
adfa, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

Automatic Definition and Application of Similarity

Measures for Self-Operation of Network

Haitao Tang1, Kaj Stenberg2, Kasper Apajalahti3, Juha Niiranen4, and Vilho Räisänen1

1Bell Labs

Nokia

Finland

2Mobile Network

Products

Nokia

Finland

3Semantic Compu-

ting Research Group

Aalto University

Finland

4Dept. of Mathemat-

ics and Statistics

University of Hel-

sinki, Finland

haitao.tang@nokia.com

Keywords: similarity measure, context aware, network operations, self-

operation, operation experience, OSS, cellular network, case based reasoning.

Abstract. Self-operation concept is proposed to learn the past experiences of

network operations and apply the learned operation experiences to solve new

but similar problems. It works based upon the observation that actions appro-

priate for achieving an objective resemble each other in similar network con-

texts. Plenty of such similarities exist at the level of network elements, func-

tions, and their relations. Similarity measure definition and application are es-

sential components for the self-operation to apply the learned operation experi-

ences. This paper provides a solution for self-operation to define and apply two

types of similarity measures for two self-operation use cases. The first use case

answers how to select a best suitable function to achieve any given objective.

The second use case tells how the selected function should be configured with

the most optimal parameter values so that the given objective could be

achieved. This solution is realized on a demonstrator implementing the self-

operation concept. Corresponding experiments are made with the demonstrator.

The experimental results show that the self-operation solution works well.

1 Introduction

The network environments of multi-RAT, multi-access, and multi-vendor have added

significant complexity to the network operations. Self-x functions (e.g., SON and

traffic steering functions [1-3]) have become an essential part of the 3~4G networks

and their management. These self-x functions have reduced a clear part of manual

work related to operations that would be needed otherwise for the 3~4G networks.

This effectively reduces the operational complexity perceived by human operators as

well. The coming 5G systems (i.e., their networks and management systems [4]) are

expected to have a much wider scope and, a larger number and variety, of self-x func-

tions and multi-x network environments. In addition, one of the 5G goals is to mini-

mize the need of human involvement in their operations.

These fundamental developments have created the industry-wide determination to

gradually evolve towards cognitive network management systems. In such systems,

relevant past experiences could be used to predict the future status of a network. The

corresponding decisions could thus be made to improve either network performance

or subscriber perceived experience. In such systems, the minimal but still critically

needed role of human operator can be seamlessly integrated to observe the systems

and instruct them when the non-human parts of systems have no knowledge to deal

with certain situations or are otherwise incapable of drawing conclusions or making

decisions by their own based on their predefined logics. Such systems can prevent the

functions (self-x or not) of the systems from executing the operations that may cause

(and are known to have caused already earlier) degradation in network performance

metrics or unfavorable user experience. Such systems can also make an operation of a

function favorable if its execution is expected to induce improvement in network

performance or customer experience.

Self-operation [5] proposes a solution to realize such an aforementioned cognitive

network management system. It creates a self-operation case for each relevant event,

learns every corresponding operation and outcome of the system, and stores the

learned experience to the self-operation case. The outcome consists of the perfor-

mance metrics and customer experience, etc. The self-operation case also stores the

learned context data such as system conditions and other relevant circumstances (e.g.

cell configuration, location, and traffic profile) that may have impacted the triggering

of the event. All the data relevant to a corresponding operation execution are learned

and collected in the data elements of the self-operation case, and thus inherently

linked into a piece of useful corresponding experience, which can thus be applied on

the fly. The availability of such experience is very important. As of today, these data

(if any) are quite scattered and distributed in a system. Some data elements are stored

in different locations. Other necessary data elements may not yet be stored at all. In

such a situation, data mining cannot help to find the experience. In addition, data min-

ing is usually time / resource consuming, and cannot therefore meet a request for such

experience in timely fashion.

