Reasoning in agent-based network management

Vilho Riisédnen
Nokia Bell Labs
Espoo, Finland
Email: first.last@nokia-bell-labs.com

Abstract—An increasing complexity of mobile networks and
use cases is reflected in requirements for network management.
Advanced automation is required to address this challenge in
an economically feasible manner. We describe a system based
on agent mapping as a platform for automation for network
management in 5G networks and beyond. We use classical and
probabilistic reasoning for composing solutions to complex re-
quests by means of relatively simple software agents. We describe
different variants of the approach in terms of capabilities, ranging
from triple store only to system with semantic and probabilistic
reasoning functionalities. This approach provides flexibility for
network functionality evolution and facilitates software reuse
and is compatible with the use of task-specific machine learning
algorithms in network management agents. We describe test
system used for evaluating the concept, as well as use case
evaluation obtained with it.

I. INTRODUCTION

Goals for improvement of performance in 5G networks
over previous systems have been laid out in [1]. The imple-
mentation of the requirements lead to architectural choices
in network architecture. On the one hand, the network archi-
tecture is cloud-based, with 3GPP applications executed as
virtualized applications [2]. On the other hand, the 5G network
deployment is expected to increase technological complexity,
highlighting the need for advanced automation. Furthermore,
simultaneous support for 5G traffic types — massive machine
type communications (mMTC), critical machine type commu-
nication (cMTC), and extreme broadband (xMBB) — requires
new technologies for 5G access, which in most cases needs to
co-exist with legacy access technologies. The role of network
management needs to be re-assessed in the new architecture.

It is expected that new technologies in 5G such as net-
work slices [3], [4] serve as a platform for new services.
Taken together with the increasing complexity of radio access,
flexibility is needed for network management since future
needs cannot be fully predicted. The paradigms for network
management have evolved from manual and template-based
management towards agent-based management in Long-Term
Evolution (LTE) Self-Organizing Networks (SON) paradigm
[5], [6], [8]. Agents are a realization of autonomic computing
concept for mobile network management [7]. The limitations
of rule-based SON have become apparent in terms of feasibil-
ity of tailoring to varying network contexts.

In 5G, cloud-based execution is an integral part of the archi-
tecture, and configuration targets for NM are partly virtualized
[3]. As a consequence of virtual execution environments in

Kasper Apajalahti
Department of Computer Science
Aalto University
Espoo, Finland
Email: first.Jast@aalto.fi

5@, there is an interplay between orchestration of virtualized
resources and NM. For example, orchestration affects the set
of virtual functionalities managed by Network Management
(NM). In [9], a framework was proposed for virtualized NM
which lends itself to an analysis of interactions of agent-based
network management for such a case.

In this article, we describe an architecture based on agent
composition for NM. The composition in our approach makes
use of classical reasoning based on semantic models. We argue
that this approach facilitates agile development of network
management capabilities while supporting efficiency in terms
of software reuse.

In what follows, we discuss the role of agents in operability,
followed by an account of the use of reasoning in the same
area. We then proceed to describe our approach and a demon-
strator environment and use case evaluation. We conclude this
article with a summary.

We shall describe relevant prior references within the fol-
lowing technologies Sections in the interests of compactness
of presentation and understandability.

II. REASONING IN NETWORK MANAGEMENT

Automated reasoning based on First Order Logic (FOL) can
be used to partially replace traditional programming, with the
advantage that the consistency of the logical models employed
are automatically checked. This lessens the need for testing
in validation of proper functioning of a module. The use
of logical models such as Description Logic -derived web
ontology language (OWL) allows expressing computations
with constructs akin to domain models, more understandable
for humans than software implementations.

The scaling properties of reasoning algorithms are well
understood, and pose limits for application in NM area. It is
not feasible to represent the entire state of a mobile network in
a single logical model for management purposes. For focused
uses such as semantic modelling of configuration management
[13], [14], mapping between concepts across domains [12], or
analysis of agent coordination [10], classical reasoning is a
valid choice. An architecture for knowledge delivery for the
purposes of semantic interoperability of autonomic agents has
been proposed in [15].

Earlier we noted that rule-based agents are not feasible
for tailoring of NM to individual cell contexts. The use of
a suitable variant of Case-Based Reasoning [16] allows for
interpolation between cases, but is still limited by the ’space”

spanned by the case base. In view of the increasing complexity
of networking technology, one should allow for the choice
of a machine learning (ML) algorithm that is appropriate for
the data at hand. Several ML algorithms may thus be used
concurrently in agents.

