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Abstract. In the near future, the Internet of things (IoT) will rapidly change and
automate tasks in our everyday life. IoT networks have sensors measuring the
environment and automated agents changing it with respect to predefined objec-
tives. Modeling agents as web services requires lots of metadata from the envi-
ronment in order to define the desired performance in a specific context. For this
purpose, we propose an automatic measurement-based metadata creation method
that analyses multivariate time series gathered from the sensors during agents
change the environment. The time series analysis uses a cumulative sum algo-
rithm (CuSum) to detect events and association rule learning to find temporal
patterns. We evaluate our system with a Long-Term Evolution (LTE) simulator
having mobile phones corresponding to IoT devices, LTE macro cells as the data
source, and the Self-Organised Network (SON) functions as the automated agents
in the network. Our experiments give promising results and show that the meta-
data creation process can be utilised to characterise IoT agents.

1 Introduction

Internet of Things (IoT) services combine sensors and IoT devices into applications that
solve predefined use cases. Some services provide access to data gathered from sensors
and others analyse the data and perform actions on the environment with respect to
some objectives [8], for example, to increase the temperature of a room or signal quality
of a mobile device. A key challenge in IoT is the interoperability between services
and applications [5]. The services may be deployed to a variety of environments. Yet,
the semantics of services should be defined with relevant metadata in order to find
similarities in services across network domains. Analogously to a cellular network, one
domain might want to prevent an anomalous behaviour by understanding how other
domains have experienced and solved an issue in a similar context. For example, a
sudden bad weather may be the root cause for terminals (IoT devices) to increase the
load of nearby indoor cells (data sources) as people escape rain indoors. In this case,
web services accessing local weather data combined with network-specific data and
agent services would be necessary to act proactively to handle the upcoming load peak
indoors.

A general challenge with web services is the need to involve domain experts in
developing the services [14]. Particularly, semantic IoT services have development costs
in modeling the services with relevant metadata [12] and linking it to other ontologies in
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order to make services discovered and invoked [9]. The potential development costs also
lead to a cold-start problem among the web service modelers: the SWS system cannot
recommend suitable and interoperable services before developers in several domains
have used their resources to manually model them. Hence, there is a need to automate
the service development process.

In this paper, we propose a time series-based metadata creation process for semantic
IoT services. The process is evaluated in a Long Term Evolution (LTE) network sim-
ulator environment having mobile devices that measure the quality of service and LTE
macro cells that periodically report aggregated measurements. With respect to the LTE
networks, the Self-Organised Networks (SON) has brought automation to the manage-
ment tasks [11]. The SON functions can be viewed as specialised agents controlling
the LTE cell configurations with respect to predefined objectives. The simulator con-
tains simple SON functions which optimise the network performance and our goal is to
characterise their behaviour with the metadata creation process.

The paper consists of the following parts. Related work is discussed in Section 2.
After that, Section 3 gives an overview of the SWS methodology in the scope of IoT and
cellular networks. Section 4 explains the theory and statistical methods used to create
time series-based metadata for the services. Section 5 presents the experiments for the
metadata creation process in an LTE simulator. Finally, Section 6 concludes the paper.

2 Related Work

Bytyçi et. al [4] propose a method that combines association rule learning and ontolo-
gies to mine patterns from water quality measurement data. They managed to enrich the
mining results by first populating the context ontology with sensor data and then using
the ontology as an input to the association rule learning.

Fan et. al [6] use association rule learning for sensor-based constructions to find
contextual patterns from sensor measurements [6]. The experiments show that tempo-
ral patterns can be identified with respect to time metadata, such as a public holiday,
weekday, or weekend.

Galushka et. al [7] examine data mining techniques for smart home environment.
The authors present techniques both to transform time series into labeled segments and
to use association rule learning to find temporal patterns from them.

Labbaci et. al [13] analyse web service logs and interactions between web services
to learn frequent compositions and substitutions of services in a web service system.
Their method has a similar focus on analysing the past data related to the web service
invocations in order to learn characteristics of their behaviour. Such as in our work, they
use association rule learning to find the most frequent item sets from the web service-
related data.

