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Whether adding background knowledge from ontologies can be added to

the model in order to improve the classification accuracy, is also explored

in this master’s thesis. A new machine learning model is introduced that

incorporates ontology information.

The proposed method for learning a classification model and enhancing it

with ontology information is used in a case study for the Finnish National

Archives and a set of digital documents that have been manually classified.

An RDF schema for representing documents, sentences and words is cre-

ated in order to prepare tha data for the machine learning analysis. The

words are put into base form and matched semi-automatically with con-

cepts of the General Finnish Ontology YSO. Then the ontology enhanced

model is applied on the data and the most likely classes for documents

are learned.

The master’s thesis shows that the classification accuracy of the model

increases when ontology information is added to it.
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Chapter 1

Introduction

The digital handling of documents represents the present for many organi-

sations: documents and letters are written, sent and stored in digital form.

From an ecological and practical point of view it makes sense to store digital

documents digitally and not to print them out and put them into a folder.

The cost of digital storage space decreases as more bits fit to a smaller space

on a hard disk, as noted by Mark Kryder [Wal05]. Thus digital storing makes

also economically more sense than physical storing.

A convenient way of storing also creates the need for a convenient way of

retrieval: what is the use of storing documents if they cannot be found?

Naturally categorisation of documents has been used to make it easier to

find relevant information.

This master’s thesis is part of the FinnONTO 2.0 project1 of the Semantic

Computing Research Group (SeCo) of the Aalto University School of Science

and Technology. The Finnish National Archives provided the project with a

set of documents and wanted to know how the documents could be classified

automatically. The work was divided between the University of Tampere in

the following way: the researchers in Tampere would try to find a way to

categorise the documents by the context and the metadata of the documents

and SeCo would concentrate on exploring the ways in which documents could

automatically be classified based on their contents, that is to say the words

of the document.

The benefit of digital documents is that they can be computationally anal-

1FinnONTO 2.0: http://www.seco.tkk.fi/projects/finnonto/
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CHAPTER 1. INTRODUCTION 2

ysed, because a computer programme can extract the document text and

process it for further analysis. Text is for the computer programme only a

string representation without any meaning, therefore it may be of use to add

knowledge on the meaning of words, that is to say ontology information, to

the text.

It was proposed that the benefits of machine learning in automatic classifica-

tion be explored to see, whether adding ontology information could improve

those classification results. In order to combine the best of both worlds,

machine learning and ontology knowledge, a collaboration with the research

group Bayesian Algorithms for Latent Variable Models at the Aalto Univer-

sity was proposed. The result of this collaboration was a machine learning

model based on logistic discrimination that extended the bag of words rep-

resentation with ontology information using binary matrices.

The text from the digital documents was read and parsed into RDF form. An

RDF schema was developed to map the relations of all terms, sentences and

documents. The individual words were matched with concepts from YSO,

the General Finnish Ontology, and a programme was written, that turned the

resulting RDF file into a two dimensional table, that could be used for the

purpose of training, validating and testing the proposed machine learning

model. Dr. Tapani Raiko and Teemu Tiinanen from the research group

Bayesian Algorithms for Latent Variable Models developed the model to be

used for the learning of the documents’ classes, applied, trained, validated

and tested it.



Chapter 2

Machine Learning

This chapter provides a basis for understanding machine learning (ML) and

how it can be used to learn the classification of documents. When example

data exists, supervised learning can be applied for creating a classifier model

for documents. This chapter discusses two different ways for learning the

model and provides an outlook on different ways of dimensionality reduction

and visualisation.

2.1 Supervised Learning

In his book, Introduction to Machine Learning, Ethem Alpaydin describes

Machine Learning as:

programming computers to optimise a performance criterion us-

ing example data or past experience. [Alp04, p. xxv]

ML is applied in cases where a programmer cannot explicitly tell the com-

puter programme what to do and what steps to take. In supervised ML the

idea is to show results and variables that might have lead to the results to

a programme and hope that the examples are good enough and that there

are enough of them to teach the programme how the variables lead to the

wanted result. In ML the aim is to obtain a general solution for yet unseen

data. Of course the discipline is not based on faith alone: there are many

ways to optimise the programme’s learning process and ways of validating

3



CHAPTER 2. MACHINE LEARNING 4

the performance. ML works like a past master who shows his apprentice how

things are done, because he cannot explicitly tell the apprentice how they

are done. He just knows implicitly the ways of his craft.

In supervised ML one way for the programme to learn how the results are

obtained is to model, for example, the statistical dependencies of the vari-

ables and the results from the past data. When statistical dependencies

are measured association rules are formed [Alp04, p. 3]. The confidence

in an association from A to B is measured with the conditional probability

P (B | A):

P (B | A) =
P (A,B)

P (A)
. (2.1)

For the association rule to hold the conditional probability should be quite

high that is to say close to one and higher than the probability of B P (B)

alone [Alp04, p. 56].

One ML application is to model a regression curve from data plots. For

example a polynomial curve of different orders can be used:

f(x) =
n

∑

j=0

ajx
j , (2.2)

where n is the order of the polynomial. A programmer can try out models

of different orders and make her programme learn the different parameters

(a0,a1,. . . ,an) of the polynomial curve. The parameters are learned by us-

ing a training set of data points that should represent the whole data well.

The training set should be divided into two parts: the actual training set,

with which the parameters are obtained and a validation set, that tests the

accuracy of the learned model [Alp04, p. 35].

The most accurate model for the validation set should be chosen. Valida-

tion prevents at its best the common pitfall of choosing the model: a model

is chosen that most accurately replicates the example data, but is not the

best model to predict future data [Alp04, p. 33]. This phenomenon is called

over-fitting and the problem with over-fitting is that a too complex or pre-

cise model might falsely create a general rule for an accidental feature or an

out-lier. Manning et al. [MRS08, p. 251] give as an example a data set of

documents with different topic classes, where a rare term “arachnocentric”
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happens to be featured only in documents of the topic class “China”. A too

precise model would learn an association with the term “arachnocentric” and

the topic class “China” and incorrectly classify everything with that word to

the topic class “China”. Manning et al. also warn not to use too complex

models, because they tend to make mistakes on noisy data – mistakes espe-

cially occur if there is not enough data [MRS08, p. 267]. While over-fitting

might be a problem, under-fitting is one too. A too simple model just will

not be of use, because it cannot really trace any possible patterns in the data

and provide the solution [Alp04, p. 77].

2.2 Classification

In addition to regression, ML can be applied to classification problems. In

supervised ML training sets are used where the example data is been classified

by hand. The task of the ML programme is to model the connection of

different variables to the classes they belong to.

For example ML could be used to learn whether an Email message belongs

to the class spam or ham (not-spam). The SpamAssasin1 tool is designed

to recognise certain features of Email messages (such as that Viagra is men-

tioned and a fast delivery is promised). These features are all some sort of

indications whether an Email is spam or not. With the help of an example

data set of Emails that are classified by hand, the correlation between the

features and the two classes, spam or ham, can be calculated exactly. This

creates a general model to be used for predicting not yet classified Email

messages.

In regression the idea is to model and solve a problem, where the answer is

a continuous value [Alp04, p. 8] [Bis07, p. 38]. In classification the idea

is to predict the group to which a to-be-classified item belongs [MRS08, p.

234]. The target is not a continuous value but a class label [Bis07, p. 38].

The classification is learned by modelling the conditional probability of the

class C, P (C | x1,x2,. . . ,xT ), given the variables (x1,x2,. . ,xT ), which can be

represented by a vector x̄. The Bayes rule can be used to solve for P (C | x̄):

P (A,B) = P (A | B) · P (B) (2.3)

1http://spamassassin.apache.org/
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and

P (A,B) = P (B | A) · P (A), (2.4)

which can be written as:

P (A | B) · P (B) = P (B | A) · P (A). (2.5)

By dividing with P (B) on both sides, the equation is as follows:

P (A | B) =
P (B | A) · P (A)

P (B)
. (2.6)

Using this P (C | x̄) can be written as:

P (C | x̄) =
p(x̄ | C)P (C)

p(x̄)
, (2.7)

where P (C), called the prior probability, is the probability mass function

of the class C. The probability density function of the variables x̄ given

the class C, p(x̄ | C), is called the class likelihood. The denominator is

the probability density function of the variables’ occurrence, p(x̄), and it is

called the evidence. It is the sum of each class’ C1,. . . ,CK prior probability

multiplied by the appropriate class likelihood:
∑K

i=1 p(x̄ | Ci)P (Ci).

In order to choose the best class for a new unclassified x̄, the following deci-

sion model applies:

argmax
k

P (Ck | x̄) = argmax
k

p(x̄ | Ck)P (Ck)
∑K

i=1 p(x̄ | Ci)P (Ci)
, (2.8)

and the class C for which the posterior probability is at maximum should be

chosen. [Alp04, pp. 42][Bis07, p. 43]

2.2.1 Evaluation

Different classification results can be represented in confusion matrices [Alp04,

p. 333] such as the general one represented in Table 2.1. The function of the

matrix is to show the number of items that were classified correctly (TP and

TN) and falsely (FP and FN). The matrix in Table 2.1 is a confusion matrix

for a two-class classification task. The sum of the number of classified items
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Predicted class

Yes No

T
ru
e
C
la
ss Yes True Positive

(TP)

False Negative

(FN)

No False Positive

(FP)

True Negative

(TN)

Table 2.1: Confusion matrix [Alp04, p. 333]

in every cell is the total number of the classified items. Useful measurement

rates can be calculated from the numbers in the cells of the confusion matrix:

• error rate: FN+FP
N

, where N is the total of the classified items

• accuracy rate: TN+TP
N

, the error rate and accuracy rate sum up to 1

• precision rate: TP
TP+FP

, the ratio of correctly classified items to all items

classified to that class

• recall rate: TP
TP+FN

, the ratio of correctly classified items to all items of

that class

The error rate or the accuracy rate measures how well a model correctly

classifies items. When training the model, one tries to get the accuracy rate

as high as possible and chooses the model with the best accuracy on the

validation set.

Precision measures the correctness of classification and recall measures its

usefulness. For example in spam messages it is important that the precision

rate is quite high, because a user would be annoyed if an important email

were to be classified incorrectly as spam and thus left unread. It is less

annoying to get some spam into one’s Inbox from time to time. It is up to

each classification task to decide whether it is more harmful to have False

Negatives than False Positives. The decision model mentioned in Section 2.8

would have to be altered appropriately so, that if False Negatives are not

as harmful as False Positives, then the decision model would prefer high

precision rate over a high recall rate. This applies also the other way around:

if False Positives are not as harmful as False Negatives, a high recall rate is

of importance rather than a high precision rate.
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2.2.2 Discriminant Function

The choice of the class depends on the variables denoted by the vector x̄.

A discriminant function can be derived using the earlier mentioned decision

model (see Equation 2.8) for the maximum posterior probability. The de-

nominator of the equation,
∑K

i=1 p(x̄ | Ci)P (Ci), is the same for each class.

