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Abstract. Advanced automation is needed in future mobile networks to provide adequate service quality economically and with
high reliability. In this paper, a system is presented that takes into account the network context, analyses uncertain information,
and infers network configurations by means of probabilistic reasoning. The system introduced in this paper is an experimental
platform integrating a mobile network simulator, a Markov Logic Network (MLN) model, and an OWL 2 ontology into a runtime
environment that can be monitored via a Resource Description Framework (RDF) -based user interface. In this approach, the
OWL ontology contains a semantic representation of the relevant concepts, and the MLN model evaluates elements of uncertain
information. Experiments based on a prototype implementation demonstrate the value of semantic modelling and probabilistic
reasoning in network status characterization, optimization, and visualization.
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1. Introduction

Mobile networks are a part of a critical infrastruc-
ture, facilitating wireless access to Internet with all its
services. The number of users, devices, and applica-
tions is expected to continue to grow [9]. A dramatic
increase in the number of Internet of Things (IoT) end-
points is expected [24]. The advent of IoT is one of
the most important drivers for fifth-generation (5G)
mobile networks. Consequently, 5G networks need
to cater for an increase in data volume and massive
growth in the number of terminals served. Further-
more, 5G networks also need to support services with
requirements of a new kind, such as ultra-low latency
and high reliability [24].

Networks need to be configured optimally to pro-
vide customers with high service quality at a reason-
able price. Manual network configurations employed
in the past make per-cell optimization unfeasible in
practice. Given the growth in the complexity of net-

works, more automation is needed from Operations
and Support Systems (OSS) [19], a collective term for
capabilities used for managing mobile networks.

State-of-the art operability in fourth-generation net-
works (4G) is based on the concept of Self-Organizing
Networks (SON), which amounts to a set of closed-
loop agent systems reacting to measurements, typi-
cally by means of a fixed model [19]. Each agent is an
implementation of an operability use case. The chal-
lenge with this approach is creating and maintaining
up-to-date models in view of geographic and temporal
variety across cells in radio access networks.

The application of autonomic computing to var-
ious areas has been envisioned to the mobile net-
works with new architectures and software compo-
nents [14,15,19]. These capabilities are based on ar-
chitectures which support learning and adaptation
to context-specific situations by means of Machine
Learning (ML) algorithms, knowledge representation,
and reasoning with knowledge bases [14,15,19].
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Machine Learning is expected to increase the level
of automation in the OSS area, for example, by im-
proving the analysis of traffic patterns and cell-related
data to learn statistical correlations. Another applica-
tion of ML is SON verification [8], where learning ca-
pability is used for identifying effective solutions. The
output of a stand-alone ML system can be character-
ized as hypothetical in contrast to the deterministic re-
sults of a traditional rule-based system. This paper will
argue that an effective approach to utilizing ML in the
complex environment of future mobile networks in-
volves both classical and probabilistic reasoning.

In this paper, a new approach is proposed to auto-
mate mobile network management by using statisti-
cal relational learning with a Markov Logic Network
model (MLN) [32] for handling uncertainty in mobile
network analysis. An OWL 2 ontology is used to com-
plement the MLN model by providing global meaning
and a semantic description of the system. The ontology
is currently used as a semantic storage with a SPARQL
interface for the MLN model and for an RDF-based
faceted graphical user interface (GUI). In summary,
the practical reason for combining semantic technolo-
gies with probabilistic reasoning is the decrease the
complexity in monitoring of the MLN model and to
making it dynamically modifiable.

To enable a human user to monitor and understand
complex network management operations, intelligent
storage and presentation of data is needed [22]. In this
work, the OWL 2 model targets this issue with a se-
mantic representation of the network state and the re-
lated automated configurations. The use of a formal
knowledge model which supports automated reason-
ing reduces the need for case specific software de-
sign and implementation, and provides a mechanism
for assessing the degree of consistency of the relevant
models. Suitably chosen probabilistic reasoning ac-
commodates partial and conflicting data, which would
be challenging to address using subsets of First Or-
der Logic (FOL) alone. Additionally, it has been ar-
gued that knowledge models bring benefits as a basis
of future telecommunication systems both in view of
systems design and from the perspective of value net-
works [30].

The paper is structured as follows: First, the ap-
proach is presented in Section 2 and an overview of
the system is given in Section 3. After that, Section 4
presents the concept of MLNs and how they are ap-
plied to our implementation. Section 5 describes the
OWL 2 model and Section 6 presents the RDF-based
GUI used to monitor the MLN reasoning. Section 7

presents experiments with the system, such as the eval-
uation of the MLN reasoning, the affection of the MLN
model size to execution times (MLN reasoning and
SPARQL queries), and use case examples of the GUI.
Finally, Section 8 discusses related work and Section 9
concludes the paper and presents ideas for future work.

2. Approach

The radio access network of a mobile network do-
main is composed of cells. In terms of hardware,
cells have base stations having dedicated transmit-
ter/receiver (TRX) units, each serving a sector of the
cell. Each base station serves a number of terminal
devices, known as User Equipment (UE) in industry
terminology. Terminal devices may roam across cells
and their traffic characteristics (uplink/downlink) traf-
fic may vary depending on the services used.