The self-operation solution in [5] does not answer how to define a similarity meas-

ure to find the corresponding operation experiences from the potentially large number

of learned but different self-operation cases. The similarity measure definition is an

essential and critical component of the self-operability and, it is specific to the given

use case of self-operation. It determines if the operation experience cases (i.e.,

knowledge) learned from the earlier executed operations can be applied to future op-

erations of a given use case.

As a major use case of self-operation, an operator may want to request the self-

operation for guidance on how to achieve given objective(s) for network performance

or service in a certain area (i.e. scope of the network). The objectives are usually re-

lated to improvement of certain Key Performance Indicators (KPI) regarding for ex-

ample coverage, traffic, mobility, or quality. Different functions may however cause

impacts on many of those KPIs at the same time. It is thus difficult for the operator to

select the best function (out of several candidate functions) to achieve the objective.

This is where the definition and application of the corresponding similarity measure

can help. The relevant self-operation cases can be matched from the knowledge data-

base, with the corresponding objective-specific similarity measure. The information

about the best suitable function can then be extracted from the relevant self-operation

cases.

As another major use case of self-operation, the operator can have difficulty to de-

termine the (best) suitable configuration (e.g., SCV - SON function Configuration

parameter Value) for the selected function to achieve the result expected by the objec-

tive. The suitable configuration of the function depends on the corresponding condi-

tions (network configurations, status, traffic, etc.) of the managed objects (MOs)

where the function is planned to be executed. This is again where the definition and

application of the corresponding similarity measure can help. The relevant self-

operation cases could be matched from the knowledge database, with the correspond-

ing function-specific similarity measure. The information of the (best) suitable func-

tion configuration can then be extracted from the relevant self-operation cases.

The function-specific similarity measure could also be used to find the correspond-

ing operation experience case(s) and extract the knowledge concerning another relat-

ed major use case of self-operation that answers the question: “Can an action request

for the function be executed or not?” Thus, the function-specific similarity measure

enables both the operation to select the corresponding configuration for the chosen

function, and the decision on an action of the function.

The motivation of this paper is therefore to design a complete solution by solving

the following problems: (1) how to define an objective-specific similarity measure to

match an objective to its corresponding function; (2) how to automatically match the

objective and corresponding rule given by an operator to the best suitable function for

achieving the given objective; (3) how to automatically define the corresponding

function-specific similarity measure; (4) how to automatically apply the function-

specific similarity measure for a function-specific operation. For example, the corre-

sponding operation information and the configuration(s) can be found from the

matching operation experience cases.

The sections of this paper are organized as the follows. In Section 2, the self-

operation architecture to define and apply a similarity measure is described. In Sec-

tion 3, the approach to define an objective-specific similarity measure is introduced.

In Section 4, it is explained how an objective-specific similarity measure is used to

find the relevant function. In Section 5, the approach to define a function-specific

similarity measure is presented. Section 6 depicts how a function-specific similarity

measure is used to find the proper configuration value for the selected function. Sec-

tion 7 introduces the example implementation of a self-operation system and its ex-

periment results. Section 8 summarizes and discusses the major finding of the current

work.

2 Self-Operation Architecture for Similarity Definition and

Application

Figure 1 shows the architecture of defining and applying similarity measures based on

stored operation experience cases. The arrows are logical and can be implemented by

direct or indirect connections between the entities in the real implementations.

The definition of a similarity measure is started when a request message for action

recommendation (i.e., Message 1, A, or I) is received. These messages serve as the

triggers to define relevant similarity measures and use them to find the matching self-

operation cases with the principle of case based reasoning [6]. The corresponding

experiences in the matching self-operation cases are replied back to the requesting

entities.

Fig. 1. The architecture of defining and applying similarity measures based on stored operation

experience cases.

There are different types of similarity measures, which are usually specific to their

actual applications (i.e., use cases) [7-9]. The similarity measures of this paper be-

longs to the family of semantic similarity measures. The similarity measures of this

paper are used to find the exactly matching self-operation cases (if any) stored in the

database of the self-operation entity. Their specific definitions and applications of the

similarity measures are given in the following sections.