It is only a normalising factor on which the maximum does not depend on.

Thus the discriminant function can be written in the following way:

gi(x̄) = p(x̄ | Ci)P (Ci). (2.9)

The product of probabilities can cause underflow in computations. To pre-

vent this the logarithm of gi(x̄), which breaks up the product to a sum, can

be used in search for the maximum. The discriminative function can be

written accordingly [Alp04, p. 62]:

gi(x̄) = log p(x̄ | Ci) + logP (Ci), (2.10)

and a new unseen variable x̄n should be assigned to the class Ck for which

gi(x̄n) = argmaxk gk(x̄n) stands. [Alp04, p. 45][Bis07, p. 180]

This modification is valid, because the logarithm is a monotonic function and

thus the x̄ for which gi(x̄) is at maximum is the same for which the logarithm

of gi(x̄) is at maximum.

In a classification problem the discriminant function splits the variable space

into regions appropriate for each class, which are called decision regions

[Alp04, p. 45]. The decision regions are separated by decision boundaries

and each region might not consist of only one continuous region [Bis07, p.

39].

In this thesis two different approaches, the generative and the discrimina-

tive model for solving for the discriminant function, will be discussed in

Section 2.3 and Section 2.4.
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2.3 Likelihood-based Classification

In likelihood-based classification a generative model is created when solving

for the Equation 2.10 by estimating the prior class probabilities P (Ci) and

the class likelihoods p(x̄ | Ci) [Bis07, p. 43]. The advantage of the generative

model is that it models missing values, data that does not belong to the

training set, well [RVOK03], because it assumes a distribution for all possible

variables.

The probability densities can be estimated using different kinds of distribu-

tions. Alpaydin [Alp04, p. 62] discusses three different distributions: the

Bernoulli distribution for a two-class problem, the multinomial distribution

for a multiple-class problem and the popular Gaussian normal distribution

for continuous-valued variables.

A model is trained using the estimates of the probability distributions. There-

fore it is important that the distribution of the set should be checked so that

the right kind of distribution gets chosen for the estimation of the prior class

probabilities P (Ci) and the class likelihoods p(x̄ | Ci) [Alp04, p. 72].

2.3.1 Maximum Likelihood Estimate

When choosing a distribution type it also needs to be trained using a sample

data X = {x̄d}
N
d=1 of documents. The parameters of the distribution could be

estimated using Maximum Likelihood Estimation (MLE). This searches for

the parameters θ of the distribution for which the likelihood of the samples

being featured is at maximum, in other words the likelihood p(X | θ) is

maximised. The x̄d in the sample are assumed independent and therefore

the density function of the probability of X given θ can be written in the

following way:

p(X | θ) =
N
∏

d=1

p(x̄d | θ). (2.11)

In this particular case X is known. It is the sample data at hand and the

parameters θ are to be estimated. The likelihood function for θ given X

is therefore l(θ | X) ≡ p(X | θ). As argued before in Section 2.2.2, the θ

that maximises the likelihood function l is the same θ that maximises the
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logarithm of the function called the log likelihood L(θ | X) and it is defined

as follows:

L(θ | X) =

N
∑

d=1

log p(x̄d | θ). [Alp04, p. 62] (2.12)

To find the parameters θ that maximises log likelihood function, the func-

tion is derived with respect to the parameters and finds the θ for which the

derivative is at zero:

dL(θ | X)

dθ
= 0. (2.13)

2.3.2 Maximum a Posteriori Estimate

The maximum a posteriori estimate (MAP) focuses on the posterior density

of the parameters when looking at the sample

p(θ | X) =
p(X | θ)p(θ)

p(X)
, (2.14)

and is solved by choosing the posterior density that maximises the estimate:

θMAP = argmax
θ

p(θ | X) [Alp04, pp. 67]. (2.15)

2.3.3 Naive Bayes Classifier

If p(x̄ | Ci) is estimated using normal Gaussian density N(µ̄i,Si) with a

multivariate data set of dimension t = 1. . . T , where the variables can take

real values, x̄ ∈ RT , the discriminant function is a quadratic function. The

quadratic term comes from the different covariance matrices Si for each dis-

tribution p(x̄ | Ci). If the covariance matrices are presumed to be the same

for all class likelihoods Si = S ∀ i, the discriminant function gi becomes

linear and is defined as follows:

gi(x̄) = w̄T
i x̄+ wi0 [Alp04, p. 95], (2.16)
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where wi and wi0 are dependent on the covariance matrix S and the class

means µi of the data.

The advantage of a linear discriminant function is that the decision regions

are convex: if two known points of the region are connected by a line, then

all points on that line belong to that region. [Alp04, pp. 92]

In the Naive Bayes (NB) Classifier the class likelihood p(x̄ | Ci) is normally

distributed and the covariance matrices are all presumed to be the same.

Thus it is a linear discriminant model. In addition to this, the variables

are presumed to be independent of each other and thus the common covari-

ance matrix is diagonal. Computationally this is of significance because the

complexity of determining the covariance matrix drops from O(d2) to O(d)

[Alp04, p. 96].

The NB classifier is quite popular and often mentioned in text books con-

cerning ML. Manning et al. [MRS08] suggest using a NB classifier for a text

classification problem. The class likelihoods of each term of a document d

are assumed to be independent of each other and therefore they multiply up

to the class likelihood of the document p(x̄d | Ci), where x̄d is the term vec-

tor of the document d. The terms of the document, x̄d = (x1,x2,. . . ,xT ) are

assumed to be independent of each other [MS00, p. 237]. This assumption

is called bag-of-words and is discussed later in detail in Section 2.5.

A multinomial distribution is assumed instead of a normal Gaussian distri-

bution for the document’s terms and the class likelihood can be written in

the following way:

P (x̄d | Ci) =
T
∏

t=1

P (xt | Ci) (2.17)

The discriminant function (Equation 2.10) is then:

gi(x̄d) = log p(x̄d | Ci) + logP (Ci) (2.18)

and further using Equation 2.17

gi(x̄) =
T
∑

t=1

logP (xt | Ci) + logP (Ci) [MRS08, pp. 238]. (2.19)
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The class likelihood is approximated with a multinomial distribution of its

terms and thus the MLE for the likelihood of each term belonging to a

document of a certain class is the term frequency (see Section 2.5) of a term

in a document tft,d [MRS08, p. 107].

The estimate for the prior probability is:

p(Ci) =
NCi

N
, (2.20)

where NCi
is the number of documents belonging to the class Ci and N is

the number of all documents. [MRS08, p. 240]

2.4 Discriminant-based Classification

ML solution models that assign a new x̄ with a class label by solving for

the maximum posterior probability argmaxk P (Ck | x̄) directly are called

discriminative models [Bis07, p. 43]. In discriminant-based classification the

focus is not on the distribution for each class but on the decision boundaries

that separate the decision regions from each other (see Section 2.2.2). Thus

the assumptions on the form of the distribution and the prior probability are

not made but the form of the discriminant is assumed to be of a certain kind.

[Alp04, pp. 197]

2.4.1 Linear Discriminant

In ML textbooks a linear discriminant is usually discussed. The discriminant

function is assumed linear and is defined the same way as in Equation 2.16.

For simplicity Equation 2.16 can also be written in the following way:

gi(x̄) = w̄T

[

x̄

1

]

, (2.21)

where wT+1 replaces w0.

Alpaydin [Alp04, p. 198] praises the linear discriminant for its computational

simplicity and also for its understandability as the coefficient w̄ reveals the

weighted values for each factor x1,x2,. . . ,xT of x̄.
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The coefficient w̄ is not solved by estimating the prior and class likelihood’s

distribution like it was done in Section 2.3.3, but they are optimised by

minimising the classification error E on the data set. Alpaydin discusses the

option of using Gradient Descent for finding the optimal w̄. [Alp04, pp. 206]

In Gradient Descent the training set is used to find the coefficients w and w0

by determining the E(w̄ | x̄) that is the smallest. An arbitrary w̄ is chosen

and it is updated on each step by adding to it ∆w̄, which is written as:

∆w̄i = −η
∂E

∂w̄i

, ∀i, (2.22)

where the step size η should be chosen with care: too small a step size makes

for a slow computation and too large a step size might lead to oscillation.

The purpose of Gradient Descent is to find a local minimum that might be

the absolute minimum.

2.4.2 Logistic Discrimination

The decision between classes is made by deciding whether a data point is

on the positive side of a decision boundary or not. Therefore the following

should apply:

gi(x̄ | w̄i,wi0)

{

> 0 if x̄ ∈ Ci

≤ 0 otherwise.
(2.23)

This might not apply in all cases, though, and thus the class with the highest

discriminant should be chosen. A decision between two classes can be made

by taking the difference of their discriminant functions. Thus a new decision

discriminant function gij(x̄) is defined:

gij(x̄) = gi(x̄)− gj(x̄)

{

> 0 if x̄ ∈ Ci

≤ 0 if x̄ ∈ Cj ,
(2.24)

which is a linear function, as well. [Alp04, p. 204]

In the generative approach the discriminant function was the logarithm of

the class likelihoods and the prior (see Equation 2.10). The gij(x̄) would

then be:
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gij(x̄) = log p(x̄ | Ci) + logP (Ci)− log p(x̄ | Cj)− logP (Cj), (2.25)

which can be represented as:

gij(x̄) = log
p(x̄ | Ci)

p(x̄ | Cj)
+ log

P (Ci)

P (Cj)
. (2.26)

In a two class problem this is the same as the logit function of P (C1 | x̄),

which has the following estimate:

P̂ (C1 | x̄) =
1

1 + exp [−(w̄T
i x̄)]

. [Alp04, pp. 208] (2.27)

When generalised into a multiple class problem, Alpaydin shows that the

estimate of P (Ci | x̄) is:

P̂ (Ci | x̄) =
exp [w̄T

i x̄]
∑K

j=1 exp [w̄
T
i x̄]

. (2.28)

Depending on whether the estimate is solved by maximising it or by minimis-

ing the error of w̄, gradient ascent or gradient descent are used respectively.

[Alp04, pp. 211]

2.5 Bag of Words Model

A bag of words representation of a document assigns a weight value for

each term occurring in the document. It is a simplified representation of a

document, because it assumes that the document’s terms are independent of

each other [MS00, p. 237], that they are all of equal importance and that the

term’s ordering is of no importance [MRS08, pp. 105]. The representation

is based on the assumption that two documents with similar bag of words

representations are similar in content [MRS08, p. 107].