Mobility and traffic characteristics exhibit diurnal
and weekday variations. Additionally, the patterns vary
according to the location of the cell in question; a sub-
urban cell may be expected to have the highest loading
outside of business hours, whereas the opposite is true
for a downtown cell in a business district. There are
longer term trends relating to varying usage patterns of
services and residential/business user densities. There
are also short-term variations due to special events like
concerts or sports events.

Given the complexity and variability of network
loading, it is difficult to try to optimize network status
as one entity. In 4G networks, SON agents execute spe-
cific use cases in a limited scope (one or a few cells),
performing automated configurations based on mea-
surements. A run-of-the-mill implementation of SON
agent utilizes a fixed model. This works well when the
model reflects the situation of the cell, but becomes a
bottleneck in tailoring the behaviour of the agent on
cell level when cell characteristics vary.

Automated adaptation is the next step beyond the
fixed model. An approach utilizing Case-Based Rea-
soning (CBR) has been utilized [33,7]. Interpolation
across cases is an enhancement, but is nevertheless
limited by the case base.

We study the use of probabilistic reasoning in cop-
ing with complexity and adaptability. Instead of using
a rule or case base, this system is driven by formulae
for reasoning performed over facts about system sta-
tus. In addition to raising the abstraction level of im-
plementations, a suitably chosen method also supports
incomplete and conflicting data, which classical rea-
soning cannot address.
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3. System Overview

3.1. Components

The architecture view of the system used in this ar-
ticle is depicted in Figure 1. The bottom component is
the data source, e.g. cellular network or a network sim-
ulator. In this paper, we demonstrate the system with a
Long Term Evolution (LTE) simulator.

Fig. 1. System architecture.

The simulator interacts with the MLN model which
analyses the network data and provides data for de-
cision support in the configuration management. The
OWL 2 ontology and reasoner are used to create a se-
mantic representation of the network and MLN data
and to describe the data as a graph. The ontology is
stored in a SPARQL server providing access to the on-
tology. The GUI is used to monitor and manage the
system. In a real network, the three topmost compo-
nents would belong to an OSS system which manages
the network.

3.2. Scenario

The simulation scenario consists of a small urban
area (a diameter of 5 km) with 2000 terminals and 32
sectors. In the context of LTE, term "cell" is also used
as a synonym for a sector of a base station. The sim-
ulator sends performance data that contains measure-
ments from key performance indicators (KPIs) for var-
ious cases. KPIs utilized in the system are the num-
ber of connected terminals (CUE) per cell, the chan-
nel quality indicator (CQI) distribution vector for mea-
suring the signal quality of a cell, and the radio link

failures (RLF) for measuring the amount of connection
failures per cell. The simulator receives configuration
data that contain possible changes in the transmission
power (TXP) and angle (remote electrical tilt, RET)
of a cell antenna. The data are sent periodically in 15
minute intervals in simulation time.

The MLN model analyses the CUE, CQI, and RLF
measurements and infers posterior marginal probabili-
ties for potential network configuration changes in or-
der to optimize the CQI and RLF metrics. A fit of
model parameters of the MLN reasoner is performed to
historical performance data and past executed configu-
ration actions. The OWL 2 ontology is constructed by
transforming the MLN reasoner model into a semantic
representation that can be utilized as an RDF graph in
a SPARQL endpoint. An operator interface for man-
aging the system and the underlying mobile network
is implemented on top of the SPARQL endpoint with
HTML5 based GUI.

3.3. Data sequence

Figure 2 depicts the data sequence between system
components starting with a measurement report from
the LTE simulator on the left. The simulator sends the
MLN reasoner performance management (PM) data
(1) periodically. The reasoner processes data into its
evidence (classified KPI values, such as low, mod-
erate, and high CQI) and infers the probabilities for
network actions (2) from them. Then, the reasoner
sends a set of action proposals (configurations with
high probabilities) to the simulator (3). In addition,
the MLN reasoner sends further data, including ev-
idence, formulae, and action proposals to the ontol-
ogy processor (4), which processes the data into RDF
and populates the ontology with new network- and
MLN-related instances (5). The RDF graph is then up-
loaded into a SPARQL server based on Fuseki1 (6).
The server dynamically updates facets from the on-
tology with SPARQL update scripts (7). The user can
monitor the system via the GUI that interacts with the
SPARQL endpoint in order to retrieve network- and
MLN-related data from the ontology (8) and to update
MLN formulae (9). Similarly, the MLN model queries
the SPARQL endpoint in order to retrieve an updated
model (10).

1https://jena.apache.org/documentation/serving_data/
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Fig. 2. Data sequence diagram for managing a mobile network (sim-
ulator) with system components.

4. Markov Logic Network model

4.1. Definition

MLNs allow uncertain and contradictory knowledge
in a first-order logic (FOL) subset model by introduc-
ing a weight parameter for each formula in the FOL
subset knowledge base. The weighted set of formulae
defines a template for a Markov network, where the
features and feature weights are determined by the for-
mulae and formula weights.

