
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Minna Tamper

Extraction of Entities and Concepts
from Finnish Texts

Master’s Thesis
Espoo, November 28, 2016

Supervisor: Professor Eero Hyvönen, Aalto University
Advisors: Eetu Mäkelä D.Sc. (Tech.)

Jouni Tuominen M.Sc.

Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Minna Tamper

Title:
Extraction of Entities and Concepts from Finnish Texts

Date: November 28, 2016 Pages: vi+71

Major: Software engineering Code: T-75

Supervisor: Professor Eero Hyvönen

Advisors: Eetu Mäkelä D.Sc. (Tech.)
Jouni Tuominen M.Sc.

Keywords are used in many document databases to improve search. The process
of assigning keywords from controlled vocabularies to a document is called subject
indexing. If the controlled vocabulary used for indexing is an ontology, with
semantic relations and descriptions of concepts, the process is also called semantic
annotation.

In this thesis an automatic annotation tool was created to provide the documents
with semantic annotations. The application links entities found from the texts
to ontologies defined by the user. The application is highly configurable and
can be used with different Finnish texts. The application was developed as a
part of WarSampo and Semantic Finlex projects and tested using Kansa Taisteli
magazine articles and consolidated legislation of Finnish legislation. The quality
of the automatic annotation was evaluated by measuring precision and recall
against existing manual annotations. The results showed that the quality of the
input text, as well as the selection and configuration of the ontologies impacted
the results.

Keywords: Automatic annotation, Linked Open Data, named entity link-
ing, ontologies

Language: English

i

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Minna Tamper

Työn nimi:
Entiteettien ja käsitteiden eristäminen suomenkielisistä teksteistä

Päiväys: 28. marraskuuta 2016 Sivumäärä: vi+71

Pääaine: Ohjelmistotekniikka Koodi: T-75

Valvoja: Professori Eero Hyvönen

Ohjaajat: Tekniikan tohtori Eetu Mäkelä
Filosofian maisteri Jouni Tuominen

Asiasanoja käytetään kuvailemaan dokumentteja ja parantamaan niiden
löydettävyyttä. Asiasanoitusprosessissa asiasanat voidaan valita kontrolloidus-
ta sanastosta. Näiden sanastojen tai ontologioiden käyttäminen mahdollistaa se-
manttisten kuvausten ja suhteiden hyödyntämisen. Tätä kutsutaan myös semant-
tiseksi annotoinniksi, ja sen avulla voidaan parantaa dokumenttien haettavuutta
entisestään.

Tässä työssä kehitettiin sovellus semanttiseen annotointiin osana Sotasampo- ja
Semanttinen Finlex -projekteja. Sovellus linkittää tekstistä löydettyjä tekstuaali-
sia entiteettejä käyttäjän valitsemiin ontologioihin. Sovellus on konfiguroitavissa
erilaisten suomenkielisten tekstien asiasanoitukseen ja linkitykseen. Tässä työssä
hyödynnettiin Kansa Taisteli -lehden artikkelien ja Semanttisen Finlexin ajan-
tasaisia säädöksiä käyttötapauksina sovellukselle. Tuloksia arvioitiin vertaamalla
niitä alkuperäiseen manuaaliseen annotaatioon käyttäen tarkkuus- ja saantimit-
tauksia. Tuloksia tutkimalla havaittiin, että syötteen laatu sekä ontologioiden
valinta ja konfigurointi vaikuttivat tuloksiin.

Asiasanat: Automaattinen asiasanoitus, avoin linkitetty data, entiteet-
tien linkitys, ontologiat

Kieli: Englanti

ii

Acknowledgements

I wish to thank professor Eero Hyvönen and tutors Jouni Tuominen and
Eetu Mäkelä for encouraging and helpful guidance. I also wish to thank the
members of the Semantic Computing Research Group (SeCo) for valuable
comments. In addition, I wish to thank Matti Tolvanen from the Helsinki
City Library for the informative interview.

I would also like to thank the Ministry of Education and Culture, the
Association for Military History in Finland, and Bonnier Publications for
providing the project with resources and for publishing the Kansa Taisteli
magazine articles for public usage. In addition, I wish to thank Timo Hakala
for providing the manual annotations for the Kansa Taisteli magazine articles.

Regarding the Semantic Finlex project, I would like to thank Aki Hieta-
nen from the Ministry of Justice, Jari Linhala and Risto Talo from Edita
Publishing Oy for providing the consolidated legislation and their annota-
tions.

In addition, I wish to thank my friends, family, and relatives for sup-
porting me through this process. In addition, thanks to my dog for being
cheerful.

Thank You!

Espoo, November 28, 2016

Minna Tamper

iii

Abbreviations and Acronyms

IE Information Extraction
IR Information Retrieval
KOKO The Finnish Collaborative Holistic Ontology
LAS Lexical Analysis Tool
LOD Linked Open Data
NE Named Entity
NED Named Entity Disambiguation
NEL Named Entity Linking
NEN Named Entity Normalization
NER Named Entity Recognition
NLP Natural Language Processing
OCR Optical Character Recognition
OWL Web Ontology Language
POS Part of Speech
RDF Resource Description Framework
SKOS Simple Knowledge Organization System
SPARQL SPARQL Protocol and RDF Query Language
SSHS The Association for Military History in Finland
TF-IDF Term Frequency - Inverse Document Frequency
Turtle Terse RDF Triple Language
UI User Interface
YSO General Finnish ontology

iv

Contents

Acknowledgements iii

Abbreviations and Acronyms iv

1 Introduction 1

2 Model of Annotation 4
2.1 Semantic Annotation . 4

2.1.1 Ontologies . 5
2.1.2 Applications for Semantic Annotation 6

2.2 Automatic Annotation . 7
2.3 The Process of Automatic Annotation 8

2.3.1 Computational Linguistic Methods 10
2.3.2 Named Entity Linking 11
2.3.3 Ranking of Keyword Candidates 12
2.3.4 Architecture . 12

3 Implementation 15
3.1 Input and Output Datasets 15
3.2 Linguistic Preprosessing . 16
3.3 Candidate Extraction . 17
3.4 Candidate Ranking . 21

4 Case Study: Kansa Taisteli Magazine 22
4.1 Optical Character Recognition 23
4.2 Ontologies . 26
4.3 Data Linking . 31
4.4 Application: Faceted Search 32

5 Case Study: Semantic Finlex 34
5.1 Ontologies . 35
5.2 Data Linking . 37

v

5.2.1 Weighting Schemes . 38
5.2.2 Keyword Density . 39

5.3 Application: Tag Clouds . 40

6 Evaluation 44
6.1 Kansa Taisteli Magazine . 44

6.1.1 Precision and Recall 47
6.1.2 The Results of the Annotation Process 52

6.2 Semantic Finlex . 53
6.2.1 R-Precision . 54
6.2.2 The Results of Subject Indexing 55

7 Conclusions 58

Bibliography 61

Appendices 72

A Regular Expressions for OCR Postprocessing

B Kansa Taisteli Magazine: SPARQL Queries for ARPA

C Semantic Finlex: SPARQL Queries for ARPA

vi

Chapter 1

Introduction

Document databases are explored by users on a daily basis. The databases
can be searched for different documents but it can be difficult to obtain satis-
factory results easily. To improve the search results, search engines can utilize
document metadata that contains descriptive keywords among other descrip-
tive data about the document. [6, 19] For example, in computer systems in
libraries, most books have different manually assigned natural language key-
words to describe them. In addition to having information about the book
(such as author, title, ISBN, language), the subject can be described using
keywords. For example, a book about gardening might be described using
words like flora, gardening, and germination. The assigning of keywords,
that describe the topic or subject, and connecting these keywords with the
document is called subject indexing. Ideally these keywords are picked from
a controlled vocabulary, such as a thesaurus or ontology. Traditionally index-
ing has been performed by librarians for example while cataloging documents.
The keywords can aid the user of the library computer system to find the
books that he is looking for. [17, 25, 56, 93]

One way to implement subject indexing is by using Semantic Web tech-
nologies. Semantic Web1 is a extension of the Web with a set of tools and
standards. It provides a framework for sharing and reusing data across appli-
cation, organization, and domain boundaries. In Semantic Web the method
of publishing structured data is called Linked Data. The central idea of
Linked Data is to make it possible to interlink data and make it more use-
ful through semantic queries. [11, 12] In terms of subject indexing, it would
mean that the relevant keywords would be identified from each document
and linked to existing controlled vocabularies, giving the keywords semantic
meanings. In the context of Semantic Web this can be also called annotating.

1https://www.w3.org/standards/semanticweb/

1

CHAPTER 1. INTRODUCTION 2

Manually annotating or subject indexing each document is, however, la-
borious, costly, and time consuming work. [17, 56] On the other hand, this is
not a simple task for the computer either. Identification of terms from texts
by extracting words can be inefficient and inaccurate. One word can mean
many things and when evaluating each term in a text, it might be difficult
to recognize whether the term references for example a person’s name or a
place. Sometimes the term may consist of multiple words; it can be difficult
to identify a term if different chunks of words form a term separately and
together. For example, movie titles, such as Indiana Jones and the Last Cru-
sade, can be hard to identify from texts. The title can be misidentified and
only chunks Indiana Jones and Crusade may be recognized instead of the
full name of the movie. These tasks would require more dedicated algorithms
and possibly domain specific information extraction (IE) methods to identify
terms with satisfactory precision. Information extraction methods specialize
in mining structured information from unstructured or semi-structured text
in natural-language documents [20]. The information can be used to classify,
index, or link documents to other related information. In order to get rele-
vant information, the extraction would require a more sophisticated Natural
Language Processing (NLP) approach.

In this thesis the purpose is to create a generic tool for automatic anno-
tation as a part of WarSampo2 and Semantic Finlex3 projects in Semantic
Computing Research Group (SeCo)4. The tool needs to be able to annotate
Finnish documents and further more will be tested with two cases: Kansa
Taisteli magazine articles and the consolidated legislation of Semantic Finlex.
Kansa Taisteli magazine articles have a perspective in the WarSampo portal.
The goal of the WarSampo portal is to model the Second World War in Fin-
land as Linked Open Data (LOD). [42] Kansa Taisteli is a magazine published
by Sanoma Ltd and Sotamuisto association between 1957 and 1986. [33] The
magazine articles cover memoirs of WW2 from the point of view of Finnish
military personnel and civilians. Semantic Finlex, on the other hand, is a
service that offers Finnish legislation and case law as Linked Open Data. The
results of the annotation process for both projects are published as a part of
Linked Data Finland5 service.

The goal of this thesis is to study how to produce automatically solid
annotations for different Finnish texts in comparison to manually annotated
texts. The goal can be divided into research questions that are enumerated
below:

2http://seco.cs.aalto.fi/projects/sotasampo/en/
3http://seco.cs.aalto.fi/projects/lawlod/en/
4http://seco.cs.aalto.fi
5http://www.ldf.fi

CHAPTER 1. INTRODUCTION 3

1. How to build a generic application for automatic annotation that can
be configured for different use cases?

2. How to utilize ontologies for Finnish texts to get relevant annotations?

3. How much disambiguation is needed and how to do it? What kind of
problems are encountered when trying to solve ambiguity issues?

4. In regards to OCR, what is the impact of OCR’d text to the results?
Is it possible to minimize the impact of errors?

The thesis is structured in the following manner. Chapter 2 describes
the background and the designed model of annotation. In chapter 3, based
on the model of annotation, the implementation and technology choices are
discussed in more detail. Chapters 4 and 5 introduce the two use cases for
the automatic annotation tool and configurations relating to the usage of the
tool. The results of applying the tool to these two use cases are presented and
analyzed in chapter 6. Lastly the conclusions and future work is discussed
in chapter 7.

Chapter 2

Model of Annotation

Annotation or more precisely semantic annotation can be used to enrich
the document metadata. There are different approaches into semantically
annotating documents. The annotation process can be performed manually,
semi-automatically, or fully automatically. Manual annotation is done by
one or more people. Manual annotation tools allow users to add annotation
to web pages or to other resources. In semi-automatic annotation users are
given automatic suggestions and they can choose the fitting ones. In fully
automatic annotation tools, annotations are generated by applications and
users have no control over them. [78]

Traditionally manual annotation and subject indexing tasks require that
a human has to read or scan the document and then produce annotations or
select keywords that describe the aboutness of a text. A generic automatic
tool for annotating and subject indexing could help to reduce time and money
spent on the tasks. In addition, due to the increase in growth in available
electronic documents the amount of unindexed texts has grown. Automatic
document indexing can be helpful in digital libraries to unload the amount
of unindexed texts. [17, 56, 106]

In order to build an automatic annotation tool that can process Finnish
texts, different methods are required. This chapter describes semantic anno-
tation, automatic annotation, and related topics in more detail. Afterwards,
an abstract model of automatic annotation is introduced and the process and
methods used in it are explored further.

2.1 Semantic Annotation

The goal of annotation is to find fitting descriptions for given resources. A
resource in this context can be a text (for example article, magazine, book)

4

CHAPTER 2. MODEL OF ANNOTATION 5

or a non-textual object such as a map or an image. The general purpose
of annotating documents, in addition to improving search, is to enable new
applications including highlighting and categorization, generation of more
advanced metadata, and effortless traversal between unstructured text and
available relevant knowledge. For example, knowledge acquisition can be
performed based on extraction of more complex dependencies – analysis of
relationships between entities, event and situation descriptions. [53] An ex-
ample annotation would identify the term Helsinki in a text as a proper
noun. The annotations that consists of terms can also be used to summarize,
to navigate, and to visualize document contents.

Semantic annotation, on the other hand, uses controlled vocabularies,
such as ontologies, and adds meaning for the identified term. To be more
precise; it is about assigning to the resources links to their semantic descrip-
tions. [53] An example semantic annotation would relate the term Helsinki
to an ontology, identifying it as the capital city of Finland.

Semantic annotation can be divided into multiple subareas such as subject
indexing or named entity recognition (NER) which are main focuses of this
thesis. The goal of subject indexing [93] is to describe the given document us-
ing pregnant keywords. In automated annotation systems the keywords can
be selected from the text using information extraction methodologies. Infor-
mation extraction applications usually rely on two context specific resources:
a dictionary of extraction patterns and a controlled vocabulary that con-
tains semantic information and relations (semantic lexicon). The extraction
patterns may be constructed manually or created automatically. Typically
systems that automatically create extraction patterns, use special training
resources, such as texts annotated with context specific tags or manually
defined keywords, frames, or object recognizers. [85]

2.1.1 Ontologies

A central component of semantic annotation is the linking of extracted tex-
tual entities to given ontologies. In computer science, an ontology is a model
of entities and their relationships in a domain of knowledge or practices. It is
represented in a declarative formalism. Ontologies consist of concepts with
an explicitly defined semantics and can be used as values in metadata. [31, 92]

In practice, ontologies are networks of concepts that have different kinds
of relationships between them, such as meronymy, and hyponym. A meronym
is a part of a whole where as a holonym is an opposite of a meronym. For
example a the term page is a meronym of a book and car is a holonym for
the term tire. A hyponym is a subordinate term whereas a hypernym is a
superordinate term in contrast. As an example the color red is a superordi-

CHAPTER 2. MODEL OF ANNOTATION 6

nate term or hypernym to the terms crimson, maroon and scarlet. Crimson,
maroon and scarlet are subordinates or hyponyms of color red. [15, 46] These
relationships can be used to improve search capabilities of applications. For
example, the winner of the Semantic Web Challenge 2006, the E-Culture
demonstrator, uses existing ontologies for annotation and search of a collec-
tion of resources. In the demonstrator, a query for flowers not only returns
documents about flowers but also documents annotated with roses, since the
concept flowers is defined as a hypernym of roses. [38]

In the domain of the Semantic Web, ontologies are described in RDF
format. RDF (Resource Description Framework) represents information as
graphs. A graph is a set of subject-predicate-object triples, where the ele-
ments are Internationalized Resource Identifiers (IRIs), blank nodes, or data
typed literals. These triples are used to express descriptions of resources. [22]
For example, the subject company can be described as a synonym of the ob-
ject firm by using a corresponding keyword defined by a vocabulary such
as RDFS, SKOS, or OWL. These vocabularies or ontology languages extend
the basic RDF vocabulary. RDFS or RDF Schema provides a data-modeling
vocabulary for RDF data by adding classes, instances, hierarchies, range and
domain restrictions, and introducing reasoning support. [14] SKOS (Simple
Knowledge Organization System) provides a model for expressing the ba-
sic structure and content of concept schemes such as thesauri, classification
schemes, subject heading lists, taxonomies, and folksonomies [45]. OWL
(Web Ontology Language) is a computational logic-based language for the
Semantic Web that extends RDF by adding more possibilities for reason-
ing [36].

2.1.2 Applications for Semantic Annotation

There are a number of applications that can utilize semantic annotations.
On the web, the two principal use cases are searching and browsing. Linked
data facilitates semantic search and semantic browsing. Searching, or more-
over semantic searching, utilizes additional semantic information in order to
improve search results. Browsing means that the user follows associative
links to find information. In addition to search and browsing applications,
annotations can be utilized, for example, in visualization and summarization.
[41]

In semantic searching, the goal of utilizing semantic information is to
understand the user’s information query more deeply in a context to deter-
mine the relevance of search objects more accurately. The additional external
information may concern the ontological properties of data such as the end-
user’s preferences, profile, or the spatio-temporal context where searching is

CHAPTER 2. MODEL OF ANNOTATION 7

performed. [41]
The idea of semantic browsing is to support browsing documents, for ex-

ample, through associative recommendation links. These links are created
based on the underlying linked metadata and ontologies. Semantic recom-
mendations are often based on semantic criteria that differ from the original
search terms but at the same time are complementary to them. [41] For ex-
ample, one use case could be recommending links to products in a online
shop based on behavioral of the users of the same age and sex.

Faceted search is a combination of searching and browsing as the search
is based on selecting facets that correspond to links of concepts. Contrary
to semantic browsing, faceted search does not aim to expand the result set
but rather to constrain it by filtering the results with user’s selections. It
has a more visualized approach to searching; faceted search is useful when
the user cannot formulate his information needs in accurate terms. Faceted
search allows the user to look and learn about an area of interest whereas in
Google-like keyword search interface, it is usually preferred if the user knows
exactly what he is looking for and is capable of expressing her information
need accurately. [26, 41]

Visualization of annotations can provide useful graphical summarizations
of a document or a text. By using visualizations and summarizations of the
document contents the readers can learn about the document’s aboutness.
Otherwise, the readers may be forced to scroll through many pages to identify
the information they seek. [55] Tag clouds are visual representations that
summarize or describe document contents. [35, 55] The input data that is
often used in tag clouds is community based tags. The tags are unstructured
annotations by authors or readers that describe the document. In addition,
usually used search engine query terms, word frequencies within documents,
and pre-existing category labels are visualized using tag clouds. [35] Tag
cloud interfaces have an advantage in presenting descriptive information and
in reducing user frustration. [55]

Tag clouds can utilize semantics. In the earlier example Helsinki was
recognized as the capital city of Finland. Now, if a tag cloud was created
about a document that mentions Helsinki, it would be possible to enrich it
semantically. Meaning that we could add terms such as Finland or City into
the tag cloud.