The use of a set of machine learning algorithms in agents
gives rise to semantic challenge in integrating the output of
the learning agents to NM. Another challenge is related to
knowledge of network state. For example, what-if analyses
might be useful for human users given a set of information
about network which may be incomplete. It can be argued
that a combination of semantic reasoning and probabilistic
reasoning addresses both of these problems [11]. Semantic
modelling lends itself well to mapping between sets of con-
cepts. Probabilistic reasoning complements semantic reasoning
with ability to resolve conflicting information. Combining
the two technologies, a mapping within an ontology can be
achieved for concepts specific to machine learning algorithms.

Probabilistic reasoning is employed to establish the most
likely explanation for the set of input information at hand —
possibly contradictory — in the context of a domain model
[11]. The most likely explanation can then be used in classical
reasoning. The consistency of the output of probabilistic
reasoning with classical reasoning can be ensured by using
a method such a Markov Logic Network (MLN, [17]) which
supports both a combination of certain and uncertain rules
(latter ones associated with weights).

III. REASONING IN AGENT COMPOSITION

In this section, we describe our reasoning system that
dynamically composes agents to perform NM tasks (requests).
We use triple store (graph database) with SPARQL query
language, Description Logic (DL) reasoner, and probabilistic
reasoning providing additional capabilities. This kind of sys-
tem allows for inference over historical data which is repre-
sented as triples, with additional capabilities providing further
functionality which is described later on. Such inference can
be used in composing a solution to a request by means of
agents. The triple store reasoning step itself replaces some
traditional programming as we shall see later on.

Processing based on data included in requests is enabled by
a reasoner which uses an ontology to infer further triples based
on request data. As we shall see later on, probabilistic reason-
ing can be employed en route to accommodate hypothetical
information such as output of machine learning algorithms.

The triple store can be viewed as a realization of an
ontology, which in the triple store only” case does not exist as
a separate entity. When reasoning is used, it employs a formal
ontology describing the knowledge model used for reasoning
and infers implies triples. In our case, the main ingredient
of ontology is domain model which ensures consistency of
reasoning in NM.

A. Description of the approach

The software architecture is shown in Figure 1. Requests
are received by a service interface, processed by a composition

Reasoner

Triplestore

II . Service
Composition

— — <::> interface

Fig. 1. Mapping architecture overview. Composition receives requests from

service interface and uses query to triple store in agent mapping. The contents

of triple store may be updated with triples induced by reasoner.

entity, and mapped to execution in [0, N] agents. The “zero
agents” case corresponds to performing all related reasoning
in a combination composition entity and triple store query.
The mapping could be performed by means of a rule base,
but we argue that semantic modelling and reasoning provides
more flexibility compared to static rule bases.

The core concept in our ontological approach is mapping of
incoming requests to agents via operations and effects. Figure
2 describes the simplified ontology used for this mapping.
The idea is adapted from a simple semantic web service
model, WSMO-lite [20]. An agent — analogous to a service
in WSMO-lite — has [1, N] operations that monitor or change
the status of the target. Operations have effects that represents
the desired impact in the target. Furthermore, operations have
metadata; for example, operation area (the part of the network
where the agent is operating) and temporal range.

[rem o= [opamn | = [|
oo]
e[[|

Fig. 2. Ontology constructs for agent (top), request (middle), and network
measurements (bottom).

KPIs

Inference over historical data only does not require the use
of reasoner, and SPARQL query is sufficient. This correponds
to a case where the query does not include new data instances,
only parameters via which to query the existing data. Such
parameters can be e.g. network scope (set of cells) or temporal
range. In this approach, reasoner is not involved in processing
the query, but may have been used when relevant data have
arrived for inferring new triples.

From the viewpoint of knowledge model, a request includ-
ing parameters corresponds to one or more instances that
activate the OWL reasoner when added to the ontology. The
Figure 2 shows a case in which the request is associated
with effects in the ontology, reflecting concrete objectives that
need to be met with the operations. The request instance is
associated with a network scope (relevant cells) and point in
time. The request may also have pre- and post conditions that
need to be met with, such as a cell loading level. An example
of such a request in LTE could be improvement of service
quality in a set of cells, which would be associated with the

effect of changes in CQI distribution.