Definition 4.1 A Markov logic network L is a set of
pairs (Fi,wi), where Fi is a first-order formula and
wi is a real-valued weight parameter. Together with a
set C of constant terms, over which the formulae in L
are applied, it defines a Markov network ML,C with a
binary variable for each possible grounding of each
predicate appearing in L and a feature for each pos-
sible grounding of each formula in L. The value of the
feature corresponding to a grounding of formula Fi is
1 if the ground formula is true, and 0 otherwise. The
weight of the feature is wi, the weight associated with
Fi in L.

Each state of the variables in a Markov network
ML,C represents a possible world, for example a truth
assignment for each of the ground atoms for (L,C).
The probability distribution over possible worlds x ∈
X specified by ML,C is defined in Eq. (1).

PML,C (X = x) =
1

Z
exp

(∑
i

wini(x)

)
, (1)

where ni(x) is the number of true groundings of Fi

in x and Z is a partition function given by Z =∑
x∈X exp (

∑
i wini(x)). Intuitively this means that

the weights of the true ground formulae give the log-
arithmized factors of the distribution function. If two
worlds differ only on a single ground formula, then the
weight of the formula gives the logarithmic odds of
choosing one world over the other.

4.2. Inference

Given an MLN L and a set of constants C, the most
likely state of the world can be inferred, x̂ ∈ X , ac-
cording to the joint probability given in Eq. (1), such
as the most likely truth assignment for the variables
in ML,C . Also, the marginal probability for each of the
variables can be inferred.

However, a typical inference task is to deduce the
most likely state or marginal distributions for a sub-
set of the variables, called query variables, using the
values of (some of) the rest of variables as evidence.
Given the values xE of a set of evidence variables
XE ⊂ X, the most likely state x̂Q for query variables
XQ ⊂ X is inferred according to Eq. (2).

P(XQ = xQ|XE = xE)

=
P(XQ = xQ, XE = xE)

P(XE = xE)

=

∑
x∈XQ∩XE

PML,C(X=x)∑
x∈XE

PML,C (X = x)
,

(2)

where Xϕ is the set of worlds where Xϕ = xϕ holds for
ϕ = E and ϕ = Q.

As Richardson and Domingos show [32], exact in-
ference over an MLN model is infeasible in practice.
Instead, they introduce an efficient approximation al-
gorithm for this problem using stochastic simulation.

4.3. Weight learning

The weights of an MLN model can be learned
from one or more databases. A database is effec-
tively a Boolean vector stating the observed truth val-
ues for each ground predicate. Given a database (or
databases), the most likely weight values are those that
maximize the probability of the database given in Eq.
(1). The standard method for maximum likelihood es-
timation (MLE) is the gradient descent method. How-
ever, computing the gradient of the probability in Eq.
(1) requires computing the estimated number of true
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groundings for each formula, which is infeasible, as
shown by Richardson and Domingos [32]. They pro-
pose a solution using gradient descent for optimizing
the pseudo-likelihood [4] of the ground Markov net-
work.

Typically, in optimizing the weights of an MLN, it is
known in advance which of the predicates in the model
will be used for querying and which will be used as
evidence. In that situation, Lowd and Domingos [23]
propose a discriminative learning solution where they
use a gradient descent algorithm to optimize the likeli-
hood of the conditional probability, as given in Eq. (2),
instead of the full joint probability, given in Eq. (1).
They show that this solution outperforms the solution
based on pseudo-likelihood.

4.4. Application in OSS setting

4.4.1. Structure of the model
The MLN model of the system is defined in terms

of three types of predicates:

– Context predicates reflect the current status of the
relevant network scope and its environment. A
context predicate can indicate, for example, that a
KPI value for a cell is currently below the accept-
able level, or that two cells are neighbors in the
network topology.

– Objective predicates indicate required changes to
KPI values to achieve performance targets de-
fined by the operator. For example, an objective
predicate can indicate that a particular KPI value
for some cell is too low and needs to be increased.

– Action predicates indicate changes to network
configuration parameter values.

Each predicate represents an attribute of a cell in the
network or a relation among the cells. The domain of
a predicate can be either the set of cells or an n-ary
Cartesian product of the set of cells.

The MLN model is composed of formulae with
these predicates. The formulae are intended to describe
a correlation between a set of Ob jectives and a set of
Actions in a certain Context. A typical inference task
is to query for appropriate actions using the current
context data and objective requirements as evidence.
Therefore, the formula format is defined as

C ⇒ (O ⇔ A). (3)

Above, C, O and A are sets of one or more context,
objective and action predicates, respectively.

The values of the context predicates are computed
from the PM data measured from the LTE network. For
numerical data, the measurements need to be first clas-
sified, for example to low, moderate, and high classes.
When values for the action predicates are inferred, the
values of the objective predicates are derived from the
classified PM data according to performance require-
ments set by the network operator. For example, if the
CQI value measured for a cell is classified as "low", the
derived objective could be to increase the CQI for that
cell. On the other hand, when the weights of the MLN
model are learned from a database of historical PM and
configuration data, the objective predicate values are
computed by analyzing realized changes in PM values.
In a similar way, the values of the action predicates are
computed from changes in configuration data.