2.2 Automatic Annotation

Due to the monotonous and costly nature of manual annotation, it is im-
portant to design annotation tools where the annotation process can be per-

CHAPTER 2. MODEL OF ANNOTATION 8

formed as swiftly as possible. The entrance barrier for annotation can be
lowered with a generic annotation tool because it would reduce development
costs and preparatory work. [106]

Automatic annotation tools can be, for example, based on machine learn-
ing or statistical methods. [83, 106] These tools can have limitations regarding
adaptability, reconfigurability, and reusability. It can be hard for the tools
to accomplish annotation tasks outside of the typical domain of the tool.
Reusability issues may arise when there is a need for manual intervention to
add newly annotated documents into the iteration. [106]

One example of an automatic annotation system is the DBpedia Spotlight
service1. DBpedia Spotlight is an open source service that recognizes DBpe-
dia resources in natural language text. It is a solution for linking unstructured
information sources to the Linked Open Data cloud. DBpedia Spotlight rec-
ognizes phrases, people’s names and terms that have been mentioned (for
example ”Michael Jordan”), and matches them to unique identifiers (for
example http://dbpedia.org/resource/Michael I. Jordan, the machine learn-
ing professor or http://dbpedia.org/resource/Michael Jordan the basketball
player). Currently this project’s focus is on English language. [23]

In Figure 2.1 depicts an example of a chunk of text annotated with DB-
pedia Spotlight. The demo available for public use2. In it a chunk of text is
given to the application and by pressing the Annotate button it annotates
the text. The semantic annotations are visible in the figure as links. In this
case the annotations have been limited to certain types that are shown below
the text field. These types have been selected with the select types button,
that opens a selection of types to choose for the users.

The DBpedia Spotlight application links text only to its own DBpedia
ontology. In a generic automatic annotation tool the text can ideally be
linked to multiple different ontologies. In addition to linking documents,
the application needs to be able to select best describing keywords for a
document. This is not a simple task and needs natural language processing
methods in addition to linking text correctly to ontologies.

2.3 The Process of Automatic Annotation

The automatic annotation process of documents consists of several phases. In
order for it to succeed, the correct textual entities need to be extracted from
the text. The task requires the usage of computational linguistic methods.

1https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Introduction
2https://dbpedia-spotlight.github.io/demo/

CHAPTER 2. MODEL OF ANNOTATION 9

Figure 2.1: Example of DBpedia Spotlight demo.

In the case studies of this thesis, the methods are selected based on the
characteristics of the Finnish language.

After the extraction of textual entities, these entities are linked to dif-
ferent ontologies. The semantic relations of the ontologies can be utilized
to recognize relationships between textual entities during the linking phase.
Once the linking is performed, the entities form a group of keyword can-
didates. The relevancy of each candidate is estimated and the candidates
are ranked from best to worst. From this group the most relevant ones are
selected as keywords. The strategy for selecting keywords is left for the user
to decide.

In this thesis, model for automatic annotation is built from these com-
ponents. In the following sections the topics are explored in more detail. In
addition, the model of annotation is presented.

CHAPTER 2. MODEL OF ANNOTATION 10

2.3.1 Computational Linguistic Methods

In the domain of Finnish documents, the language itself creates a challenge
for annotation process. Finnish language is highly inflected and it expresses
meaning through morphological affixation (agglutinativity). In order to find
relevant connections between terms of a document and ontologies, the base
form of each word in a document needs to be identified. In languages such as
English plural and possessive relations, grammatical cases, and verb tenses
and aspects, are expressed using syntactic structures. However, in highly
inflected languages, these are characteristically represented using case end-
ings. Another typical feature of inflected languages is the usage of compound
words. [89, 93]

Stemming is a linguistic method that strives to find a word’s root form. It
can be described as a crude heuristic process that chops off the ends of words
in hopes of achieving the root correctly most of the time, and often includes
the removal of derivational affixes. [63] For these reasons modern stemmers,
such as Snowball stemmer3 [54], work poorly with inflected languages [3, 51,
89, 93]. For example, in English stemming of the word shoes produces the
word root shoe which is also the word’s singular form. However, in Finnish,
the corresponding word root kenk cannot be derived from the plural form
kengät, and stemming would result in the stem keng instead. The connection
to the original word is lost.

An alternative for stemming is to use lemmatization. In lemmatization
the goal is to find a lemma (or the basic form) from the inflected version of the
word. Lemmatization can utilize vocabularies and morphological analysis of
words to achieve its goal. For these reasons it can be considered to be a more
sophisticated way to attain the base form for a word than stemming. [63, 64]

Morphological analysis is a part of lemmatization but can be also used as
a standalone method. One of its goals is to find the base form and to identify
the inflection form of a word. The analysis includes disambiguation that is
a selection of the most plausible sequence of lexemes [4, 105]. A lexeme is a
basic lexical unit of a language that includes a lemma and inflected forms [64].
In Finnish language, because of the complexity of the morphological structure
of words, a specially designed morphological analyzer, such as FinTwol4 [61],
Omorfi5 [81], or FDG6 [94], is needed to identify lemmas embedded in Finnish
words [60].

In order to successfully link the textual entities to ontologies, the tool

3http://snowball.tartarus.org/
4http://www2.lingsoft.fi/cgi-bin/fintwol
5https://github.com/flammie/omorfi
6http://www.connexor.com

CHAPTER 2. MODEL OF ANNOTATION 11

needs lemmatization and morphological analysis methods. These methods
can be used to differentiate between different textual entities. They can be
also used to identify part of speech class and transform the textual enti-
ties into same forms as they are in the selected ontology. For example in
KOKO (The Finnish Collaborative Holistic Ontology) ontology the concepts
are nouns mostly in plural form [88]. In order to successfully link textual
entities, they must be nouns and transformed into the same form as in the
ontology.

2.3.2 Named Entity Linking

In natural language processing, named entity linking (NEL) is the task of
determining the identity of named entities mentioned in a text. Named
entity recognition (NER), named entity disambiguation (NED), and named
entity normalization (NEN) [32, 47, 52] are a part of the same task but focus
on different issues regarding named entity identification. NER is a sub-task
of information extraction. Its purpose is to locate and classify elements in
text into pre-defined categories such as the names of persons, organizations,
locations, and other named entities (NEs). [10, 71, 97] NER is a central
component in many natural language processing (NLP) applications, such as
question answering, summarization, and machine translation. The current
focus of NER is to develop language-independent systems that learn and
utilize statistical models. [76]

NER alone is not enough to identify the identity of the entity extracted
from a text. In addition to NER, named entity disambiguation is a crucial
prerequisite for successful information extraction and information retrieval
for example. [16, 21, 104] While NER identifies the occurrence or mention of
a named entity in text, named entity disambiguation identifies which specific
entity it is. The combination of NER and NED can also be called named
entity normalization (NEN). [18] It is a task that identifies named entities
from the text and normalizes them to the concepts they refer to. The nor-
malization means that it aims to solve rising ambiguity and synonymy issues.
The task includes NED to solve ambiguity issues but also handling synonyms
by connecting them. [47, 52]

Named entity linking is the task of linking found named entity mentions
to entries in a structured knowledge base. NEL computes direct references
for example to people and to places instead of potentially ambiguous or
redundant character strings. It can be used to aid search. For example if
information about a certain named entity is queried, the results could contain
facts about the entity in addition to pages that talk about it. [16, 32]

In this thesis, the named entity linking component needs to link the tex-

CHAPTER 2. MODEL OF ANNOTATION 12

tual entities into selected ontologies. The ontologies need to be easy for the
user to add, and to configure the tool to use them correctly. Regarding disam-
biguation, the tool needs to be able to decide the best match for the textual
entity. In different ontologies the same entity may have a different meaning.
Therefore the user needs to define priorities for using different ontologies.

2.3.3 Ranking of Keyword Candidates

Before assigning keywords to a document, the keywords need to be ranked
and the most relevant keywords need to be selected. In this thesis it will
be referred to candidate ranking but it can also be called candidate fil-
tering [66, 102]. In order to evaluate keyword relevancy, different kinds of
weighting schemes can be used to calculate a weight to rank the candidates.
The ranking can be done using manually assigned heuristic rules [8, 44, 102],
unsupervised statistical methods [58, 67, 102], or supervised machine learn-
ing [29, 65, 99, 102]. These term relevancy weighting schemes can estimate
term relevancy based on the number of times the term occurs in a docu-
ment [8, 29, 99, 102], the location of the term in the text [29, 74, 99, 102],
the length of the term [8, 66, 99, 102], or based on the semantic relations and
properties of the term in the thesaurus hierarchy [39, 65, 66, 102].

In order to facilitate candidate ranking, the tool needs to have a possi-
bility to use different ranking strategies. It should be possible to add these
strategies into the tool easily. And the component should produce relevancy
score that can be ranked easily, creating a matrix where the terms and their
scores are mapped for later usage for each document.

2.3.4 Architecture

The automatic annotation tool developed in this thesis has been designed by
taking into consideration the use cases and the background of the field. In
order to annotate Finnish texts, it requires specific tools designed for Finnish
language. In addition to the NLP approach, it needs to identify relevant
concepts and named entities and link them to controlled vocabularies with
matching terms. Based on both of the requirements mentioned, a general
model for annotation has been created. The model is introduced in Figure
2.2.

As shown in Figure 2.2 the automatic annotation application has a lin-
guistic preprocessing component, a candidate extraction component, and a
candidate ranking component. These components process the input in the
given order and produce an output. The linguistic analysis requires input
data in a text format. In Kansa Taisteli case study the input is a set of

CHAPTER 2. MODEL OF ANNOTATION 13

Figure 2.2: Model of annotation.

magazine articles that are in PDF format. The articles need to go through
an OCR process to get the required input text for the application. In the
Semantic Finlex case study, the input data is in HTML format. The applica-
tion must extract text from an HTML website where each page is identified
using a URL.

Once the application has the data in a text format, the next phase is to
process the input using linguistic methods. In this case what would be needed
is to base form the text and to exclude some parts of speech such as pronouns
and conjunctions from the text to avoid clutter. For this component, the
language and part of speech of the words needs to be identified, so that it is
possible to extract later on keywords and named entities efficiently.

After the linguistic preprocessing components have processed the text, it
is ready to be linked into internal and external vocabularies in phase two.
The candidate extraction component, given external vocabularies, can link
the text with other resources and retrieve data such as the term’s synonyms.
In addition to extraction of named entities, it is possible to identify key-
word candidates from the text to create more accurate descriptions of the
documents.

In the last phase the application has the linked data and extracted key-
word candidates. In it the data and the text is analyzed to see which keyword
candidates are useful in describing the content and to function as keywords

CHAPTER 2. MODEL OF ANNOTATION 14

for the given document. For this purpose, term importance and different
weighting schemes are required. Using weights, the extracted candidates can
be ranked and the top candidates picked.

Finally, after the candidate selection the application needs to produce an
output. The output contains the results in a required format. The applica-
tion needs to be able to serialize the results into different formats for further
usage. It should be possible for the user to configure the output and input
formats.

Chapter 3

Implementation

In order to implement the model of automatic annotation, introduced in the
previous chapter, different tools and implementation languages can be used.
For this thesis, I chose Python programming language as the implementation
language. Python is a general-purpose, high-level programming language,
and like many other programming languages it is free, even for commercial
purposes, and it is platform independent [86, 100]. Python’s modularity is
beneficial for this project; there are many extension modules that can be used
with Python that also aid in the development of the annotator application.

In addition to selecting implementation language, the tools need to be
picked to meet the requirement of having the ability to annotate multiple
different kinds of document and texts. Therefore, in order to meet the diverse
requirements presented in the previous chapter, configurability is introduced
as a criterion for choosing tools and modules. In this chapter the implemen-
tation is discussed for each part of the model of annotation. Starting with the
input and output data, followed by the linguistic preprocessing. After this,
tools and technologies to implement candidate extraction are introduced and
finally the candidate ranking technologies are discussed.

3.1 Input and Output Datasets

The application needs by default its input in text format. The text should
be natural language text that can be processed using linguistic tools and
methods. However, in order to create a general purpose tool, it could be
more useful if the application could also extract natural language texts from
different data formats, such as a news article from a HTML page or a web-
shops’s product description in RDF or XML format. In addition, in some
cases some documents can already contain metadata that can be used to

15

CHAPTER 3. IMPLEMENTATION 16

aid in the annotation process. For example, the ontologies could be selected
based on the metadata.

For the extraction of text and document metadata, Python offers a variety
of modules such as BeautifulSoup1 and SPARQLWrapper2. BeautifulSoup is
a Python library for extracting data from HTML and XML files. It creates a
parse tree of the input and simplifies the text extraction for the user, making
it possible to target any parts of the input data. [84] SPARQLWrapper is a
Python module that can be used to extract text or document metadata from
data in RDF format. [27]

Finally, once the application has been executed, the results must be gen-
erated in a user-specified format. For this purpose, a specialized RDF serial-
ization module is needed for the application. One such module is RDFLib3.
It can serialize RDF into formats, such as Turtle4 (Terse RDF Triple Lan-
guage) [9], and write the results into a file.

3.2 Linguistic Preprosessing

The first phase for the extracted input text is linguistic preprosessing. In or-
der to extract terms and do subject indexing, the text needs to be analyzed.
In this phase the extracted text is analyzed using linguistic methods. For
this purpose, the linguistic preprocessing could use methods such as morpho-
logical analysis and lemmatization. The words need to be in a basic form in
order to be able to analyze, link to ontologies, and later on calculate weights
for the terms.

One such tool is the Lexical Analysis Services (LAS). LAS uses existing
linguistic tools such as Omorfi that have support Finnish and many other
languages. [69] It consists of language recognition (for 95 languages)5, lemma-
tization (for 20 languages)6, morphological analysis (for 14 languages)7, in-
flected form generation (for 14 languages)8, and hyphenation (for 46 lan-
guages)9. All functionalities are available as web services, supporting both
the HTTP and WebSocket protocols. All services are additionally CORS-
enabled and return results in JSON for easy integration into HTML5 web

1https://www.crummy.com/software/BeautifulSoup/
2https://rdflib.github.io/sparqlwrapper/
3https://rdflib.readthedocs.io/en/stable/
4https://www.w3.org/TR/turtle/
5http://demo.seco.tkk.fi/las/#language recognition
6http://demo.seco.tkk.fi/las/#lemmatization
7http://demo.seco.tkk.fi/las/#morphological analysis
8http://demo.seco.tkk.fi/las/#form generation
9http://demo.seco.tkk.fi/las/#hyphenation

CHAPTER 3. IMPLEMENTATION 17

applications. [69]
The diversity of functionalities makes LAS a good fit for the needs of the

automatic annotation tool. The morphological analysis can produce a sound
analysis that can be used by the automatic annotation tool. For example, if a
Finnish language sentence such as ’Albertin koira haukkuu tuntemattomille’
(Albert’s dog barks at strangers, in English) is given for the tool, it produces
the analysis results in JSON format for the sentence. The results contain
information about each word such as the word’s basic form (for example in
Finnish haukkua, in English bark), original form (in Finnish haukkuu, in
English barks), tense (present tense), and part of speech (verb).

3.3 Candidate Extraction

After the linguistic analysis phase, the results of the analysis can be used
to extract suitable keyword candidates from the text. These candidates can
be identified by using controlled vocabularies. For this purpose, a tool to do
matching and entity linking is required. To do this a tool called ARPA can
be used.

ARPA is a configurable automatic annotation tool that uses LAS (Lex-
ical Analysis Services), SPARQL (SPARQL Protocol and RDF Query Lan-
guage [96]), and ontologies to identify entities from a text document, and in
return gives suggestions for annotating texts [69]. SPARQL is a language and
a protocol to query and manipulate RDF graph content on the Web or in an
RDF store [96]. When a chunk of text is sent to the ARPA service, it tries to
interpret the text using LAS. This is where the ARPA configurations come
into play. The configurations are applied to LAS and it is used accordingly.
Eventually it produces a JSON output that has the complete results for the
lexical analysis. From there ARPA takes the results and queries for matches
with the given SPARQL query from a SPARQL endpoint. Finally, after
querying is finished, ARPA returns the results in JSON output format. [69]

Unlike DBpedia Spotlight, ARPA is a more fitting tool for implementing
automatic annotation in our case studies. DBpedia Spotlight lacks language
support for Finnish and has less configuration options. ARPA is highly
configurable and has support for Finnish language, as it is presented in the
Figure 3.1. In the figure it is shown that the ARPA service configuration is
comprised of a text field and a series of controls by which it is possible to
change parameters of the lexical analysis process, as well as to specify target
ontology for fetching candidate annotations. Thus, in order to use ARPA,
a named configuration has to be created for each ontology. Afterwards this
configuration can be used as a web service to query annotations for given

CHAPTER 3. IMPLEMENTATION 18

Figure 3.1: Example of an ARPA configuration.

text.
As shown in Tables 3.1, 3.2, and 3.3 ARPA configurations can be divided

into three groups: LAS options, candidate filtering options, and query op-
tions. The LAS specific options, listed in Table 3.1, improve linking of entities
by utilizing the linguistic tools of LAS. In order to improve the possibility of
finding a matching entity for the queried text, maximum n-gram length can
be specified. An n-gram is a sequence of n words: a 2-gram (bigram) is a
two-word sequence of words like “European Union” and a 3-gram (trigram)
is a three-word sequence of words. [48] In addition to n-gram length, the user
can define the analysis depth from levels 0 to 2. The analysis depth feature
can be used to define the precision used in the disambiguation of words.
However, depending on the level of disambiguation, the processing can be
laborious for the tool and slow it down on higher levels. In addition to these
configurations, the user can define the language of the input text. For this
purpose the user needs to define the language code (for example fi or en) for

CHAPTER 3. IMPLEMENTATION 19

LAS options

Maximum N-gram length
Analysis depth
LAS Locale

Table 3.1: LAS options in
ARPA.

Candidate filtering options

Required LAS tags
Disallowed LAS tags
Strongly disallowed LAS tags

Table 3.2: Candidate filtering options
in ARPA.

Query options

SPARQL endpoint
SPARQL query
Query using original form
Query using base form
Query using inflections
Guess baseforms for unknown words
Query modifying every part
Query modifying only last part
Query using all permutations

Table 3.3: Query options in ARPA.

the LAS Locale option.
Once LAS has analyzed the input data and extracted candidates for entity

linking, the next step enables the filtering of these candidates. The candidate
filtering options, listed in Table 3.2, can be used to filter the textual entities or
words used in linking. The user can define different LAS tags corresponding
to parts of speech classes to include or exclude only specific classes. It can
be used to disallow for example pronouns and conjunctions or allow only for
example nouns. The disallowing of LAS tags has two levels: disallowing and
strongly disallowing. The difference between the two is that the strongly
disallowing of tags filters out words if any of their analyses contains the
defined tags whereas the disallowing filters out the words that are interpreted
as the user specified tags by LAS.