3 Definition of Similarity Measure for a Given Operator

Objective and Rule

The operational objectives and rules of a network (e.g., [10]) are usually defined with

a set of high level KPIs (e.g., [11, 12]) for the network operations. When an operator

needs to achieve a specific objective for network performance under certain rules (i.e.,

constrains and options), the operator sends a request (Message 1 in the Figure 1) to

Self-

Operation SON

Coordination

Function

(or any other

relevant OSS/

network

function)

Network Operation

Resources

UI Self-OP itf

B. ResponseActionRecommendation(snf,

similarityScope, action)

I. RequestActionRecom(snhm, functionID,

<instanceID>, targetScope, <intendedAction>)

A. RequestActionRecom(snf, functionID,

<instanceID>, targetScope, intendedAction)

K. NoMatchingOperationCaseFound(snhm / snf,

similarityScope)

o
r

Concerning the best suitable function for achiving given operator objective and rule

Concerning the best suitable action / CM data of / for a function according to the rule given by operator

1. RequestActionRecom(snhm, operatorObjective,

allowedResult, rule)

2. ResponseActionRecommendation(snhm, functionID,

*(operation experience cases))

J. ResponseActionRecommendation(snhm,

similarityScope, action)

self-operation function. This message carries the information of the operation objec-

tive including the target scope (i.e., the targeted MOs), allowed result, and rules. The

rules can be created either by the system vendor or by the operator via means of Rule

Editor, which is a specialized tool for the creation and maintenance of the rules.

The self-operation function uses the received information to define the correspond-

ing objective-specific similarity measure, which can be simply in the form of a text

string carrying the provided information elements.

4 Selection of a Suitable Function for the Given Operator

Objective and Rule

The self-operation function uses the objective-specific measure (defined in Sec. 3) to

find all the matching operation experience cases and their functions. For demonstra-

tion purposes, we present two Capacity and Coverage Optimization (CCO) functions,

CCO-SURROUNDED (optimizing a cell surrounded by its first-tier neighbor cells)

and CCO-HOTSPOT (optimizing a hotspot source cell). For example, these functions

(CCO-SURROUNDED and CCO-HOTSPOT, shown in Figure 6) have caused simi-

lar operation experiences (in areas containing both surrounded and hotspot cells) in

the past.

According to the rule, the self-operation function selects the best suitable experi-

ence cases from all the matching operation experience cases. For example, CCO-

SURROUNDED is the function that has achieved the optimization objective in most

of the matching cases (96 % of all the matching cases). CCO-SURROUNDED func-

tion is thus selected automatically as the best suitable function to achieve the intended

operation. The decision for the selection can be made based on several different crite-

ria such as the highest probability to achieve successful results, operations’ priorities

or operator’s preferences and policies. The criteria is actually defined by the rules

provided by the operator. The general procedure of objective specific similarity defi-

nition and function selection is described with the diagram shown in Figure 2.

5 Definition of Similarity Measure for the Selected Function

The common information elements needed by a function-specific similarity measure

instance are defined as a set of general similarity attributes and function-specific at-

tributes, as shown in Table 1. The function-specific attributes are always explicitly

defined for the specific function selected. A function-specific similarity measure in-

stance is always operation specific.

After the best suitable function is found by self-operation, the self-operation is in-

voked to define its function specific similarity measure, which consists of two parts.

With the information of the function (e.g., CCO-SURROUNDED) and the objective-

specific similarity measure (e.g., coverage-related optimization of the cells with ID 1-

5), the self-operation function defines the first part of the corresponding function spe-

cific similarity measure. Here, the information of any function in the network is pre-

defined and made available in the form of function metadata [13] by the operator or

its vendor. The function information also defines the impacting scopes [14] of the

function.