After the weights are defined for the MLN model
(either learned iteratively or set by an expert), the most
likely state of the action predicates can be inferred.
Furthermore, the network can be configured accord-
ing to the inferred action predicates values, because
they give the best possible solution with respect to
the model. The model weights can still be adjusted by
configuring the network with respect to the marginal
probabilities of actions and monitoring performance
changes. In this manner, the model is dynamically
adapted to the network situation.

4.4.2. Inference example
To illustrate the usage of the MLN model, the infer-

ence is demonstrated with an example.

Example Let L be a simple MLN model consisting of
the weighted formulae defined in Table 1.

wi Fi

2.4 I(c,Rl f ,High)⇒ (O(c,Rl f ,Dec)⇔ A(c, T xp, Inc))

0.5 I(c,Rl f ,High)⇒ (O(c,Rl f ,Dec)⇔ A(c,Ret,Dec))

0.9 (N(c, d) ∧ I(c,Cqi, Low))⇒ (O(c,Cqi, Inc)
⇔ (A(c,Ret,Dec) ∧ A(d, T xp, Inc)))

Table 1
Examples of weighted formulae in the MLN model.

Here the variables c and d denote cells in the mobile
network. I is a context predicate indicating KPI cate-
gory, N is a context predicate indicating the neighbor-
ship of two cells, O is an objective predicate indicat-
ing a change in a KPI value and A is an action pred-
icate indicating change in a parameter value. Suppose
that there is a mobile network with two neighbor cells
named C1 and C2 and that low CQI value for cell C1
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and a high RLF value for C2 is measured. This infor-
mation is used to infer proper configuration actions to
get the CQI and RLF values to a normal level. The
MLN reasoner is used to query the MLN model L for
marginal probability distributions for action propos-
als A(c,T xp, Inc), A(c,T xp,Dec), A(c,Ret, Inc), and
A(c,Ret,Dec) for each cell c given the evidence:

E = {N(C1,C2), I(C1,Cqi, Low),

I(C2,Rl f ,High),O(C1,Cqi, Inc),

O(C2,Rl f ,Dec)}

An example of the reasoning output is shown in Table
2, which shows inferred marginal probabilities for cell
configurations given the model L and the evidence E.
The output indicates that decreasing RET for cell C1
and increasing TXP for cell C2 are the most likely ac-
tions to achieve the objectives according to the model.

Action P(Action|L, E)
A(C1, T xp, Inc) 0.35

A(C1, T xp,Dec) 0.30

A(C2, T xp, Inc) 0.70

A(C2, T xp,Dec) 0.14

A(C1,Ret, Inc) 0.28

A(C1,Ret,Dec) 0.41

A(C2,Ret, Inc) 0.29

A(C2,Ret,Dec) 0.41

Table 2
Marginal probabilities for cell configurations.

4.4.3. Generating formulae for the model
The CQI, CUE, and RLF KPIs are measured for

each cell. RLF and CQI characterize the performance
and CUE is an indicator of the cell load. To facilitate
usage across varying load levels, RLF value is normal-
ized by dividing it with the CUE value. Furthermore,
to get a scalar value from the CQI distribution vector,
the average channel efficiency is computed using the
CQI vector values as weights for the channel efficiency
values of each CQI class as defined in the technical
specification [13]. For simplicity, these two aggregate
metrics are referred to as RLF and CQI, respectively.

For the MLN model these three metrics, CUE, RLF
and CQI, were classified as low, moderate, or high. The
context predicates of the model describe classified val-
ues for these metrics for a cell variable. Furthermore,
another context predicate was introduced describing
the neighborship status of pairs of cells.

Objective predicates were introduced for the RLF
and CQI metrics. For inference, the values of the pred-
icates were computed according to operator goals from
the context predicate values so that if the RLF value
was high, the objective was to decrease the value, and
if the CQI value was low, the objective was to increase
the value. For weight learning the objective predicate
values were computed from the realized changes in the
numeric RLF and CQI values.

For the network configuration parameters, RET and
TXP, action predicates are introduced to indicate a
fixed-size decrease or increase of the value.

Algorithm 1 shows how weighted formulae are gen-
erated. The pseudocode illustrates updating the set of
formulae; after a combinatorial generation of formu-
lae, all unachievable formulae are removed from the
model. A formula is unachievable, if a KPI is included
in the objective (e.g. decrease RLF) but not in the con-
text (e.g. high RLF). A formula is also unachievable, if
it has a KPI value in the context that violates an oper-
ator goal (e.g. high RLF), but has not a corresponding
objective to change that value (e.g. decrease RLF).