After possible candidate filtering the tool can perform entity linking. For
entity linking a set of query options, listed in Table 3.3, are required. The
linking is done by matching extracted candidates into the ontologies. ARPA
requires the use of ontologies that are in RDF format and can be queried
using their SPARQL endpoints. Therefore, it is required that the user defines
a targeted SPARQL endpoint and a SPARQL query. The SPARQL query
needs to be configured to be able to find matching concepts for the given
candidates. In addition to the query and endpoint, the candidates can be
transformed into their base form (basic form) or inflected form to improve

CHAPTER 3. IMPLEMENTATION 20

results. The possible options in ARPA for modifying the candidates are query
using the original form, base form, or inflected form. The inflections can be
defined for the tool to transform the textual entity into the user specified
form. In addition to modifying the word form, the tool can be configured
to modify open compound words (such as post office, ice cream, and real
estate) and all their parts or only the last part. For example the inflected
form of a Finnish place Viipurin torilla (at Vyborg’s square, in English)
transforms into its base form Viipurin tori (Vyborg’s square, in English)
when modifying only the last part of the name. The tool also enables the
user to use all possible permutations that the tool can generate for a textual
entity. For example, if some parts of the given string need to be transformed
into their base forms but not the ending, the application can try to query
using different versions of the input string. In case the tool does not succeed
in base forming of words there is a possibility to guess the base form. For
this purpose there is the guess base forms for unknown words setting that
can be used when the input text contains words that do not exist in tools
vocabulary.

After processing text, the tool produces results in JSON format where
the found matches are in the original format and in specified query format.
In addition, the URI, the original form and label of a concept in the target
ontology are given. The unidentified textual entities from the texts can be
recognized by other ARPA configuration or processed later. These terms can
also serve as keywords and therefore should not be ignored by the application.
Therefore the automatic application tool needs to have an option for the user
to specify whether these terms should be ignored or not.

The candidates identified by ARPA are collected by the automatic anno-
tation application from the JSON response. The candidates can be matched
back to the original string input. In case of finding two overlapping matches
for a string in the original text (such as Indiana Jones and the Last Cru-
sade and Crusade), the longer string is selected for further processing. In
addition, ARPA tool can be configured to use hierarchical structures and
semantic relations to do enriching of terms. Some ontologies and thesauri
contain information regarding relationships between terms such as synonymy,
hypernymy, or meronymy. The information can be used to find more fitting
keywords or to get a more accurate measure of a keyword’s relevancy. For ex-
ample, the terms friend, buddy, and pal can be grouped together the ontology
contains these terms and has identified them as synonyms.

CHAPTER 3. IMPLEMENTATION 21

3.4 Candidate Ranking

Finally, the candidate ranking component uses the results of the linguistic
preprocessing and candidate extraction components to identify the relevant
candidates. The application evaluates each candidate based on information
gathered in the candidate extraction phase to evaluate the relevancy for the
candidate. The evaluation can use different weighting schemes to calculate a
score for each candidate, and rank them from best to worst. Because there
are many ways to evaluate and estimate relevancy for the candidates, it is
possible to develop and add new weighting schemes into the application.

The ranking itself is optional and there are many possible heuristics for
the selection of keywords, such as defining a fixed amount of keywords, se-
lecting a cutoff value for keywords weights as a filter, or selecting a range for
keywords based on document length. Due to these reasons the ranking needs
to be a highly configurable feature. Based on the configuration, all or some
keywords are picked for the document. The selection of keyword candidates
is the end result of the candidate ranking component.

Chapter 4

Case Study: Kansa Taisteli Mag-
azine

The first case for automatic annotation is the Kansa Taisteli magazine arti-
cles. Currently the magazine articles are publicly available in PDF format
via a website of The Association for Military History in Finland1 in collabo-
ration with Bonnier Publishing. The magazine articles are accompanied with
a PDF file containing metadata for 3,385 articles. The metadata has been
collected manually by Timo Hakala. [33] The metadata contains information
regarding the article (author, title, issue, volume, and pages) in addition to
annotations describing the content (war, arms of service, military unit, place,
and comments). The metadata has been converted into an RDF format by
Kasper Apajalahti and it can be used to browse the magazine articles via a
faceted search demo application2. The data is available as linked open data
service 3 and there is the semantic WarSampo portal 4 that uses the data.
The semantic portal user interface contains several different perspectives to
war history. The data covers the Winter War (1939–1940), the Continuation
War (1941–1944), and the Lapland War (1944–1945). [42]

The purpose of automatic annotation is to enrich the existing Kansa
Taisteli magazine article metadata by identifying named entities (such as
people, places, and military units) from the text and to provide links to
related materials. In addition, the metadata is used to improve the faceted
search application and to make it easier to search and browse articles.

The annotation process is illustrated in Figure 4.1. For the Kansa Taisteli
magazine articles, this process is as follows: the input is a collection of PDF

1http://kansataisteli.sshs.fi
2http://www.ldf.fi/dataset/kata/faceted-search/
3http://www.ldf.fi
4http://www.sotasampo.fi

22

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 23

Figure 4.1: The annotation process for Kansa Taisteli magazine articles.

files and the text for annotation is extracted using OCR (Optical Character
Recognition) tools. Afterwards the original metadata is used to identify the
articles based on page numbers. After identification of articles, one article at
a time, the text is used to query for matching concepts from selected ontolo-
gies. Once the annotations have been created, the results are written in RDF
format and the WarSampo dataset is updated. The OCR (optical character
recognition) process, selection of ontologies, data linking, and finally the us-
age of the enriched data is described in the following sections of this chapter
in more detail.

4.1 Optical Character Recognition

In automatic annotation it is important to be able to annotate and process
different inputs. Some automatic annotation systems require annotated PDF
files or images that may contain text. For this purpose, an automatic anno-
tation tool needs to be able to provide annotation and process text within
these file formats. Optical Character recognition (OCR) tools can be used
to extract texts from these file formats.

OCR is a complex technology that converts PDFs or images (typically
scanned books, screenshots, and photos with text) with text into editable
formats such as TXT, DOC, or PDF (with an added text layer) files. [75]
Today, there are different types of OCR software available, such as Desktop
OCR, Server OCR, and Web OCR. The accuracy rate of OCR tools varies
from 71 to 98 percent. [37, 80]

OCR can recognize both handwritten and printed text. However, the

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 24

performance of OCR is directly dependent on the quality of the input doc-
uments. OCR is designed to process images that consist almost entirely of
text, with very little non-text clutter obtained from pictures. [80]

The OCR process consists of multiple steps. Every step is a set of related
algorithms that do a piece of the OCR processing. Each step is important
for the success; the whole OCR process will fail if only one of its step cannot
handle the input. Every algorithm is critical and they are required to work
correctly on the range of images. The OCR process yields better quality
results if some features of the given images are known making the task eas-
ier. Usually this becomes possible if only one kind of images are processed.
A good OCR system must have the ability to adjust the most important
parameters of every algorithm; sometimes this is the only way to improve
recognition quality. [75]

During execution of an OCR system, a few problems can occur. One
common issue for the system is that it can confuse letters, symbols and
digits while trying to interpret the given input. Some them, such as the
digit “1” and letter “l”, are very similar to one another and it can be hard
to differentiate and recognize them correctly from the input. In addition,
text on a very dark background or printed on graphics can be difficult to
extract. [80]

OCR Process

In order to implement the automatic annotation for the Kansa Taisteli mag-
azine articles, the application requires the articles in text format. For ex-
tracting texts from the PDF files, there exists several OCR tools and from
them two were selected: ABBYY FineReader and Tesseract.

Tesseract is a free open source optical character recognition tool. It
was originally developed at HP in 2005 and was released as open source.
Since 2006 it has been developed by Google and is available at GitHub5. [68]
It has developed greatly over the years and fares well already in compar-
ison to the commercial OCR systems although its architecture has stayed
mainly unchanged over the years. [13] Its OCR engine differs from the other
tools and even today some of the phases of its OCR process can be consid-
ered unique. [90, 91] The system supports 108 different languages, including
Finnish, and can be trained to recognize other languages. Tesseract supports
various output formats such as plain-text, HTML, and PDF. Regarding input
formats, Tesseract supports image formats such as TIFF or PNG. [107]

5https://github.com/tesseract-ocr

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 25

ABBYY FineReader 6 is a commercial OCR system. In this project
FineReader 11.0 was used as it was the latest version at the time available.
It supports a wide variety of languages, a total of 189 languages (including
Finnish), and can be considered one of the most popular OCR systems on the
market. [1, 101, 103] The OCR system supports numerous input and output
formats. The supported input formats can be images (such as PNG, JPEG
or TIFF) or PDF files and most common images are supported as black and
white or as color pictures. It has a rich selection of supported input and
output formats such as PDF, CSV and TXT. [1]

During evaluation of the OCR tools, it was noted that Tesseract consis-
tently produces solid results that contained few errors. ABBYY FineReader,
on the other hand, seemed to fare better with the Finnish texts as the error
rates were much lower than with Tesseract. However, during testing it was
noted that, unlike with Tesseract, ABBYY seems to mix up paragraphs for
unidentified reasons. Therefore, it was decided that both tools needed to be
used to get the best results from the OCR process. Both tools would be used
to extract text and the results would be combined.

The combining was be done by fixing Tesseract’s results using ABBYY’s
results with the exception of avoiding parts where the order of paragraphs
was broken. The process of combining results was semiautomatic; using word
processor tools and comparing the results of the two and merging them into
one result in the end. In addition, occasionally some errors (such as problems
with paragraphs) needed to be fixed manually.

In addition to the issues created by the differences of the tools, there were
also problems with interpretation of the text itself regardless of the tool. For
example, the names of military units have abbreviations that are commonly
used in the text. The abbreviations are inflected in Finnish by appending a
colon and the inflection ending into the end of a word’s basic form. However,
in OCR, the colon was often read as i or z. Most of these errors could be
corrected using regular expressions on the results. [42] For this purpose a list
of regular expression rules was created and it can be found in Appendix A.
The list of rules contains 164 rules in total and it was created while fixing
the results of the OCR tools. The end result of this phase was the fixed
texts that could be used later on in the annotation process in addition to the
regular expression list for fixing OCR results.

6http://www.abbyy.com

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 26

4.2 Ontologies

In order to annotate the articles, the automatic annotator application re-
quires for the process a set of ontologies and their ARPA configurations.
The chosen ontologies here were from the WarSampo project: people, mili-
tary units, Karelian places, and municipalities. External ontologies, such as
KOKO ontology and DBpedia, were also used to enrich the annotations with
more general terms. The order of ontologies impacts the annotations; the
first ontologies match the most terms from their vocabularies and this can
impact the ability to match terms into other ontologies. For example a text
can contain the open compound word ice cream truck that can be found from
ontology A whereas the term ice can be found from ontology B. Therefore it
is good practice to arrange the ontologies into the configurations in the order
of execution, starting from the most context specific and lastly the more gen-
eral ontologies. In this case the order of ontologies is the following: people,
military units, Karelian places and municipalities, DBpedia, and lastly the
KOKO ontology. The general configurations for all ontologies include the
filtering of forenames and surnames (except for person and place ontologies),
extracting only terms that have been POS tagged as nouns or proper nouns,
base forming of terms and setting the default language to Finnish. Nouns and
proper nouns are selected as keyword candidates because nouns are preferred
parts of speech for terms [5]. In addition, selected ontologies mainly have the
terms in form of nouns (for example KOKO ontology) [88] and proper nouns
(for example ontologies of the WarSampo project). Each ontology and their
ARPA configurations are described in the following sections. The SPARQL
queries are represented for each ontology in the Appendix B.

Person Ontology

The person ontology contains information about military personnel, includ-
ing their ranks and details about casualties. Currently the dataset consists
of 96,000 person instances of which approximately 95,000 instances extracted
from National Archives Service’s war casualty records from 1939 to 1945. In
each instance record there are the basic properties such as the person’s sur-
name, forenames, a possible description, and a link to the information source.
Most of the information is modeled as events like person’s birth, death, pro-
motion, or joining a military unit. [42] The person ontology is used to identify
mentions of people from the Kansa Taisteli articles.

In Kansa Taisteli articles the mentions of people are in multiple different
forms: first forename and surname, full name (all forenames and surname),

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 27

initials of the forenames and surname. In addition, the name is at times
preceded by a rank or title. Sometimes there is only the rank and the sur-
name mentioned (for example marsalkka Mannerheim, Marshal Mannerheim
in English). Therefore, the use of the ontology had to be configured to ac-
commodate all these alternatives. Also the SPARQL queries for ARPA had
to be built keeping these variations in mind. [42]

In regards to ARPA configurations, due to the long names and titles the
n-gram length is 5. The SPARQL query is configured to only match strings
that are longer than 3 characters and contain substrings starting with a
capital letter indicating that they contain a name. In addition, the query
is set to use base form by transforming every part of the string into a basic
form. Regarding unknown words, the application is set to guess their basic
form in order to find more matches. Due to performance reasons the analysis
depth is defined as 0.

Military Unit Ontology

The military unit ontology consists of over 3,000 Finnish Army units includ-
ing Land Forces, Air Forces, Navy and its vessels, Medical Corps, stations
of Anti-Aircraft Warfare and Skywatch, Finnish White Guard, and Swedish
Volunteer Corps. The data model of a military unit has many similarities
with the person ontology. [42] The military unit ontology is used to identify
mentions of military units in the Kansa Taisteli articles.

In Kansa Taisteli context there are military units of different wars refer-
enced in the articles. The official military unit names are usually relatively
easy to recognize from the text. Occasionally, some of the units have am-
biguous special names which makes the recognition difficult. One example
of such a unit is the military unit called Puolukka (lingonberry in English).
These special cases get mixed up with ordinary terminology outside the war
context. They require specialized handling and careful interpretation of the
context and language. [42] Therefore the military units ontology is used be-
fore the more general ontologies. The purpose of this order is to ensure that
the alternative names for military units are identified from the text before
they are linked to other ontologies. In addition, the SPARQL query con-
structed for this ARPA configuration is configured to aid in the detection
of these proper nouns. Typically unit names such as ”Puolukka” are usu-
ally written with the capital first letter and the SPARQL query can use this
rule to identify the unit names from other words unless they are starting a
sentence.

Another challenge that arose during the case was the definition of a mil-
itary unit. Sometimes the names of the units have changed significantly

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 28

between and during the wars. The identification of military units poses a
problem for linking because the names change and it is difficult recognize
military units correctly as the same name can be used by other units during
the wars. Currently the ontology covers units of the Winter War and only Air
Force and Navy units of the Continuation War. Arms of services are same
for all the wars during the WW2 in Finland. [42] The automatic annotator
was required to take these features of this ontology into consideration. [42]
In Kansa Taisteli metadata, each article contains a property that indicates
the war during which the events of the article took place. The information
was used to annotate only the articles that concern the events of Winter War
using the military unit ontology to minimize misinterpretations.

Regarding the ARPA configurations, due to the long names and titles
the n-gram length is 3. The SPARQL query is set to match strings longer
than two characters and strings that start with a capital letter. The special
characters are filtered out in order to improve the performance of the query.
Also the query is set to modify every part of open compound words, to
modify only the last part, and to use base form. Unlike in other ARPA
configurations, the analysis depth is set to 2 in order to provide more in-
depth analysis of the input so it can be linked with better accuracy. The
level of disambiguation is high to decrease the possibility of misidentifying a
name of a military unit such as ”Puolukka”.

Place Ontologies

Places have been modeled with a simple schema used in the Ontology Service
of Historical Places (Hipla) [40], which contains properties for the name of
the place, type of the place, coordinates, polygon, and part-of relationships of
the place. [42] The place ontologies are used to identify Finnish and Karelian
places in Russia from the articles.

In the case of places there were two ontologies available for identifying
places from text: Karelian places and Finnish municipalities. Karelian places
and municipalities contain towns, cities, municipalities, villages, water for-
mations, buildings, and place targets in the terrain (such as a bunker). In
terms of configurations, the ontology is restricted to fetch only entities that
match to cities, villages, and towns. In most cases most of the smaller places
are never mentioned in the Kansa Taisteli articles. Often times there may
be a village carrying the same name as a building or a lake. Therefore, it
was seen as useful to rule out all but municipalities, towns, and villages to
minimize confusion. Other configurations include n-gram length of 2 and
analysis depth being 1. The SPARQL query is set to match strings longer
than two characters and strings that start with a capital letter. The special

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 29

characters are filtered out in order to improve the performance of the query.
In this configuration filtering of forenames and surnames cannot be used be-
cause Finnish names for places and villages are similar to surnames [82], such
as ”Kestilä” which can be a name of a place or to a person’s surname. The
ARPA configuration is also set to query modifying only the last part of open
compound words and to use their base forms.

In addition to these configurations, the application was configured to solve
ambiguity issues. The configurations are based on the assumption that in
most cases some types of places are usually better matches than others. For
example, it was assumed that municipalities are better matches than towns
or villages. So in case the application needed to choose which concept suits
the best for a particular text, it always chose a municipality if possible and
afterwards a town or a village, if a there was no matching municipality.

DBpedia

DBpedia7 is a multilingual knowledge base that has been built by extracting
structured information from Wikipedia. It has been created as a part of the
DBpedia project and its structure is maintained by the DBpedia user commu-
nity. The DBpedia project has published releases of all DBpedia knowledge
bases for download and provides SPARQL query access to 19 language edi-
tions, excluding Finnish. [24, 57] The SPARQL endpoint for Finnish knowl-
edge base has been created by the Semantic Computing Research Group
based on the data obtained from the DBpedia project. [87]

In Kansa Taisteli case the DBpedia has been used to extract more general
war terminology from the documents. In order to achieve this goal, DBpedia
has been restricted to allow ARPA to match only to war related concepts.
In the SPARQL query this was achieved by restricting the query to only
match to concepts defined in war related categories. The SPARQL query is
presented in Listing 4.1. In the SPARQL query, the first letter is capitalized
and a language code is added to the query strings. Afterwards the modified
query strings are used to match related terms from DBpedia’s war related
categories, ignoring matches that refer to categories or properties.

Listing 4.1: DBpedia SPARQL query.

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

7http://wiki.dbpedia.org/

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 30

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbpfi: <http://fi.dbpedia.org/resource/>

SELECT ?id ?label ?ngram ?source {

VALUES contains n-gram query strings.

VALUES ?ngram {

<VALUES>

}

Transforming the first letters into the capitalized form

and adding a language code for the query string.

BIND(STRLANG(CONCAT(UCASE(SUBSTR(?ngram,1,1)),

LCASE(SUBSTR(?ngram,2))),"fi") AS ?label)

query for labels using the original query string.

?id rdfs:label ?label .

filtering targeted categories of DBpedia ontology

to include war related categories such as WW2,

warfare, and war history categories.

{

?id dct:subject/skos:broader*

dbpfi:Luokka:Toinen_maailmansota .

} UNION {

?id dct:subject/skos:broader*

dbpfi:Luokka:Sodankäynti .

