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Data quality is a growing concern on the Semantic Web. The amount of data
available is growing faster than ever, and the emphasis thus far has been on cre-
ating and interlinking data without much regard to how good the data actually
is. The trend is shifting from creating new data to refining what already exists.
Data quality is a subjective concept and a formal representation for it is often
troublesome. First, we must define what is meant by data quality - what are the
different facets of the concept. Second, a way for representing this quality must
be found. Third, actual processes to refine data and improve its quality and ways
to take data quality into account on the Semantic Web must be developed.
This work presents some solutions to the problem. Many ways to annotate qual-
ity metadata as RDF are first discovered, along with their pros and cons. A
framework for managing RDF-based quality metadata is presented, with a set of
tools for specifically managing the quality annotations. Additionally, an auto-
matic annotation system and a schema validation system, within the restraints of
the open world assumption, have been designed, implemented and integrated into
the framework. The system has been tested using real life datasets with promising
first results.
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Datan laatu on kasvava ongelma semanttisessa webissä. Saatavilla olevan datan
määrä kasvaa nopeammin kuin koskaan, ja pääpaino on tähän asti ollut datan
luonnissa ja yhdistelyssä sen laadun sijaan. Nyt huomio on siirtymässä uuden
datan luonnista olemassaolevan datan laadun jalostamiseen.
Datan laatu on subjektiivinen käsite, ja sen formaali esittäminen on usein
mutkikasta. Ensiksi täytyy määritellä se, mitä tarkoitetaan datan laadulla,
ja mitkä ovat käsitteen eri puolet. Tämän lisäksi täytyy löytää sopiva tapa
laadun esittämiseen. Lopulta tulee myös kehittää varsinaisia prosesseja datan
jalostamiseen ja laadun parantamiseen, ja tapoja ottaa tämä laatutieto huomioon
semanttisessa webissä.
Tämä työ esittää joitain ratkaisuja näihin ongelmiin. Monia tapoja merkitä
laatutietoa on esitetty, hyvine ja huonoine puolineen. On kehitetty järjestelmä
RDF-pohjaisen laatutiedon hallintaan, ja joukko työkaluja jotka on räätäilöity
tämän tiedon hyödyntämiseen. Lisäksi on kehitetty yleinen automaattisen
annotaation rajapinta ja skeemavalidaatiojärjestelmä avoimen maailman ole-
tuksen asettamien rajoitusten puitteissa. Nämä on toteutettu ja integroitu
yleisempään hallintajärjestelmään. Järjestelmää on testattu käyttäen reaalimaail-
man käyttötapauksia ja aineistoja ja ensimmäiset tulokset ovat lupaavia.
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1 Introduction

The future of knowledge and data is going towards the semantic web with every
passing year. The trend is clear: the amount of data on the Internet grows ex-
ponentially, but actually getting relevant data as an end user is challenging. This
challenge stems from the basic structure of the Internet. In its core it’s simply a
loosely interlinked “web of pages”, the contents of which is purely made to be read
by humans. Aggregating and centralized representation of data is very hard without
machine readable data about the contents. Semantic web offers a solution to this
problem.

The aim of the semantic web is to extend the web of pages and strive towards a
web where the semantic meanings of the data are machine readable in addition to
being human readable. This way the actual semantic contents of the pages would
be interlinked to form a “web of data”, in addition to the pages being interlinked,
as illustrated in Fig. 1. A machine readable data format and natural text must be
used in parallel, so that the semantic bits and pieces that the page is made of can be
linked to other bits and pieces on other pages. The most important of these machine
readable formats is Resource Description Framework, RDF, which is described in
more detail in Sec. 2.1.

To enable people to adapt the semantic web into actual use, the creation and
management of the data used in it must be as easy and effortless as possible. Be-
cause data conversions from one format to another are typically very error-prone
operations, there must exist robust and effective tools for ensuring the quality of
the result data. Depending on the use case, the importance of the quality of the
data varies greatly. This means that the tools must not only be very versatile, but
also very simple for use cases. The Open World Assumption, described in more
detail in Sec. 2.5, emphasizes further the need for quality control; in the open world
semantically erroneous data can cause reasoning errors that are very hard to track
to their source.

Research about data quality on the Semantic Web has not focused on quality
control on a practical level. There are some extensive and formally robust frame-
works for representing imperfection, especially when working with ontologies [2–4],
but little to no experiences from actually applying these to real use cases. The need
for quality control is even greater when working with automatic or semi-automatic
annotation tools than manually with ontologies. Looking for and correcting errors
in machine-created instance data is a very time consuming process in the absence of
proper tools. It would be easier if the data creation process itself would take quality
control into account.