Algorithm 1. Generating weighted formulae for the model
Create all combinations of formulae with given
KPIs, operator goals, and configuration parameters
for formula in model do

If KPI in objective not contained in context
Then Remove formula from the model

If KPI in context does not achieve operator goal
and corresponding objective does not exist

Then Remove formula from the model
end for

In addition to creating weighted formulae, some
constraints are added to the model, such as: 1) each
KPI must have exactly one value, 2) a KPI value can
not be both increased and decreased, 3) a parameter
value can not be further decreased (increased) from its
minimum (maximum) level.

5. OWL 2 Model

The OWL2 ontology2 has been designed to support
GUI based on reasoning. Because of this, the ontol-
ogy is minimal and use case driven rather than an all-
encompassing ontology of the entire mobile network

2https://www.w3.org/TR/owl2-overview/
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domain. The ontology contains mobile network con-
cepts such as KPIs and cells on the one hand, and MLN
model concepts like rules, actions, and parameters on
the other. The MLN model supports learning of the
most effective action to achieve a particular goal in a
specific network context. The results of learning and
as well as evidence (input data used by MLN) are re-
flected in the ABox of the OWL2 ontology.

The MLN model concepts are linked to mobile net-
work concepts, which helps exploration. Furthermore,
this link clarifies the interrelations between the MLN
model on the one hand and network state and MLN
action inference on the other. An added benefit is that
the governance of the MLN model is easier as the
network-related metadata is defined for it.

5.1. Evidence and action proposals

In Figure 3, mobile network concepts are described
together with MLN evidence and action proposals.
The Cell is the most fundamental class in the model
and has properties hasKPI to its performance met-
rics (instances of the class CellKPI) and hasParameter
to its configuration parameters (instances of the class
CellParameter). CellKPI has a crisp description for
its value (KPIValue), such as low, moderate, or high,
which is defined in the MLN model. Also, according to
the MLN model, a KPI might have an objective defined
using the class KPIObjective. KPIObjective in turn has
some EventImpact defining the direction of the change
of an impact (increase or decrease). The CellParame-
ter can have an ActionProposal, if the parameter needs
to be adjusted with respect to the MLN inference. The
ActionProposal also has a relation to an instance of the
class EventImpact to describe its impact direction.

Fig. 3. MLN evidence, action proposals, and their cell-related con-
cepts in the ontology TBox.

5.2. Formulae

In addition to the evidence and action proposals, the
weighted formulae of the MLN model are represented
with concepts and mapped to mobile network concepts
in the OWL 2 TBox, as shown in Figure 4. In the OWL
2 model, the "rule" term is used as a synonym for a for-
mula. The MLNRule class defines a formula, which has
a numerical value hasRuleWeight defining its weight
and relations to formula classes RuleContext, RuleOb-
jective, and RuleAction. The figure also depicts that the
formula classes are bound to network classes CellPa-
rameter and CellKPI. A RuleAction has a relation to
an instance of a CellParameter (such as Txp) and that
is bound to an instance of EventImpact class (such as
Increase). Similarly, RuleObjective and RuleContext
have relations to CellKPI instances, which in turn con-
tain instances of an EventImpact (in case of RuleOb-
jective) and KPIValue (in case of RuleContext).

Fig. 4. Rules (same as formulae in the MLN model) and their cel-
l-related concepts in the ontology TBox.

5.3. Ontology query

To demonstrate the ontology, Listing 1 shows RDF
triples representing data regarding the cell with ID 1.
The cell has information about the neighboring cells,
amount of neighbors, KPI instances (:hasCqi, :hasCue,
and :hasRLF are subproperties of :hasKPI), parame-
ter instances (:hasRet and :hasTxp are subproperties of
:hasParameter) and facet values that are generated on-
the-fly in the SPARQL server. The facets designed for
the cell and MLN formula specific data are explained
in more detail in the next section.

:Cell1 a :Cell,
owl:NamedIndividual ;

:hasCellId 1 ;
:hasAmountOfNeighbors 3 ;
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:hasNeighbor :Cell25,
:Cell2, :Cell3 ;

:hasCqi :Cqi1 ;
:hasCue :Cue1 ;
:hasRlf :Rlf1 ;
:hasRet :Ret1 ;
:hasTxp :Txp1 ;
:hasFacetCqi :LowCqi ;
:hasFacetCue :LowCue ;
:hasFacetNeighbors :Few ;
:hasFacetRlf :HighRlf .

Listing 1: RDF representation of Cell 1 and its related
data.

The ontology can be queried with a SPARQL query
pattern shown in Listing 2. The query returns cell-
specific data for cells fulfilling the given facet selec-
tions (high RLF is chosen in this example). The return
variables of the query are cell URI (?c), link property
(?link) to a related node (link to a KPI or parameter
instance of a cell), column name in the GUI (?col), or
column value (?val).

The query has three union parts, which find column
properties (:hasColumnProperty and :hasColumnDat-
aProperty) that specify instances represented in the
tabular view of the GUI which is explained in more de-
tail in the next section. The first and second union parts
find column properties directly related to the cell, such
as :hasFacetRlf and :hasAmountOfNeighbors. The last
union part finds instances from the related nodes, such
as an objective to increase a KPI value of a cell. The
third part also contains a filtering condition that pre-
vents search results from neighboring cell instances.