The related work focuses on association rule learning of measurement-based sensor
data and web service logs. However, none of the earlier works learn association rules
from sensor measurements in order to characterise IoT services, which is the focus of
this paper.
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3 Semantic web service model

3.1 Methodology

The core idea in the Semantic Web Service (SWS) is to discover, compose, and invoke
services with respect to user requests [2]. This idea applies both to IoT and cellular
networks: requests based on the multivariate measurements of IoT devices or mobile
phones need to be handled with an action that causes a desired impact to the mea-
sured values. Figure 1 describes a simplified web service ontology, where arrows depict
”hasElement” relations. It also explains the analogy to IoT and cellular networks, such
as the service corresponds to an agent, operation to an action, and effects to changes in
the metric values. The architecture of the model is adapted from a simple SWS model,
WSMO-lite [15]. A service has operations that aim to change the status of its environ-
ment.

Effects play a central role in using the ontology; the service model is used by linking
the effects of requests and operations. For example, the goal of a network operation
could be to enhance customer satisfaction for mobile users during a rush hour. This
context-specific intention is mapped to some metric effects, such as an increase in the
throughput and balancing the usage of physical resource blocks (PRBs). Based on the
network measurements, some service operations are known to produce the requested
context-specific effects and thus, they are mapped as responses to the request.

Fig. 1. Service ontology constructs for a service (top), request (middle), and environment/object
status (bottom).

As domains may have dedicated data and means of management, there is a need
to also understand the semantics of cross-domain effects. For example, domains might
have services that monitor threshold values for different key performance indicators
(KPIs). Yet, some KPIs are associated (correlate) in the given context and are part of
the same intention. Thus, both of the services would be valid solutions to a request
having similar effect as an objective. More details about the dependency modeling of
effects are defined in earlier research [3].
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3.2 Cross-domain request

An example of a cross-domain user request from mobile network management is illus-
trated in Figure 2. An operator from the network X wants to request better Quality of
Service (QoS) in some context, such as during a public event. The requested intention
can be achieved by increasing the throughput. Another network domain Y has deployed
a SON function as a web service with an operation that is known to increase Reference
Signal Received Power (RSRP) during a public event. Knowing the semantic similarity
between the same cross-domain KPIs and that the throughput and RSRP in the domain
Y are statistically associated, the given service operation can be discovered and mapped
as a response to the user request. Altogether, even though a problem and solution would
be in different networks and might address different parameters, the SWS system finds
a request-operation mapping relation with respect to semantic modeling and statistical
dependencies.

Fig. 2. An example of a cross-domain request-operation mapping.

In order to have a functional SWS system in a distributed and multi-domain sensor
network, contextual metadata is needed, for example, the relevant operation-specific
effects that enable the discovery of the web services. Creating and maintaining these
manually is resource-intensive. Moreover, metadata mappings (such as corresponding
KPIs) between different environments need to be resolved before the full benefit and
utilization of the services can be realised. Automation for the service modeling and
metadata addition can reduce the cost of deployment significantly by utilising SWS
systems. In the next subsection, we introduce a process to address this problem with
automatic metadata creation methods.

4 Methods to create service metadata from sensor measurements

4.1 The data sequence of the process

The measurement-based metadata is added as effects to the service operations and it is
used to bind requests to operations. Our process analyses statistically the behaviour of
a service operation in a given context while it is executed. Figure 3 illustrates the data
sequence of processing metadata for a service operation based on realised actions and
measured metric values both before and after the actions have been taken. In the begin-
ning, the user decides how an operation is defined. For example, a service could be an
algorithm and an operation a set of parameter values. The actions fulfilling this criteria
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are retrieved from the database (step 1) and based on their timestamps, a time series for
every available metric of the operated object (such as the mobile cell) is retrieved from
the measurement database (step 2). Time series are analysed with an event detection
method (step 3) and the detected events are sent to the association learning component
(step 4). This component detects whether one or more metrics have temporal correla-
tion. Finally, the associated events are sent to the ontology and the service operation
is populated with these events (step 5). The events are later used as service operation
effects, as described in Figure 1.