The three main research questions studied in this thesis are the following: how
can data imperfection be taken into account on the semantic web, how can different
types of imperfect data in RDF format be annotated with quality metadata, and
how can data quality control be utilized in automatic or manual metadata creation.
Below the questions are described in more detail.

How can data imperfection be taken into account on the semantic web? It is
clear that data quality is in the heart of it all: if we want to enable machines to
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Figure 1: The transformation from a web of pages to a web of data [1]

reason non-trivial semantic conclusions, we want the basis for that reasoning to be as
robust as possible. However the ways in which this needs to be taken into account
are not simple. This thesis addresses the question when the data quality related
things must be emphasized and how they should be handled.

How can data imperfection be annotated as metadata for RDF-based datasets?
What this practically boils down into is creating additional triple-specific annota-
tions, such as confidence values. Adding such a fourth value into a triple is a tricky
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problem. There is a multitude of solutions for this problem, each with their own
pros and cons. This thesis reviews the best and most used solutions and applies one
of them to solve the matter in practice.

How can data quality control be utilized in automatic or manual annotation?
Clearly there are theoretical justifications for adopting quality control, but the wall
between theory and practice must be overcome as well. In the design and implemen-
tation section (Sec. 5) a prototype system for metadata quality control is presented.
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2 Semantic Web and Linked Data

This section covers the basic technical theory of the Semantic Web, beginning from
the languages and data representations used and the context of the most important
constructs used in them. Later the basics of what quality means on the Semantic
Web and how quality control could be approached are discussed.

2.1 RDF

RDF (Resource Description Framework) [5] is a data format where data consists
of resources, i.e., specific entities with identity such as objects, concepts or people,
and literals, i.e., words and numbers with no other intrinsic meaning in addition to
their syntactic form. Resources are represented by globally unique identifiers, URIs,
so an abstract entity can be encapsulated as a piece of data. By convention, URIs
themselves are strings similar in appearance to web page addresses, URLs, though
the two should not be confused with each other.

Resources are linked to literals and other resources with statements represented
as triples. Triples are simple three-part constructs that have a subject, a predicate
and an object. Each triple in RDF is a statement saying that the subject has a
certain property (predicate) with a certain value (object). A single triple is the
smallest unit of information that can be expressed in RDF. A set of triples that
interlink resources with each other forms an RDF graph. [5]

Fig. 2 depicts an exemplary RDF graph with five triples. They connect a total of
four resources and two literals (by convention represented by ellipses and rectangles,
respectively) to each other. The triples ultimately state that “A person called Joonas
Laitio goes to a school called Aalto University”.

Figure 2: An example RDF graph

In the above graph, the URIs for the resources are written in their shortened or
prefixed form for brevity. For example, in its full form the URI example:joonas

would in this case be http://www.seco.tkk.fi/example/joonas. The prefix map-
ping between these short and long forms is always supplied along with the graph.
[5]
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2.2 RDFS and OWL

RDF is the basic data format. RDFS (RDF Schema) [5] and OWL (Web Ontology
Language) [6] are definitions for a basic set of ground rules for using that data format
to store semantically sound data. RDFS provides the basic language constructs for
describing vocabularies, and OWL provides richer ways to describe whole ontologies.
[6]

This section covers the most important basic features of these languages in the
context of this work. Since the subject matter of this work deals closely with the
semantics of most of these RDFS and OWL constructs, it is necessary to first study
them in detail in order to build upon them when making quality assertions about
the data.

2.2.1 Classes and Instances

A class is a generalized description of a set of individuals, which are in turn called
instances of that class. For example in the graph in Fig. 2 the individual named
“Joonas Laitio” is represented by the URI example:joonas identifying an instance
of the class person, represented by the URI example:person. Another way to say
this is that instances have a “is-a” relation with their class: Joonas Laitio is a
person. [7]

Classes and instances are said to be on different meta levels. When talking
about classes we are not talking about the specific instances, but rather abstract
generalizations about them. There are also meta-classes that are a meta level above
classes: for example the concept of class itself is a meta class , because it is the the
class of regular classes such as person. Instance to class relations are defined by the
RDF property rdf:type, as shown in Fig. 3. Type is also often used as a synonym
for class when dealing with RDF data. [8]

2.2.2 Domain and Range

Domain and range are the fundamental properties that state where and with what
values various properties are used. Formally, a triple (x rdfs:domain y) states that
resources that have a property x belong to class y. Similarly, a triple (x rdfs:range

y) states that resources that are used as values for the property x belong to class
y. For example, a property “has published” could have “person” as domain and
“article” as range, because in general persons publish articles.