Term frequency is often used when determining the weight value for each term

t in a document d. The number of times that a term occurs in a document

is counted and normalised by the total number of words in the document in

the following way:
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tft,d =
number of occurrences of the term t

number of terms in document d
[Alp04, p. 64]. (2.29)

The number of times a term occurs in a document does not necessarily mea-

sure a term’s relevance to the contents of the document. A term that occurs

frequently in a document may also occur frequently in other documents and

therefore make no difference in an analysis done on the contents of the doc-

ument. A common way to scale the term frequency is to use the document

frequency of a term noted by dft. The document frequency is the number of

documents in which a term t occurs. The inverse of the document frequency,

idft, with which the term frequency is scaled, is defined as:

idft = log
N

dft
, (2.30)

where N is the total number of documents. [MRS08, p. 108]

By multiplying the term frequency with the inverse document frequency the

tf-idf weight is defined for a term t in a document d in the following way:

tf -idft,d = tft,d · idft, (2.31)

and a document can be represented by a vector of the tf-idf weights for all

possible terms. The terms that do not occur in the document have the weight

0.[MRS08, p. 109]

2.6 Dimensionality Reduction

Much like in a detective novel all the facts and all the information are not

necessarily crucial clues that will lead to the culprit. This is also the case

in machine learning: not all variables are of importance when trying to find

the right class label. Sometimes variables can always have the same value

for each data point and hold no information about the right class label.

Alpaydin argues between a trade-off of classifiers and feature selection: On

the one hand a classifier should by itself be able to distinguish between im-

portant and less important variables and thus reduce its dimension [Alp04,

p. 129], but at the same time the complexity of the classifier can be reduced
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by reducing its dimensions beforehand [Alp04, p. 105]. Also when unneces-

sary variables are extracted the necessary variables can create a picture of

the underlying problem and create new knowledge, which is called knowledge

extraction [Alp04, p.106].

Unnecessary variables can be extracted or important variables can be selected

in dimensionality reduction. It is called respectively Feature extraction or

selection [Alp04, p. 106].

2.6.1 PCA

Extracting some variables is not the only way to lower dimensionality. The

principle component analysis (PCA) does not take a look on variables and

decide which ones are the best to represent the data, but instead it projects

the variables on to a lower dimension in such a way that the variance of the

data points is maximised [Alp04, pp. 108]. This comes from the assumption

that big variance gives more information on the data behaviour than low

variance [TM03].

PCA starts by choosing the first principal component, which is an eigenvec-

tor of the covariance matrix of the data. The eigenvector with the largest

eigenvalue has the largest variance, thus the first principal component is the

eigenvector of the covariance matrix with the largest eigenvalue [Bis07, p.

562]. Each next principal component is an eigenvector of the covariance ma-

trix with the next largest eigenvalue and thus all components are orthogonal

to each other [Alp04, p. 110].

The data X can be represented with its spectral decomposition

X = CDCT, (2.32)

where D is a diagonal matrix containing the eigenvalues and C contains the

appropriate eigenvectors of X. For the dimension reduction of x̄ of size N×1

to z̄ of size M × 1, where M < N , the following must apply:

z̄ = UTx̄, (2.33)

where U contains the M greatest eigenvectors of C [Alp04, pp. 108]. If x̄

would be a bag of words representation of a document, then z̄ would be a
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reduced representation of that, where z̄ would contain not weight values of

terms but those of the terms eigenvector representations.

In PCA dimensionality is not reduced by picking out the variables of im-

portance, thus knowledge extraction as such cannot be done. PCA is still

very useful for visualising clusters and groups of the data. The first two or

three principal components contain already a lot of the useful information in

them, so that it is useful to plot a 2 or 3-dimensional graph from the com-

ponents and mark the appropriate class labels to the data points. Because

PCA chooses its components by maximising the variance of the data points,

it is sensitive to outliers. There are several ways for isolating outliers from

the analysis such as robust estimation. [Alp04, pp. 113]

PCA is commonly used for dimensionality reduction and often discussed. Ella

Bingham and Heikki Mannila [BM01] discuss the computational complexity

of PCA and argue, that a random projection is computationally efficient and

proves to be a sufficient enough method of dimensionality reduction.

2.6.2 Decision Tree

Like PCA a decision tree is very useful for visualisation of the data. It is also

useful knowledge extraction, because it splits the data according to the data’s

variables. Instead of looking at the variance of eigenvectors the decision tree

implements a “divide-and-conquer strategy” [Alp04, p. 173] and makes splits

according to low entropy.

The main principle of a decision classification tree is to find the best set

of step-by-step rules so that by each step the data is separated to a given

set of classes. The construction of a decision tree can be done by the ID3

algorithm [Alp04, Figure 9.3]. The algorithm checks each node’s entropy to

be less than a given threshold, and if it holds, a new leaf of a tree is created

based on the majority class of the node. This is the so called “stop criterium”

for the algorithm. If the entropy is still bigger than a given threshold, the

algorithm continues and makes a split, after which the algorithm continues

its recursion. The algorithm tries to choose “the best split”, which causes

the largest decrease in impurity. [Alp04, pp. 176]

Each leaf of the decision tree is a rule. In a multivariate problem a rule tests

the value of a certain variable. A decision tree can either be build by setting
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a minimum value for the number of items that have to reach a node after a

split. If the minimum value cannot be reached, a split will not be made and

a rule will not be created. This method of building a decision tree is called

pre-pruning and Alpaydin points out that it is not as good as post-pruning.

In post-pruning the decision tree is build to its full size and subtrees that

make no difference to the accuracy of the tree are removed. [Alp04, pp. 182]

A pruned tree for a multivariate classification problem contains in each leaf

a variable and the test that should be done for the variable in order to decide

on a class label. The leafs of the tree thus show the variables to be consid-

ered and thus a decision tree model is also a way to reduce dimensionality.

Decision trees tend not to be very accurate for classification but they work

well for visualising creating a general look-and-feel to an underlying problem.

In a problem, where there are multiple possible class labels, it will be quite

hard to visualise a decision tree for it. The tree as a visual aid works best

for a two-class problem.



Chapter 3

Ontologies and the Semantic

Web

This chapter describes the semantic web and explores its definition. The

building blocks of the semantic web, ontologies, are explored. This chapter

illustrates how ontologies are built and explains the syntax of expressing

ontologies.

3.1 Ontologies

Ontology in ancient Greek philosophy means the theory of being, existence

and reality. The field of Artificial Intelligence (AI) has taken the word ontol-

ogy to mean something a little different but in relation to the word’s original

meaning. Gruber [Gru93] defined an ontology as

an explicit specification of a conceptualisation. [Gru93, p. 1]

In his dissertation Borst [Bor97] quotes Gruber’s definition, but changes the

word “explicit” to “formal” and points out that the conceptualisation must

be based on an agreement and adds the adjective “shared” to the definition.

Studer et al. [SBF98] see both definitions as right and define an ontology as

a formal, explicit specification of a shared conceptualisation. [SBF98,

p. 25]

19
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Borst describes a conceptualisation as a “structured interpretation” of the

world that people communicate about [Bor97, p. 12]. When people commu-

nicate about the world, the words they use hold a meaning for them. This

is not the same for machines. For them these words are just meaningless

strings of symbols. Therefore in AI there is a need for putting the words

into a structure of concepts, an ontology, where the connections between

concepts corresponding to the words are described in a formal and explicit

way. Formal description of the concepts allow for an ontology to be machine

readable [SBF98, p. 25]. Even though an ontology is defined to be explicit,

the definition for the accuracy of the explicit description of the concepts is

problematic [Alm07, p. 4].

3.1.1 Semantic Relations

The concepts in an ontology are related to human readable words (literals)

and to each other through semantic relations. To formally map different

relations between concepts a set of semantic relations are used to describe

them.

The backbone of an ontology is usually a set of abstract concepts that are in

a hierarchical subclass-of relation to each other [Bor97, p. 18]. Depending on

the ontology and ontology language used for representing it, concepts can be

enriched with attributes and other relations to each other. The constraints

on them make up a set of rules called axioms [SBF98, p. 28] that can be

used for reasoning [Bor97, p. 66]. There is a semantic difference in the type

of hierarchical relation that a human can easily distinguish and takes for

granted but that needs to be explicated to the machine [Hyv05].

Hyponymy

The apple is a subconcept of the fruit, where the fruit is the hypernym of

apple and the apple is a hyponym of the fruit. Hyponymy is a hierarchical

is-a or subclass-of relation. It exists when all the instances of a concept X ,

that is a subclass of a concept Y , are also an instance of Y [Gru93, p. 28].

For example, the Titanic is an instance of the watercraft concept, which is a

subclass of the vehicle concept. Thus all instances of the watercraft are also

instances of the vehicle.
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Meronymy

A hierarchical relation different from the hyponymy is the part-of relation. A

branch could be associated to being a subclass of a tree, but to the machine it

has to be distinguished as part of a tree [Hyv05]. In a hyponymy the concepts

inherit the characteristics of their hypernyms [GW04] and in a meronymy

they are only seen as physically being part-of a whole. The difference has to

be made, so that the machine can reason appropriately.

Associative

The ontology also contains other relations that are not hierarchical. This can

be expressed with an associative relation between them. There are numerous

ways of associating concepts and it has proven to be quite challenging to find

a compact way to describe them explicitly to the machine, because there are

so many different reasons for associating words with another [Hyv05]. For

example “rain” is associated with an “umbrella”, because rain is the reason

for using an umbrella. “Water” can be associated with a “well”, because that

is the place where water could be carried from.

3.1.2 Meaning of Concepts

Words cannot necessarily be disambiguated to unique meanings from their

text representation alone. For example the word light can either mean the

adjective that is the opposite of heavy or the noun for expressing the radi-

ation of the sun. Words whose string representation is the same but, which

have different meanings are called homonyms. Words with equal string rep-

resentations and related meanings are polysemous words. An example of

that is the word crane, which can mean the bird or the construction rig.

Concepts with identical labels can be set apart by a computer, if they are

given different unique identifiers. [Hyv05]

3.2 Building the Semantic Web

Tim Berners-Lee et al. [BLHL01] paint the picture of the semantic web,
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where software agents roaming from page to page can readily

carry out sophisticated tasks for users. [BLHL01, pp. 34]

The software agents use ontologies to deduce the needed information for

their users. Ontologies are, as said, formally described structures of concepts

and by using ontology information software agents can recognise a piece

of information to be a certain concept and use the relations described for

that concept in the ontology to reason on. Berners-Lee et al. note that a

computer programme does not understand the concepts, but can process the

information for the advantage of its users. [BLHL01, pp. 34]

Attaching information to a document is called annotation and it is ontology-

based if the information is machine-readable and formally connected to an

ontology [Alm07]. When the annotation is ontology-based a computer pro-

gramme can process the information for deduction and reasoning [Bor97, p.

66]. Annotation also helps search functions. For example a document anno-

tated with the concept apple can be recognised by a search engine reasoner

to be a document concerning fruit, because the apple is a subclass of the

fruit.

Oscar Corcho [Cor06] introduces document annotation by illustrating the

many ways in which information about a document can be expressed and

added to. Information about information is called metadata and it can be

expressed, for example, with a filled form about the document. The form

would have fields such as the author, date of publishing, owner of the docu-

ment, place of origin, title and so on. For the information to be of use for the

purposes of the semantic web, plain text metadata will not suffice, but the

metadata has to be machine-readable and linked to an ontology [HSM01].