} UNION {

?id dct:subject/skos:broader*

dbpfi:Luokka:Sotahistorian_teemasivun_luokat .

}

removing matches that are categories or properties.

FILTER(!STRSTARTS(STR(?id),

"http://fi.dbpedia.org/resource/Luokka:"))

FILTER(!STRSTARTS(STR(?id),

"http://fi.dbpedia.org/property/"))

}

In addition to the SPARQL configuration, the other configurations used
were the n-gram length set to 3, analysis depth set to 1 to do more careful
disambiguation of concepts, and queries done modifying every part of open
compound words and only the last part to get a large variety of combinations
matched.

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 31

KOKO Ontology

The KOKO ontology8 is a collection of Finnish core ontologies. It consists of
General Finnish ontology (YSO) and a group of expanding ontologies. [43]
The KOKO ontology is a part of the Finto service. Finto offers a platform
for publishing and using mainly Finnish thesauri, ontologies, and classifica-
tions. [49, 50] The KOKO ontology is used to annotate Kansa Taisteli articles
with general terminology.

The KOKO ontology was configured to query using base form and original
form with n-gram length 3 to target as many words and open compound
words as possible. The analysis depth is defined as 0 due to performance
reasons.

4.3 Data Linking

After configuring the ontologies and executing the application, it has pro-
duced a dataset that has been enriched with new annotations. For each article
the application has added all or some of the following properties :mention-
sPerson, :mentionsPlace, :mentionsGeneral, :mentionsWar, and :mention-
sUnit, indicating military people, places, general terms, general war themed
terms, and military units found from the articles, respectively. These prop-
erties are defined in the configuration along with the output format and
target file. In the case Kansa Taisteli magazine articles, the annotations are
not ranked based on relevancy. All found and linked annotations have been
added into the dataset without candidate filtering based on term relevancy.
The unidentified textual entities are filtered out respectively.

There were several difficulties that were faced during the linking and
annotating of the Kansa Taisteli articles. One of them was that the texts
contained a lot of clutter for example from the images. The OCR tools could
not ignore images that contained text or interpret correctly PDF magazine
issues that were in a bad condition. These issues made some magazine articles
difficult to process and resulted in clutter such as strings containing erroneous
letters, special characters, and numbers. The clutter was difficult to process
in LAS and ARPA as it slowed down both tools and needed to be removed.
Because of these reasons clutter removal was added into the application and
sometimes also into the SPARQL queries. In addition, the application was
limited to query only a maximum of 3,000 characters long strings at the time.
Before querying the input text was sliced to chunks of text, avoiding splitting

8http://seco.cs.aalto.fi/ontologies/koko/

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 32

of words primarily. Also preferably, the application tries to avoid splitting of
sentences but this cannot always be guaranteed.

In addition, the quality of the original metadata caused issues during the
annotation process. For example, because the magazine articles were manu-
ally scanned in a laborious process, full-page advertisements were sometimes
not included. However, when locating the articles based on the metadata,
this threw off the application sometimes even by several pages. Resulting
in annotating partially the wrong articles and producing erroneous anno-
tations. In addition, the start and end of an article could not always be
identified efficiently and some erroneous annotations were included from the
preceding and following articles occasionally. In order to improve the results,
the magazine metadata was fixed manually.

Another difficulty that arose from the annotation process was the am-
biguity issue with places and people. Often, the application found multiple
hits for different names, especially when matching initials. The person ontol-
ogy also contained a vast amount of deceased people. Originally, the person
ontology contained only high ranking military personnel but it also has been
linked to casualties data. Via the person ontology the application matches the
text to casualties data. Sometimes this results in several possible matches
and that is hard to minimize because it would require more sophisticated
identification of other references.

4.4 Application: Faceted Search

The purpose of the faceted search application is to help a user to find Kansa
Taisteli articles and to provide context to the found articles by extracting
links to related WarSampo data from the texts. After annotating documents
the new metadata was added to the WarSampo portal. In addition to adding
new metadata, the Contextual Reader (CORE) [70] was integrated into it to
improve the user experience and to utilize the new data by adding into the
application a facet that contains all the mentions that were found during the
annotation process.

The updated Kansa Taisteli magazine article perspective is shown in Fig-
ure 4.2. In the perspective the user can find articles by using the author,
magazine, related place, army units, or mentioned terms facets. The facets
are on the left side of the perspective and the article details on the right. All
but the army units (arms of service and/or unit) facet are by default closed
and can be opened by clicking at the title of the facet. The facet will show a
list of mentioned terms and names that can be used to filter the article list.

The magazine and army unit facets contain data in hierarchies. The

CHAPTER 4. CASE STUDY: KANSA TAISTELI MAGAZINE 33

magazine facet represents initially magazine issues by year and by selecting
a year, it shows magazine issues for that year. The user can pick a one is-
sue and its articles are shown on the article listing. Similarly the army unit
facet shows the arms of services and under each of them the correspond-
ing military units from which the user can pick one and update the article
listing. The hierarchies can be also used for query expansion: by selecting
an upper category in the facet hierarchy one can perform a search using all
subcategories.

Figure 4.2: The faceted search browser targeting the Kansa Taisteli magazine
articles.

The mentioned terms facet adds diversity into the article search. Orig-
inally there were no general terms and names of people in the manually
created CSV metadata file. By adding mentions of terms and names as a
facet into the web application, the user can find articles that contain certain
terms, military units, people, or places. For example, a user can search for
articles that mentions a person or the term lice. The original facets (the au-
thor, place, magazine, or the military unit facets) do not contain mentions of
people or general terms. In addition, the facet contains all mentioned places
and military units; unlike in the original which contains only one place or
military unit/arms of service per article. The mentioned terms and names
facet improves the findability of the articles.

Chapter 5

Case Study: Semantic Finlex

Semantic Finlex service offers Finnish legislation and case law as linked open
data. Originally Finnish legislation and case law was published as human
readable documents in the Finlex service1 that has been open for public.
The data, however, was never published in a machine readable format via
open interfaces and it was not linked to any external data sources. In order
for third parties such as developers, different web services, and computer
applications to use the data in their own applications, it was required that
the data is transformed into a machine readable format and published as
linked data. [30] Eventually, all this was wrapped up into an open service2

as a part of the Semantic Finlex project for users and developers.
The purpose of automatic annotation in the Semantic Finlex project was

to make it easier to read, find, and browse statutes and case laws. To achieve
this the metadata had to be enriched by linking it to internal and external
ontologies. [30] The goal of automatic annotation is to describe the contents
of each document accurately and plentifully using keywords. In addition to
the enriching of the metadata, the task was to provide visualization of the
documents in a form of a tag cloud.

The annotation process is depicted in Figure 5.1. For Semantic Finlex
this process goes as follows: the input is a collection of HTML documents and
from them the titles and the content is extracted for annotation using existing
Python libraries. Afterwards the text is used to query for matching concepts
from selected ontologies. Once the annotations have been created the results
are written in RDF format and the Semantic Finlex dataset is updated. The
text extraction, selection of ontologies, data linking, and finally the usage of
the enriched data is described in this chapter in more detail.

1http://www.finlex.fi/
2http://data.finlex.fi

34

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 35

Figure 5.1: The annotation process for Semantic Finlex.

5.1 Ontologies

While annotating the law documents, the automatic annotator used sev-
eral vocabularies similarly to the Kansa Taisteli case. These vocabularies or
ontologies required a set of configurations to get the optimal result of the
annotation process. The chosen ontologies here were: Combined Legal Con-
cept Ontology, Original Finlex Vocabulary (FinlexVoc), EuroVoc ontology,
KOKO ontology, and DBpedia. The general ARPA configurations for all
cases include the filtering out all but nouns and proper nouns, base forming
of terms, query modifying every part of a term, analysis depth set to 0 for
performance reasons, and the default language is set to Finnish. The reason
to use only nouns and proper nouns the same as in the Kansa Taisteli case:
most of the terms in ontologies are proper nouns or nouns. Each ontology
and their ARPA configurations are described in the following sections. The
SPARQL queries are presented for each ontology in the Appendix B.

Combined Legal Concept Ontology

Combined Legal Concept Ontology is an ontology of legal concepts. It has
been created by combining three different thesauri (Asseri, Suomen Laki,
Edilex) in the field of the Finnish legislation. It contains ca. 9,000 different
terms, all in Finnish. [30] The ontology is used to retrieve relevant legal
terminology.

Regarding the ARPA configurations, the n-gram is set to 3 to pick up
longer terms. The SPARQL query is set to exclude numbers and the length
of the terms is calculated to enable selecting of the longest match for the
terms. Also the query uses the original form to increase the amount of

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 36

matching terms and guessing of the basic forms for unknown words to increase
performance. In addition, the nouns of the query strings are inflected into
their plural form in order to target also terms that are in plural form in the
ontology.

EuroVoc

EuroVoc3 is a diverse multilingual thesaurus that covers the activities of the
EU. It contains terms in 26 languages. The users of EuroVoc includes for
example the European Union institutions, national and regional parliaments
in Europe, national governments, and private users around the world. [95]

The EuroVoc thesaurus is used to query general purpose terminology. In
regards to the ARPA configurations, the query is not confined to any specific
part of the thesaurus and the n-gram is set to 3 to pick up longer terms.
The SPARQL query is set to exclude numbers, match only to Finnish terms,
and to also try to match strings into synonyms. The length of the terms is
also calculated to enable selecting of the longest match for the terms. Also
the query is set to use the original form to increase the amount of matched
terms. The inflections are set in order to target inflected forms of terms as
well.

Finlex Vocabulary

The Finlex Vocabulary (FinlexVoc) contains legislation specific terminology
in addition to more general terminology. It has been used to annotate existing
consolidated legislation and used in browsing of the documents in the Finlex
service. It is based on the vocabulary of the Statutes of Finland and is
maintained by Edita Publishing Oy. [77]

The Finlex vocabulary is used by the automatic annotation tool to match
general and legislation specific terms. The SPARQL query is set to match
only to Finnish terms. In terms of ARPA configurations, the n-gram is set
to 3 to pick up longer terms. In addition, ARPA is set to query using the
original form to increase the amount of matching terms from KOKO ontology.
Also, in order to match longer terms with better accuracy, the query is set
to modify every part and the last part of a query string. The inflections are
set in order to target possible inflected forms of terms.

3http://eurovoc.europa.eu

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 37

KOKO Ontology

KOKO ontology is used to recognize law terminology and to find more general
terms. In the project’s configurations for KOKO ontology the queries are
not confined to any specific terminology. The purpose is to find more general
terminology to complement the end result. The SPARQL query is set to
exclude numbers and to match only to Finnish terms. In terms of ARPA
configurations, the n-gram is set to 1 to pick up single words. In addition,
ARPA is set to query using the original form to increase the amount of
matching terms from KOKO ontology.

DBpedia

DBpedia is used to extract law terminology from the documents just like from
the previous two ontologies. DBpedia is also restricted to law terminology
in SPARQL and the matches to category names or properties are ignored.
The SPARQL query is set to exclude numbers. Other ARPA configurations
include the n-gram being set to 3 to pick up longer terms. Also the config-
urations include a setting for guessing base forms for unknown words to get
more diverse end results from DBpedia.

5.2 Data Linking

After creating a set of ARPA configurations for the given ontologies, they
were used in the following order: Combined Legal Concept Ontologies, Eu-
roVoc, FinlexVoc, DBpedia, and KOKO ontology. Just like with Kansa
Taisteli magazine articles, the order of the ontologies can be used to min-
imize ambiguity in the results by linking the text to more domain specific
ontologies first and later to more general purpose ontologies. The results of
all ontologies are collected and filtered based on relevancy of the concept.
These concepts were added into the default dataset and they have their own
properties that links the concept into the corresponding document. These
properties are :mentionsLaw, :mentionsGeneral, :mentionsEuroVoc, :men-
tionsFinlexVoc, and :mentionsDBpedia. The unidentified textual entities are
filtered out respectively.

The initial results, however, were not satisfactory as there were problems
with word recognition and ambiguity. The initial results contained keywords
such as artikla (article, in English), Suomi (Finland, in English), and laki
(law, in English). A stopword list was required to filter out most common
terms such as article, Finland or law. A stopword list is a list frequent words

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 38

in a document collection that have little value in describing the aboutness
of the document. [59]. The need to add and term relevancy analysis or
weighing schemes arose with Semantic Finlex as the purpose of the task is
to identify the relevant concepts and not all named entities like in the Kansa
Taisteli case. The used vocabularies were more generic, and just fetching
the all matching terms was not enough. That would have returned results
that included terms that were not relevant in describing the content in a
useful way. In addition to evaluating the term relevancy, the amount of
terms needs to be limited in order to select only the most relevant keywords
for each document. The need for a parameter that defines the limit became
evident it needed to be evaluated for this document collection separately.

5.2.1 Weighting Schemes

One of the most central themes of information retrieval (IR) systems are the
term weighing schemes that largely define the effectiveness of search. Most
retrieval models have three central variables to determine the relevancy of a
word for a document. Term frequency within a document, document length,
and the specificity of the term in the document collection. Term frequency
and document length are used in combination to derive how crucial the word
is in a document. Term specificity is used to reward the documents that
contain words rare in the collection. [79]

Based on term weight estimation, IR models can be divided into two
groups: probabilistic models and vector space models. Probabilistic models
focus on evaluating the probabilities of the words in the documents. The vec-
tor space model on the other hand queries documents as finite dimensional
vectors, where the weight of an individual component can be calculated us-
ing variations of TF-IDF (term frequency and inverse document frequency)
scores. [79] In the annotation process for Semantic Finlex, a simple TF-IDF
was chosen to score each term found in the text. TF-IDF is one of the
most commonly used term weighting schemes. The TF-IDF weight has two
components, TF and IDF. TF, described in equation (5.1), computes the
normalized term frequency f(t) by counting how many times a term appears
in a document (d) and dividing that by the total number of words (w) in
that document. The second term IDF, described in equation (5.2), the in-
verse document frequency is computed as the logarithm of the number of
the documents in the collection of documents (D) divided by the number of
documents where the specific terms (t) appears. [63] TF-IDF, described in
equation (5.3), is the product of the two components.

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 39

TF (t, d) =
f(t)

|w ∈ d| (5.1)

IDF (t,D) = ln(
|D|

|d ∈ D : t ∈ d|
) (5.2)

TF − IDF (t, d,D) = TF (t, d)× IDF (t,D) (5.3)

5.2.2 Keyword Density

After the application ranks the keywords with the help of a weighting scheme,
it selects the set of keywords. Selecting the most relevant keywords is not
an easy task for an application nor for a human. Semantic annotation is a
tedious and difficult task; human annotator does not always produce opti-
mal results and ends up taking multiple shortcuts. [28, 34] This results in
fewer and less accurate annotations. [28, 34, 62, 73, 89] On the other hand,
an automatic annotation tool can produce more than enough keywords but
the quality of annotation does not compare with the quality of the human
annotators. [62]

The Semantic Finlex dataset contained already manual annotations. The
manual annotations were, however, scarce. The documents contained from 1
to 14 keywords. When analyzed comparing document lengths to the amount
of keywords, the two did not seem to correlate. The most common amount
of keywords per document was 1. On contrast, an automatic annotation tool
can produce as many annotations as there are unique words and compound
words in the document. The amount of keywords also known as keyword
density needs to be defined for the tool.

It is hard to define an ideal amount of keywords for each document. There
is no general gold standard for this task. The amount of keywords depends
on the source material and the usage of the keywords. In document databases
there are usually guidelines for annotations. For example, AustLit4, an au-
thoritative database about Australian literature and storytelling, uses ERIC
(Educational Research Information Center) Process Manual [72] that has
guidelines for selection of keyword amounts for different types of materials. [7]
Based on an interview of a service manager of the Helsinki City Library, the
libraries of Helsinki use from 3 to 30 keywords per document. The amount
depends on the context of the document. [98]

An automatic annotation tool needs to provide the user with multiple
configurations in order to limit the amount of keywords correctly for different

4http://www.austlit.edu.au/

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 40

types of texts. In order to find a good configuration for the Semantic Finlex
material, different methods needed to be tested. Currently the automatic
annotation tool can be configured to get a specific number of keywords (for
example top 10 keywords), or to select keywords that have a weight above
the average keyword weight. In addition, it is possible to limit the number
of keywords into a user specified range (for example from 5 to 30 keywords)
based on the document length. The configurational possibilities make it
possible for the user to select the best method based on the used source
materials and use cases.

5.3 Application: Tag Clouds

In addition to annotating the law documents, a tag cloud was generated.
The main goal of generating tag clouds was to make it easier for the readers
to grasp the central theme of a document. The tag cloud emphasizes the
most relevant terms in the document by utilizing the font weight. In order to
achieve this goal a fitting tool had to be made. After analyzing and testing
a handful of good tag cloud tools PyTagCloud was chosen.

PyTagCloud is a python module that generates tag clouds from the given
text in PNG and HTML formats. The module served as a suitable starting
point for creating tag clouds. Initially it was created for Python 2 and it
had only language support for German, French, Italian, English, and Span-
ish. [2] In addition there was no base forming nor other linguistic tools for the
languages. In order to create tag clouds for the law documents in Finnish,
the tool would need to add the language support for Finnish and the mod-
ule would have to be updated to Python 3 so that is compatible with the
automatic annotation tool.

The application was modified based on the shortcomings to produce sound
tag clouds. However, this was not possible by only adding the language
support and by making it Python 3 compatible. More modifications had to
be made. Initially, PyTagCloud was added as a module to the automatic
annotator that can be executed if configured. Many of the components of
the annotator tool (such as linguistic preprosessing) were added into the tag
cloud generator module. The tag cloud generator uses the same input as
the automatic annotation tool to produce tag clouds and therefore there are
several similar steps that need to be taken in order to produce sound tag
clouds for Finnish texts.

Just like with the automatic annotator, the stopword lists are utilized
to filter the results. Digits were also filtered out from the input data be-
cause they are not informative without context. In addition to the stopword

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 41

lists and digit removal, base forming and morphological analysis was added.
The linguistic preprosessing module is used to apply the base forming and
morphological analysis of LAS. These linguistic tools are needed to get more
accurate results for the tag cloud. Morphological analysis is also used to only
extract nouns and proper nouns from the text.

Figure 5.2: A Semantic Finlex tag cloud development.

After the linguistic preprocessing, the terms from the texts were extracted
and linked using mainly the same ontologies as with the annotation process.
The weights were assigned to the linked entities and other terms after the
candidate extraction phase. The PyTagCloud tool had initially a weight-
ing scheme. The default weighting scheme was overdriven with the same
module that was applied with the automatic annotation tool to improve the
emphasizing of the most relevant terms of the document. Originally the Py-
TagCloud module used term frequency and emphasized the most frequent
terms regardless of their specificity to the document.

Because of the purpose of visually summarizing the documents, the amount
of keywords required for the tag clouds was also much higher than the key-
words for each document. The right amount of keywords was selected by
testing with different configurations for the documents, eventually settling
with the maximum of 50 keywords per tag cloud. In few tag clouds the
amount of keywords was scarce due to lack of words in the source document.