Fig. 3. Process flow for identifying associated events and adding them as operation metadata.

4.2 Event detection with CuSum

The CuSum algorithm is a statistical quality control method that can be used to detect
value changes in a time series. The basic concept is to cumulatively sum up changes
between data points and a comparison value and flag a change if the sum exceeds a
predefined threshold value. The Equation 1 describes how to detect increasing event in
our system. The equation contains a max of zero and the cumulative sum of value sh,
the data point xt, and the combined comparison value of mean and standard deviation, µ
and σ, calculated from the time series. σ is used as a threshold sum value for increasing
trends.

sh = max(0, sh + xt − µ− σ) (1)

For analysing decreasing trends in a time series, the Equation 2 is used instead.
Compared with the earlier equation, now a min operator is used and CuSum contains
a positive sign for the σ. The threshold sum for detecting a decreasing trend is −σ.

sl = min(0, sl + xt − µ+ σ) (2)

When CuSum is executed for all operation-specific actions, the outcome is a dataset
where each row depicts a single action having a list of measurement events it produced.
From this dataset, we may further learn operation-specific patterns between measure-
ment events.

4.3 Temporal pattern mining with Apriori

Association rule learning is a data mining method that learns rules between the sets of
items in a database. The idea is to analyse the co-occurrence of items in a database row
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and to use some measure and threshold to find out relevant rules. The simplest measure
is the support, which is calculated as a proportion of the database rows containing the
given set of items. [10] In our use case, the support is the proportion of detection times-
tamps containing a set of metric events. Thus, it indicates the frequency of the events
occurring simultaneously in the given context.

In addition to support, confidence is another measure to determine associations be-
tween items. The Equation 3 shows the definition of the confidence. It can be interpreted
as an if/then pattern: if set of eventsX occurs, then set of events Y also occurs. As it can
be seen, the measure indicates the proportion of X (the support of X) that also contains
Y (the support of X and Y ). [10]

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
(3)

In this system, the objective is to learn support and confidence values for measure-
ment events occurred during a set of actions made by an agent. For this purpose, we
use an open-source implementation1 that of a well-known Apriori algorithm (see [1]
for further details).

5 Evaluation

5.1 Case study: LTE network simulation with SON functions

The applicability of our metadata creation process is evaluated with an LTE network
simulator. The simulator environment comprises 20 LTE base stations with 32 LTE
cells covering an area with a radius of 5 km. The simulator creates Performance Man-
agement (PM) data reports that contain cell level KPIs such as the average cell through-
put, radio link failures (RLFs), average Reference Signal Received Power (RSRP), the
overall usage of the Per Resource Blocks (PRB), and average channel quality indicator
(CQI) level. The cell level KPIs are aggregations of the measurements made by the user
equipments (UEs) that constantly report the experienced signal status to a cell they are
attached to. The PM data of the cells are reported periodically in 15 minute intervals
in simulation time. The time series gathered from the PM data contains 10 time steps
before and after the actions have been executed or activated.

Table 1 describes the scenarios created for our experiments. The idea was to create
network issues with similar objectives but in different contexts; in all scenarios, users
have issues getting the required throughput level, but the required actions differ signifi-
cantly from each other.

In the coverage problem, the UEs are located uniformly in an area where the cov-
erage is insufficient and the solution is to increase TXP to enhance the coverage and
therefore the overall throughput level. The second scenario, local overload, has a few
hundred UEs located in a small area near one base station hosting three cells. Now
the throughput should be increased by adjusting the antenna tilt angles (remote electri-
cal tilt, RET) towards the group of UEs. The third scenario, mobile overload, has 500
uniformly located background UEs and a group of 500 UEs constantly moving in the

1 https://github.com/asaini/Apriori
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Table 1. Simulation scenarios

Scenario UEs Objective Solution

Coverage problem 1000 Inc. Thr. Increase power

Local overload 350 Inc. Thr. Downtilt

Mobile overload 500 Inc. Thr. Balance load

simulated area causing abrupt load peaks in the cells. An increase in the throughput in
this case should be achieved by balancing the load between the nearby cells.