Ciravegna et al. [CDPW02] note that document annotation requires a lot of

manual work and argue for the need of information extraction to make the

process automatic or at least semi-automatic.

The Semantic Computing Research Group (SeCo) of the Aalto University

School for Science and Technology has developed tools for semi-automatic

and automatic annotation. The Opas system, that is used by librarians for

annotation in the Ask-the-Librarian service, suggests automatically ontol-

ogy concepts for annotation. The users of Opas still have to pick the right

concepts and thus the system allows for semi-automatic annotation. [Veh06]
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Another semi-automatic annotation tool is the browser-based annotation tool

SAHA [Val06] that allows for multiple users to annotate a shared material. It

has been developed by the research team and the newest version of the SAHA-

tool allows even for social interaction between the collaborating annotators.

Annotation tools are usually semi-automatic, because some words are am-

biguous and can match the string representations of multiple concepts. Stephen

Dill et al. [DEG+03] have developed an automatic web-page annotation tool,

SemTag, which tries to solve this problem automatically. They tested it on

a large corpora of web pages using the TAP ontology [GMM03]. To find

the right concept that represents a word best, they created an algorithm. It

explores both the context of the word and the ancestory and decendants of

all possible concepts that could fit the word. The algorithm calculates the

similarity between the word’s context and each possibly matching concept’s

relational environment and chooses the most similar concept.

The POKA-tool developed by Olli Alm is an automatic annotation tool for

text documents. With the POKA-tool among other things words of a doc-

ument can be turned into their base form and documents can be annotated

based on the document’s words by connecting the words with the concepts

of the ontology POKA uses. [Alm07]

3.2.1 Standards for Representing Ontologies

Ontologies are widely used on the semantic web, and the following W3C

recommendations1 are often used in practise for representing them: the Re-

source Description Framework (RDF), the RDF Schema [BG04], and the

Web Ontology Language (OWL) [BvHH+04]. Here concepts of ontologies

are resources that are identified with a unique Uniform Resource Identifier

(URI) and are described with properties, which themselves are resources with

URIs, too. Everything is described using triples of the form

<subject, predicate, object>

where the subject is the resource to be described, the predicate is its property,

and the object the value of the property. The object can be either a resource

or a literal piece of data [MM04]. RDF triples constitute labelled directed

1http://www.w3.org/standards/semanticweb/
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graphs, and this data model will be used in the case study described in

Chapter 4.

There are different serialisations for the data model of RDF, such as RDF/XML,

full or abbreviated.

In this master’s thesis the resources are described using the compact textual

syntax Turtle Terse Triple Language (TTL) [BBL08]. In TTL a triple is

represented so that all triples corresponding to a subject and a subject-

predicate pair are grouped together. If there is only one triple for a subject,

the triple is:

subject1 predicate1 object1 .

The grouping for multiple triples for one subject, looks as follows:

subject1

predicate1 object1 ;

predicate2 object2 ;

predicate3 object3 ;

predicate4 object4 .

Let’s say that there are multiple triples for subject1 and predicate1, then

the grouping would look like:

subject1

predicate1

object1 ,

object2 ,

object3 ;

predicate2 object2 ;

predicate3 object3 ;

predicate4 object4 .

URIs look very much the same like Uniform Resource Locators (URL) but

URIs do not necessarily point to a network location like URLs do. URI’s

consist of a namspace and a local name, for example:

http://www.narc.fi/onto#document1234,



CHAPTER 3. ONTOLOGIES AND THE SEMANTIC WEB 25

where the first part of the URI until the hash sign is the namespace and

the following part the local name. The namespace is common for many

resources and represents the affiliation of the instance the URI identifies. the

local name may not be globally unique, but needs to be different for each

resource under the same namespace.

Because URIs tend to be long and hard to write, the namespace can be

abbreviated to a short namespace prefix. The prefix is followed by a colon

sign and the local name of the URI. The principle of combining the namespace

prefix and the local name is used in QNames. The prefix has to be declared

in the beginning of a document. For example in TTL the declaration would

be:

@prefix narc: <http://www.narc.fi/onto#> .

and later in the document the URI would be:

narc:document1234

URIs can be abbreviated also using CURIEs, which are recommended for

language designers. In CURIEs the format for the part after the colon is

not as strict as in QNames, because in QNames for example the local name

cannot begin with a number. [BM09]

The human readable name of a resource is usually described with the property

rdfs:label2, its literal property value and a language tag [Alv01], that can

be added to the property value to mark multilingual labels in the following

way:

narc:document111

rdfs:label

"asiakirja"@fi ,

"document"@en ;

...

where “fi” stands for the Finnish language and “en” for the English language.

2http://www.w3.org/TR/rdf-schema/#ch_label
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3.2.2 General Finnish Ontology YSO

The General Finnish Ontology YSO has been developed from the commonly

used Finnish General Thesaurus YSA [HVK+05]. The thesaurus YSA uses

relations such as narrower term (NT), broader term (BT), and related term

(RT) between the thesaurus’ terms. Even though the relations BT and

NT point to a hierarchical relation between terms, the distinction between

hyponymy and meronymy is not made. In order to turn the YSA into a

machine-readable ontology, it was transformed using the OWL-language and

the distinction between different kinds of BT and NT relations was made.

First all BT/NT relations were turned into subclass-of relations and the con-

cepts that were actually in a part-of relation to each other were corrected.

In addition to this a group of abstract concepts not from YSA were added

to the ontology for arrangement purposes. [HSVF07]

The RT relation expresses an associative relation between terms, for example

an umbrella is associated with rain. The number of different associative

relations can become unreasonably large. In YSO the type of the associative

relations is left undecided. If needed, further refinements need to be made in

applications. [Hyv05]

YSO’s concepts are labelled not only with their Finnish names from YSA

but also with their equivalent Swedish names from the General Swedish The-

saurus Allärs [HSVF07]. As of the year 2010 YSO contains also English labels

for concepts, when appropriate.

The purpose of YSO is to serve as a national top-ontology for other ontolo-

gies in Finland [HSVF07]. The research group SeCo has developed domain

specific thesauri into ontologies and used YSO as a basis and reference for

them. For example the Finnish Thesaurus for Music MUSA contains around

900 terms. The thesaurus was automatically transformed into the OWL-

language and the terms were first automatically matched with concepts from

YSO. Therefore, after the automatic transformation, the syntactical ontology

was manually checked and corrected into a true ontology. Approximately half

of the MUSO concepts were equivalent concepts of YSO. The rest of MUSO

now enriches YSO with concepts from the musical field. The BT and NT

relations were like in the YSA to YSO transformation turned into subClassOf

relations. Thus not all of the resulting relations were correct and had to be

corrected. [Nyb08]



Chapter 4

Preprocessing of Data for the

Case Study

This chapter describes the way in which the text of the Archive’s documents

was extracted, analysed and turned into a form that could be used by the

Machine Learning analysis.

4.1 Documents of the Finnish National Archive

This case study on document classification is based on a data set from the

Finnish National Archive (in short the Archive), which is a government body

under the Ministry of Education. A test set of the Archive’s own case man-

agement system was provided for this master’s research. The test data con-

tains documents and a XML file with all the metadata concerning the infor-

mation of the archive holder, archive, groups, cases, actions and documents

according to the SÄHKE metadata scheme.

The Archive provided the research also with a listing of a classification hier-

archy. The listing contains a 2-levelled classification with 70 classes and 45

subclasses. Only 13 classes have subclasses and a class with subclasses has

on average 3. 23 subclasses.

Of the provided classification the test data uses only 67 classes of which 31

are subclasses. In the metadata these are represented by the group entities.

The unused classes of the classification are not included in the metadata file.

27
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The data set contains 7,252 documents that are linked to inquiries directed to

the Archive. The inquiries are part of the Archive’s service. Normal citizens

or researchers ask for example for access to certain kind of information that

the Archive holds or may hold.

The Archive’s data set can be viewed with the HAKO-tool1. The HAKO-

tool makes it possible to search for a certain data through multiple facets. A

search is made easier by filtering the content through its multiple properties.

For example when using the HAKO-tool with this particular data set it is

possible to narrow down the number of documents to documents that belong

only to a certain group. It is also possible to narrow down the search further

and view only the documents of a certain group that were archived by a

particular person. This narrows down the search quite effectively and helps

to achieve a reasonably quick access for a large data set.

4.1.1 Metadata Model

The Archive dictates that any national or municipal organisation that wishes

to store documents permanently and only in digital form needs to ask for the

Archive’s permission and has to follow the SÄHKE metadata model. The

model is concerned with the digital handling, managing and finally storing

of information on official documents concerning national and municipal gov-

ernments. It dictates the way in which metadata, the information about

the official documents, such as the author and the title, is stored. In the

SÄHKE metadata model each document is part of a procedure of processing

actions and cases and metadata of the procedure is also stored. The SÄHKE

metadata model forms a standard under which the digital case management

system of national or municipal organisations can be formed. [Ano05]

The abstract specifications of the SÄHKE metadata model [SM05] introduce

an archive hierarchy under which the actual documents are placed in the

metadata model (see Figure 4.1). The archive hierarchy contains the parts

of the procedure in which the documents are stored. Each document is

associated to one or more actions through an XML reference. Each action is

then linked to a case. Inside a case a number of actions can contain the same

document, if the document is of significance to that action. Each case belongs

to one group and each group represents one class of a given classification. Any

1http://www.seco.tkk.fi/tools/hako/
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organisation using the SÄHKE metadata model is an archive creator and

holder and holds one or more archives. The archive holder is the agent that

produces all the information inside the archive [SM05]. Each archive contains

one or more groups under which the cases to be stored are grouped. Groups

can also contain sub-groups. Because of this the groups form a hierarchical

structure that can also be seen as the classification for the cases, actions and

documents.

Figure 4.1: Archive hierarchy of the SÄHKE metadata model as specified in

the article on the abstract modelling for the SÄHKE project [SM05]

The archive hierarchy is a direct representation of the hierarchy of the XML

file that holds all the metadata information of one archive holder and its

archives. In that file the archive holder is represented as an XML entity so

that the entity contains one or multiple archive entities, among other things.

Each archive entity contains one or several group entities. Each group entity

contains one or more cases and may contain also references to its supergroup

or subgroups. A case entity contains one or more action entities, and action
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entities contain one or more document entities.

The Archive’s own data set follows the metadata model and its 7,252 docu-

ments are linked to 32,325 actions in total. They describe the actions taken

during a process, where an inquiry is received and dealt with, i.e. an email

request for information from the Archive is received, saved as an document

and put into the data system as an action. That email is answered with an

email as well, and saved as a document and action. This is done for all the

steps when a request is processed. All such actions involving one matter are

linked to a case. The data contains 3,469 cases. The cases are categorised

under 67 groups. This particular data set is subject to only one archive.