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 42

These documents have tag clouds with a low amount of keywords. Because of
these reasons the unidentified and unlinked terms were not filtered out from
the results and the amount of terms increased in tag clouds but did not solve
the issue completely. Little can be done to increase the number of terms in
the document. One idea for further development might be to add hypernyms
for the keywords. However, the initial results, without hypernyms and using
the described setup, can be seen in the Figure 5.2.

Figure 5.2 shows the evolution of the tag clouds generated from the The
Criminal Code of Finland after different modifications. In the cloud A)
there is the initial untouched version of a tag cloud created by the fresh
installation of the PyTagCloud. In the cloud B) a method of using stop word
lists has been applied to the result, whereas cloud C) has removed digits, and
finally cloud D) is a result of fine-tuning of the application by using linguistic
methods and weighting schemes. The result of the fine-tuning in generally
produced sound tag clouds that correctly emphasize the terms that are more
relevant to the context of each document.

Figure 5.3: The Semantic Finlex tag cloud for the law on monitoring the
electricity and natural gas markets (2013/590).

CHAPTER 5. CASE STUDY: SEMANTIC FINLEX 43

In addition to the tag clouds shown in Figure 5.2, another example of
a tag cloud is shown in Figure 5.3 which is the Law on Monitoring the
Electricity and Natural Gas Markets. The difference between the tag cloud
in Figure 5.3 and the tag cloud D) in Figure 5.2 is how they magnify terms
differently. Cloud D) in Figure 5.2 contains less terms than its predecessor
tag cloud C). Also, the application occasionally produces tag clouds that
magnifies insufficiently the most relevant terms; all terms are presented using
too small font like in tag cloud D). The small weights impact the cloud and
there is less variance between the font weight used in the cloud. The tag cloud
configurations must be studied more to produce more solid quality clouds by
the tool. The tag cloud in Figure 5.3 presents the terms more satisfiably
than in tag cloud D) but not flawlessly. The word energiamarkkinavirasto
(Energy Authority, in English) is problematic because the length of the term
makes it difficult to place the term every time into an optimal spot. The issue
exists also in some other tag clouds that contain longer words. However, the
results are promising and with small adjustments it might be possible to
improve the tag clouds even more.

Chapter 6

Evaluation

After executing the automatic annotation tool for both cases Kansa Tais-
teli magazine and Semantic Finlex, the results have been evaluated. For
this three common information retrieval measures were picked: precision,
recall, F-measure, and R-precision. Precision calculates the systems ability
to present only relevant annotations whereas recall calculates the systems
ability to present all relevant annotations. R-precision, on the other hand,
expresses the precision for the top n keywords where n is the number of
keywords in the original annotations. [63]

In this chapter the results are presented and evaluated for both cases.
Firstly Kansa Taisteli magazine articles are viewed from a statistical point
of view, followed by a more in-depth evaluation by calculating the precision,
recall, and their weighted harmonic mean F measure to see how well the tool
has performed in the context and by comparing three different inputs: un-
touched OCR output text from Tesseract OCR tool, automatically fixed text
using regular expression patterns, and semi-automatically fixed text. After
this the Semantic Finlex results are represented and evaluated by calculating
the R-precision for the results.

6.1 Kansa Taisteli Magazine

In case Kansa Taisteli magazine, a small sample of 433 articles were an-
notated for evaluation because of the laborious nature of OCR processing
and post-processing. From each decade a year was selected randomly and
all magazine issues of that year were selected for processing. The statistical
breakdown of the automatic annotation results is shown in Table 6.1. In the
table there is the comparison of three different executions of the application
for 3 different sets of inputs that have been produced by the OCR process:

44

CHAPTER 6. EVALUATION 45

Statistics Tesseract
output

Automatic Semi-
automatic

1 Total of documents 433 433 433
2 Total of linked entities 21 002 21 001 21 405
3 Total of unique linked entities 5550 5529 5705
4 Mode 35 34,35 35,37,38
5 Minimum amount of linked

entities
1 1 1

6 Maximum amount of linked
entities

216 216 271

Table 6.1: Statistical analysis of result dataset for Kansa Taisteli
magazine articles.

untouched OCR output text from Tesseract OCR tool, automatically fixed
text using regular expression patterns, and semi-automatically fixed text.
The semi-automatically fixed text is the end result of using two OCR tools
and combining their results using text processing tools. Some of the results
were combined manually due to difficulties in combining the results of the
two OCR tools. The automatically fixed text using regular expression pat-
terns utilizes the regular expression list in appendix A that was created as a
part of the process of semi-automatic fixing process. The regular expressions
were applied to the unfixed OCR output in order to compare the results.
Lastly, the unfixed OCR output was used to compare its results to the other
two result sets.

The Table 6.1 shows that there are differences between result sets of
Tesseract output (OCR), automatically fixed input (REGEX), and semi-
automatically fixed input (HYBRID). The semi-automatically fixed texts
produced the most promising results as expected while the differences be-
tween the automatically fixed and the unfixed pure OCR output texts re-
main small. The mode (the most typical number of linked entities for each
article) is higher (between 35 and 38) for the semi-automatically fixed text.
It produced the most linked entities in total and per article. In addition, the
result set indicates that the maximum amount of linked entities per article is
higher than with two other results sets. The result set of the automatically
fixed texts indicates that it found less linked entities than the original unfixed
text. The assumption here is that, although the texts fixed with regular ex-
pressions produced less linked entities, they produced more accurate results
than the unfixed texts because some of the fixes clarify and fix OCR errors
that made it hard to identify terms correctly. For example, an article that

CHAPTER 6. EVALUATION 46

talks about military unit II/JR 37 contains erroneous references to it such
as 11/JR37 and 1I/JR37. These references are interpreted as JR 37 and
I/JR 37 that refer to military units that are not mentioned in the text but
are related to the military unit II/JR37. The regular expression rules can fix
the errors and transform erroneous units into the form II/JR37 from which
the tool can link it to the corresponding resource.

Figure 6.1: The distribution of linked entities amounts for magazine articles.

In Figure 6.1 the distribution of found linked entities is shown for all ver-
sions of the input data and compared to each other. From the distribution it
can be noted that roughly a third of articles have more than 50 linked entities.
The majority of the articles, however, have more linked entities. The distri-
bution for each version of annotations varies little. The semi-automatically
fixed input text results differ from the other two result sets by having slightly
more documents with more than 75 linked entities. Respectively, the number
of documents that have less linked entities has decreased.

A distribution of found linked entities based on six ontologies is shown
in Figure 6.2. The most linked entities are found from the KOKO ontology
followed by the WarSampo military person ontology and DBpedia. The
place and the military unit ontologies contain the least amount of linked
entities. As can be seen from the figure, there are also some differences
between the different versions of input texts. The most notable differences
come in the usage of the WarSampo persons and military units ontology.
From the semi-automatically and automatically fixed texts, the same amount
of military units have been found. Linked entities in the person ontology are

CHAPTER 6. EVALUATION 47

Figure 6.2: The distribution of found linked entities for each ontology used.

found in higher numbers from the semi-automatically fixed texts whereas the
automatically fixed text has the least amount of linked entities. By taking
a closer look at the result data, the OCR input text has OCR errors that
impact the entity linking. The OCR errors reduce the amount of produced
entity links. Regarding the person ontology, the OCR input text has more
linked entities than the automatically fixed dataset. On closer inspection,
the OCR result set contains erroneous linked entities. Some of these entities
have been linked to wrong people due to OCR errors. In other ontologies
there are some minimal differences between the inputs.

6.1.1 Precision and Recall

In contrast to Timo Hakala’s original manual annotations, the results were
richer. This also became visible when calculating and inspecting the preci-
sion and recall results. In order to calculate precision and recall, 50 articles
were selected randomly from the pool of 433 articles. The evaluation of the
annotation is laborious and therefore not all articles of the 433 could be
selected for the analysis.

The calculations of precision and recall were done by looking for all the
found matches in contrast to the manual annotations of Timo Hakala. From
the original annotations the military units and places can be compared with
the results of automatic annotations. The war, arms of service and comment
annotations cannot be compared with the results of the automatic annotation
tool because they are too general (war, arms of service) or the annotation
field is used too irregularly (comments). For example, the arms of service
field contains a name of the arms of service, such as the Air Force, which can

CHAPTER 6. EVALUATION 48

be found seldomly from the text. The identification would require careful
inspection of the mentioned military units which are more frequently found
from the text.

When comparing the results to the manual annotations, in most cases
the exact match was found but also many related matches were found. The
results were calculated using two methods: exact matches (method 1) and
accepting also direct meronyms (method 2). Method 1 accepts only exact
matches where the automatically found term must match the manually an-
notated term. Method 2 counts also other values as positive if the Timo
Hakala’s annotation served as an umbrella term for them. For example,
Timo Hakala may have annotated the text with a place that is a municipal-
ity. The text itself may mention for example villages of that municipality
and they were counted as positive matches for the municipality in method
2. In method 1 the villages are negative matches and only the municipality
is a positive match. Based on these two methods the precision, recall, and
F-measure were calculated and are presented for military units (denoted M.
units) and places in Table 6.2. In this table the precision (denoted P) and
recall (denoted R) values are represented with F-measure (denoted F) for
the Tesseract output texts. In addition to methods 1 and 2, a third method
is introduced. Method 3 calculates precision based on a manual evaluation
of the annotation results. It interprets all matches evaluated as relevant ex-
tracted from the text as positive ones. In the following Tables 6.3 and 6.4
the same measures are shown for the annotations from the automatically and
semi-automatically fixed texts.

Depending on the method the results vary. The precision is poor for all
but method 3 as the annotation tool finds a great amount of military units
and places from the texts. In method 3 this has been taken into consideration
and improves the results significantly. The results contained also holonyms,
meronyms, and occasionally relevant terms that are ignored in method 1. In
method 2 the meronyms are also counted as positive matches. All of these
are included in the method 3 and it explains the great improvements in the
precision.

In addition to the differences between the methods, the difference between
precision and recall for places and military units is notable. The precision is
lower for the places mainly because of the regular expression fixes concentrat-
ing on military units. The military unit results are weighted down by a few
remaining OCR errors whereas the issue with places was the configuration
of ARPA queries in combination with the fact that some of the places could
not be found using only the domain specific ontologies.

The difference between results of unfixed, automatically fixed, and semi-
automatically fixed results, shown in Tables 6.2, 6.3, and 6.4, are notable

CHAPTER 6. EVALUATION 49

METHOD 1 METHOD 2 METHOD 3
M. Units P M. Units Places M. Units Places

P 26.14 % 6.78 % 30.26 % 10.47 % 80.95 % 62.87 %
R 69.70 % 38.46 % 67.65 % 51.92 %
F 38.02 % 11.53 % 41.82 % 17.42 %

Table 6.2: Evaluation of the annotations produced from the unfixed Tesseract
output of Kansa Taisteli magazine.

METHOD 1 METHOD 2 METHOD 3
M. units Places M. units Places M. units Places

P 25.26 % 6.78 % 30.38 % 10.47 % 82.81 % 62.87 %
R 72.73 % 38.46 % 72.73 % 51.92 %
F 37.50 % 11.53 % 42.86 % 17.42 %

Table 6.3: Evaluation of the annotations produced from the automatically
fixed Kansa Taisteli magazine articles.

METHOD 1 METHOD 2 METHOD 3
M. units Places M. units Places M. units Places

P 25.77 % 6.80 % 30.77 % 10.55 % 84.62 % 62.87 %
R 75.76 % 38.46 % 75.00 % 51.92 %
F 38.46 % 11.56 % 43.64 % 17.53 %

Table 6.4: Evaluation of the annotations produced from the semi-
automatically fixed Kansa Taisteli magazine articles.

CHAPTER 6. EVALUATION 50

Name Irrelevant
annotations

Erroneous
annotations

Total of false
positives

Percentage

Method 1 151 88 239 63.18 %
Method 2 111 88 199 55.77 %

Table 6.5: Amount of incorrect place annotations based on the used gold
standard.

but not significant. For method 1, the unfixed seems to be producing better
results than the automatically fixed whereas the semi-automatically fixed
produces the best results when comparing F measure scores for military
units and places. The assumption that the unfixed OCR output text would
produce less accurate (lower precision) than the automatically fixed text
seems to be false for method 1. For the methods 2 and 3 the assumption,
however, is true, and the precision is lower for the unfixed text in comparison
to the results produced using the other two inputs. The results of the method
1 are impacted by the fact that the original annotations contain at most one
military unit. However, automatically fixed input produces more mentions
of military units than the unfixed input because many OCR errors have been
fixed, resulting in decrease of precision.

The semi-automatically corrected output produced the best results in
the annotation process. In Table 6.5 the amount of false positive matches
of places are shown. The sum of false positive matches is formed from two
components: the irrelevant annotations and the erroneous annotations. The
number of irrelevant annotations are shown in Table 6.5 along with the er-
rors that are presented later in Table 6.6 with more details. The irrelevant
annotations are terms that have been identified from the text but are not
included in the original manual annotations that function as a gold standard
and therefore cannot be counted as positive matches. For both methods the
high number of irrelevant annotations is the main reason why the precision
is relatively low. The percentage column calculates the amount of these false
positives relative to the total of all false positive annotations. In comparison
to a study by Kettunen et al. [51] the automatic annotation tool produces
similar results. It performed somewhat better in finding correct matches.
The OCR post-processing had a positive impact on the results and it is vis-
ible that the recall was impacted by the amount of OCR post-processing,
especially in the case of military units.

When inspecting the annotations in more detail they are mainly correct
with some exceptions. The identification of military units suffered only from
5 to 6 errors depending on the method that originated from the OCR pro-

CHAPTER 6. EVALUATION 51

Error type Amount Percentage

1 Wrong place 32 12.12 %
2 Ambiguous 14 5.30 %
3 Confusion between places and people’s names 16 6.06 %

4 Noise from other articles 9 3.41 %
5 Clutter (for example advertisements) 7 2.65 %

6 ARPA / LAS error 1 0.38 %
7 Misidentified POS 9 3.41 %

TOTAL 88 36.07 %

Table 6.6: The breakdown of the error types found when the place
annotations for semi-automatically texts were analyzed.

cess. However, the identification of places suffered from variety of errors. In
Table 6.6 is the breakdown of the error types and they can be divided into
three different groups based on the nature of the error. Firstly, there are
errors related to the used ontologies (rows 1 - 3), secondly errors that come
from clutter or noise (rows 4 - 5), and thirdly errors that result from the
tools indicating issues in configurations (rows 6 - 7). The last row contains
the total of occurred errors from the entire result set. The total is calculated
from all the mismatched annotations that are included in the results set.

The first group of errors relating to ontologies contains errors relating to
identifying wrong places and ambiguity issues. In terms of identifying wrong
places, the text contained many references of Karelia. As it happens, the on-
tology for the municipalities does not contain the Karelia region but a small
municipality in western Finland carrying the same name. Every time Karelia
region is mentioned in the text, the application has annotated it using the
village in the western Finland. Regarding ambiguity issues there were two
kinds of issues. There was confusion between place names and sometimes
the place names and people’s names were confused. This is partially a con-
figuration issue but also partially an issue with the ontology because it can
contain errors. For example, one error existing in the Karelian places and
municipalities is that there are two entities for Kemi that seem to be one and
the same place based on the coordinates.

The second group constitutes of clutter and noise picked up from ad-
vertisements, maps, and previous or following articles. The input magazine
issues contained many advertisements embedded into the start, end, and
next to the actual articles. It was difficult to avoid clutter from these. The
identification of images could also help to reduce clutter and noise from the
maps, images, and some advertisements. Also the identification of the start

CHAPTER 6. EVALUATION 52

Name of the linked
entity

Translation Frequency TF-IDF

1 aarteet treasures 2 0.59
2 nainen, naiset a woman, women 1 0.39
3 sanat words 2 0.30
4 koti, kodit a home, homes 1 0.20
5 mies, miehet a man, men 1 0.20
6 metsä, metsät a forest, forests 1 0.20
7 pellot fields 1 0.20
8 lotat members of Lotta

Svärd
1 0.20

9 Eero Johannes Eräsaari a person 2 0.20
10 ruoste rust 1 0.10

Table 6.7: Annotation results for article: Sana rintamanaisille by Pentti Pyy.

and end of an article could possibly help to minimize the clutter. The start
and the end of articles was, however, hard to identify. The RDF data for
the articles only contained the starting page of each magazine article. Be-
fore annotating Kansa Taisteli magazine articles, there were issues with the
data. It contained erroneous page numbers that had to be fixed. There still
remain some faulty page numbers in the data, causing some errors with the
annotations.

The third group consists of issues relating to configuration. As mentioned
earlier, some ambiguity issues could be solved by changing the configurations.
The forenames and surnames were not filtered out because some of the vil-
lages may carry the same names as persons. Especially Finnish last names
originate from Finnish places sometimes [82].

6.1.2 The Results of the Annotation Process

The results of two randomly selected articles are presented in Table 6.7 and
Table 6.8. In each table there are the top 10 terms that are ranked based
on their calculated TF-IDF value. The term frequency is also shown in the
last column. Although the TF-IDF value was not used to rank or to pick the
most relevant annotations, it was used here in both tables to show a sample
of the results of the annotation process for both articles.

The article presented in Table 6.7 has acquired some relevant and irrele-
vant linked entities, the most relevant being in the top of the list. The last
two linked entities come from advertisements and a magazine information
column located at each side of the article. It is difficult to ignore them as

CHAPTER 6. EVALUATION 53

Name of the linked
entity

Translation Frequency TF-IDF

1 hevonen a horse 4 0.76
2 sota war 3 0.22
3 matkat travels 2 0.19
4 teltat tents 2 0.19
5 mies, miehet a man, men 3 0.16
6 tallit stables 1 0.11
7 esikunta military staff 2 0.11
8 korsut dugouts 1 0.08
9 tykit cannons 3 0.08
10 jonot queues 1 0.08

Table 6.8: Annotation results for article: Minä ja Mustini Talvisodassa by
Kirkola Nestori.

they both have understandable text that mixes with the article text. The
other linked entities from 1 to 8 are relevant to the text. After a careful
inspection of the article text it seems to be mostly valid information. The
same goes for the linked entities of Table 6.8. The table, however, does
not contain noise from the advertisements as the pages don’t contain any.
The advertisement issue concerns mainly the first and the last articles of the
magazine but occasionally also the other articles.

All in all the outcome demonstrate the quality of the results. In general
the annotation tool produced promising results but there are still a few issues
that need more work. More advanced methods may be required to filter out
the clutter that has been generated from the advertisements. Also the ability
to recognize and ignore images in the OCR process might help to reduce
clutter. These, however, are minor tweaks that can be done to improve the
otherwise sound results of the annotation tool.

6.2 Semantic Finlex

The annotation process for Semantic Finlex was executed for 2,803 docu-
ments using the configurations and ontologies presented in Chapter 5. The
execution produced a dataset that in total contains 51,789 annotations and
5,402 unique keywords. In addition the results of the tool needed to be
evaluated independently using the R-Precision measure. For this purpose
the annotation process was performed again by using only the FinlexVoc
ontology and configured to produce comparable results to the original key-

CHAPTER 6. EVALUATION 54

words. The results of both executions of the application are presented in the
following sections and starting from the evaluation of the result.