Domain and range definitions allow for powerful reasoning semantics. If we
have the above definitions in our knowledge base and come across any resource
that uses the “has published” property, we can reason that the resource is a person
and that all the values on that property are articles, even if we don’t have explicit
data that states this. Great care must therefore be taken to use properties in their
intended context: otherwise reasoning based on domain and range definitions can
easily provide erroneous and completely useless data. Later sections discuss the
usage and context of domain and range definitions further.
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Figure 3: Illustration about meta levels in OWL

2.2.3 Restrictions

OWL restrictions provide a way to express other constraints on the values of prop-
erties than just their class. Perhaps the most common restrictions are cardinality
restrictions: they restrict the number of values that a certain property on an in-
stance of a specific class can have. For example, the cardinality of the property
parent on class person is two. The other kind of OWL restrictions constrain all or
some of the values on the property to a specific set of resources.

An OWL restriction is actually a nameless class that represents all entities that
conform to its constraints. A restriction that states that the cardinality of the
property parent is two actually means that all entities that have two values on the
parent property belong to that class. The restriction class is tied to another class,
such as person, through a subclass of relation. We must define person as being
the subclass of our cardinality restriction for the restriction to apply to that class.
The subclass of relation effectively states that person is one kind of entity that has
exactly two values on its parent properties.

2.3 RDF Serializations

RDF is just an abstract way to represent data in the form of a graph that consists
of triples. There are several ways to serialize that data to be stored in a concrete
form as a data file. This is a distinct difference from many other data formats, most
notably XML, for which the abstract data format and concrete data serialization
are one and the same. Below, the most common types of RDF serialization formats
are listed, along with an example serialization of the RDF graph in Fig. 2.

RDF/XML
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XML [9], due to its extensibility, is one of the most widespread formats for
storing data as textual files. This also holds true for RDF: the XML representa-
tion of RDF, called RDF/XML [10], is the W3C recommendation for serializing
RDF data. However, the format is very verbose and not very human-readable;
furthermore, most XML-specific technologies such as XPath [11] cannot be
utilized very well for it and it is losing popularity.[12] It even slightly restricts
the kind of RDF that can be represented by it: some predicate URIs and
certain Unicode code points cannot be used.[13] A simpler and more usable
XML serialization for RDF called TriX has also been developed [14], but it is
not widely used since it is not a W3C recommendation.

An RDF/XML serialization begins with namespace declarations as attributes
of the root element. Then, the subject resources are listed as their own
rdf:Description elements, with URI references listed as rdf:resource at-
tributes and literals as simple text, with the element name being the URI
reference to the property of the triple. There are a lot of repetitive segments
and the URIs are not always shortened with their respective prefix.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:example="http://www.seco.tkk.fi/example/" >

<rdf:Description rdf:about="http://www.seco.tkk.fi/example/joonas">

<example:student_in rdf:resource="http://www.seco.tkk.fi/example/aalto"/>

<rdf:type rdf:resource="http://www.seco.tkk.fi/example/person"/>

<rdfs:label>Joonas Laitio</rdfs:label>

</rdf:Description>

<rdf:Description rdf:about="http://www.seco.tkk.fi/example/aalto">

<rdf:type rdf:resource="http://www.seco.tkk.fi/example/school"/>

<rdfs:label>Aalto-yliopisto</rdfs:label>

</rdf:Description>

</rdf:RDF>

Turtle (N3)
Notation 3 [13] is a versatile data format that can be used to store different
kinds of data. A subset of it, Turtle, is sufficient for storing triple based data
such as RDF.[13] It is much more compact and human-readable as RDF/XML.
The prefix definitions are located at the start of the serialization and the triples
are listed by subject after that, similar to RDF/XML, but abandoning the
constraints of XML enables the format to use much less repetition to describe
the same thing. Since rdf:type is a very common property, it is given an
alternative representation, a simple a.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix example: <http://www.seco.tkk.fi/example/> .

example:joonas

a example:person ;

rdfs:label "Joonas Laitio" ;

example:student_in example:aalto .
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example:aalto

a example:school ; rdfs:label "Aalto-yliopisto" .

N-Triples
N-Triples is in turn a subset of Turtle, and subsequently N3. It’s purpose is
to be an extremely simple RDF serialization format. It does not store URI
prefixes or resources as complete entities—instead, it simply stores triples one
by one, with each row consisting of the subject, predicate and object of the
triple. The format is not very human-readable, but it is extremely simple to
produce and fast to parse with computers. Thus, there are clearly defined
use cases where using it is beneficial: when the data needs to be efficiently
streamed either as input or output.

<http://www.seco.tkk.fi/example/aalto> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.seco.tkk.fi/example/school> .

<http://www.seco.tkk.fi/example/aalto> <http://www.w3.org/2000/01/rdf-schema#label> "Aalto-yliopisto" .