4.1.2 Transformation of the Metadata to RDF

The metadata of the case management system was read and turned into

RDF-form using the Turtle syntax. Each XML element was turned into a re-

source using the namespace http://www.narc.fi/onto\# and a local name

that consisted of the element’s tag name and an arbitrary unique number

identifying the element. A resource class was created from the element’s tag

name and the class was set as the type of that resource. Every attribute of a

element was turned into a triplet with the element resource as the subject, a

property created from the namespace and the attribute’s local name as the

predicate, and the attribute’s value as a literal object.

For example, the XML file describing the SÄHKE metadata of the case

management system of the Archive contains an element called case and that

element has the attribute ID=”210”. In the transformation of the metadata

this resulted in the following triplets:

narc:case11fb2f943b914

rdf:type narc:case ;

narc:ID "210" ;

...

The information of each child element of an element was also saved as a

triplet. If the child element had no children elements or attributes of its

own, but only contained text, it was treated just like an attribute of its

parent element and the information was turned into a triplet with a literal
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object. Thus the child element’s local name served as the local name of the

property. In case the child element had child elements of its own, a triplet

was created with the parent element’s resource as the subject and a property

with a local name that started with “has ” and was followed by the child

element’s local name as the predicate. The object of the triplet was the

child element turned into a resource with a local name that started with the

child element’s local name and ended with an arbitrary unique identication

number. The resource of the child element was typed with a class created

from the element’s local name and the namespace.

In the above mentioned example, the case-element contains five action child

elements. These were turned into resources of their own, as they contain

more than just text and resulted in triplets describing the information the

actions contain. In the above mentioned case the following five triplets were

created expressing the actions that are contained in the case:

narc:case11fb2f943b914

narc:has_action

narc:action11fb2f943c88c ,

narc:action11fb2f943c780 ,

narc:action11fb2f943c46b ,

narc:action11fb2f943be2a ,

narc:action11fb2f943d2d2 ;

...

4.2 Processing the Documents for Further Anal-

ysis

A Java programme was written that handled the documents and turned them

into files that could be utilized by the Machine Learning analysis. Figures 4.2,

4.5, 4.6, 4.7, 4.13, and 4.17 show the different steps of that programme.

Two Java classes, DocumentHandler and Analyser, were written in order to

handle the whole process of extracting the text from documents, sending it

for analysis, receiving it and transforming it so that it could be used by the

Machine Learning analysis. Below are the descriptions for each class.
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Figure 4.2: The parts of the process with which document text was read and

made available for the Machine Learning analysis.

DocumentHandler Class

The DocumentHandler class (see Figure 4.3) was designed to read files and

extract the text they contained. It comprises methods, that read files from

a given directory path. The directory can be represented by a String or File

object. The getText(File file) method analyses the file name of the input

file and searches for certain kinds of file endings. This was a sensible way

of distinguishing between file types as all files, from which the text could be

extracted from, had file endings. For finding out the file type, determining

the MIME type was tested as well. It did not prove to be sufficient enough

as it was unable to distinguish between Microsoft Office documents, PDFs

and TXT documents. Some RTF files were recognised to be of MIME type

“application/rtf” but most documents were recognised as of MIME type

“application/octet-stream”.

Figure 4.3: UML-graph for the DocumentHandler class, that acts according

to its name
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Analyser Class

Reading files, making them ready for the syntactical analysis and the trans-

formation of the results of the analysis was done by the the Analyser class

object (see Figure 4.4). It stored the DocumentHandler object used in this

programme and all the objects of the documents, that could be analysed for

this case study. It also stored a Jena model, because later on all information

of the documents was stored in RDF form. The namespace that was used

in the model for all elements was held in the “ns” parameter. In addition

to these the class had three fields of type Resource. They were all used in

connection with creating the RDF data from the object transformed anal-

ysis. One of them, the term-field, was made public, as it was used by the

class’ main method. The analyse method took as its input either a String

representation of a directory, where all the to-be-analysed files were stored,

or a map of files. The method created a document object for each file and

stored the document by its ID number into a Document object map.

Figure 4.4: UML-graph for the Analyser class, which is the core of the pro-

gramme created for analysing the text from documents
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Figure 4.5: Text extraction

4.2.1 Document Text Extraction

First the text of each document in various machine readable file formats was

extracted and read into String variables. Out of the 7,252 documents, 2,324

were scanned documents, mostly TIFF images. Some of these documents

were written by hand and contained even hand-written Russian text. Others

were written by a machine and therefore an OCR-scan of them would have

helped in getting the document text in digital form. Due to lack of resources

a sufficient OCR-scan was not performed and these documents were left out

of the analysis. In the end 4,919 documents could be used for the analysis.

Most of the machine readable documents, 4,363, were in the form of Mi-

crosoft Office documents (.doc, .dot, .xls, .xlt) and they were turned into

OpenOffice.org form using a Wizard contained in the OpenOffice.org pro-

gramme. OpenOffice stores the information of its files in XML form, so that

the text they contain can be easily read with Java using for example the

Java org.jdom package2 for the handling of XML files. The code for handling

contents of OpenOffice.org documents was provided in a Sun Microsystems

employee blog under the category of Useful codes 3.

Other documents that were stored in formats such as RTF, PDF and TXT

where it was possible for a computer programme to extract the text they

contained. RTF was read with Java using the javax.swing.text.rtf package4.

PDF files were handled using the org.pdfbox package5. Files of file extension

“txt” were read simply by using the java.io package. The text of each docu-

ment was read into one String variable, sanitised from malicious characters

2http://www.jdom.org/
3http://blogs.sun.com/prasanna/entry/openoffice parser extracting text from
4Using especially the RTFEditorKit class: http://java.sun.com/j2se/1.5.0/docs/

api/javax/swing/text/rtf/RTFEditorKit.html
5http://www.pdfbox.org/javadoc/org/pdfbox/package-summary.html
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and then passed on to a syntax analyser component.

4.2.2 Syntactical Analysis of the Text Extracted

Figure 4.6: Syntactical analysis

For this case study of the documents of the Archive the Machinese Syn-

tax6 component created by Connexor Oy proved to be very sufficient. The

component works for all of the Archive’s documents’ languages, which are

Finnish, Swedish and English language. The Machinese Syntax was used on

the text extracted from the documents. The component takes as its input

text and returns that text in XML form. It recognises each sentence and

numbers them, numbers each word inside a sentence, and turns them into a

base form. Machinese Syntax also analyses the syntactical relations between

words. [Ano06]

For example, one of the analysed documents represents an e-mail sent to

the Archive. Its seventh sentence (“She is collecting information on Boris

Amarantov, circus artist, mime, who has emigrated to USA from URSS in

1977.”) was analysed by the Machinese Syntax. For the result of the analysis

see Table 4.1 below. The first column contains the running number of the

words of one sentence. The first word of each sentence is numbered with 1.

The second column contains the word of the sentence in its original form and

the third column the word’s base form. The fourth column notes the func-

tional dependency relations the words have with each other. For example,

the syntactical relation of the first word “She” is marked as “subj:> 2”, which

means that word is the subject for the second word “is”. The second word’s

functional dependency “v-ch:>3” notes that the second word is part of a

6Earlier known as The Functional Dependency Grammar (FDG). The Machinese Syn-

tax Demo is available on Connexor’s website: http://www.connexor.eu/technology/

machinese/demo/syntax/
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verb chain that is the predicate of this sentence. The functional dependency

of the third word “main:> 0” means that this is the main verb of the main

clause. The predicate is “is collecting”, its subject is “She” and by reading

on the fourth row we find that the object is “information”. The fifth column

contains the Language Model Tags the Machinese Syntax component pro-

vides each word with. Functional tags are marked with @, surface syntactic

tags with % and morphological tags with no special character. For example

the first word of the example sentence is tagged as the subject (@SUBJ) and

the nominal head (%NH) of the sentence. Its morphological tags show that

it is a personal (PERS) pro-nomial (PRON) in nominative case (NOM) and

third person singular (SG3).7

1 She she subj:> 2 @SUBJ %NH PRON

PERS NOM SG3

2 is be v-ch:>3 @+FAUXV %AUX V

PRES SG3

3 collecting collect main:>0 @-FMAINV %VA ING

4 information information obj:>3 @OBJ %NH N NOM SG

5 on on mod:>4 @<NOM %N< PREP

6 Boris boris attr:>7 @A> %>N N NOM SG

7 Amarantov amarantov pcomp:>5 @<P %NH N NOM SG

8 , ,

9 circus circus attr:>10 @A> %>N N NOM SG

10 artist artist mod:>7 @APP %NH N NOM SG

11 , ,

12 mime mime mod:>10 @APP %NH N NOM SG

... ... ... ... ...

Table 4.1: Machinese Syntax output for the beginning of the sentence: “She

is collecting information on Boris Amarantov, circus artist, mime, ...”
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Figure 4.7: Document Information parsed and saved to Java objects

4.2.3 Parsing the Syntactical Analysis

The analysis from the Connexor Machinese Syntax component in XML form

was parsed using the POKA-tool8. Its class FDGParser was originally de-

signed to transform the XML output of the component into a more efficient

XML form, that the POKA-tool used [Alm07]. For the purpose of this case

study, the FDGParser was modified so that it stored the information from

the Machinese Syntax analysis into sentence and word objects. This was

done in order to store and further process the information from the analysis.

4.2.4 Document Text Transformation

Figure 4.8: Document Information in Java objects

In order to process the analysis from the Machinese Syntax, its information

was stored into Java objects. The syntactical information from the analysis

was stored into Java objects of the classes Document, Sentence and Term.

The functional dependency between two Term objects was stored in a object

of the class Functional Dependency. Below is a description of each class.

7For the description of each tag see: http://193.185.105.50/demo/machinese/doc/

enfdg3-tags.html
8http://www.seco.tkk.fi/tools/poka
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Term Class

Figure 4.9: UML-graph for the Term class, whose incarnations store all the

information for each word of all documents.

Figure 4.9 shows the information from the Machinese Syntax analysis that

was stored for each word of all documents. In the Term class represented by

the UML graph the word is called a term and its base form is called a lemma.

The objects for each term stored the number of the term inside one sentence.

Later, when all documents had been analysed and stored into objects, a

unique absolute number was determined for each term object. It numbered

all analysed words across sentences. The term object also stored the object

of the sentence from which the word originated from. The tokenMorpho

parameter of the term class stored the morphological tags from the Machinese

Syntax analysis. The getWordClass() method of the class was designed to

parse the term’s word class information from the morphological tags. It

searched for tags, such as N, A, DET, NUM, ADV, PREP, PRON, V, CC

and CS, and set the word class to noun, adjective, determiner, numeral,

adverb, preposition, pronoun, verb and, conjunction, respectively.