The first part of the function-specific similarity measure is the static information of

the function and the MOs that are either pre-defined or available beforehand. This

“static” part is defined by extracting the information of the function, the correspond-

ing cells, and the relevant rule. For example, the first part of CCO-SURROUNDED -

specific similarity measure can consist of the information elements (and their values)

of such as CCO ID, cell technology, cell type, and antenna mode. For simplicity, we

assume the target scope consists of only one similarity scope in this example. In reali-

ty, if multiple similarity scopes exist in a given target scope (as often the case), their

corresponding function-specific similarity measures are defined one by one with the

same approach shown in this example.

Fig. 2. Procedure to find the best matching function and its corresponding operation experience

cases that can achieve a given operator objective.

The self-operation function then uses the defined first part of the function-specific

similarity measure to further select the matching operation experience cases from all

the cases still fulfilling the search criteria. For example, there are 51 self-operation

cases found under the selected CCO-SURROUNDED function. 25 self-operation cas-

es match the defined first part of the CCO-specific similarity measure.

start

The human operator provides specific operational objective,

allowed result, and rule to the self-operation function through

UI interface

The self-operation function receives the given operational objective and rule. It makes

the following,

a. construct the corresponding objective-specific similarity measure instance with

the information of the given operational objective and rule

b. assigns an unique value to the Similarity Measure ID element

c. save the objective-specific similarity measure instance

d. use the objective-specific similarity measure instance to search for all the

matching operation experience cases from its stored operation experience cases

enough matching cases

found according to the rule?

The self-operation function finds all the operation experience cases matching

the objective-specific similarity measure automatically

The self-operation function selects the best suitable experience cases from all the matching

operation experience cases according to the objectives and rules automatically. The best

matching function is found as the function indicated in the best suitable matching operation

experience cases.

The self-operation

function replies UI “Not

enough matching

operation experience

cases are found”

end

no

yes

The self-operation function invokes the first part

definition of the function specific similarity measure

(i.e., to extract the pre-configured function specific

attributes of the best suitable experience cases).

The self-operation function extracts the information of the 25 cases. What to ex-

tract depends on the given rule or otherwise a default configuration. For example, an

extraction can be done from all those performance metrics information elements and

their value ranges shared by some or all of the 25 cases. These performance metrics

are, for example, the impacting and impacted metrics of RLF INPUT and RLF

OUTPUT. The extracted result serves and becomes the remaining part of the similari-

ty measure definition. Now, the complete function-specific similarity measure has

been defined.

Table 1. The common information elements of a function-specific similarity measure instance.

 Element Name Definition

G
en

er
al

 A
tt

ri
b

u
te

s

Function-

specific Similar-

ity Measure ID

(F_SM_ID)

A character string that uniquely identifies this similarity

measure instance. It helps the further process and appli-

cation of this similarity measure instance.

Similarity Scope The type of the managed objects (MOs) relate to this

similarity measure instance. For example, A similarity

scope can be one type of {individual cell, cell pair, first-

tier neighbor cells, second-tier neighbor cells, subnet-

work, network, etc.}. A similarity scope is usually specif-

ic to a function. For example, a CCO-SURROUNDED

function is optimizing the coverage performance of the

given cells. Thus, the similarity scope for this function is

the given cell and its 1st-tier neighbors of the same type.

F
u

n
ct

io
n

-S
p

ec
if

ic
 A

tt
ri

b
u

te
s

Function ID The unique ID of a function (e.g., CCO-

SURROUNDED) that is selected as the most relevant

function to pursue the requested operation.

Function

Specific

Attribute1

The first feature specific attribute and value that is auto-

matically extracted from the selected experience cases.

Note: an attribute and its value are extracted only when

this attribute is impacting the function or is impacted by

the output of the function. The attribute is identified

according to the impacting scopes [14] of the function.