In earlier research, Web service execution environment for
creation and execution of semantic web services based on
ontology [18]. In another article, Distributed Management
Task Force (DMTF) Common Information Model (CIM) is
“lifted” to OWL and used for service composition with OWL-
S [19]. Compared to these approaches, our system is not based
on WS-* web services suite and takes a minimalist approach
to ontology. As we shall see, the construction of knowledge
model is driven by relevant network information and use cases.

The OWL reasoner generates triples by using class model
and instances contained within request. By using semantic
reasoning together with probabilistic reasoning, we can extend
the capabilities of the system to inconsistent and hypothetical
information, useful for linking to machine learning algorithms.
This requires structured approach to interaction of semantic
and probabilistic reasoning.

In our approach, the input model of probabilistic reasoning
supports directly statements from the domain model. This is
supported by the syntax of MLN, where ontological facts can
be represented using logical syntax together with statement
the likelihood of which is to be evaluated. The output of
probabilistic reasoning is thus guaranteed to be compatible
with domain model, and can be added to ontology. A test
system combining semantic reasoner and MLN is described
in Section IV.

B. Effect modelling and operation-request mapping

We shall next describe an example of how ontology con-
structs defined above (Figure 2) are used [12]. The approach
allows linking effects of operations and requests in the on-
tology to each other by means of human-defined Key Perfor-
mance Indicator (KPI) mappings and network measurement
effects (Figure 2). The mappings provide dependencies (cor-
relations) between KPI effects, a crucial part of the ontology
for mapping. For example, effect dependencies might be used
to infer that two functions, that are monitoring thresholds
of different KPIs, are both associated with the same goal,
since the KPI effects are positively correlated (increasing or
decreasing simultaneously). Thus, both of the functions would
be valid solutions to a request having similar effect as an
objective. More details about the effect modelling is defined
in [12].

As the Figure 2 depicts, the reasoner uses effects of agent
operations, incoming requests, and network measurements.
Using these as input, reasoner first performs inference to
find relationships between effects [12]. Next, reasoner maps
operations to requested effects with Equation 1. The rule is a
Horn clause like rule written in Semantic Web Rule Language
(SWRL) and is supported by the OWL reasoner [21]. The rule
indicates that if the effect of an operation (7oe) is dependent
on the effect of a request (?re), the operation satisfies (is able
to produce) ?re.

Operation(?op) M Request(?req)n
hasE f fect(?op, 7oe) M hasE f fect(?req, 7re)n1 (1)
hasDependency(?re, Toe) = satis fies(?op, 7re)

Eventually, the rule binds relevant operations into effects
of a request. An effect in the request may be bound with
multiple operations that produce the effect. Analogously, a
particular operation may satisfy several effects in the request.
Let us consider an example in which user request is mapped
to effects for increasing a KPI value (effect re;), monitoring
the result (re2), and rollback of the operation (res) in case
the re; is not achieved. The ontology may contain operations
that fulfil one of the effects or complex operations that fulfil
multiple requested effects, such as a function that executes
a configuration and outputs a boolean value whether the
objective is achieved. Table II illustrates possible operations
mapped to the the described request. As it can be seen, five
operations are mapped to one or several effects of the request.

Operation | Satisfies effect |

op1 rei

op2 Tes

op3 rei, res

op4 res

ops rei, rez, res3
TABLE 1

OPERATIONS MAPPED TO ONE OR SEVERAL EFFECTS OF A REQUEST.

The operation-request mappings may now be processed to
obtain combinations of operations that fulfil the whole request.
With SPARQL queries, we generate a list of responses that
satisfy the request. In the given example, we get three sets of
composed operations: {{op1, opa, ops} {ops,ops} {ops}}.

With multiple responses for a request, a ranking method
is needed to select the best response. We address this issue
by allowing classification of effects as primary or secondary
effects. A primary effect is analysed and scored, whereas a
secondary effect only needs to be executable. In the earlier
example, an obvious primary effect would be re; as it is the
actual objective of the request. Operations that are mapped to
primary effects may be analysed by using historical data of
similar operations in order to define the success ratios of the
corresponding operations. The success ratios can then be used
to determine the best response for a request.

Based on the operation analysis, the final step is executing
the adequate operations of agents with specific sets of param-
eters.