6.2.1 R-Precision

In order to measure the R-precision of the annotation for the law documents,
the annotator was configured to use the same controlled vocabulary that was
used manually in the original material. After the execution of the annotator,
30 documents were selected randomly and their keywords compared to the
original keywords. The original annotations contained only from 1 to 14
keywords for each document. The majority of documents contained less
than 6 keywords per document. The most common amount of keywords was
1, regardless of the length of the document.

The calculations for R-precision were done by selecting the same amount
of keywords from the the automatically produced keywords as in the original
keywords and comparing them. The keywords from the annotation tool result
set were selected by picking the keywords that were evaluated by the weight-
ing scheme as the most relevant to the document. The R-precision result
is equal to the precision and recall measures when the amount of keywords
for both sets used in the calculations is the same. In addition the precision
and recall were not suitable measures for this case because the amount of
keywords was fixed to the amount of keywords in the original annotations;
this use case is more suitable for the R-precision measure. [63] The result of
the R-precision calculation is 45.45 % for this result set.

The low amount of keywords in the original annotations has impacted the
result of the R-precision calculations. For example, sometimes a keyword was
found by the annotation tool but it was evaluated not relevant enough for
the document. If the amount of keywords for a document would have been
5 instead of 1 in the original annotations, the keyword would have been
included in the list of generated keywords. The results are, however, similar
but not fully comparable to the results of Sinkkilä et al. [89] for different
Finnish texts. The automatic annotation tool performed well in contrast
to the tools and strategies used in the study. The precision and recall are
slightly higher than what was produced using TF-IDF, FDG and other tools
by the earlier study by Sinkkilä et al.

In addition, to analyze the precision and recall for the keywords of law
documents, also the errors were analyzed and broken down into Table 6.9.
The first two error groups (rows 1 and 2) consist of errors relating to the
keyword relevancy that has been estimated using a weighting scheme by the
application and identification of keywords from the text. These errors weight
down the results the most. One explanation for these is that the original

CHAPTER 6. EVALUATION 55

Error type Amount Percentage

1 Keyword found but evaluated not relevant enough 20 29.85 %
2 Keywords not found in the document 14 20.90 %

3 Configuration error (language detection) 1 1.49 %
4 Source material error 1 1.49 %
5 Tool error 1 1.49 %

TOTAL 37 55.22 %

Table 6.9: Error types found from the result set of the Semantic Finlex.

manual annotation was scarce and done without taking into consideration
the length of each document. In terms of not finding keywords, the problem
is that the keyword is not mentioned in the document.

The second group of errors (rows 3 - 5) consists mainly of configuration
errors, tool errors, or errors related to the source materials. The errors
relating to the configuration happen due to the tools inability to identify
foreign language names. Solving the issue would require testing with different
sets of configurations. Regarding the tool errors, the application in most cases
can compare found matches for a piece of text and select the most suitable
match from the pool of results for each ARPA query. This means that the
application picks the longest text match it has found for the given text. For
example, for a title Indiana Jones and the Last Crusade it does not match
strings Indiana Jones and Crusade but selects the whole title of the movie,
if available. Currently there are still some marginal cases where this is not
done and that is what causes this error. Lastly there is one error caused by
the source material. The error was caused by the letter S with a háček (š)
in a name of a country. In the source material the háček was used in the law
documents but not in the original annotations. Due to this small difference
in spelling, one keyword was not found.

6.2.2 The Results of Subject Indexing

In addition to measuring the accuracy for the annotations, the tool produced
a set of keywords using the given configuration described in chapter 5. The
keywords were limited based on document length to have a maximum of 5
to 15 keywords depending on the length of the document. The range was
selected based on the analysis of the material and manual annotations. I
estimated that a little higher minimum would be better than the minimum of
1 in the original manual annotations and therefore selected 5 as the minimum.
The maximum was selected based on the original annotations’ maximum
amount (14) but was raised to 15 to have a slightly bigger range for keyword

CHAPTER 6. EVALUATION 56

Keyword Translation Frequency TF-IDF

1 neuvoston asetus a council regulation 1 1.01
2 kumoaminen repeal 1 0.68
3 Ulkoasiainministeriö Ministry of Foreign Af-

fairs in Finland
3 0.34

4 Iran Iran 2 0.34
5 rikoslaki a criminal code 3 0.34
6 Syyria Syria 2 0.34
7 yhteisö a community 1 0.34
8 Afganistan Afghanistan 2 0.34
9 yritys, yritykset a firm, firms 2 0.34
10 Eurooppa Europe 1 0.34
11 henkilö, henkilöt a person, people 1 0.34

Table 6.10: Keywords for document 2012/162: Ministry of Foreign Affairs in
Finland notifies of the changes in punishment rules.

amounts. With this configuration the documents got from top 5 to top 15
keywords based on the length of the document. The longer the document,
the more keywords were selected for the document.

In Tables 6.10 and 6.11 there are two randomly selected legal documents
and their keywords. The first document is a notification of the Ministry
of Foreign Affairs in Finland regarding changes in punishment rules. The
second is a act about the handling of the welfare documents.

When annotating the documents, the amount of keywords selected was
based on document length. In this case both documents have 11 unique
keywords after the annotation process. In both tables the original names of
the keywords are shown with their meaning translated next to the name. The
term frequency column is next to the translation and followed by the TF-
IDF column. The keywords are sorted in the table based on their estimated
relevancy.

On closer inspection Table 6.10 contains 2 irrelevant keywords as the
first two. They are more general legal terminology that are not necessarily
relevant in describing the aboutness of the document content. In comparison
to the original annotations, the document had 3 keywords: Iran, Syyria
(Syria, in English) and Rangaistukset (Punishments, in English). Two of
three are found from this result set and the third is filtered out due to too
low TF-IDF score.

In Table 6.11 the document is too recent to have original annotations.
The new annotations are listed in the array and initially seem satisfactory.
However, on closer look they do not seem to fully describe the entire docu-

CHAPTER 6. EVALUATION 57

Keyword Translation Frequency TF-IDF

1 asiakkaat customers 18 0.74
2 sosiaalihuolto welfare 21 0.65
3 palvelu, palvelut a service, services 8 0.38
4 asiakirja a document 16 0.32
5 päätös, päätökset decision, decisions 6 0.18
6 käsittely handling 5 0.15
7 sosiaalipalvelut welfare services 12 0.15
8 kuolema death 3 0.15
9 henkilö, henkilöt a person, people 5 0.14
10 lapsi a child 4 0.11
11 viranomainen an authority 4 0.11

Table 6.11: Keywords for document 2015/254: Law of welfare documents.

ment. By looking at the application’s execution logs for all the annotations
found, it identifies them correctly but some of the keyword candidates have
not been identified from the text as often as they should have. One such term
is asiakastiedot (customer information, in English). The linguistics compo-
nent LAS is unable to identify the term’s base form and therefore its term
frequency and TF-IDF score are calculated too low. The low scores caused
the term to be filtered out of the top 11 result set.

Both documents have mainly good keywords but there is also room for
improvement. It would be interesting to try with a bigger range like with
the Helsinki City Library, from 3 to 30 keywords. In addition, a few new
terms should be added to the stopword list to see how it would impact the
results. All this is fine-tuning of the application configurations. In general,
the application manages to produce satisfactory results.

Chapter 7

Conclusions

This thesis presents a new highly configurable and generic tool for annotating
and subject indexing documents. It can be configured in multiple ways to
produce semantic annotations for different Finnish texts. It links textual
entities to matching concepts in controlled vocabularies of the user’s choice
and produces output in RDF format. For subject indexing, the application
supports adding different evaluation methods and it supports multiple ways
to define keyword density. The application also has a module that generates
tag cloud visualizations of the keywords.

In this thesis there were two use cases for the application: Kansa Taisteli
magazine and Semantic Finlex. For the Kansa Taisteli magazine the appli-
cation produced semantic annotations that were linked to other ontologies
of the WarSampo project. The data was used in the WarSampo portal in a
separate Kansa Taisteli magazine perspective to search for documents based
on a keyword. In the Semantic Finlex use case the application was used to
provide the consolidated legislation with subject indexes. In addition, tag
clouds were generated to provide the user a visual summarization of what
the documents are about.

In the beginning of this thesis, a set of research questions were defined.
In the following, questions are answers:

1. How to build a generic application for automatic annotation that can
be configured for different use cases?

The automatic annotation tool has been built and designed to be highly
configurable. The tools and modules used in entity liking and linguistic
processing offered many configuration opportunities. In addition, the
application has more general configurations, such as RDF serialization
setup, input, and output formats. The different weighting schemes can
be added for the tool and the keyword density can be configured by

58

CHAPTER 7. CONCLUSIONS 59

the user based on the source materials. These diverse configurations
make it possible for the user to add their own ontologies and configure
them freely. The user can also create rules to solve ambiguity and use
different methods for candidate filtering, such as apply stopword lists.

2. How to utilize ontologies for natural language Finnish texts to get rel-
evant annotations?

The application processes natural language texts with the help of lin-
guistic tools, and extracts textual entities from the text. These textual
entities are identified and linked to ontologies by utilizing their seman-
tic relations and information. Finally, the application estimates the
relevancy in the given context. Keywords are picked by ranking the
candidates from best to worst and based on the configurations a set of
keywords is selected. In both use cases the success of the tool depended
on the interpretation of the results. Compared to a human annotator
the tool provides a richer amount of annotations.

3. How much disambiguation is needed and how to do it? What kind of
problems are encountered when trying to solve ambiguity issues?

Disambiguation of the keywords is a challenging task. The applica-
tion uses configurations to do disambiguation. The selection and the
order of ontologies can be used to remove ambiguity. For example, in
Kansa Taisteli magazine articles the issue was approached by priori-
tizing the context specific ontologies. First the application searched
for references to people and military units. Afterwards it focused on
places and more general terminology. In addition, there are ontology
specific configurations for determining if some concepts are better than
others and need to be prioritized. These actions helped to minimize the
amount of issues regarding ambiguity of terms. In case Kansa Taisteli,
there remain two challenges. First, how to differentiate between last
names and place names. Second, how to determine the places with
more accuracy and use more efficiently the place information in the
ontologies.

4. In regards to OCR, what is the impact of OCR’d text to the results?
Is it possible to minimize the impact of errors?

The OCR quality impacted the results for Kansa Taisteli magazine
articles. A Semi-automatic handling of the results was required and
as a byproduct a list of regular expressions was constructed to aid in

CHAPTER 7. CONCLUSIONS 60

the correction of the errors. During the evaluation it was noticed that
the post-processing of the OCR output improved the annotations and
prevented erroneous annotations. However, there is still need for an
improvement and developing an automatic set of rules could speed up
the process of post-processing of OCR output.

In addition to improvements mentioned above, the application can benefit
from future development. It requires more fine tuning and optimization. In
order to utilize the application more efficiently it needs to be possible to run
as a compact command line tool. Also a graphical user interface can be useful
for the users and for testing purposes. In addition to these improvements,
large scale testing is needed.

The application source code will be available for the public in the near
future.

Bibliography

[1] ABBYY. ABBYY FineReader Version 11 User’s Guide. http://www.
abbyy.com/finereader/11/user-guide/ (in English). Accessed 16 Apr
2016.

[2] Aebersold, R. PyTagCloud, 2013. https://github.com/atizo/

PyTagCloud. Accessed 13 Oct 2016.

[3] Alkula, R. From plain character strings to meaningful words: Pro-
ducing better full text databases for inflectional and compounding lan-
guages with morphological analysis software. Information Retrieval 4,
3-4 (2001), 195–208.

[4] Allen, J. Natural Language Understanding, 2nd ed. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1995.

[5] Anderson, J. D., et al. Guidelines for indexes and related infor-
mation retrieval devices. NISO Press Bethesda, MD, 1997.

[6] Antoniou, G., and van Harmelen, F. A Semantic Web Primer,
3rd ed. MIT Press, Cambridge, MA, USA, 2004.

[7] Ayres, M.-L., Kilner, K., Fitch, K., and Scarvell, A. Report
on the successful AustLit: Australian literature gateway implementa-
tion of the FRBR and INDECS event models, and implications for
other FRBR implementations. Tech. rep., ERIC, 2002.

[8] Barker, K., and Cornacchia, N. Using noun phrase heads to
extract document keyphrases. In Conference of the Canadian Society
for Computational Studies of Intelligence (2000), Springer, pp. 40–52.

[9] Beckett, D. and Berners-Lee, T. and Prud’hommeaux, E.
and Carothers, G. RDF 1.1 Turtle. Terse RDF Triple Language.
W3C Recommendation 25 February 2014., 2014. https://www.w3.org/
TR/turtle/. Accessed 05 Jun 2016.

61

http://www.abbyy.com/finereader/11/user-guide/
http://www.abbyy.com/finereader/11/user-guide/
https://github.com/atizo/PyTagCloud
https://github.com/atizo/PyTagCloud
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

BIBLIOGRAPHY 62

[10] Bird, S., Klein, E., and Loper, E. Natural Language Processing
with Python, 1st ed. O’Reilly Media, Inc., 2009.

[11] Bizer, C., Heath, T., and Berners-Lee, T. Linked data – the
story so far. International Journal on Semantic Web and Information
Systems 5(3) (2009), 1–22.

[12] Bojrs, U., Breslin, J. G., Finn, A., and Decker, S. Using the
Semantic Web for linking and reusing data across web 2.0 communities.
Web Semant. 6, 1 (Feb. 2008), 21–28.

[13] Boschetti, F., Romanello, M., Babeu, A., Bamman, D., and
Crane, G. Improving OCR accuracy for classical critical editions.
In Research and Advanced Technology for Digital Libraries. Springer,
2009, pp. 156–167.

[14] Brickley, D., and Guha, R. RDF Schema 1.1. W3C Recommen-
dation 25 February 2014, 2014. https://www.w3.org/TR/rdf-schema/.
Accessed 01 Jun 2016.

[15] Brinton, L. J. The structure of modern English: A linguistic intro-
duction. John Benjamins Publishing, 2000.

[16] Bunescu, R. C., and Pasca, M. Using encyclopedic knowledge for
named entity disambiguation. In EACL (2006), vol. 6, pp. 9–16.

[17] Chung, Y.-M., Pottenger, W. M., and Schatz, B. R. Au-
tomatic subject indexing using an associative neural network. In Pro-
ceedings of the third ACM conference on Digital libraries (1998), ACM,
pp. 59–68.

[18] Cohen, A. M. Unsupervised gene/protein named entity normal-
ization using automatically extracted dictionaries. In Proceedings of
the acl-ismb workshop on linking biological literature, ontologies and
databases: Mining biological semantics (2005), Association for Com-
putational Linguistics, pp. 17–24.

[19] Committee on Cataloging. Task force on metadata. final re-
port. Tech. rep., June 2000. http://libraries.psu.edu/tas/jca/ccda/
tf-meta6.html. Accessed 30 May 2016.

[20] Cowie, J., and Lehnert, W. Information extraction. Commun.
ACM 39, 1 (Jan. 1996), 80–91.

https://www.w3.org/TR/rdf-schema/
http://libraries.psu.edu/tas/jca/ccda/tf-meta6.html
http://libraries.psu.edu/tas/jca/ccda/tf-meta6.html

BIBLIOGRAPHY 63

[21] Cucerzan, S. Large-scale named entity disambiguation based on
Wikipedia data. In EMNLP-CoNLL (2007), vol. 7, pp. 708–716.

[22] Cyganiak, R., Wood, D., and Lanthaler, M. RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation 25 February 2014, 2014.
https://www.w3.org/TR/rdf11-concepts/. Accessed 30 May 2016.

[23] Daiber, J., Jakob, M., Hokamp, C., and Mendes, P. N. Im-
proving efficiency and accuracy in multilingual entity extraction. In
Proceedings of the 9th International Conference on Semantic Systems
(I-Semantics) (2013).

[24] DBpedia. Language chapters, 2016. http://wiki.dbpedia.org/

about/language-chapters. Accessed 02 Nov 2016.

[25] Dewey, M. A Classification and subject index for cataloguing and ar-
ranging the books and pamphlets of a library. Amherst, Massachusetts,
1876.

[26] English, J., Hearst, M., Sinha, R., Swearingen, K., and Lee,
K. Flexible search and navigation using faceted metadata. Tech. rep.,
Technical report, University of Berkeley, School of Information Man-
agement and Systems., 2002.

[27] Fernández, S., Tejo, C., Herman, I., and Zakhlestin, A.
SPARQL endpoint interface to python (1.7.6), 2016. WWW page of
the SPARQLWrapper: http://rdflib.github.io/sparqlwrapper/. Ac-
cessed 09 Oct 2016.

[28] Fort, K., Nazarenko, A., and Rosset, S. Modeling the com-
plexity of manual annotation tasks: a grid of analysis. In International
Conference on Computational Linguistics (2012), pp. 895–910.

[29] Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., and
Nevill-Manning, C. G. Domain-specific keyphrase extraction. In
Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence (San Francisco, CA, USA, 1999), IJCAI ’99, Morgan
Kaufmann Publishers Inc., pp. 668–673.

[30] Frosterus, M., Tuominen, J., and Hyvönen, E. Facilitating
re-use of legal data in applications – Finnish law as a linked open data
service. In Proceedings of the 27th International Conference on Legal
Knowledge and Information Systems (JURIX 2014) (December 2014),
IOS Press, pp. 115–124.

https://www.w3.org/TR/rdf11-concepts/
http://wiki.dbpedia.org/about/language-chapters
http://wiki.dbpedia.org/about/language-chapters
http://rdflib.github.io/sparqlwrapper/

BIBLIOGRAPHY 64

[31] Gruber, T. R. A translation approach to portable ontology specifi-
cations. Knowledge acquisition 5, 2 (June 1993), 199–220.

[32] Hachey, B., Radford, W., Nothman, J., Honnibal, M., and
Curran, J. R. Evaluating entity linking with Wikipedia. Artificial
Intelligence 194 (Jan. 2013), 130–150.

[33] Hallitus SSHS. Kansa Taisteli lehdet 1957–1986, 2014. WWW page
of the Association for Military History in Finland: http://www.sshs.

fi/sitenews/view/-/nid/92/ngid/1. Accessed 26 Nov 2015.

[34] Hawking, D., and Zobel, J. Does topic metadata help with web
search? Journal of the American Society for Information Science and
Technology 58, 5 (2007), 613–628.

[35] Hearst, M. A., and Rosner, D. Tag clouds: Data analysis tool
or social signaller? In Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual (2008), IEEE, pp. 160–160.

[36] Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider,
P. F., and Rudolph, S. OWL 2 Web Ontology Language Primer
(Second Edition). W3C Recommendation 11 December 2012, 2012.
https://www.w3.org/TR/owl2-primer/. Accessed 01 Jun 2016.