FunctionalDependency Class

The syntactical relation of two terms was stored as a FunctionalDependency

class object (see Figure 4.10). The object stored the term object from which
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Figure 4.10: UML-graph for the FunctionalDependency class, whose incar-

nations store the information of the syntactical relation from one word to

another.

it originated (and in which it was stored as well) in the source parameter,

the String representation of the dependency, such as “subj”, “v-ch” or “obj”,

in the token parameter, and the number of the word to which the syntac-

tical relation was directed to in the dependID parameter. Later on, when

all documents had been analysed and each word had its unique sentence-

independent id, the dependID parameter was reset to contain the unique ID

of the syntactical relation term.

Sentence Class

Figure 4.11: UML-graph for the Sentence class, whose incarnations store the

information of each sentence.

The UML-graph for the Sentence class is shown in Figure 4.11. The class

creates objects that store the object of the document, from which the sen-

tence originated from, in the doc parameter. It also stores the order of the

sentence in the document in the number parameter. All term objects in-

side the sentence were stored in the terms parameter with their number as
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their key. The Sentence class comprises a method, makeFDAbsolute(), that

changes the FunctionalDependency object of each term object of the sen-

tence. This method was called after all documents had been analysed and

all term numbers made absolute. It resets the dependID to the unique ID

of the term to which the dependID parameter of the Functional Dependency

instance points to.

Document Class

Figure 4.12: UML-graph for the Document class, whose incarnations store

the information of each document.

The Document class shown in Figure 4.12 is designed to hold the information

of one document. Its method initSentence() checks the document text for

bad characters and sends and receives the text to and from the Machinese

Syntax analysis. Its incarnation stores all sentences of a document in the

sentences parameter. The text of the document is also kept in the same

named parameter of type String. The document object holds the object

representation of the document file, the document id and the language code

of the document.

First when the code and the output from the Machinese Syntax analysis was

tested, the text taken from the documents contained malicious characters,

that were placed between two words. It is sometimes convenient to write

two alternative words together and divide them by the “/” character, e.g.

“Attached you find the bill/invoice of my postage costs.” The Machinese

Syntax cannot distinguish between the two words and handles the bundle as

one word (see Table 4.2, fifth row). The santiseText(String) method takes
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1 Attached attach @-FMAINV %VP EN

2 you you subj:>3 @SUBJ %NH PRON PERS

NOM

3 find find main:>0 @+FMAINV %VA V PRES

4 the the det:>5 @DN> %>N DET

5 bill/invoice bill/invoice obj:>3 @OBJ %NH N NOM SG

6 of of mod:>5 @<NOM-OF %N< PREP

7 my i attr:>8 @A> %>N PRON PERS GEN

SG1

8 postage postage attr:>9 @A> %>N N NOM SG

9 costs cost pcomp:>6 @<P %NH N NOM PL

10 . .

Table 4.2: Machinese Syntax output of the sentence: “Attached you find the

bill/invoice of my postage costs.”

this problem into account and removes the “/” characters from word bundles

such as these. The method ignores URLs, though, as their components did

not need to be handled separately for this particular case study.

4.2.5 RDF Transformation

Figure 4.13: Document information in TTL file.

When all document files had been read, sent for analysis, received from anal-

ysis, and transformed into objects, the objects and the information they held

were read into a Jena Model9. The RDF was created based on the RDF

Schema represented in Figure 4.14. In this RDF schema the term is in the

9Jena Model Javadoc: http://jena.sourceforge.net/javadoc/com/hp/hpl/jena/

rdf/model/Model.html
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middle of the focus, because the Machinese Syntax component’s analysis

provides information for each term rather than for a sentence and because

the Machine Learning analysis uses the bag-of-words representation of the

documents.

Figure 4.14: RDF Schema on how information of the documents and their

Machinese Syntax Analysis was stored.

The namespace of all nodes in the schema is http://www.yso.fi/meta/

depRDF#. The start of the namespace, http://www.yso.fi/meta/, is used by

the research group SeCo for different kinds of metadata schemas and the last

part depRDF# is the proposed name for ontologies adhering to the proposed
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schema showing syntactical dependencies between terms in sentences and

documents.

The transformation from Java objects to resources of the Jena model is done

in the following way: A resource of type http://www.yso.fi/aski/term is

created for each term, so that the term’s URI consists of a localname be-

ginning with ‘‘term ’’ and followed by the term’s unique ID number. The

term resource has four literal properties that store the term’s sentence num-

ber (sentenceNr), the sequence number of the term in the sentence (location),

the term’s base form (lemma), and its original form.

The syntactical relation from one term to another is held by various sub-

properties of the property called “syntacticalRelation”. The sub-properties

get their localname from the Machinese Syntax analysis. In this particular

case study, 42 of these kind of different syntactical relations were created10.

For example the words of the beginning of the sentence “She is collecting in-

formation...” have the following syntactical relations with each other: “She”

is the subject (subj) of the verb chain (v-ch) “is collecting”, which is the

main predicate (main) of the sentence. “Information” is the object (obj) of

the sentence and has a syntactical relation with the main predicate.

Each document is represented by a resource of type http://www.yso.fi/

aski/document. A document has two literal properties one of which stores

the documents language code (lang) and the other the extracted text of the

document. Each term resource was linked to the resource of the document

from which the term originated with the “isPartOfDocument” property. The

document resources have local names that start with “document ” followed

by the documents unique ID number.

The word class of each term is recognised as one of nine choices: verb, pro-

noun, adverb, preposition, adjective, noun, determiner, numeral and con-

junction. These were represented in the RDF model by nine resources of

type http://www.yso.fi/meta/depRDF#wordClass. The “hasWordClass”

property points from a term to one of the nine word class resources.

A term can also be associated with a URI reference to an ontology. In

this particular case study the Finnish General Ontology (YSO) was used.

It contains terms that have labels in Finnish, Swedish, and English. The

10Syntactical relation tags are listed here: http://193.185.105.50/demo/machinese/

doc/enfdg3-tags.html.
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POKA-tool comprises a method that matches a query with the label in one

of the above mentioned languages. In Finnish some words look completely

the same but have different meanings depending on the syntax of a sentence.

For example, “alusta” can mean “from the beginning” or “base”. Trust was

put in the heuristics of the Machinese Connexor tool to recognise the right

lemmas for terms, and the lemmas of each term were given as an input for this

method. The result of the method was a list of URIs from the YSO ontology.

Most terms were matched with only one URI. The POKA-tool was trusted

and these matches were not checked. 759 terms, though, were matched with

two or more URIs. The multiple alternatives came mostly from polysemous

concepts. For example, the word “child” has three different meanings in

YSO:

• a role of a person based on her age,

• a role of a person belonging to a certain social-economic group and

• the concept for a family member (its subclasses are daughter and son).

The multiple URIs were checked by hand, the correct YSO reference was

selected, and the other references removed.

Figure 4.15 shows the resulting syntactical dependencies and term informa-

tion from the Machinese Syntax analysis (see Table 4.1 for the analysis)

according to the RDF schema in Figure 4.14.

A snippet of the resulting RDF in TTL form is featured in Figure 4.16.

It shows the 911,753th term of this particular analysis and all the triplets,

where the term is the subject. The term is from the document number 2612

and it is in Finnish. Below the term the triplets for the document number

26136 as a subject are featured. One of the document’s sentences is the

same sentence, whose Machinese Syntax analysis was shown as an example

in Table 4.1. The letters in Cyrillic alphabet were ignored by the Machinese

Syntax component and only the words Yahoo, Yahoo and the URL in the

footer were taken into account in the analysis.

4.2.6 Creating the Data Set

In Machine Learning analysis models take training sets as an input. These

training sets contain individual points in rows with a set of attributes in
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Figure 4.15: The resulting RDF incorporating the Machinese Syntax analysis.

columns. In a classification problem the class of each individual in the train-

ing set is known. From the values of the properties of each individual the

model learns a set of rules that classify the individual points correctly. [Alp04]

In this case study each term was represented as one data point and the class of

each term was the category to which the term’s document belonged to. The

category of each document was read from the SÄHKE metadata model and

was represented by the group node of the metadata schema (see Figure 4.1).

The properties for each individual term was all the information from the

Machinese Syntax analysis that was represented using the RDF Schema of

Figure 4.14.

The parsed result of the Machinese Syntax analysis, the RDF model, was

turned into a two-dimensional CSV table. Each row represented an individual

term and each column contained the property values for each term. For

transforming an RDF model into a two-dimensional table, a programme was

written that created a row for each resource of a certain given class type,
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Figure 4.16: Example of the resulting TTL after the RDF transformation

Figure 4.17: Document text in CSV file that can be utilized by the Machine

Learning analysis.

http://www.yso.fi/aski/term. Each triplet containing the resource of this

type as its subject was taken into account and the information it contained

was put into the resulting table in the following way: all triplets were iterated

and each of their predicates was turned into a column. Then each triplet was
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gone through again and its object was set as the value of the subjects row

and the predicates column. If the object was a resource, its local name was

set as the value. If the object was of type Literal11 then its text was set as

the value.

The programme also has two ways of setting the identity number information

for each row. It either parses the ID value from a resource’s URI or looks

out for a given ID property. The ID information is always set as the first

column.

The columns were as follows:

• ID, the unique running number for each term,

• ysoUri, the reference to a possible URI of the YSO ontology,

• term, the word in its original form,

• lemma, the term in its base form,

• isPartOfDocument, the reference to the document, from which the term

originated from,

• sentenceNr, the number of the sentence in the document, where this

word can be found,

• location, the order of this word in the sentence, and

• hasWordClass, the word class of this word.

In addition to these columns, each possible type of the 42 syntactical rela-

tions had a column of their own. The Machinese Syntax analysis gives only

one syntactical relation for every word. Therefore on each row there was

always only one syntactical relation column that had a value. This value

contained the local name of the resource of the term with which this word

had a dependency with.

Another way in which the syntactical relations could have been saved into

the CSV table, was to create a column for the type of the relation and

another for its target. This would have reduced the number of columns by

40. This option was however not chosen, because it was more interesting to

11http://www.w3.org/TR/rdf-schema/#ch_literal
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create a general solution for creating two-dimensional tables from RDF files.

This general solution creates a column for every property leading from the

given type resource and thus generates a column for each type of syntactical

relation.

The data was split into six files. The resulting data set contained 1,432,905

rows and 50 columns.



Chapter 5

Learning Document Categories

This chapter defines and describes the model that is used on the example data

to learn the classification of the Archive’s documents. The part of the project

described in this chapter of the master’s thesis was done in collaboration with

the research group Bayesian Algorithms for Latent Variable Models of the

Aalto University.

5.1 A Model for Logistic Discrimination

For learning the categories to which each document of the case study data set

belongs, machine learning was used. The idea is to extend traditional logistic

discrimination learning [Alp04] by combining it with relational background

knowledge based on ontologies [SBF98, dBRHDA97]. Relational models for

documents have been considered before, see for instance [PULP03], but with

a very different methodology.