…

Function

Specific

Attributen

The nth feature specific attribute and value that is auto-

matically extracted from the selected experience cases,

where n≥0 and, n=0 means there is no feature specific

attribute for the specific similarity measure instance.

6 Selection of Suitable Configuration for the Selected Function

With the defined function-specific similarity measure, self-operation function finds,

e.g., 9 self-operation cases (out of the 25 cases) matching the similarity measure ex-

actly. The configuration values (SCVs) of the 9 self-operation cases are collected into

a configuration set called “CCO-SURROUNDED Config Set1”. The self-operation

function then uses the extracted configuration value to configure the CCO-

SURROUNDED function and activate it to achieve the given objective.

Fig. 3. Procedure for the automatic function-specific similarity measure construction and appli-

cation.

start

This method is started by one of the following events:

(1) self-operation function invokes the function-specific similarity definition for the selected function and all its operation experience cases, according

to the defined objective specific similarity measure.

(2) Human operator (UI) or a network/OSS function sends the self-operation function an operation request, RequestActionRecom(snhm / snf,

functionID, instanceID, targetScope, intendedAction).

The self-operation function creates a corresponding similarity measure instance for the similarity of this similarity scope. Corresponding to this

similarity scope, the self-operation function extracts the pre-configured information of the selected function, the target scope, rule to fill the General

Attributes (defined in Table 1) and a part of the Function-Specific Attributes (defined in Table 1) of the created similarity measure instance.

automatic confirmation allowed for the defined

similarity measure?

Wait the human operator for any update to this defined measure until receiving the operator’s

manual confirmation of the defined function specific similarity measure from UI.

The defined similarity measure instance is stored in the database of the self-operation function.

The self-operation function then extracts all the operation experience cases that exactly match the constructed similarity measure instance.

enough matching operation

experience cases extracted?

The self-operation function notifies the failure to the human

operator (UI), by NoMatchingOperationCaseFound(snhm /

snf, similarityScope).

The self-operation function then makes one of the following:

(1) to invoke the execution of the confirmed action / CM data or,

(2) to reply the requesting OSS/network function or human operator (UI)

with ResponseActionRecommendation(snf, similarityScope, action).

The defined similarity measure instance is stored in the self-

operation function for a possible future use.

YesNo

No Yes

end

The self-operation function then selects a same action / CM data,

the average of the actions / CMs, or something (instructed by a

rule) taken from the exactly matching operation experience cases.

automatic confirmation of the selected

action / CM allowed?

Wait the human operator for any update to this selected

action / CM data until receiving the operator’s manual

confirmation of the selection from UI.

Yes

No

automatic confirmation allowed for the defined

first part of the similarity measure?

Wait the human operator for any update to this defined measure until receiving the operator’s

manual confirmation of the defined first part of function specific similarity measure from UI.

YesNo

From all the fulfilling operation experience cases of the selected function, the self-operation function determines the exact matching operation

experience cases based on the defined first part of the function specific similarity measure. The relevant information elements of the exact matching

operation experience cases and rule are extracted to fill the other part of the function specific similarity measure. That is, to extract the information

impacting/ed the function’s operation.

The general procedure of the definition and application of function specific simi-

larity measure is described with the diagram shown in Figure 3. In this procedure, the

intervention of human operator is supported in the otherwise automatic definition and

application of a function-specific similarity measure. For example, the operator may

need to update or confirm a selection.

7 Experiments on Determining Suitable Function and

Configuration Automatically

In this section, we describe a demonstrator for self-operation and show its experi-

mental results. It currently realizes two use cases: 1) finding the suitable function to

achieve a given (high level) objective and 2) finding the corresponding configuration

for the selected function so that the objective can be achieved. The details concerning

these two use cases have been presented in Sec. 3-6.

7.1 Demonstrator Description

The demonstrator set-up for learning operation experiences is shown in Figure 4. It

also supports the applications of operation experiences for the self-operation use cases

that receive their configuration or instruction from self-operation with means not

shown in Figure 4.