C. Agents in network management

We shall next discuss our approach from the viewpoint of
using agents in network management.

An important advantage of the proposed approach is flex-
ibility. If there is a change either in the NM capabilities or
telecommunications functionalities managed by NM, it can be
reflected automatically in composition, provided that it has
been described in the domain model. Similarly, up-to-date

MLN reasoner

MongoDB
7}

LTE simulator

Ontology

Most probable
explanation
A

A
OWL reasoner
A

y

Lift network
state
representation

Triple store

Fig. 3. Information flows in test system. For simplicity SON function and
information bus have been omitted from the figure. As discussed in the text,
lifting network state directly and importing it into ontology ABox via MLN
are mechanisms which may be used depending on the use case.

network status can be used in composition with reasoning and
not just in the behaviour of individual agents.

The agents used in composition can be traditional com-
plex SON-style agents, microservices for composing “virtual”
agents, or a mixture of the two types [9]. The ontology model
for composition assumes metadata about agents [22]. It is not
necessary to semantically model the functioning of the agents,
only the operations they provide.

The stand-alone agents or software modules used in com-
position of virtual agents may employ a variety of machine
learning algorithms according to the use case. The output
of machine learning needs to be semantically integrable to
domain model concepts. Consequently, the domain model
is important for “sanity checks” of output of probabilistic
reasoning. As discussed earlier, e.g. Markov Logic Networks
allows for inclusion of “hard facts” in probabilistic reasoning,
guaranteeing consistency.

Agent composition can be executed once as a response
to incoming request, or run for a period of time (activated)
. Requests can be high-level goals from human users, for
example. Reasoner and domain models map these to technical
parameters using agents as tools. Requests can also be anoma-
lies. In this case, composition identifies anomaly detection and
recovery planning functionalities [9] required for processing,
composing a virtual agent.

IV. TEST SYSTEM

We are using the test system shown in Figure 3 to validate
our approach.

Network is represented in the test system by an internal LTE
simulator with configuration and Performance Management
(PM) Application Programming Interfaces (APIs). The sim-
ulator supports research of agents monitoring LTE KPIs such
as Channel Quality Indicator (CQI) and Radio Link Failure
(RLF) statistics and performing configurations to transceiver
(TRX) power and antenna tilt (RET) parameters, for example
[12]. We used Capacity and Coverage Optimization (CCO)
SON function based on fixed rule set in the test system. Con-
figuration Management (CM) and PM data from simulator are

streamed over publish/subscribe bus [23] to information cross-
linking functionality [24] which stores resulting information in
MongoDB.

In the first test, metadata representation of cross-linked CM
and PM data was lifted directly from MongoDB to triple
store (AllegroGraph). Lifting was performed by transforming
MongoDB JSON data structure into triples. The source data
consisted of 1453 data structures — each corresponding to a
CM operation performed by the SON function — which re-
sulted in 193,369 triples. This count is based on preprocessing
of PM data associated with operations cases. We also tested
a version where CM and PM data were lifted to triple store,
which lead to quintupling of triple count in our case. With
preprocessing, some of the computation needs in query phase
can be eliminated.

In the second test, we used MLN reasoner, which can
perform probabilistic reasoning on network data and domain
model elements (semantic ontology). In essence, MLN per-
forms analysis of likelihood of hypotheses on data, given a
set of ground truth statements [11]. The statements with the
highest likelihood are then used in semantic reasoning together
with domain model. The results of reasoning on amended
ontology are then inserted into the triple store for use with
SPARQL queries.

The second test with MLN is a simplified version of
learning agent architecture in the sense that machine learning
capability was performed by the MLN reasoner rather than
a learning agent (CCO function in our case). In a future
system, the agents would execute machine learning algorithms,
and their outputs would be combined with domain model
with probabilistic reasoning. This would change some of the
detailed information flows in Figure 3, but the end result —
combining machine learning with domain model — would be
the same.

A demonstration of substituting traditional programming
with reasoning was already possible with our test system.
The original goal was to implement the query phase or self-
operation system [24] as a warm-up exercise, mapping it to
agents. It was found that two SPARQL queries from the
coordinator were sufficient to achieve the same end result than
the previous Clojure software implementation for similarity
search. Our preliminary results also indicate that the similarity
search with SPARQL queries have the same level of query
processing time as the earlier implementation. Since similarity
query of self-operation only retrieves and aggregates historical
data and query parameters related to metadata, OWL reasoner
was not needed for this demonstration.

