in order to maximise the efficiency of the find reporting process from the citizen’s point of view, the need to enter data is minimised. The reporting process consists of short and simple questions that express only one idea and are easy to answer. It is split into a series of self-contained steps to make the report flow understandable. FindSampo provides help during the reporting process with the aim of making find reporting as easy as possible. Such a process improves finders’ knowledge of archaeology and would also reduce the workload of FHA’s officers as the quality of the reports improves. Figure 2 shows some example steps of the reporting process above-mentioned: if the user is on the find spot, the coordinate information (as well as time) can be read automatically from the mobile phone (image on the left); the find spot can be seen and edited also later on (image in the middle); the depth of the find can be set with a slider (image on the right).

The idea of minimising the reporting work of the metal detectorists was deemed important in order to foster reporting of finds in the first place, since according to our interviews metal detectorists seem to like reporting tools that would record less information. However, from the archaeologists/heritage managers’ viewpoint, it is necessary to collect all relevant data about the object and its find context. So, we are facing here a somewhat challenging situation to develop a platform for all user groups’ needs. Our solution proposal in FindSampo is that additional information could collected from the detectorists, if needed, after they have provided the basic information of the find, and a connection between the finder and FHA has been established.

In FindSampo we plan that all validated archaeological objects found in Finland would be openly available to the public with the exact find spots. This would help metal detectorists to find promising areas for exploration. Furthermore, opening the find data in detail, would be useful for Digital Humanities research. For this purpose, FindSampo prototype already includes a semantic portal for searching and viewing the
finds on maps, with additional linked information from other relevant GIS services of FHA. For example, it is possible to see on maps not only the finds but also protected archaeological areas where metal detecting is forbidden by law.

However, disclosing the exact find spot data is a challenging and critical decision for openness still to be confirmed, as many archaeologists argue that there is the danger that disclosing the exact find spots would lead to looting. In many countries and systems, such as DIME in Denmark, location data is fuzzified before publishing. Furthermore, according to our interviews, the detectorists usually would not like to disclose their find spots immediately but want to investigate them first by themselves. The compromise solution we are aiming at the moment is to disclose the exact find spots only after a period of time, say one year. If the find spot is deemed important, it is then also possible to add it in the list of protected areas.

The data of validated finds are accessible in FindSampo via a private SPARQL12 endpoint in the Linked Data Finland platform13. Currently, FindSampo’s public Linked Open Data database contains over 23,000 archaeological finds.

The validated finds can be studied through different views in FindSampo, based on the Sampo model [7]. This model includes three components: 1) A “business model” for harmonizing, aggregating, and publishing heterogeneous, distributed contents based on a shared ontology infrastructure. 2) An approach to interface design, where the data can be re-used and accessed independently from multiple application perspectives, while the data resides in a single SPARQL endpoint. 3) A two-step model for accessing and analyzing the data where the focus of interest is first filtered out using faceted semantic

12 SPARQL: https://www.w3.org/TR/sparql11-query.
13 Linked Data Finland Portal: http://www.ldf.fi.
search, and then visualized or analyzed by ready-to-use Digital Humanities tools of the portal.

An important part of the FindSampo semantic portal part is the underlying ontology infrastructure, a basis of the Sampo model. As a starting point, the MAO-TAO ontology of the Finnish ontology infrastructure FinnONTO [5] available today through the Finto.fi service\(^\text{14}\) is used. This ontology is being enriched with new concepts extracted from the finds databases and is being aligned with international ontologies, such as AAT\(^\text{15}\) and Periodo\(^\text{16}\), as part of the AriadnePlus project.

In FindSampo, the finds can be analysed and interpreted using faceted search which enables users to analyse, filter, and organise data by applying multiple criteria at the same time. Thus, users can browse a large amount of data based on the specific search criteria such as find type, material, period, municipality, and province. Furthermore, users can view archaeologically significant sites with tutorials to gain knowledge about archaeology and also the rules of law in their pastime. Figure 3 shows the different views for visualising archaeological data with faceted search in FindSampo: the Clustered Map view (on the left) is used for providing the user with an aggregated view of filtered finds on the map; the HeatMap view visualizes the distribution of the filtered finds in colors; the Table view lists the finds in a traditional way; the Statistics view illustrates statistical distributions of the finds along different facet dimensions, here based on the material of the selected finds.