Each document is represented by a vector x̄d ∈ {RT}, which contains the

tf-idf weights tfidft ∈ {R} for each term in the document and can be written

as x̄d = {tfidf1,tf idf2,. . . ,tf idfT}. As noted in Section 2.5 some of the

weights might be 0, because a weight’s respective term may not occur in

the document. The matrix X contains all x̄d, X = (x̄1,. . . ,x̄N), where X ∈

{RN ×RT}.

Dr. Tapani Raiko proposed to assume that the categories of the docu-

ments are separated by a linear discriminant (see Equation 2.21) and sug-

49



CHAPTER 5. LEARNING DOCUMENT CATEGORIES 50

gested using logistic discrimination for learning the vector of the weights

of each term for the linear discriminant of a class Ci. The vector is w̄i =

(w1,w2,. . . ,wT ,wT+1), wt ∈ R, where T is the number of terms and wT+1 the

constant of the vector. For the description of all indices used in this chapter,

see Table 5.1.

symbol range stands for

d 1. . . N documents

t 1. . . T terms

i 1. . . K classes

Table 5.1: Meaning of indices used

A matrix W ∈ {RK ×RT+1} is defined, which contains all w̄i for each class,

W = (w̄1,w̄2,. . . ,w̄K).

The MAP-estimate for W is:

WMAP = argmax
W

p(W | C̄,X) = argmax
W

P (C̄ | X,W)p(W)

P (C̄ | X)
(5.1)

Because the denominator is the same for each W and the logarithm of the

function will also find the MAP-estimate for W, the estimate can be written

in the following way:

WMAP = argmax
W

[

logP (C̄ | X,W) + log p(W)
]

(5.2)

The priors for each wit in W are considered as random variables and can be

represented as a Gaussian distribution:

p(wit) = N(0,σ2
w) (5.3)

where wit is the weight of the ith class and the tth term. The weight is

expected to be around zero and the σ2
w is learned from the data. [Alp04, p.

262]
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5.2 The Model

Logistic discrimination for a multiple class problem is used as a model for

the likelihood density P (Ci | x̄d,W)

P (Ci | x̄d,W) =

exp w̄T
i

[

x̄d

1

]

∑

j exp w̄
T
j

[

x̄d

1

]
, ∀i,d. (5.4)

The dimensionality of x̄ was reduced by applying PCA and replaced with

UTx̄ (see Equation 2.33), which results in the following model:

P (Ci | x̄d,W) =

exp w̄T
i

[

UTx̄d

1

]

∑

j exp w̄
T
j

[

UTx̄d

1

]
, ∀i,d. (5.5)

5.3 Enhancing the Analysis with Knowledge

from Ontologies

The model was enhanced with matrices that represent ontology information

from YSO [NRTH10]. The relations between terms can be represented by a

binary matrix A that has as many columns and rows as there are terms, and

is thus of size T×T:

A =



















a11 . . . . . . . . . a1,T
...

. . .
...

. . .
...

... . . . ai,j . . .
...

...
. . .

...
. . .

...

aT,1 . . . . . . . . . aT,T



















, ai,j ∈ {0,1}

where ai,j is 1, if a relation between the ith and jth term exists and 0 otherwise.

Different kinds of binary matrices can represent different kinds of relations.

A group of matrices Ar, r ∈ {“hyponyms”, “hypernyms”, “hyponyms of
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hyponyms”, ..., “associative relations”} of size T×T is defined to represent

all relations (see Table 5.2 for full description).

Ar relation note

A1 hyponyms Apple is the subclass of fruit, thus the term

aapple,fruit = 1

A2 hypernyms transpose of A1

A3 associative relations rain is associated with an umbrella thus the

term arain,umbrella = 1 and aumbrella,rain = 1

A4 hyponyms of hyponyms A1A1

A5 hypernyms of hypernyms A2A2

. . . . . . . . .

Table 5.2: The matrices for ontology information. If for example an ontology

expansion of two levels up and one level down is to be made and associative

terms are to be accounted for, then the matrices A1, A2,A3 and A5 are used.

The attractiveness of this approach is that all possible extensions of the

hyponymy relations can be created by simple multiplications or the transpose

of the matrix A1. Note also that the matrix representing the associative

relations is symmetric. A weight αr is assigned for each binary matrix Ar

and each weight can be learned from the training set.

Figure 5.1: The model learns all specified αr weights for the given ontology

and the matrices representing it.
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The weight αr, once learned, can be used as a measure for the relevance of

the relation r. In Figure 5.1 α2 represents the weight that is given to the

hypernym relations and α3 that for associative relations.

The term vector x̄d can be multiplied with all matricesAr and their respective

scalars αr. The sum of them results to a new ȳd:

ȳd =

R
∑

r

αrArx̄d, (5.6)

which can be used to replace x̄d in the proposed model. Now dimensionality

reduction can be applied and the matrix U multiplied with ȳd:

UTȳd =UT

R
∑

r

αrArx̄d (5.7)

=

R
∑

r

αrU
TArx̄d. (5.8)

Here
∑R

r UTArx̄d can be computed in advance, because it consists of known

factors. Thus only w̄T
i and αr remain to be trained using Gradient Ascent.

The weight αr is assumed positive and thus the initial weights were all set

to 1.

By replacing x̄d with ȳd the model is defined in the following way:

P (Ci | x̄d,W) =

exp w̄T
i

[

∑R

r αrU
TArx̄d

1

]

∑

j exp w̄
T
j

[

∑R

r αrU
TArx̄d

1

] , ∀i,d. (5.9)



Chapter 6

Results

This chapter presents the classification results of 24 different trained models

and discusses the meaning of the results.

6.1 Experimental Results

6.1.1 Training the Model

The model with and without ontology information was trained with a set of

500, 1000 and 1500 documents. This was done in order to see how increasing

the set size affects the results. One hypothesis was, that the added ontology

information would have a bigger effect on a smaller set, because a smaller

set would mean less information and ontology information would patch that

missing information. Thus three different set sizes were used for training the

model. A set size bigger than 1500 could not be used, because some of the

documents had to be used for testing the model.

A dimensionality reduction using PCA was performed on all sets before train-

ing. This was done in order to minimise the complexity of the model. Not

all information is important and should be reduced, but on the other hand

dimensionality should not be reduced too much, because that would lead to

too much information loss and an unfunctional model. The dimensionality

was reduced to 20 and 50.

Ontology information was added to the model by trying out 0, 1, 2 and 3
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Figure 6.1: Hyponym and hypernym information extended to one, A1 and

A2, and two levels, A3 and A4.

levels of ontology expansions. First the model was trained with no ontol-

ogy expansions and only one binary matrix, the identity matrix, was used,

so that A0 = I. Then hyponyms and hypernyms extending to one level,

that is to say ontology information about a term’s parent(s) and children,

was added to the set of Ar, r = 0,1,2 used by the model. Hyponyms and

hypernyms of two levels added to that model ontology information about

the term’s grandparent(s) and grandchildren, and the ontology expansion

of three levels added ontology information about great-grandparent(s) and

great-grandchildren. An expansion up to 2 levels is illustrated in Figure 6.1,

where the term fruit is extended first to comprise parts of plants (A1), apple

and citrus fruit (A2) and then further to organic structure (A3), and lime

and orange (A4).

6.1.2 Test Results of Trained Models

Overall 24 models were trained. Table 6.1.2 shows the accuracy rates of

those models when tested with a test set of documents that were not in the

training set.

The models with the best accuracy rate per dimension and data set size

are shown in bold. The columns in the table titled MI1, MI2 and MI3 are
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PCA
set accuracy rate with ontology expansions

MI1 MI2 MI3
size none 1 2 3

20

500 60.87 % 63.39 % 63.56 % 63.46 % 2.69 % 0.17% 0.07%

1000 62.99 % 68.68 % 68.73 % 68.68 % 5.74 % 0.05 % 0.16%

1500 63.11 % 69.06 % 69.05 % 69.07 % 5.96 % 0.02 % 0.16%

50

500 64.61 % 68.60 % 68.81 % 68.79 % 4.20 % 0.21 % 0.12%

1000 67.88 % 71.91 % 71.96 % 71.83 % 4.08 % 0.13 % 0.13%

1500 70.26 % 74.08 % 74.18 % 74.12 % 3.92 % 0.10 % 0.13%

Table 6.1: Accuracy rates for models trained with a set of 500, 1000 and

1500 documents, PCA reduced dimensions to 20 and 50, and with ontology

expansions of levels 0, 1, 2 and 3. MI1 and MI2 mark the maximum im-

provements on the accuracy rates and MI3 the maximum improvement on

the error rate.

the numbers measuring the maximum improvement on accuracy and error

rate. MI1 is the maximum improvement of the accuracy rate when ontology

information is added, MI2 is the maximum improvement when using different

kinds of ontology expansions and MI3 is the relative maximum improvement

on the error rate when ontology information is added. Equation 6.1 shows

how these numbers are obtained. In the equation arl is short for the accuracy

rate for the level of ontology expansion l = 0,1,2,3.

MI1 = max(ar1,ar2,ar3)− ar0

MI2 = max(ar1,ar2,ar3)−min(ar1,ar2,ar3)

MI3 =
MI1

100%− ar0

(6.1)

The best accuracy rate of 74.18 % was reached with the model that was

trained using a set of 1500 documents, was PCA reduced to 50 dimensions

and used an ontology expansion of 2. In five out of six cases the maximum

accuracy rate was reached by using an ontology expansion of 2 levels and

the accuracy rate did not vary that much between different kinds of ontology

expansions. Especially as the training set grew, the maximum improvement

on the accuracy rate using different kinds of ontology expansions (see MI2

column) became smaller.

At its best the accuracy rate improved by 5.96 % when adding ontology
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Figure 6.2: Accuracy rates for all 24 trained models

information to the model. This means that the overall error was reduced by

almost a sixth of its original size (see MI3 column). The overall accuracy

also always improved as the size of the training set grew. The results does

not confirm the hypothesis that the added ontology information would have

a bigger effect on a smaller set.

One thing that is very interesting to note here is that increasing the data

set from 500 to 1500 improves the accuracy rate as much as adding ontology

information to the model. The results show that with a PCA reduction of

20 an ontology expansion of one level improved the accuracy rate more than

tripling the data set from 500 to 1500 documents. With a PCA reduction of

50, not even an ontology expansion of two levels improved the accuracy rate

as much as tripling the data set.

Adding a binary matrix Ar adds a new weight αr for the model to learn

and increases its computational complexity by as much as doubling the set

size. Therefore an ontology expansion of one level is more efficient and an

ontology expansion of two levels is less efficient than tripling the data set.

These points on computational efficiency should be considered when choosing
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Ar matrices used in training the model.

6.2 Interpretation of the Results

The accuracy rate of the automatic classification was, at its best, almost

75 %. This might not sound like much but if one considers the alternative,

no automatic classification at all, then three out of four correctly guessed

classes would be of great assistance to an archiver working at the Finnish

National Archives.