The test system described above is flexible, since it allows
for routing of information in multiple ways. For the first
test, we lifted network data from MongoDB directly to triple
store. The second test illustrates more advanced reasoning on
network state is facilitated by import into OWL ontology.

LTE simulator was run on a laptop, and the rest of the
system functionalities on a Linux server. The system speci-
fications for server used in SPARQL substitute for similarity
search: four-core i7 with 32 GB of RAM and RAID SCSI

hard discs.

V. CASE STUDY FOR AGENT MAPPING

In this Section, we evaluate simple agent mapping with
selected use cases with an LTE simulator. The results of such
evaluations could be used in the system described in SectionlV
by evaluating the results of respective agent executions with
MLN, and transferring the top ranking agents to be used in
triple store mappings.

A. Scenario description

The simulator environment comprises 20 LTE base stations
with 32 LTE macro cells covering an area with a radius of
about 5 km. The simulator creates Performance Management
(PM) data reports that contain cell level KPIs. The cell level
KPIs are aggregations of the measurements made by the user
equipments (UEs) that constantly report the experienced signal
status to cell they are attached to. The PM data of the cells
are reported periodically in 15 minute intervals in simulation
time, amounting to 5-6 hours of simulation time per scenario.

We use three network management scenarios for our experi-
ments: coverage problem, local overload, and mobile overload.
The scenarios reflect network issues with similar objectives
but in different contexts. In all scenarios, users demand higher
throughput, but the solutions differ from each other.

In the coverage problem scenario, the UEs are located
uniformly in an area where the coverage is insufficient. The
objective is to increase the throughput by increasing the TXP
of the cells. The second scenario, local overload, has a few
hundred UEs located in a small area near one base station
hosting three cells. The throughput of these cells should be
increased by adjusting the antenna TRX tilt angles (remote
electrical tilt, RET) towards the group of UEs. In the third
scenario, mobile overload, there are 1000 uniformly located
background UEs and two groups of 200 UEs constantly
moving in the simulated area causing abrupt load peaks in the
cells. This issue should be addressed by balancing the load
between the nearby cells.

B. Analysing the SON agents

For each scenario, we have deployed an agent that executes
a desired action. A naive TXP agent increases the TXP of all
target cells by 5 dB, with the target of improving coverage. A
naive RET agent reduces the angles of target cells by two to
three degrees (downtilt) aiming to improve the capacity near
the antenna. The TXP and RET adjustments are part of a Cell
Coverage Optimization (CCO) agent but we have separated
these operations for our analysis. A Mobility Load Balancing
(MLB) agent constantly adjusts the handover parameters of the
cells while it is active. The MLB redirects UE connections
from an overloaded cell to neighbor cells. In order to get
diverse and comparable results, each scenario is tested with
all of three operations, even though enhancements are not
expected in some cases.

Figure 4 shows the relative changes of the throughput
with standard error margins before and after actions on every

scenario. As assumed, the best solution for the coverage
problem is the TXP agent (17 % increase), for the local
overload the RET agent (13 % increase), and for the mobile
overload the MLB agent (18 % increase).

Mobile overload
Throughput

Local overload
Throughput

Coverage prablem
Throughput

0.15

0.10

0.05 4

n_ | B

0.00 4

T T T T T T T T T
TXP MLB RET TXP MLB RET TXP MLE RET

—0.05 1

—0.10 1

Fig. 4. Scenario-specific relative changes of the throughput values after
actions were made.

For further use, we shall use these context-specific results to
suggest suitable agents for upcoming network issues in similar
contexts.

C. Evaluation of the mapping task

To evaluate the context-specific agent mapping, we create
new simulations corresponding to the three contexts, but
having diverse parameters. For example, we create coverage
problem scenario with more users (2500 instead of 1000), but
reduce slightly the coverage holes (more transmission power
in antennas). In the same manner, the setups of the other two
contexts differ from the earlier simulations by the number of
the UEs and by the size, shape and movement direction of the
UE groups.

All the new scenarios are simulated multiple times for each
agent in order to evaluate extensively the agent mapping.
To give an overview of the agent performances in the new
scenarios, Figure 5 shows the relative changes they produced
in the throughput values.