[37] Holley, R. How good can it get? Analysing and improving OCR
accuracy in large scale historic newspaper digitisation programs. D-
Lib Magazine 15, 3/4 (March/April 2009).

[38] Hollink, L., Schreiber, G., and Wielinga, B. Patterns of se-
mantic relations to improve image content search. Web Semantics:
Science, Services and Agents on the World Wide Web 5, 3 (2007),
195–203.

[39] Hulth, A., Karlgren, J., Jonsson, A., Boström, H., and
Asker, L. Automatic keyword extraction using domain knowledge.
In International Conference on Intelligent Text Processing and Com-
putational Linguistics (2001), Springer, pp. 472–482.

[40] Hyvönen, E., Tuominen, J., Ikkala, E., and Mäkelä, E. On-
tology services based on crowdsourcing: Case national gazetteer of
historical places. In Proceedings of 14th International Semantic Web
Conference (ISWC 2015), Posters and Demos (2015).

http://www.sshs.fi/sitenews/view/-/nid/92/ngid/1
http://www.sshs.fi/sitenews/view/-/nid/92/ngid/1
https://www.w3.org/TR/owl2-primer/

BIBLIOGRAPHY 65

[41] Hyvönen, E. Publishing and Using Cultural Heritage Linked Data on
the Semantic Web. Morgan & Claypool, Palo Alto, CA, USA, October
2012.

[42] Hyvönen, E., Heino, E., Leskinen, P., Ikkala, E., Koho, M.,
Tamper, M., Tuominen, J., and Mäkelä, E. Warsampo data
service and semantic portal for publishing linked open data about the
second world war history. In The Semantic Web – Latest Advances and
New Domains (ESWC 2016) (May 2016), Springer-Verlag.

[43] Hyvönen, E., Mäkelä, E., Kauppinen, T., Alm, O., Kurki,
J., Ruotsalo, T., Seppälä, K., Takala, J., Puputti, K.,
Heini Kuittinen, K. V., Tuominen, J., Tuomas Palonen,
M. F., Sinkkilä, R., Paakkarinen, P., Laitio, J., and Ny-
berg, K. CultureSampo – a national publication system of cultural
heritage on the semantic web 2.0. In Proceedings of the 6th European
Semantic Web Conference (ESWC2009), Heraklion, Greece (May 31 –
June 4 2009). Springer-Verlag.

[44] Imran, A. S., Rahadianti, L., Cheikh, F. A., and Yayilgan,
S. Y. Semantic keyword selection for automatic video annotation.
In Signal-Image Technology & Internet-Based Systems (SITIS), 2013
International Conference on (2013), IEEE, pp. 241–246.

[45] Isaac, A., and Summers, E. SKOS Simple Knowledge Organiza-
tion System Primer. W3C Working Group Note 18 August 2009, 2009.
https://www.w3.org/TR/skos-primer/. Accessed 01 Jun 2016.

[46] Ježek, E. The Lexicon: An Introduction. Oxford University Press,
2016.

[47] Jijkoun, V., Khalid, M. A., Marx, M., and De Rijke, M.
Named entity normalization in user generated content. In Proceedings
of the second workshop on Analytics for noisy unstructured text data
(2008), ACM, pp. 23–30.

[48] Jurafsky, D., and Martin, J. H. Speech and Language Processing.,
2nd ed. 2009.

[49] Kansalliskirjasto. Finto, 2016. https://finto.fi/fi/. Accessed
02 Nov 2016.

https://www.w3.org/TR/skos-primer/
https://finto.fi/fi/

BIBLIOGRAPHY 66

[50] Kansalliskirjasto. Finto - suomalainen sanasto- ja ontologia-
palvelu, 2016. https://www.kiwi.fi/display/Finto/. Accessed 02 Nov
2016.

[51] Kettunen, K., Kunttu, T., and Järvelin, K. To stem or lem-
matize a highly inflectional language in a probabilistic IR environment?
Journal of Documentation 61, 4 (2005), 476–496.

[52] Khalid, M. A., Jijkoun, V., and De Rijke, M. The impact
of named entity normalization on information retrieval for question
answering. In European Conference on Information Retrieval (2008),
Springer, pp. 705–710.

[53] Kiryakov, A., Popov, B., Terziev, I., Manov, D., and
Ognyanoff, D. Semantic annotation, indexing, and retrieval. Web
Semant. 2, 1 (Dec. 2004), 49–79.

[54] Korenius, T., Laurikkala, J., Järvelin, K., and Juhola, M.
Stemming and lemmatization in the clustering of Finnish text docu-
ments. In Proceedings of the thirteenth ACM international conference
on Information and knowledge management (2004), ACM, pp. 625–633.

[55] Kuo, B. Y., Hentrich, T., Good, B. M., and Wilkinson,
M. D. Tag clouds for summarizing web search results. In Proceed-
ings of the 16th international conference on World Wide Web (2007),
ACM, pp. 1203–1204.

[56] Lauser, B., and Hotho, A. Automatic multi-label subject indexing
in a multilingual environment. In Research and Advanced Technology
for Digital Libraries. Springer, 2003, pp. 140–151.

[57] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M.,
van Kleef, P., Auer, S., and Bizer, C. DBpedia–a large-scale,
multilingual knowledge base extracted from Wikipedia. Semantic Web
6, 2 (2015), 167–195.

[58] Liu, Z., Li, P., Zheng, Y., and Sun, M. Clustering to find exem-
plar terms for keyphrase extraction. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing: Vol-
ume 1-Volume 1 (2009), Association for Computational Linguistics,
pp. 257–266.

https://www.kiwi.fi/display/Finto/

BIBLIOGRAPHY 67

[59] Lo, R. T.-W., He, B., and Ounis, I. Automatically building a
stopword list for an information retrieval system. In Journal on Digi-
tal Information Management: Special Issue on the 5th Dutch-Belgian
Information Retrieval Workshop (DIR) (2005), vol. 5, pp. 17–24.

[60] Löfberg, L., Archer, D., Piao, S., Rayson, P., McEnery,
T., Varantola, K., and Juntunen, J.-P. Porting an English
semantic tagger to the Finnish language. In Proceedings of the Corpus
Linguistics 2003 conference (2003), pp. 457–464.

[61] Lounela, M. Exploring morphologically analysed text material. In
Inquiries into Words, Constraints and Contexts. 2005, pp. 259–267.

[62] Malaisé, V., Hollink, L., Gazendam, L., et al. The inter-
action between automatic annotation and query expansion: a retrieval
experiment on a large cultural heritage archive. SemSearch 334 (2008),
44–58.

[63] Manning, C. D., Raghavan, P., and Schütze, H. Introduction
to information retrieval, vol. 1st ed. Cambridge University Press, New
York, NY, USA, 2008.

[64] Manning, C. D., and Schütze, H. Foundations of statistical nat-
ural language processing, 1st ed. MIT Press, 1999.

[65] Medelyan, O. Human-competitive automatic topic indexing. PhD
thesis, The University of Waikato, 2009.

[66] Medelyan, O., and Witten, I. H. Thesaurus based automatic
keyphrase indexing. In Proceedings of the 6th ACM/IEEE-CS joint
conference on Digital libraries (2006), ACM, pp. 296–297.

[67] Mihalcea, R., and Tarau, P. TextRank: Bringing order into texts.
In Proceedings of EMNLP-04 and the 2004 Conference on Empirical
Methods in Natural Language Processing (Barcelona, Spain, July 2004),
Association for Computational Linguistics, pp. 404–411.

[68] Mithe, R., Indalkar, S., and Divekar, N. Optical character
recognition. International Journal of Recent Technology and Engineer-
ing (IJRTE) 2, 1 (March 2013).

[69] Mäkelä, E. Combining a REST lexical analysis web service with
SPARQL for mashup semantic annotation from text. In The Seman-
tic Web: ESWC 2014 Satellite Events, Revised Selected Papers (May
2014), pp. 424–428.

BIBLIOGRAPHY 68

[70] Mäkelä, E., Lindquist, T., and Hyvönen, E. CORE - a contex-
tual reader based on linked data. In Proceedings of Digital Humanities
2016, long papers (July 2016), pp. 267–269.

[71] Nadeau, D., and Sekine, S. A survey of named entity recognition
and classification. Lingvisticae Investigationes 30, 1 (2007), 3–26.

[72] National Institute of Education. ERIC PROCESSING MAN-
UAL. Rules and Guidelines for the Acquisition, Selection, and Techni-
cal Processing of Documents and Journal Articles by the Various Com-
ponents of the ERIC Network. U.S. Department of Education, 1992.

[73] Navarro, B., Izquierdo, R., and Saiz-Noeda, M. Exploiting se-
mantic information for manual anaphoric annotation in cast3lb corpus.
In Proceedings of the 2004 ACL Workshop on Discourse Annotation
(2004), Association for Computational Linguistics, pp. 65–71.

[74] Nguyen, T. D., and Kan, M.-Y. Keyphrase extraction in scientific
publications. In Proceedings of the 10th International Conference on
Asian Digital Libraries: Looking Back 10 Years and Forging New Fron-
tiers (Berlin, Heidelberg, 2007), ICADL’07, Springer-Verlag, pp. 317–
326.

[75] Nicomsoft Ltd. Optical Character Recognition (OCR) – How it
works, February 2012. WWW page of the Nicomsoft: https://www.

nicomsoft.com/optical-character-recognition-ocr-how-it-works/.
Accessed 29 Oct 2015.

[76] Nothman, J., Ringland, N., Radford, W., Murphy, T., and
Curran, J. R. Learning multilingual named entity recognition from
Wikipedia. Artif. Intell. 194 (Jan. 2013), 151–175.

[77] Oksanen, A. Lainsäädänön ja oikeusäytännön mallintaminen ja
julkaiseminen linkitettynä avoimena datana (modeling and publishing
legislation and case law as linked open data). Master’s thesis, Aalto
University, Department of Computer Science, 2016.

[78] Oren, E., Möller, K., Scerri, S., Handschuh, S., and Sintek,
M. What are semantic annotations. Technical Report. DERI Galway
(2006).

[79] Paik, J. H. A novel TF-IDF weighting scheme for effective ranking.
In Proceedings of the 36th International ACM SIGIR Conference on

https://www.nicomsoft.com/optical-character- recognition-ocr-how- it-works/
https://www.nicomsoft.com/optical-character- recognition-ocr-how- it-works/

BIBLIOGRAPHY 69

Research and Development in Information Retrieval (New York, NY,
USA, 2013), SIGIR ’13, ACM, pp. 343–352.

[80] Patel, C., Patel, A., and Patel, D. Optical character recogni-
tion by open source OCR tool Tesseract: A case study. International
Journal of Computer Applications 55, 10 (October 2012), 50–56.

[81] Pirinen, T. A., and Cliath, O. C. B. Á. Omorfi—free and open
source morphological lexical database for Finnish. In Nordic Confer-
ence of Computational Linguistics NODALIDA 2015 (2015), p. 313.

[82] Pirjo Mikkonen, S. P. Sukunimet. Otavan kirjapaino Oy, 2000.

[83] Pouliquen, B., Steinberger, R., and Ignat, C. Automatic an-
notation of multilingual text collections with a conceptual thesaurus. In
Proceedings of the Workshop ’Ontologies and Information Extraction’
(2003), EUROLAN’2003, pp. 8–28.

[84] Richardson, L. BeautifulSoup 4.4.0 documentation, 2004-
2015. WWW page of the BeautifulSoup: https://www.crummy.com/

software/BeautifulSoup/bs4/doc/. Accessed 09 Oct 2016.

[85] Riloff, E., and Jones, R. Learning dictionaries for information
extraction by multi-level bootstrapping. In in AAAI’99/IAAI’99 –
Proceedings of the 16th National Conference on Artificial Intelligence
& 11th Innovative Applications of Artificial Intelligence Conference
(1999), AAAI Press & MIT Press, pp. 474–479.

[86] Sanner, M. F., et al. Python: a programming language for software
integration and development. J Mol Graph Model 17, 1 (1999), 57–61.

[87] Semantic Computing Research Group. Finnish Wikipedia
as Linked Data (DBpedia), 2013. http://www.ldf.fi/dataset/

dbpedia-fi/. Accessed 02 Nov 2016.

[88] SFS 5471. Guidelines for the establisment and maintenance of Finnish
language thesauri. SFS standard, Finnish Standards Association, 1988.

[89] Sinkkilä, R., Suominen, O., and Hyvönen, E. Automatic seman-
tic subject indexing of web documents in highly inflected languages. In
Extended Semantic Web Conference (2011), Springer, pp. 215–229.

[90] Smith, R. An overview of the Tesseract OCR engine. In icdar (2007),
IEEE, pp. 629–633.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.ldf.fi/dataset/dbpedia-fi/
http://www.ldf.fi/dataset/dbpedia-fi/

BIBLIOGRAPHY 70

[91] Smith, R. W. History of the Tesseract OCR engine: what worked and
what didn’t. In IS&T/SPIE Electronic Imaging (2013), International
Society for Optics and Photonics, pp. 865802–865802.

[92] Studer, R., Benjamins, V. R., and Fensel, D. Knowledge engi-
neering: Principles and methods. Data & Knowledge Engineering 25,
1-2 (Mar. 1998), 161–197.

[93] Suominen, O. Methods for Building Semantic Portals. PhD thesis,
Aalto University, 2013.

[94] Tapanainen, P., and Järvinen, T. A non-projective dependency
parser. In Proceedings of the Fifth Conference on Applied Natural Lan-
guage Processing (Stroudsburg, PA, USA, 1997), ANLC ’97, Associa-
tion for Computational Linguistics, pp. 64–71.

[95] The Publications Office of the European Union. EuroVoc,
the EU’s multilingual thesaurus. WWW page of the Multilingual The-
saurus of the European Union: http://eurovoc.europa.eu/drupal/?q=
fi. Accessed 20 Sep 2016.

[96] The W3C SPARQL Working Group. SPARQL 1.1 Overview.
W3C Recommendation 21 March 2013., 2013. https://www.w3.org/

TR/sparql11-overview/. Accessed 30 May 2016.

[97] Tjong Kim Sang, E. F., and De Meulder, F. Introduction
to the CoNLL–2003 shared task: Language-independent named entity
recognition. In Proceedings of the seventh conference on Natural lan-
guage learning at HLT-NAACL 2003-Volume 4 (2003), Association for
Computational Linguistics, pp. 142–147.

[98] Tolvanen, M. Subject indexing, Helsinki City Library, 2016. Inter-
viewed using email on 18.10.2016.

[99] Turney, P. D. Learning algorithms for keyphrase extraction. Infor-
mation Retrieval 2, 4 (2000), 303–336.

[100] Van Rossum, G. Python programming language. In USENIX Annual
Technical Conference (2007), vol. 41.

[101] Volk, M., Marek, T., and Sennrich, R. Reducing OCR errors
by combining two OCR systems. In ECAI-2010 workshop on language
technology for cultural heritage, social sciences, and humanities (2010),
pp. 61–65.

http://eurovoc.europa.eu/drupal/?q=fi
http://eurovoc.europa.eu/drupal/?q=fi
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/

BIBLIOGRAPHY 71

[102] Wahlroos, M. Indeksointimetatiedon eristäminen ja arviointi (ex-
traction and evaluation of index metadata). Master’s thesis, University
of Helsinki, Department of Computer Science, February 2013.

[103] Walker, D. D., Lund, W. B., and Ringger, E. K. Evaluating
models of latent document semantics in the presence of OCR errors. In
Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (2010), Association for Computational Linguis-
tics, pp. 240–250.

[104] Wentland, W., Knopp, J., Silberer, C., and Hartung,
M. Building a multilingual lexical resource for named entity
disambiguation, translation and transliteration. In Proceedings
of the Sixth International Conference on Language Resources and
Evaluation (LREC’08) (Marrakech, Morocco, may 2008), Euro-
pean Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

[105] Yamashita, T., and Matsumoto, Y. Language independent mor-
phological analysis. In Proceedings of the sixth conference on Applied
natural language processing (2000), Association for Computational Lin-
guistics, pp. 232–238.

[106] Yimam, S. M., Biemann, C., Eckart de Castilho, R., and
Gurevych, I. Automatic annotation suggestions and custom anno-
tation layers in WebAnno. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System Demonstrations
(Baltimore, Maryland, June 2014), Association for Computational Lin-
guistics, pp. 91–96.

[107] zdenop. Tesseract(1). GitHub home page for the Tesser-
act OCR tool. https://github.com/tesseract-ocr/tesseract/blob/

master/doc/tesseract.1.asc. Accessed 16 Apr 2016.

https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc
https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc

Appendices

72

Appendix A

Regular Expressions for OCR Post-
processing

find - linux command (http://linux.die.net/man/1/find)

sed - linux command (http://linux.die.net/man/1/sed)

Find with find command a file with a given file pattern. Then using

sed replace (using flag i edits in place (on the spot)) a

searched pattern with a new string. This is where the regex

pattern is added. It starts with s/ and followed by the replacing

pattern after next /. Finally the regex ends with a /g. Add {} and

\; to the end.