The trained model could be used by the Finnish National Archives to make

automatic suggestions on classes on a not yet classified but already written

document. An application could be built that would use all the parts that

were used in this master’s thesis as well. First the language, Finnish, Swedish

or English, would be recognised. Then the text would be broken down to

its syntactical structure and each term would be matched with an ontology

concept from YSO. If the applications detects multiple matches for one term,

the user of the application would be asked to assist and decide which concept

is the correct match. Then the trained model would be applied on the new

material and the user would be presented with a list of the 115 classes, which

are ordered by the likelihood the model has assigned to them.

Instead of picking a class from a set of 115 classes the user would only need to

help out a little bit in concept matching and pick a class from the list, where

in three cases out of four the most correct class is at the top of the list. In

addition to this the documents themselves would be more easily searchable,

because they would have been annotated by the above described application.

The manual help of the application user done on the application’s automatic

concept matching would make sure that the annotation is done in a correct

way.

A model’s classification success in ML is always dependent on the data set

at hand. The more data available, the more accurately the model can per-

form [Alp04, p. 34]. The improvement of the accuracy rate when ontology

information was added also suggests that this approach fits very well for doc-

uments that are written by humans, such as an email or a report. Perhaps

larger data sets with documents written by humans could lead to even better

results.
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6.3 Evaluation of the Ontology Used

It is challenging to compare this result to other similar results as it depends so

much on the classification task at hand and the material used. The purpose

of this master’s thesis was to answer whether adding ontology information

improves the classification and the answer to that is yes. To what extent the

classification is improved is trickier to answer and not explored further in

this master’s thesis. Whether the classification could be improved by using

another ontology is a valid question and something to leave for future work.

YSO has its challenges. It is an ontology that has been created from a

thesaurus that was originally created for humans to index material such as

books at a library. It is a general and domain-unspecific ontology that, for

example, contains detailed information on dog species but lacks weekdays

except Sunday as a concept. A lot of work has been done to transform

its logical structure from one for human comprehension on things to one a

machine can correctly reason on. But it still requires work on its actual

content so that it will accumulate even more general knowledge.

YSO contains almost 25,000 concepts1 but WordNet contains around 200,000

of which half are nouns2. WordNet translated to the Finnish and Swedish

language could, because of its size, contain more knowledge and lead to a

greater improvement on the accuracy rate of the model. WordNet is a little

bit different though from YSO because it contains synset, a set of synonymous

words, for its concepts. The binary matrices Ar that provide the knowledge

expansion could be modified to describe the relations of WordNet and the

information about synsets. By training and testing the model, the usefulness

of the background knowledge provided by the WordNet’s synsets could be

evaluated.

The research group SeCo has developed an ontology that is based on YSO

but is specific to the domain of State Administration and is called JUHO.

Perhaps JUHO contains concepts that are also present as words in the cases

of the Finnish National Archives, because it is a government body under the

Ministry of Education.

1YSO Statistics: http://www.yso.fi/onki/yso/?p=ontology-info&l=en
2WordNet statistics: http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.

html



Chapter 7

Related and Future Work

This chapter looks at other similar research work and compares it to the work

done in this master’s thesis. Future research work is proposed and discussed.

7.1 Related Work

Enhancing traditional machine learning techniques, such as the bag of words

approach, has been researched for around 15 years. A lot of the research

on enhancing ML is done on hierarchical information, because the use of it

enables powerful generalisations [GM05]. For example, two different docu-

ments, where one mentions only “pork” and the other only “beef”, can easily

be linked together, because from an ontology one can see that the terms’ hy-

pernym is “meat” [HSS03].

Taskar et al. [TAK02] introduced Relational Markov Networks and applied it

to collaborative classification of related documents. Popescul et al. [PULP03]

used a relational model using both citation and coauthorship data. In collec-

tive classification, information about the predicted classes propagates over a

network defined by the relations, see [SNB+08] for an overview. The method

in this master’s thesis differs from these in two ways: Firstly, it does not use

the class information of related documents, only their observed term counts.

Secondly, it also uses the relations between terms.

Wittbrock et al. [WCKR09] from Cycorp, Inc. use geographical subsump-

tion information from the company’s own ontology to enhance location in-
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formation for terrorist attack predictions. The probabilistic model they use

benefits from the additional information. If an attack happened in Madrid,

the probabilistic model can also comprehend that it happened in Spain and

update the probabilities appropriately.

A hierarchical set of concepts that is repeatedly used to enhance the perfor-

mance of traditional ML models is WordNet, the English lexical database. It

contains words presented as pairs of a word’s lexical form, the string repre-

sentation, and its meaning. The concepts are linked with pointers that mark

a semantic relation between them. The semantic relations can be synonymy,

antonymy (the opposite of synonymy), hyponymy, meronymy, troponymy,

which is the equivalent of hyponymy for verbs, and entailment, which marks

an associative relation between verbs. The target of the semantic relations

of a concept are packed in a set called the synset of the concept. [Mil95]

Scott and Matwin [SM98], Rodŕıguez et al. [dBRHDA97], Ureña-López et

al. [ULBG01], and Hotho et al. [HSS03] augment automatic document

classification by using the synsets of WordNet in different ways to calculate

the weights for various ML models.

[ULBG01] (and its earlier version [dBRHDA97]) use the Vector Space Model

(VSM) to represent the text of documents and the categories, to which the

documents need to be classified. They use the cosine formula to measure

similarity between documents and categories. The weights for the documents

are calculated with tf-idf and the weights of the categories are calculated

using the Rocchio and the Widrow-Hoff algorithm. The categories are also

expanded with the synonyms of the synsets from WordNet. Both research

studies show, that the automatic categorisation of documents improves as

information from WordNet is added to expand the categories. In the latter

research the Word Sense Disambiguation (WSD) architecture approach is

elaborated more thoroughly and the precision rates have improved from circa

50% to 65% on average.

[SM98] use WordNet synsets for expanding the text representation of the doc-

uments. They compare their approach to that of [dBRHDA97] and find that

Rodŕıguez et al. approach is not sufficient enough, as synonyms are picked

manually. [SM98] add the synonyms and hypernyms of all verbs and nouns

to the set of terms. As in this research they, too, tried out different levels

of generalisation with hypernyms and found best results with generalisation

level of 2.
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[HSS03] expand the text representation with synsets from WordNet, as well.

They test three different ways of augmenting the term weights by firstly

adding up all terms weights of a word’s synset’s concepts to the word’s term

weight, secondly using only the first concept from the word’s ordered synset,

and by thirdly picking the concepts from the word’s synset that at their best

represent the document’s context. The third approach for WSD together

with an expansion of a terms hypernyms and hyponyms up to five levels

seems in their research to create best results.

Gabrilovich and Markovitch [GM05] enhance their bag of words model with

the hierarchical information of the Open Directory Project, which in their

words embeds a colossal amount of human knowledge. Appropriate concepts

are deduced based on the document’s text only and are added to the bag of

words model.

Shehata et al. [SKK08] suggest a different approach from the standard bag

of words model to measure the importance of words in a document. Instead

of assuming that every term is of equal importance, which is one of the

assumptions made in the bag of words model, they suggest a concept-based

model, that looks at the word’s syntactical relation inside a sentence and

determines the importance of each term to the meaning of the sentence. A

sentence is broken down to labelled verb-argument structures using ProBank

[KP03] and the importance of a term is measured by the number of times it

occurs in each verb-argument. This measure, called the concept frequency,

adds to the term’s term frequency normally calculated in the bag of words

approach.

7.2 Future Work

7.2.1 Relations Between Documents

The model used in this master’s thesis could be extended to incorporate re-

lations between documents. In the same way as the model was expanded

with T×T binary matrices that portrayed ontology information, the model

could incorporate N×N binary matrices that contain information about the

relations between documents. In the same as a matrix A1 provides hyponym

relations between terms, a matrix B1 could provide shared-author relations
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between documents. With the help of both matrices, a document describ-

ing apples and written by an author that writes a lot about fruit could be

classified correctly to the category fruit. [NRTH10]

7.2.2 Measuring Ontology Applicability

The machine learning model created for the classification task in this master’s

thesis could also be used as a way to measure an ontology’s applicability to

a collection of text material. Each type of relation in an ontology would

be represented by a binary matrix Ar and the corresponding weights αr for

each relation would be learned from training the model. These weights are

initially set to 1, so if the trained model has a weight αr that is above 1, then

it would mean that the kind of relation represented by Ar is of relevance

when classifying the specified documents to a specified set of classes.

Multiple ontologies could be tested on the material and the weights that

the model learns for each ontology could be compared to each other. Reason

suggests that the ontology with the highest weights for each relation would be

the ontology with the highest applicability for the material at hand. Perhaps

that ontology could then be used for annotating new material from the same

source or similar kinds of material such as material from the same domain.



Chapter 8

Summary

This master’s thesis tested a way of combining machine learning and ontology

information to learn the classification of a set of documents provided by the

Finnish National Archives. First it provided a basis for understanding how

machine learning is used to learn the classification of documents. Then the

semantic web and its definition were explored and the idea of ontologies were

explained.

A way to model a document, the words it contains, and the syntactical

relations between the words using RDF was suggested and described. It

was used to model the documents from the Finnish National Archive. The

process of extracting the information from those documents and making them

ready for machine learning analysis was illustrated step-by-step. A machine

learning model was proposed that could learn the classification of documents

using ontology information as background knowledge. This model proved to

be quite successful, because it showed that adding ontology information up

to two levels improves automatic document classification.

Computers are good for completing specifically programmed tasks. Tasks

that require a lot of repetition and can be explicitly explained, should be left

to machines, because humans can get tired of repetition and can experience

fatigue and make mistakes. Some tasks such as classification of documents

cannot be explained explicitly to a machine, but a statistical model with

good enough accuracy can be learned from background data. The model can

then be used for the purpose of completing the task.

Machine learning and the idea of the semantic web are based on the idea
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of artificial intelligence, where autonomic computer agents complete tasks

automatically according to the needs of humans. Perfecting such systems

can take a lot of time and effort. A solution, where not all, but the majority

of the work is done correctly, is easier to develop and does not need a lot of

perfecting before it can be implemented. A good enough solution like that

would be automatic to a point, but would then need the intervention of a

human to complete its task.

The Galaxy Zoo project [RBG+10] use volunteers with internet connections

to classify satellite pictures of galaxies based on their morphology. The clas-

sification is hard for the machine to complete, because the galaxies are pho-

tographed from different angles and their colour and brightness against a dark

and uneven background vary a lot. But for humans, recognising the shapes

of the galaxies despite all variations is child’s play, and that capability is

harnessed to make the classification of the galaxies possible.

This master’s thesis showed how machine learning and ontology information

can be used to classify the majority of documents, provided an RDF model

for document representation, and suggested a way in which that kind of

automation can be combined with reasonable manual work to obtain best

results.
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