3 Implementation

In the design stage of FindSampo, a variety of Web development technologies were analysed and as a result, the most appropriate ones selected for implementing it. The technologies were chosen on the basis of technical efficiency and user needs.

FindSampo utilises the Semantic Web and emerging Web development technologies to provide a platform for reporting and studying archaeological finds. It is a single-page application and therefore, it does not need page reloading at the time of use. Such a structure enables users to use it more efficiently in the places where the Internet connection is slow.

FindSampo uses a set of modern JavaScript libraries such as React\(^\text{17}\), Redux\(^\text{18}\), Material UI\(^\text{19}\), and Sass\(^\text{20}\) to build the client. The server is implemented using NodeJS\(^\text{21}\) and ExpressJS\(^\text{22}\) to enable a lightweight interaction with external services. FindSampo uses the Semantic Web technologies such as RDF\(^\text{23}\) and SPARQL for data services.

\(^\text{14}\) http://finto.fi/maotao/en/?clang=fi
\(^\text{15}\) https://www.getty.edu/research/tools/vocabularies/aat/
\(^\text{16}\) https://perio.do/en/
\(^\text{17}\) React: https://reactjs.org.
\(^\text{18}\) Redux: https://redux.js.org.
\(^\text{19}\) Material UI: https://material-ui.com.
\(^\text{21}\) NodeJS: https://nodejs.org.
\(^\text{22}\) ExpressJS: https://expressjs.com.
\(^\text{23}\) RDF: https://www.w3.org/RDF.
Fig. 3. Different views for visualising archaeological data with faceted search in FindSampo
Furthermore, it uses Linked Open Data to make the data interpretable for computers and also link to international archaeological resources.

4 Evaluation

FindSampo interacts actively with all stakeholders to build a bridge among them and create a shared understanding of the upcoming platform. It has been evaluated iteratively based on the stakeholder’s feedback in order to meet their needs and expectations.

To gain an in-depth and comprehensive understanding of FindSampo from a user-centric perspective, a field testing was performed with a small number of metal detectorists. The results were encouraging. The main purpose of the field test was to perceive how the prototype of FindSampo creates customer value. Consequently, testing the prototype with detectorists offered new insights and also enabled to identify improvement targets. New field tests will be organised for future evaluations later on.

5 Discussion and Future Work

All things considered, FindSampo takes the current state of archaeological find databases a step further by providing a platform that combines the advantages of the existing ones and also utilises citizen science, Semantic Web, and emerging Web development technologies. The evaluation of the prototype and user experience surveys reveal that the platform improves significantly archaeological data collection, analysis and interpretation processes. Furthermore, it provides further research opportunities by visualising and linking archaeological data as well as improving its availability and accessibility.

In the future, the members of the public can participate in all stages of research and report processing using FindSampo and Ilppari, the legacy system of FHA for find report management. FindSampo aims at building a community in which everybody gains benefits, including volunteers, research communities, heritage managers, and also the whole society using citizen science. Furthermore, FindSampo is going to generate data models that are semantically interoperable with existing cultural heritage databases, other European archaeological resources in order to provide research opportunities by visualising archaeological data as well as improving its availability and accessibility. The data will be part of the Pan-European AriadnePlus infrastructure.

Acknowledgements. This paper is an output of the research project “SuALT – The Finnish Archaeological Finds Recording Linked Open Database (Fi: Suomen arkeologisten löytöjen linkitetty tietokanta)”, which is a consortium project funded by the Academy of Finland, decision numbers 310854, 310859, and 310860, based at the University of Helsinki, Aalto University, and the Finnish Heritage Agency. Thanks to CSC – IT Center for Science, Finland, for computational resources.

24 https://ariadne-infrastructure.eu/
References