SELECT DISTINCT ?c ?link ?col ?val
{

?c a :Cell .
?c :hasFacetRlf :HighRlf .

{
?col rdfs:subPropertyOf

:hasColumnProperty .
?c ?col ?val .

} UNION {
?col rdfs:subPropertyOf

:hasColumnDataProperty .
?c ?col ?val .

} UNION
{

?c ?link ?k_or_p .

FILTER NOT EXISTS
{?k_or_p a :Cell}

?k_or_p ?col ?obj_or_act .
?obj_or_act ?has_impact ?val .
?has_impact rdfs:subPropertyOf

:hasColumnProperty .
} }
ORDER BY ?c

Listing 2: SPARQL query for cell-specific data with
facet selection high RLF.

The SPARQL query returns all cells having a high
RLF value. Cell 1 is fulfilling this condition and it is
shown as an example in the table 3. Each column de-
picts a SPARQL return variable (cell URI (?c), link
property (?link), column name (?col), or column value
(?val)).

Cell
(?c)

Link
(?link)

Column (?col) Value
(?val)

:Cell1 :hasAmountOf
Neighbors

3

:Cell 1 :hasCellId 1
:Cell1 :hasFacetCqi :LowCqi
:Cell1 :hasFacetCue :LowCue
:Cell1 :hasFacetRlf :HighRlf
:Cell1 :hasCqi :hasObjective :Increase
:Cell1 :hasRlf :hasObjective :Decrease

Table 3
A snippet of SPARQL query results for the example query.
Cell 1 fulfils the facet condition high RLF.

The SPARQL query pattern shown in Listing 2 can
be used with slight modifications to retrieve MLN
formula-specific data. MLN formulae have own col-
umn properties defining retrieved values in a different
tabular view and facets to filter search results.

6. Graphical User Interface

The system presented in this paper is monitored via
a faceted RDF-based GUI [1] that visualizes the on-
tology instances processed using the MLN model and
supports exploration. The purpose of the GUI is to pro-
vide the end-user with informative and interactive tools
for evaluating the MLN functionality. Thus, views
are implemented to present MLN reasoner-related cell
states and MLN formulae.
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Figures 5 and 6 show cell states in two alternative
visualizations: tabular and graph-oriented. With these
views, the user examines how MLN evidence (KPI
values and KPI objectives) affects the MLN reason-
ing outcome (action proposals). In the tabular visual-
ization (Figure 5), the rows depict cell instances and
the columns their attributes, such as classified KPI val-
ues (A2), KPI objectives (A3), amount of neighbors
(A4), and action proposals (A5). The data describe the
current states of cells and thus are based on the lat-
est PM report from the simulator. In the graph visual-
ization (Figure 6), positioning of cells corresponds to
their Cartesian coordinates in the simulator. The arcs in
the graph depict neighborship relations between cells
and the size of the node depicts the classified value for
some KPI in the evidence (CUE, CQI, or RLF). In the
figure, RLF value has been selected as the node size
from the settings (B2). The color of a node indicates
the desired impact of a KPI objective or an action pro-
posal (in the regarding grayscale figure, light gray in-
dicates no action and dark gray an increase). In the fig-
ure, TXP action has been selected for the node color
and it can be dynamically changed between objectives
and action proposals from the settings (B3). Both in the
tabular and graph visualization user can interactively
browse cells with similar states by selecting facet val-
ues (A1 in Figure 5 and B1 in Figure 6), such as the
amount of neighbors and classified KPI values.

Fig. 5. A faceted view for a cell-specific tabular visualization

Figure 7 depicts the weighted formulae in a tabular
view by dividing each formula into a formula weight
(C5) and the formula classes defined earlier: context
(C2), objective (C3), and action (C4). The user exam-
ines this view to learn the contents of the formulae and
may modify or create formulae in order to change the
behaviour of the MLN reasoner. For example, modifi-
cation can be done by removing a formula or by chang-
ing its weight (C6). Facets (C1) in this view are gen-

Fig. 6. A faceted view for a cell-specific graph visualization.

erated as a combination of formula classes (contexts,
objectives, and actions) and their objects (CQI, RLF,
CUE, TXP, and RET).

Fig. 7. Faceted view for MLN formulae.

7. Experiments

7.1. Statistical evaluation of the MLN reasoner

The MLN model is used to optimize the perfor-
mance of a simulated LTE network by adjusting the
parameters of each cell simultaneously with respect to
PM data retrieved from the simulator in 15 minute in-
tervals (simulation time). Initially, all formula weights
of the MLN model were set to zero. The weights
were updated after every 48 measurement rounds using
the measurements as training data. The Alchemy 2.0
software package [21] is used for the MLN inference
and weight learning. The Alchemy implements the
marginal inference and discriminative weight learning
algorithms described in Sections 4.2 and 4.3.