Fig. 4. Architecture of self-operation demonstrator for learning operation experiences, where

AR = action request, CM = configuration management data, PM = performance management

data, and UI = user interface.

An LTE simulator (Nokia internal tool and its main principle introduced in [15])

acts as a source of PM data, which are sent via REST (Representational State Trans-

fer) interfaces to a SON function and the self-operation control logic. Two groups of

SON functions are used in the demonstrator, i.e., RET (Remote Electrical Tilt)-based

CCO and energy saving (ES). Configurator adjusts cell and other (e.g., function) pa-

rameters on the one hand, and amends CM data with metadata to create Action Re-

quests (ARs) for self-operation on the other. The UI can be used for similarity defini-

tions and related operation case searches. Direct configuration from the UI is not im-

plemented at the moment.

PM data are stored into self-operation internal database as they arrive. ARs are re-

ceived by the self-operation system in such a way that each received AR triggers the

creation of a corresponding operation case. A MongoDB NoSQL database is used for

storing PM data, operation cases, and function profiles. The REST interface is imple-

mented with Java, the self-operation control logic with Clojure, and the user interface

with HTML 5 / JavaScript. SON functions, self-operation, and UI JavaScript back-

end are run on Ubuntu desktop machine (Intel Core2 2.5 GHz, 2GB memory, 64-bit

Ubuntu). UI front-end is run on browser (Chrome) over a Windows 7 laptop (8 GB).

7.2 Experiment and Result

This section shows an example experiment and results in which a human operator

provides high-level operation objective and then finds a best matching function and

its configuration set in a desired context. The experiment is done in three phases, i.e.,

defining goal and preconditions, retrieving relevant search results based on the auto-

matically defined similarity measure, and, if needed, sharpening the results by adjust-

ing similarity measure.

7.2.1 Defining Goal and Precondition for the Objective-Specific Similarity

Measure

Figure 5 depicts the first phase in the view. Through UI, the user can define a goal

and its context by Wizard 1 of Figure 5 and set numerical boundaries (or other rules)

for the search results by Wizard 2 of Figure 5.

Fig. 5. A snapshot of an example to define objective specific similarity measure via

specifying corresponding goal, network context, and numerical boundaries.

In this use case, the user wants to find suitable operations for optimizing coverage

for an area including, e.g., five cells (1, 2, 3, 4, and 5), and with a time range from,

e.g., 6AM to 10AM. In the rule definition form (Wizard 2), numerical boundaries can

be selected to further exclude irrelevant search results. For example, the minimum

amount of cases per retrieved SON function is set to 1. The minimum confidence

level (success ratio to achieve a goal) is set to 0.01. Here, the boundaries have low

values in order to maximize the amount of operation cases in the search results.

The above information is used to define the objective-specific similarity measure.

With this similarity measure, Wizard 3 of Figure 6 searches and shows the result of

the self-operation cases matching the objective-specific similarity measure. The self-

operation analysed approximately 500 cases in several seconds. Two SON functions

are then identified in these self-operation cases. CCO-SURROUNDED is a CCO func-

tion instance that optimizes a source cell surrounded completely by its 1st-tier neigh-

bor cells. CCO-HOTSPOT is a CCO function instance that optimizes a hotspot source

cell. The columns in Wizard 3 describe the name of the function (function_name), the

total amount of self-operation cases matching the target that the SON function has

been involved with (matching_cases), the amount of successful cases achieved the

target (successful_cases), the success ratio of the matching cases (confidence), and the

proportion of the number of matching cases of the function to the total number of the

matching cases of all functions (proportion). The function (CCO-SURROUNDED)

and its 51 self-operation cases in the first row are selected as this function has the

highest proportion value.