Examples below.

find . -name "*.c" -exec sed -i "s/ SO /50/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ SO /50/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ S0 /50/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l4.D/14.D/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zn/:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Jspz/Jsp:/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/i //g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/kmz/km:/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l9/19/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l8/18/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l7/17/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l6/16/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l5/15/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l4/14/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l3/13/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l2/12/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I9/19/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I7/17/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I8/18/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I6/16/g" ’{}’ \;

1

APPENDIX A. REGULAR EXPRESSIONS FOROCR POSTPROCESSING2

find . -name "*.tes.txt" -exec sed -i "s/I5/15/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I4/14/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/|7/17/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/|8/18/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/|9/19/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Â�/-/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/18l/181/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/19l/191/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/17l/171/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/16l/161/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/15l/151/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/13l/131/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/|3/13/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I3/13/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ ELP / Er.P /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/El".P / Er.P /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/EI".P / Er.P /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/jR /JR /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/lÅ¡r.P /JR /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/. kun /, kun /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/EI’.P / Er.P /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ ELP/ Er.P /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ .ja / ja /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/. mutta /, mutta /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/_ /- /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/:5tä /:stä /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/:5ta /:sta /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/-- /- /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/_- /- /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/H /- /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I-I/H/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/. jolla /, jolla /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ .jolla / jolla /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ .kun / kun /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ .ja / ja /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ ia / ja /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/IMo /No /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/ rn / m /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/, j, kun/, ja kun/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/--/-/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/- /-/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/PUNAlSEN/PUNAISEN/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l\/JR /I\/JR /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zlle/:lle/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kum /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -lmm /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -ktwa /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Å-.um /SA-kuva /g" ’{}’

\;

APPENDIX A. REGULAR EXPRESSIONS FOROCR POSTPROCESSING3

find . -name "*.tes.txt" -exec sed -i "s/SA -ltm *a /SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuw /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -imm /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -k u va /SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -kkt’a/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuva/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -ktwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -ltm */SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Å’M’a/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Å-.um/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -hu/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Å:n va/SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -Iiwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -luma/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Äwaa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuva/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -lmm/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kum/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Äwra/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Å’Jn’a/SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -bu’a/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kmu/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA - kuva/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA - lnwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -lnwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -Ån a/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuva /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -hwa/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA - lmm/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -k u va/SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuva /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -hwa /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuma’ /SA-kuva /g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuma /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA - lmm /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -ktwa /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuw /SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SA -kuw/SA-kuva /g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/16zn/16:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/39zn/39:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/26zn/26:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/6zn/6:n/g" ’{}’ \;

APPENDIX A. REGULAR EXPRESSIONS FOROCR POSTPROCESSING4

find . -name "*.tes.txt" -exec sed -i "s/8zn/8:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/mmzn/mm:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zssa/:ssa/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zksi/:ksi/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zssä/:ssä/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zsta/:sta/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zeen/:een/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zlla/:lla/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zlle/:lle/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zllä/:llä/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zää/:ää/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zö/:ö/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zään/:ään/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/zstä/:stä/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/MO’I’I1/MOTTI/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/MO’I’T I/MOTTI/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/M AA LA IS ET/MAALAISET/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iinnak/linnak/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iihaski/lihaski/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/YIi/Yli/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iinnoit/linnoit/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iievit/lievit/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iitteinä/litteinä/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Ii ää/lisää/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l0ppu/loppu/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i

"s/jalkaväkirykmcn/jalkaväkirykmen/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/J

alkaväkirykmentti/Jalkaväkirykmentti/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/paranitar/paronitar/g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/Iahjapak/lahjapak/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/mikäbä/mikäpä/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/PAAMAJASSA/PÄÄMAJASSA/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/PAAMAJA/PÄÄMAJA/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/JR l 1:n/JR 11:n/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/tchty/tehty/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/tch-ty/tehty/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/jätib/jätin/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Iähi/lähi/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/SAKSALAISEl/SAKSALAISET/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/I-vaää/Hyvää/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/tehOStetaan/tehostetaan/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/AluejärjeStö/Aluejärjestö/g"

’{}’ \;

APPENDIX A. REGULAR EXPRESSIONS FOROCR POSTPROCESSING5

find . -name "*.tes.txt" -exec sed -i

"s/se105tetuiksi/selostetuiksi/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i

"s/Rannik-k0tyki5to’/Rannikkotykistö/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/nu0tioita/nuotioita/g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/su-juvasri/su-juvasti/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/Aänettömänä/Aänettömänä/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/divisioonicn/divisioonien/g"

’{}’ \;

find . -name "*.tes.txt" -exec sed -i

"s/pååhyökkåykm/päähyökkäykset/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i

"s/kenraali-luutnanttiA./kenraali-luutnantti A./g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/alikersantti

MaunoAu-[a/alikersantti Mauno Aula/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/se-Iustaan/selustaan/g" ’{}’

\;

find . -name "*.tes.txt" -exec sed -i "s/TçHTÄVÄ/TEHTÄVÄ/g" ’{}’ \;

find . -name "*.tes.txt" -exec sed -i "s/l./1./g" ’{}’ \;

Appendix B

Kansa Taisteli Magazine: SPARQL
Queries for ARPA

In this Appedix the SPARQL queries used in the Kansa Taisteli magazine
articles annotation process are documented.

B.1 DBpedia

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbpfi: <http://fi.dbpedia.org/resource/>

SELECT ?id ?label ?ngram ?source {

Values contains the query strings for this query.

VALUES ?ngram {

<VALUES>

}

Capitalizing the initial letter,

and adding a language code (LANG) that

is defined in ARPA.

BIND(STRLANG(CONCAT(UCASE(SUBSTR(?ngram,1,1)),

LCASE(SUBSTR(?ngram,2))),<LANG>) AS ?label)

?id rdfs:label ?label .

filtering targeted categories of DBpedia ontology

1

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA2

to include war related categories such as WW2,

warfare, and war history categories.

{ ?id dct:subject/skos:broader*

dbpfi:Luokka:Toinen_maailmansota . }

UNION {

?id dct:subject/skos:broader*

dbpfi:Luokka:Sodankäynti .

} UNION {

?id dct:subject/skos:broader*

dbpfi:Luokka:Sotahistorian_teemasivun_luokat .

}

removing matches that are categories or properties.

FILTER(!STRSTARTS(STR(?id),

"http://fi.dbpedia.org/resource/Luokka:"))

FILTER(!STRSTARTS(STR(?id),

"http://fi.dbpedia.org/property/"))

}

B.2 KOKO Ontology

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?id ?label ?ngram ?upperClass ?upperClassLabel {

VALUES ?ngram {

<VALUES>

}

FILTER(!REGEX(?ngram, "^[0-9]+$"))
BIND(STRLANG(LCASE(?ngram),"fi") AS ?label)

GRAPH <http://www.yso.fi/onto/koko/> {

?id skos:prefLabel ?label .

}

}

B.3 Military Units

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA3

PREFIX actors: <http://ldf.fi/warsa/actors/>

PREFIX atypes: <http://ldf.fi/warsa/actors/actor_types/>

SELECT ?id ?label ?ngram

WHERE

{

Values contains the query strings for this query.

VALUES ?ngram {

<VALUES>

}

Filtering out the query strings shorter than two

characters, do not start with a capital letter

and remove special characters

FILTER(STRLEN(?ngram)>2 &&

UCASE(SUBSTR(?ngram,1,1))=SUBSTR(?ngram,1,1))

BIND(CONCAT(’"’,REPLACE(?ngram,

"([\\+\\-\\&\\|\\!\\(\\)\\{\\}\\[\\]\\^\\\"\\~*\\?\\:])",

"\\\\$1"),’"’) AS ?qstring)

Quering for matches from a specific graph, checking

the military unit is in a sub category of the Military

Unit type and query for the label.

GRAPH <http://ldf.fi/warsa/actors> { ?id text:query ?qstring . }

?id a/rdfs:subClassOf* atypes:MilitaryUnit .

?id rdfs:label|skos:prefLabel|skos:altLabel ?label .

Filter out the matches that do not match the original

query string in lower case.

FILTER(LCASE(STR(?label))=LCASE(STR(?ngram)))

}

B.4 Person

PREFIX text: <http://jena.apache.org/text#>

PREFIX apf: <http://jena.hpl.hp.com/ARQ/property#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX actors: <http://ldf.fi/warsa/actors/>

PREFIX etype: <http://ldf.fi/warsa/events/event_types/>

PREFIX crm: <http://www.cidoc-crm.org/cidoc-crm/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX cas: <http://ldf.fi/schema/narc-menehtyneet1939-45/>

SELECT DISTINCT ?id ?ngram (COALESCE(?nlabel, ?plabel) AS ?label)

?rank_label ?etunimet ?sukunimi

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA4

WHERE

{

Values contains the query strings for this query.

VALUES ?ngram {

<VALUES>

}

FILTER(STRLEN(?ngram)>3 && REGEX(?ngram,"^[A-ZÅÄÖ]"))

A person can be found only by using the

forenames/ranks and surname.

Assumption: surname is always in the end

underscrore can be added to the surnames

in order to identify if the surname has two parts

BIND("^((?:[a-zA-ZäÄåÅöÖ-]\\.[]*)|

(?:[a-zA-ZäÄöÖåÅèü-]{3,}[]+))

((?:[a-zA-ZäÄåÅöÖ-]\\.[]*)|

(?:[a-zA-ZäÄöÖåÅèü-]{3,}[]+))?

((?:[a-zA-ZäÄåÅöÖ-]\\.[]*)|

(?:[a-zA-ZäÄöÖåÅèü-]{3,}[]+))*

([_a-zA-ZäÄöÖåÅèü-]{3,})$" AS ?nimiREGEX)

BIND(UCASE(REPLACE(REPLACE(?ngram, ?nimiREGEX, "$4"),
"_", " ")) AS ?sukunimi)

First forename / rank or second forename/first

forename (and removing extra spaces)

BIND(REPLACE(REPLACE(?ngram, ?nimiREGEX, "$1"),
"^(.*?)[]*$", "$1") AS ?ngrametu)

BIND(REPLACE(REPLACE(?ngram, ?nimiREGEX, "$2"),
"^([.a-zA-ZäÄöÖåÅ-]*?)[]*$", "$1") AS ?ngramkeski)

Must have forename / rank or initials of the forename

Name must be at least 3 letters long.

FILTER(REGEX(?ngrametu,

"(^[A-ZÄÖÅ]\\.$)|(^[a-zA-ZäÄöÖåÅèü-]{3,}$)"))

Either only one forename or the same terms as for the

others.

FILTER(REGEX(?ngramkeski,

"(^$)|(^[A-ZÄÖÅ]\\.$)|(^[a-zA-ZäÄöÖåÅ-]{3,}$)"))
BIND(UCASE(?ngrametu) AS ?etu)

#Cannot accept the form E. forename surname.

FILTER(?ngramkeski="" || !(STRENDS(?ngrametu, ".") &&

!STRENDS(?ngramkeski, ".")))

BIND(UCASE(?ngramkeski) AS ?keski)

BIND(CONCAT(’"’,?sukunimi,’"’) AS ?qstring)

GRAPH <http://ldf.fi/warsa/actors>

{ ?id text:query ?qstring . }

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA5

?id foaf:familyName ?familyName .

FILTER(?sukunimi = UCASE(?familyName))

?id skos:prefLabel ?plabel .

OPTIONAL { ?id foaf:firstName ?etunimet . }

BIND(CONCAT(?etunimet, ’ ’, ?familyName) AS ?nlabel)

OPTIONAL {

?promotion_id a etype:Promotion ;

crm:P11_had_participant ?id ;

actors:hasRank ?promotion_rank_id ;

crm:P4_has_time-span ?timespan_id .

?promotion_rank_id skos:prefLabel ?promotion_rank .

?timespan_id crm:P82a_begin_of_the_begin

?earliest_promotion_time .

}

The forenames must be found from the list of forenames

The initials must be the first letter of any forename

or the forename must be a rank.

BIND(CONCAT("(^|[])", substr(?etu, 1, 1)) as ?etukirjainre)

BIND(CONCAT("(^|[])", substr(?keski, 1, 1))

as ?keskikirjainre)

BIND(CONCAT("(^|[])", ?etu, "($|[])") AS ?etunimire)

BIND(CONCAT("(^|[])", ?keski, "($|[])") AS ?toinennimire)

BIND(IF(STRLEN(?keski)=2, ?keskikirjainre,

IF(?keski="", ".", ?toinennimire)) AS ?keskire)

BIND(IF(STRLEN(?etu)=2, ?etukirjainre, ?etunimire)

AS ?eture)

BIND(CONCAT("(^|[])", ?etu, " ", ?keski, "($|[])")

AS ?longrankre)

BIND(REGEX(?etu, "MINISTERI$") AS ?minister_test)

FILTER(IF(?minister_test,

NOT EXISTS { ?id a

<http://ldf.fi/warsa/actors/actor_types/MilitaryPerson> .

},TRUE)

)

BIND((REGEX(?promotion_rank, ?eture, "i") ||

REGEX(?rank_label, ?eture, "i")) AS ?rank_test)

BIND((REGEX(?promotion_rank, ?longrankre, "i") ||

REGEX(?rank_label, ?longrankre, "i")) AS ?long_rank_test)

FILTER(

IF(STRENDS(?etu, "."),

The initials of the forename (this must be taken

separately because initials are not comparable with the

ranks.

REGEX(?etunimet, ?etukirjainre) &&

REGEX(?etunimet, ?keskire),

else

Full name or rank or "ministeri"

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA6

(REGEX(?etunimet, ?keskire, "i") &&

(REGEX(?etunimet, ?eture, "i"))) ||

IF(?keski != "",

?rank_test &&

REGEX(?etunimet, ?keskire, "i")

|| ?long_rank_test ||

(?minister_test &&

REGEX(?etunimet, ?keskire, "i")),

else

?minister_test ||

?rank_test ||

?long_rank_test

)

)

)

}

B.5 Places

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX ptype: <http://ldf.fi/warsa/places/place_types/>

PREFIX hipla: <http://ldf.fi/schema/hipla/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?id ?label ?ngram ?type

FROM <http://ldf.fi/warsa/places/municipalities>

FROM <http://ldf.fi/warsa/places/karelian_places>

{

Values contains the query strings for this query.

VALUES ?ngram {

<VALUES>

}

Filtering out the query strings that are shorter

than two characters, remove special characters,

and allow only terms with a capital first letter.

FILTER(STRLEN(?ngram)>2 && REGEX(?ngram,"^[A-ZÅÄÖ]"))

BIND(REPLACE(?ngram,

"([\\//\\#\\’\\<\\>\\+\\-\\&\\|\\!\\(\\)\\{\\}\\[\\]\\^\\\"\\~*\\?\\:\\\\])",

"\\\\$1") AS ?qstring)

Query for matching labels that are of the type village,

town/city or a municipality.

?id text:query ?qstring.

?id a ?type .

APPENDIX B. KANSA TAISTELI MAGAZINE: SPARQL QUERIES FOR ARPA7

FILTER(?type=ptype:Kyla||

ptype:Kirkonkyla_kaupunki||

?type=<http://www.yso.fi/onto/suo/kunta>)

?id rdfs:label|skos:prefLabel ?label .

Filter out the matches that do not match the original

query string in lower case.

FILTER(LCASE(STR(?label))=LCASE(STR(?qstring)))

}

Appendix C

Semantic Finlex: SPARQL Queries
for ARPA

In this Appedix the SPARQL queries used in the Semantic Finlex annotation
process are documented.

C.1 Combined Legal Concept Ontology

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbpfi: <http://fi.dbpedia.org/resource/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?id ?label ?ngram ?source ?len {

{

{

Values contains the query strings for this query

VALUES ?ngram {

<VALUES>

}

Filtering out the querystrings that contain

only numbers, capitalizing the initial letter,

and adding a language code (LANG) that

is defined in ARPA.

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(CONCAT(UCASE(SUBSTR(?ngram,1,1)),

LCASE(SUBSTR(?ngram,2))),<LANG>) AS ?ungram)

Query for upper case matches

?id skos:prefLabel ?ungram .

BIND(?ungram AS ?label)

1

APPENDIX C. SEMANTIC FINLEX: SPARQL QUERIES FOR ARPA 2

#Calculating the length of label

BIND(STRLEN(?label) AS ?len)

} UNION {

Query for lower case matches

VALUES ?ngram {

<VALUES>

}

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(LCASE(?ngram),<LANG>) AS ?lngram)

?id skos:prefLabel ?lngram .

BIND(?lngram AS ?label)

#Calculating the length of label

BIND(STRLEN(?label) AS ?len)

} UNION {

Query for upper case matches of equivalent classes

VALUES ?ngram {

<VALUES>

}

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(CONCAT(UCASE(SUBSTR(?ngram,1,1)),

LCASE(SUBSTR(?ngram,2))),<LANG>) AS ?ungram)

?id2 skos:prefLabel ?ungram .

?id owl:equivalentClass ?id2 .

BIND(?ungram AS ?label)

#Calculating the length of label

BIND(STRLEN(?label) AS ?len)

} UNION {

Query for lower case matches of equivalent classes

VALUES ?ngram {

<VALUES>

}

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(LCASE(?ngram),<LANG>) AS ?lngram)

?id2 skos:prefLabel ?lngram .

?id owl:equivalentClass ?id2 .

BIND(?lngram AS ?label)

#Calculating the length of label

BIND(STRLEN(?label) AS ?len)

}

Clarifying URLs of the found matches to

differentiate between sources.

BIND(IF(STRSTARTS(STR(?id),

"http://www.yso.fi/onto/laki/"), 1,

APPENDIX C. SEMANTIC FINLEX: SPARQL QUERIES FOR ARPA 3

IF(STRSTARTS(STR(?id),"http://ldf.fi/ttp/"),2,0))

AS ?source)

FILTER(?source!=0)

}

} ORDER BY DESC(?len)

LIMIT 1

C.2 DBpedia

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbpfi: <http://fi.dbpedia.org/resource/>

Values contains the query strings for this query

SELECT ?id ?label ?ngram ?source {

VALUES ?ngram {

<VALUES>

}

Filtering out the querystrings that contain

only numbers, capitalizing the initial letter,

and adding a language code (LANG) that

is defined in ARPA.

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(CONCAT(UCASE(SUBSTR(?ngram,1,1)),

LCASE(SUBSTR(?ngram,2))),<LANG>) AS ?label)

Quering for matches from the law category

?id rdfs:label ?label .

?id dct:subject/skos:broader* dbpfi:Luokka:Oikeustiede .

QUERY

BIND(3 AS ?source)

}

C.3 EuroVoc

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX skosxl: <http://www.w3.org/2008/05/skos-xl#>

SELECT ?id ?label ?ngram

Targetting a specific graph

FROM <http://data.finlex.fi/voc/eurovoc> {

APPENDIX C. SEMANTIC FINLEX: SPARQL QUERIES FOR ARPA 4

Values contains the query strings for this query

VALUES ?ngram {

<VALUES>

}

Query for the matches that have a

language code specified in ARPA.

BIND(STRLANG(?ngram,<LANG>) AS ?label)

?id skos:prefLabel|skos:altLabel ?label .

}

C.4 KOKO Ontology

PREFIX text: <http://jena.apache.org/text#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?id ?label ?ngram {

Values contains the query strings for this query

VALUES ?ngram {

<VALUES>

}

Filtering out the querystrings that contain

only numbers, capitalizing the initial letter,

and adding a language code (LANG) that

is defined in ARPA.

FILTER(!regex(?ngram, "^[0-9]+$"))
BIND(STRLANG(LCASE(?ngram),"fi") AS ?label)

Targetting a specific graph to query for matches

GRAPH <http://www.yso.fi/onto/koko/> {

?id skos:prefLabel ?label .

}

}

C.5 FinlexVoc

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX afn: <http://jena.hpl.hp.com/ARQ/function#>

APPENDIX C. SEMANTIC FINLEX: SPARQL QUERIES FOR ARPA 5

SELECT ?id ?label ?ngram ?len {

Values contains the query strings for this query

VALUES ?ngram {

<VALUES>

}

Capitalizing the initial letter,

and adding a language code (LANG) that

is defined in ARPA.

BIND(strlang(concat(ucase(substr(?ngram,1,1)),

lcase(substr(?ngram,2))), <LANG>) AS ?label)

Targetting a specific graph to query for matches

and filtering matches based on namespace.

GRAPH <http://ldf.fi/finlex/voc> {

?id skos:prefLabel ?label .

FILTER (afn:namespace(?id) =

"http://data.finlex.fi/voc/finlex/")

#Calculating the length of label

BIND(STRLEN(STR(?label)) AS ?len)

}

} ORDER BY DESC(?len)

	Cover page
	Acknowledgements
	Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Model of Annotation
	3 Implementation
	4 Case Study: Kansa Taisteli Magazine
	5 Case Study: Semantic Finlex
	6 Evaluation
	7 Conclusions
	Bibliography
	Appendices
	A Regular Expressions for OCR Postprocessing
	B Kansa Taisteli Magazine: SPARQL Queries for ARPA
	C Semantic Finlex: SPARQL Queries for ARPA