5.2 Context-specific support values

Figure 4 presents the action-specific support values in different scenarios and KPIs.
Figure presents one subplot for each scenario and each subplot presents KPI-specific
support values for each action. Positive support value indicates a support measurement
for an increase and negative a decrease. For example, the first five bars show support
values for the increasing and decreasing events for the KPIs when no action has been
taken in the coverage problem scenario. The first bar shows that increasing events for
CQI has been measured with a support value of 0.12 and decreasing events with a value
of 0.09. With respect to these experiments, a threshold level of±0.15 (marked with two
dashed lines) is suitable for labelling action-specific KPI effects.

In general, we may conclude that the distribution of the scenario- and action-specific
support values show that the detection of single KPI events works well as the values are
plausible with respect to the actions. Especially, the throughput values show that the
best agents in every scenario also enhance the throughput in the network, which is the
desired outcome. Also, the fact that the number of false positive support values (val-
ues when no action is taken) is low, indicates an adequate performance of the CuSum
method.

5.3 Context-specific associations and their applicability as metadata

The association rules for every scenario-specific action were generated with a minimum
support level of 0.15 and confidence level of 0.70. Figure 5 shows the quantities of asso-
ciations learned among the recorded events. With the given parameters, the best agents
also generate the most associations between the KPI effects, whereas few associations
are produced from other agents in the coverage problem. This is a desired outcome as
our goal is to highlight the best matching agents in different contexts.

The final step in the metadata creation process is to populate the ontology instances
with relevant events and associations. As defined in the Section 4.1, the populated on-
tology instances are web service operations: three scenario-specific operations for each
web service (network agent). Finally, we may examine the request (ontology queries)
that naps the queried effects with the relevant service operation metadata. Table 2 illus-
trates the examples of combining association rules that we tested and verified to retrieve
correct mappings to the operations. For example, if a request contains associations from
IncTHR (throughput) toDecRLF and fromDecRLF toDecPRB, it gives a unique
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Fig. 4. Support values for action- and KPI-specific events in three scenarios.

mapping to the TXP agent operation on a coverage problem scenario. Similarly, the
two other rows show rules that are also unique among all rule sets and that corresponds
to the best solution in the scenario. In addition to the association rules shown in the
table, the request query may include effects that pass the minimum support level (e.g.
”increase the throughput”) or negations of undesired effects (e.g. ”do not decrease the
throughput”).

Altogether, the demonstrated associations indicate that we managed to distinguish
the important agent operations and scenarios from each other with our metadata creation
process.
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Fig. 5. Scenario-specific quantities of associations for service operations. Threshold for support
is 0.15 and for confidence 0.70.

Table 2. Unique set of rules that characterise suitable agents in every scenario.

Scenario Action Matching rules

Coverage problem TXP IncTHR → DecRLF , DecRLF → DecPRB

Local overload RET IncTHR → DecPRB, IncRSRP → DecPRB

Mobile overload MLB IncTHR → IncPRB, DecRSRP → IncPRB

6 Conclusions and future work

We proposed a method of creating time series-based metadata for services that operate
in IoT networks. The metadata creation process is a combination of statistical methods,
event detection and association rule learning, and it is based on analysing multivariate
time series gathered from the network elements while some actions (service operations)
are executed. The process was evaluated with a Long Term Evolution (LTE) simulator
where automated agents (web services) configure the antenna parameters of LTE macro
cells in order to enhance the network quality. We created three simulation scenarios and
evaluated the results of three agents in those. Our experiments show that the presented
metadata creation process works on these scenarios; all suitable service operations can
be characterised with the generated metadata. For future work, we examine and com-
pare different event detection and pattern mining methods and evaluate them in more
complex IoT environments.
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