7.2.2 Function-Specific Similarity Definition and Search for Configuration

For the selected function CCO-SURROUNDED, the available function-specific simi-

larity attributes are antenna elevation, antenna type, and cell type of the source cells,

as well as their value ranges for RLF. The value ranges indicate the values before

(RLF INPUT) and after (RLF OUTPUT) the operation case has been executed.

Fig. 6. A snapshot of the objective-based function selection, the function-specific similarity

definition, and the function configuration selections.

Wizard 4 of Figure 6 collects the relevant attributes of the source cells to define the

first part of the function-specific similarity measure for the selected function. With

this first part of the similarity measure, the 25 matching self-operation cases (found

by Wizards 3) are further filtered. The remaining part of the function-specific simi-

larity measure is then defined by extracting the relevant KPI information of the fur-

ther matched self-operation cases. With this fully defined function-specific similarity

measure, the first configuration set (v1) of the 9 self-operation cases is selected, as

shown in Wizard 5. The actual configuration values of the selected configuration set

are presented in the configuration list shown in Wizard 6.

The selected configuration can now be confirmed (automatically or manually) and

configured to the selected function so that the selected function can make its decision

(e.g., CM output) accordingly. If not, the function-specific similarity measure can be

updated to find another configuration set, or another function can be re-selected and

the process is repeated from Wizard 3.

7.2.3 Refining Function Specific Similarity Definition and its Match Results

In addition to the automatic confirmation of a matching result, a user can also take the

manual control of the confirmation when needed. In this mode, the user can explore

the current search results to see if more accurate results for the context are needed.

Figure 7 demonstrates such a situation, in which the user has decided to refine the

results by reducing the value range of the RLF OUTPUT shown in Entry A and the

elevation value shown in Entry B.

Fig. 7. A snapshot of the match result and configuration via refining the values of the function

specific similarity measure.

Figure 7 shows how the amount of cases has reduced (with respect to Figure 6.) for

the CCO-SURROUNDED and for its configurations v1 and v2, shown in Entry C and

Entry D. The confidence levels of these elements have increased. Configuration set v2

is now automatically selected as the preferred configuration for the user to confirm.

The user could even pick and confirm the configuration set v1, if the user would pre-

fer so instead.

8 Conclusion and Discussion

This work provides a solution to define and apply two types of similarity measures for

two self-operation use cases. The use cases are as follows: Self-operation uses its

learned operation experiences to answer the question “Given any objective and its

corresponding network context, what function should be used to achieve it?” Self-

operation uses its learned operation experiences to answer the question “Given any

objective and network context, what should be the suitable configuration for that

function so that it could achieve the objective?”

The solution consists of the self-operation architecture for similarity measure defi-

nition and application, the data elements needed by the two types of similarity

measures, and their definition and application procedures.

This work also describes a demonstrator implementation of self-operation, which

learns operation experiences into self-operation cases and applies operation experi-

ences for certain self-operation use cases. These use cases receive their configuration

or instruction from self-operation with the means not shown in the demo architecture.

The demonstrator uses an LTE simulator and SON function instances as a source of

data, where the LTE simulator simulates a whole LTE network. In the experiments,

the demonstrator defines an objective-specific similarity measure based on the given

network context, objective, and rule. It then matches the corresponding self-operation

cases with the defined objective-specific similarity measure. The best suitable func-

tion is extracted from the matching self-operation cases by the demonstrator. The

demonstrator then automatically defines a function-specific similarity measure based

on the selected function and the given network context, objective, and rule. The more

relevant self-operation cases are further matched with the defined function-specific

similarity measure by the demonstrator. The (best) suitable function configuration is

extracted from the further matched self-operation cases by the demonstrator. The

function can then be configured with the suitable configuration and activated to

achieve the given objective.

The experimental results of the demonstrator (including the implemented solution,

proposed by this paper) show the concept of self-operation (including the solution)

work well as expected. This self-operation scales well (with respect to use of a dis-

tributed database, MongoDB) and works automatically while being able to interact

with human operator through UI during the network operations.