Based on the relative changes in the throughput values, the
table II describes the classification and mapping performance
of the agents. The case base data (Figure 4) defines the “pre-
dicted” classification of the agents and the new simulations the
“true” classes. The first row depicts the results, when agents
are classified with thresholds to four groups. For example, the
agent performance is classified as neutral, if the relative change
of the throughput is between 0 % and +5 %. The second row
depicts an agent mapping task in which +5 % is set as the
threshold for mapping results (hits). Last row shows an agent
mapping task, when only the best agents are considered (those
improving the throughput more than +15 %).

As the classification and retrieval metrics indicate, the
accuracy of the classification improves when the threshold for

Mobile overload
Throughput

Local overload
Throughput

Coverage problem
Throughput

0.20

0.15 1
0.10 1
0.05 4

0.00 4 *

—0.05 -

+
n

T T T T T T
TXP MLB RET TXP MLB RET

T T T
TXP MLB RET

-0.10

Fig. 5. Scenario-specific relative changes of the throughput for the new
simulation scenarios.

”good” performances is higher. The recall values for the two
agent mapping tasks indicate high sensitivity in identifying
suitable agents, as all possible solutions are present in the
search results. Precision values show that some false positive
cases are also retrieved. With respect to the Figures 4 and 5
the most probable explanation for the false positive hits are the
RET agent in the local overload scenario and the TXP agent in
the mobile overload scenario. Clearly, the new local overload
scenario is not solved with the downtilt, because the user group
is located in a wider area around the base station. Finally, the
F1 score, which is the combination of precision and recall,
indicates that the overall performance of the classification is
good in this demonstrated use case.

Classes Thresholds Precision | Recall | Acc. F1

{bad,neutral, 0 %, +5 %, 0.74 0.74 0.74 | 0.74

ok,good} +15 %

{reject,hit} +5 % 0.73 1.0 0.85 | 0.85

{reject,hit} | +15 % 0.83 1.0 0.96 | 091
TABLE 11

STATISTICS OF THE AGENT MAPPING TASK

All in all, we may conclude that the context-specific agent
mapping works in this experimental case study. Moreover,
the local overload scenarios demonstrated the challenges in
defining contexts; scenarios sharing the same context might
actually differ from each other. For this purpose, the contexts
should be enriched with semantic contextual metadata that
explains the scenarios in a more detailed level. This is an
important task that will be addressed in the future research.

VI. NETWORK MANAGEMENT PERSPECTIVE

We shall make some notes regarding the use of our proposed
system in network management.

If network information is directly lifted to triple store with-
out an ontology, its consistency depends on the information
model that was lifted. A domain model encapsulated in OWL

ontology brings benefits by providing a central coordinating
role for information used in the system. Furthermore, the OWL
ontology allows advanced reasoning. The domain model needs
to be kept up to date with information models of network state
and learning algorithms (where applicable).

Ontology constructs result in induced triples (e.g. ABox
instance isA relations to classes). In principle, ontology
could be generated by lifting a suitably formal information
model (e.g. SID [25]). Previous work has shown that not
all information models are sufficiently consistent or formal
for this. We have approached ontology construction from
minimal viewpoint, focusing on its roles: facilitation of agent
mapping, ensuring consistency of output of machine learning,
and providing use case specific reasoning to replace traditional
programming.

Human input to ontology can be validated by MLN in the
same way as machine learning to avoid inconsistencies in the
ontology.

The architecture for inserting the output of machine learning
algorithms to probabilistic reasoning, such as MLN is not
within the scope of this article and will be accounted for
in other publications. Similarly, we have not considered the
interfaces between MLN and semantic reasoner.

VII. SUMMARY

We presented an approach where multiple agents or software
modules are composed to provide a solution to a request
such as a high-level goal. Composition supports software
reuse through participation of agents to multiple solutions.
Knowledge-based reasoning in composition can by itself sub-
stitute software implementations.

First level of functionality is achieved with SPARQL queries
to a triple store, sufficient for reasoning over historical infor-
mation about the network. With semantic reasoner triggered by
the query, advanced inferences —- including parameters of the
request — are possible. Combined with suitable method for
probabilistic reasoning such as Markov Logic Networks, the
ontology used by semantic reasoner can be used for semantic
integration of machine learning output from diverse algorithms
chosen to match data. Probabilistic reasoning is important
since the outputs of different algorithms may be conflicting.
Provided that the domain model part of the ontology is used
in probabilistic reasoning, its output can be introduced to
ontology.