Figure 8 shows the changes in the total number of
RLFs in the LTE network as the model is updated.
From the figure can be seen that in the beginning the
number increases, as the model weights have not yet
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been learned. After the weights are first updated, the
number begins to rapidly decline and stabilizes after a
number of iterations.
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Fig. 8. Total number of radio link failures in a 15 minute interval.
The vertical dotted lines indicate an update of the model weights.

7.2. Rule model statistics

Table 4 describes the results of some experiments
on the impact of model sizes on MLN reasoning and
SPARQL query times. In the table, model 1 is con-
structed with a combinatorial generation of formulae
from which unachievable formulae are removed, as de-
fined in Algorithm 1. Model 2 presents the model af-
ter formulae with zero weights are removed from the
model 1. Model 3 is created by removing formulae
having weights less than |0.1| from model 2. Appar-
ent from the results, the number of formulae decreases
drastically when the model is refined, and finally the
model size is only 32 % compared with the original
model 1. Also, a decrease in the model size has an im-
pact on the reasoning and SPARQL query times. The
reasoning time has decreased from 12.1s to 8.9s (from
model 1 to model 3. This is a slight improvement to
the system, although 12.1s is already feasible as the
reasoning is run only once every 15 minutes in simu-
lation time (and would also be run every 15 minutes
in a real network management system). The SPARQL
query time has dropped from 1.6s to 0.8s which en-
hances the usability of the GUI as the page contents
need to be frequently updated in a faceted GUI.

Number of
formulae

Reasoning
time

Query
time

model 1 1920 12,1s 1,6s
model 2 1063 11,3s 1,0s
model 3 614 8,9s 0,8s

Table 4
Statistics of model sizes and their impact on MLN reasoning
and SPARQL query times.

7.3. Browsing activities in the GUI

To demonstrate the usage of the GUI, a random sim-
ulation round is taken from the system and the MLN
reasoner and its model is explored via the GUI. First,
two use cases are shown for 1) browsing cell states in
a table and 2) graph visualization. Then, an example is
shown on how modifying the model affects the reason-
ing outcome.

7.3.1. Observing cell states in the table view
The cell-specific MLN reasoning data of the given

simulation round are presented in Figure 5. This view
can be further examined interactively by selecting
facet values. Figure 9 shows that cells having low CQI
values (selected as a facet value) also have objectives
to increase these values. In the same manner, from Fig-
ure 10 it can be concluded that high RLF values im-
ply objectives to decrease the RLF values. These dis-
coveries relate to the data preprocessing logic of the
MLN model (operator goals that need to be achieved),
as some classified KPI values (such as low CQI and
high RLF in our scenario) trigger KPI objectives into
the evidence.

Fig. 9. Cells having low CQI.

Another finding can be done from the table by se-
lecting many neighbors (9 or more) as a facet value.
Figure 11 shows the results for this selection and as
it can be seen, all the three cells having many neigh-
bors also have high probabilities (more than 0.7) for
increasing their TXPs. As explained in Section 4, the
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Fig. 10. Cells having high RLF.

MLN model and its formulae consider the states of
neighboring cells as well, which might imply that the
number of neighbors affects the probabilities of the ac-
tion proposals in this scenario. Another aspect to ob-
serve from this figure is that these cells have neither an
objective to increase CQI nor decrease RLF although
actions are proposed to them. This also indicates how
dependent cells are on their neighbors.

Fig. 11. Cells having many neighbors.

7.3.2. Observing cell states in the graph view
Figure 6 showed cell states in a graph visualization,

in which node sizes indicate RLF values and node col-
ors action proposals for TXP parameter. Observing this
graph more closely, it can be seen that four of the six
cells having high RLF values (cells 1, 25, 27, and 29)
are located at the edge of the network and have only a
few neighbors (five or less). High RLF values of these
cells are most likely caused by terminals located at the
edge of the network coverage area. Although the whole
simulation area is populated by terminals, cells cannot
cover the whole area with high signal strength from
current cell locations. Thus, these cells most probably
have high RLF values regardless of their configura-
tion (even if coverage areas are expanded, new termi-
nals will occur at the new edge of the coverage area).
Moreover, the figure shows that MLN reasoner neither
proposes configuration changes to these cells nor to

their neighbors. This might indicate that the model has
learned that the performance is not improved with any
action for cells with given characteristics.

7.3.3. Examining and modifying the MLN model
For demonstration purposes, a weight of the follow-

ing formula in the MLN model is modified:

I(c,Cqi, Low)⇒ (O(c,Cqi, Inc) ⇐⇒ A(c,T xp, Inc)

(4)

The weight of this formula is changed from 0.41 to
4.0. The Figure 12 shows cell states for cells having
low CQI values after MLN reasoner has recalculated
the action probabilities. Compared with Figure 9, new
action proposals have been generated for cells 1, 8, and
27, which implies that the weight update had an effect
on the functionality of the reasoner.

Fig. 12. Updated states (actions re-inferred after model update) for
cells having low CQI.