The network operations of 5G networks are expected to have much more automa-

tion capabilities when compared with the current network operations. The proposed

solution for self-operation by this paper serves naturally as an important part of the

5G network operations.

As the future work, the current demonstrator is expected to be enhanced to support

the direct configuration of the functions and the network from UI. In addition, a ma-

chine to machine interface is expected to be added to the demonstrator so that self-

operation can directly control and configure the functions and the network.

9 References

1. 3GPP, “Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Self-

configuration and self-optimizing network use cases and solutions (Release 8),” 3GPP TR

36.902 V1.0.1, Sept. 2008.

2. NGMN, “NGMN Use Cases related to Self Organising Network, Overall Description,”

Deliverable (https://www.ngmn.org/uploads/media/), NGMN Alliance, Dec. 2008.

3. Nokia, “Business aware traffic steering,” White Paper of Nokia Networks,

http://networks.nokia.com/sites/default/files/document/nokia_traffic_steering_white_paper

.pdf, 2013.

4. 5G-PPP, “5G Empowering Vertical Industries,” Brochure (https://5g-ppp.eu/wp-

content/uploads/2016/02/BROCHURE_5PPP_BAT2_PL.pdf), February 2016.

5. Haitao Tang and Kaj Stenberg, “Self-Operation of a Network,” Proceedings of IEEE

DataCom 2016, pp. 647-653, Aug. 2016.

6. Agnar Aamodt and Enric Plaza, “Case-Based Reasoning: Foundational Issues, Methodo-

logical Variations, and System Approaches,” Artificial Intelligence Communications 7: 1,

pp. 39-52, 1994.

7. Ahmad Rawashdeh and Anca L. Ralescu, “Similarity Measure for Social Networks– A

Brief Survey,” Proceedings of Modern AI and Cognitive Science Conference (MAICS),

pp. 153-159, April 2015.

8. Djamel Guessoum, Moeiz Miraoui, and Chakib Tadj, “Survey of Semantic Similarity

Measures in Pervasive Computing,” International Journal of Smart Sensing and Intelligent

Systems, VOL. 8, NO. 1, pp.125-158, March 2015.

9. Wael H Gomaa and Aly A Fahmy, “A Survey of Text Similarity Approaches,” Interna-

tional Journal of Computer Applications, vol. 68, no. 13, pp. 13-18, April 2013.

10. TRAI, “The Standards of Quality of Service for Wireless Data Services (Amendment)

Regulations,” Regulation

(http://www.trai.gov.in/Content/Regulation/1_0_RegulationUser.aspx), Telecom Regulato-

ry Authority of India, New Delhi, India, July 2014.

11. 3GPP, “Key Performance Indicators (KPI) for Evolved Universal Terrestrial Radio Access

Network (E-UTRAN): Definitions, v13.0.0,” 3GPP TS32.450, Jan 2016.

12. TRAI, “The Indian Telecom Services Performance Indicators, July - September, 2015,”

Indicator Report

(http://www.trai.gov.in/WriteReadData/PIRReport/Documents/Indicator_Reports.pdf)

Telecom Regulatory Authority of India, New Delhi, India, pp.61-84, Feb. 2016.

13. NGMN, “NGMN Informative List of SON Use Cases,” An Annex Deliverable (

https://www.ngmn.org/uploads/media/NGMN_Informative_List_of_SON_Use_Cases.pdf)

, NGMN Alliance, pp.6-47, April 2007.

14. Tobias Bandh, Haitao Tang, Henning Sanneck, and Chistoph Schmelz, “SON Operation,”

Chapter 9 (pp.322-356), LTE Self-Organizing Networks (SON), WILEY, ISBN 978-1-

119-97067-5, 2012.

15. Ingo Viering, Martin Döttling, and Andreas Lobinger, “A mathematical perspective of

self-optimizing wireless networks,” Proc. ICC’09, p.1 ff., Dresden, Germany, June 2009.