All in all, the combination of technologies provides a flex-
ible platform for future network management use cases. The
reduction of traditional programming was demonstrated with
an example where Clojure implementation of similarity query
[24] was replaced with SPARQL calls. Agent composition,
in particular together with microservices paradigm, supports
efficient use case driven network management.

An important advantage is provided by a support for cen-
tralized processing of domain model, query parameters, and
network state, avoiding the need to replicate this in individual
agents. This is crucial for using composition to reduce the
need for software implementations in agents.

REFERENCES

[1] NGMN Alliance and M Iwamura, NMGN view on 5G architecture, in
Proc. VTC Spring 2015.

[2] V. Ziegler, et al., Architecture vision for 5G era, in Proc. IEEE ICC,
2016.

[3] SGPPP architecture working group, View on 5G architecture, URI:
https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-5G-Architecture-
WP-For-public-consultation.pdf (accessed March 2017).

[4] NGMN, NGMN 5G white paper, v1.0, February 2015.

[S] S. Hémildinen er al. (eds.), LTE Self-Organising Networks (SON):
Network Management Automation for Operational Efficiency, John Wiley
& Sons, Chichester, England, 2011.

[6] D. Goldszmidt and Y. Yemini, Delegated Agents for Network Manage-
ment, IEEE Communications magazine 36, p. 66 ff., 1998.

[7]1 J. O. Kephart and D. M. Chess, The vision of autonomic computing,
Computer 36, p. 41 ff., 2003.

[8] NGMN alliance, NGMN Recommendation on SON and O&M Require-
ments, 2008.

[9] V. Riisédnen, Agent composition in 5G management and orchestration, in
Proc. CNSM 2017.

[10] V. Réisdnen and H. Tang, Knowledge Modeling for Conflict Detection
in Self-organized Networks, in Proc. MONAMI 2011.

[11] K. Apajalahti et al., Combining ontological modelling and probabilistic
reasoning for network management, J. Ambient Intelligence 9, p. 63 ff.,
2017.

[12] K. Apajalahti et al., Sharing performance measurement events across
domains, to appear in Proc. IFIP/IEEE IM, 2017.

[13] A. K. Y. Wong, et al., Ontology Mapping for the Interoperability
Problem in Network Management, J. selected areas in communications
23, p. 2058 ff., 2005.

[14] J. E. Lopez de Vergara et al., Ontologies: Giving Semantics to Network
Management Models, IEEE Network, p. 15 ff., 2003.

[15] J. Keeney et al., Runtime Semantic Interoperability for Gathering
Ontology-based Network Context, in Proc. NOMS, p. 56 ff., 2006.

[16] P. Szilagyi, and S. Novaczki, An Automatic Detection and Diagnosis
Framework for Mobile Communication Systems, IEEE Transactions on
Network and Service Management 9, p. 184 ff., 2012.

[17] M. Richardson and P. Domingos, Markov Logic Networks, Machine
learning 62, p. 107 ff., 2006.

[18] A. Haller, et al., WSMX — a semantic service-oriented architecture, in
Proc. International conference on Web services (ICWS), 2005.

[19] J. Keeney et al., Ontology-based Semantics for Composable Autonomic
Elements, in Proc. Workshop of Al in Autonomic Communications at the
19th Intnl Joint Conf. on Al, Edinburgh (2005)

[20] WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web,
W3C Recommendation, World Wide Web Consortium, Tech. Rep., Aug.
2010, Available: https://www.w3.org/Submission/WSMO-Lite/ (accessed
March 2017).

[21] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Recommendation, World Wide Web Consortium, Tech. Rep., May
2004. URI: https://www.w3.org/Submission/SWRL/ (accessed March
2017).

[22] K. Apajalahti, Multivariate Time Series-Based Annotation Process for
Semantic IoT Services, in preparation.

[23] V. Kojola et al., Distributed Computing of Management Data in a
Telecommunications Network, in Proc. MONAMI 2016.

[24] H. Tang, et al., Automatic Definition and Application of Similarity
Measures for Self-Operation of Network, in Proc. MONAMI 2016.

[25] TMForum, GB922, Information framework (SID) RI16.5.1, URI:
http://https://www.tmforum.org/information-framework-sid/ (accessed
March 2017).