8. Related Work

The use of probabilistic reasoning in telecommu-
nications has been studied previously. For example,
Bayesian networks (BN) have been investigated in au-
tomatic network fault management [3,18] and in con-
figuration evaluation [11]. MLNs have been used ear-
lier to diagnose anomalous cells [8] in the network.
Ontological modelling has been used together with
BNs to evaluate network management activities in
[10], which proposes using an ontology to describe
domain-specific knowledge which is then utilized to
dynamically generate a BN for a context-specific prob-
abilistic evaluation task. To the best of our knowledge,
statistical relational models (such as MLNs or a com-
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bination of an ontology and BNs) have not been ap-
plied earlier for cell configuration tasks specifically.
Also, MLNs provide a template from which multiple
Markov networks can be analysed. This approach pro-
vides more flexibility than a basic Bayesian or Marko-
vian network model.

In the fields of pervasive computing and ambient in-
telligence, probabilistic reasoning and ontologies have
been studied in several works. For example, MLNs
are applied to context-aware decision processes in
smart home environments [6]. The ontology is used
to interpret and recognize situations from incoming
data streams and an MLN model is dynamically con-
structed with respect to ontological knowledge. The
MLN model is then used for decision making (smart
home activities) from incomplete information [6]. An-
other project ([16,17]) examined human activity recog-
nition from sensor data; first with MLN [16] and later
with a combination of an ontology and a log-linear
DL model (a model integrating description logics with
probabilistic log-linear models [26]) [17]. Human ac-
tivity recognition is also considered in another project
[31] that uses an ontology to recognize potential hu-
man activities and statistical analysis to examine their
confidence level [31].

In other problem domains, experiments in combin-
ing an ontological approach with probabilistic meth-
ods have been investigated. For example, BN-specific
projects have use cases for medical decision support
[34], financial fraud detection [5], and instance match-
ing in a geological domain [27]. MLNs have been ap-
plied with semantic technologies in problem domains
for ontology matching [25] and for natural language
processing, where ontological concepts are extracted
from text [12,28]. Aforementioned studies are not ad-
dressing cellular networks or network management
tasks and thus they are not fully comparable. Yet, they
provide similar technologies and address tasks, such as
decision making support and graph analysis, that could
be adapted and examined also in our work.

Another statistical relational model used for similar
problems as MLN is the Probabilistic Soft Logic (PSL)
[20]. It is based on First Order Logic, and provides
weighted formulae and probabilistic inference. One
application for a combination of ontologies and PSL
is in analysing semantic similarities between natural
language sentences. [2] Another project utilizes these
techniques to extract a knowledge graph from text by
using ontologies for representing domain-specific con-
straints and PSL to infer the most probable meaning
for the text as a graph. [29] It has been argued that

PSL is more efficient than MLN [29]. Our experiments
indicate that MLN analysis can be applied to mobile
networks by analysing a limited scope. The analysis
of an entire network would in any case be futile for
a system having the complexity and dynamicity of a
mobile network domain. The comparison of PSL and
MLN should be examined more thoroughly in order to
conclude their difference in our case.

9. Conclusion and Future Work

This paper presented an experimental network man-
agement platform that uses MLN to analyse uncertain
information from the LTE simulator and to infer suit-
able actions for the simulator. Along with the MLN
model, OWL 2 ontology is used to semantically repre-
sent relevant network and MLN concepts. The ontol-
ogy is utilised with SPARQL queries by the operator
(via the faceted GUI) and by the MLN model.

Experiments of the platform in the Section 7 show
that the MLN model works well in practice after it
is trained to the current simulation context. The aver-
age number of RLFs reduced significantly during the
weight learning phase. Also, experiments show the im-
portance of monitoring the model; the combinatorial
generation of formulae leads to a high amount of in-
significant formulae. Removing these formulae with
pruning makes both the MLN inference (the calcula-
tion of action probabilities) and the SPARQL query ex-
ecutions more robust. A potential future direction is in-
vestigating the scalability of the MLN model in larger
networks and performing pruning of low-weight for-
mulae in run time.

Some use cases of the GUI were shown to clar-
ify how the MLN reasoning and network status can
be monitored in view of this platform. The seman-
tic representation of the underlying data and SPARQL
queries provide a versatile access to the data and
enable flexible information exploration with faceted
browsing activities. Moreover, the SPARQL interface
and the GUI provide an easy modification in order to
investigate alternative reasoning results.

A further potential future research topic is the en-
hancement of the OWL-MLN interaction so that the
MLN model settings can be dynamically modified by a
human or by a description logic (DL) reasoner. Model
settings include the selection of measurement vari-
ables, their threshold values, and formulae to be gen-
erated from the set of variables. Model settings could
even include some initial formula weights with respect
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to prior knowledge. Moreover, the system will be en-
hanced by creating high-level goals which the user
can use to modify the behaviour of the reasoning. For
example, high-level goals could be mapped to corre-
sponding MLN model settings.

The reason for combining semantic technologies
with probabilistic reasoning was the decrease in the
complexity in monitoring of the MLN model and to
making the model dynamically modifiable. Our cur-
rent implementation gives promising results to con-
tinue this work in order to enhance the system to-
wards autonomic computing and towards adapting
these technologies in more complex scenarios in the
field of network management.
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