<http://www.seco.tkk.fi/example/joonas> <http://www.seco.tkk.fi/example/student_in> <http://www.seco.tkk.fi/example/aalto> .

<http://www.seco.tkk.fi/example/joonas> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.seco.tkk.fi/example/person> .

<http://www.seco.tkk.fi/example/joonas> <http://www.w3.org/2000/01/rdf-schema#label> "Joonas Laitio" .

2.4 Semantic Web

The semantic web can be described as a collection of technologies that aim for
representing semantic meanings in a language that computers can understand. If
machines can understand the very basics behind human reasoning processes, they
can be used to represent and solve complex problems intuitively, similar to how
humans approach them. Of course, the realization of this goal is extremely compli-
cated—but nevertheless a task worth pursuing.

Figure 4: Semantic web layer cake
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The technologies used for the semantic web are usually represented by a stack of
layers: each layer depends on the layers below it. The structure of this “semantic web
layer cake”, one version which is shown in Fig. 4, is a subject of ongoing debate.[15]
Nevertheless, the basic premises remain the same: everything is built upon the
basic web markup conventions (Unicode, URI) and data formats (XML, RDF). On
this the foundations for machine intelligence are built: semantic web logic, rule
and query languages and technologies (RDFS, OWL, RIF, SPARQL), applied data
subjectiveness (proof, trust) and finally the user interfaces and the ways for a human
to actually dive into the world of intelligent data. Throughout the stack is the regard
for privacy and security: data encryption and other cryptographic measures concern
many different levels on the stack.

The main focus of this thesis is the circled section of Fig. 4: the Proof and Trust
layers along with some user interface and application considerations. This is the
area where the ways in which data subjectiveness can be annotated and otherwise
taken into account are of special interest.

2.4.1 Proof Layer

“The Proof layer involves the actual deductive process as well as the representation
of proofs in Web languages (from lower levels) and proof validation.” [15]

The Proof layer has to do with actually deducing things: answering semantically
phrased questions about the nature of things in a general way. An example would be
granting access to a restricted web site: in this case the proof would be a collection
of data and reasoning rules from which it can be deduced that the user is allowed
access. [16, 17]

2.4.2 Trust Layer

“The Trust layer will emerge through the use of digital signatures and other kinds
of knowledge, based on recommendations by trusted agents or on rating and certifi-
cation agencies and consumer bodies. Sometimes ’Web of Trust’ is used to indicate
that trust will be organized in the same distributed and chaotic way as the WWW
itself” [15]

The trust layer directly deals with data quality control, and subsequently lies
in the heart of this work. It should provide the means to get the confidence data,
through a possibly complex process of evaluating the certainty of some piece of
knowledge with all the other resources at our disposal. The resulting trust knowledge
is either used in real time or stored as quality annotations, discussed later on.

2.5 Open World Assumption

A major feature of semantic web data is its distributedness. As knowledge on the web
is typically fragmented into small pieces located in multiple places, we must begin
from the assumption that the data at hand at any single given time is incomplete.
Hence we can’t assume that the data we have is erroneous, since there might be
another piece of data that explains an apparent conflict.
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This principle is called the Open World Assumption, as we consider the world
around our data to be open and never complete and self-sufficient. For example,
consider the situation where some property, such as “has father”, is constrained to
have only one value. If we have two different resources as values for this property,
we might just be missing the information that these two resources in fact describe
the same entity and are one and the same.

2.6 Linked Open Data

One of the hottest focal points in contemporary semantic research is linked open
data.[18] It was known from the start that the semantic web needs vast amounts of
data to produce interesting results by machine reasoning: linked open data is the
answer. Basically, linked open data means metadata that is open for everyone on
the Internet and what machines can automatically go through and evaluate. The
linked portion means that the datasets in different stores are linked to each other
semantically; this is achieved through the use of URIs to denote resources.

The amount of linked open data on the Internet is growing at an astounding
pace, as are the links established between different sets of data. Fig. 5 shows a
representation of the “linked open data cloud” [1], a figure showing the most impor-
tant linked open datasets and how they interlink with each other. The figure is an
exemplary one from July 2009; since then, the amount of datasets in later versions
of the diagram has over doubled [1] and the cloud is too large to show here. The
data breakthrough is clearly here—now it’s time to ascertain that the quality of the
data is sufficient for versatile use.

2.7 Quality in the Open and Closed World

In the open world it is hard to measure data quality explicitly. The whole concept of
high quality data in the open world is somewhat fuzzy. As we always start with the
assumption that the amount of data we currently have is insufficient, it is practically
impossible to say anything about the quality of any data in a strict sense. Everything
is possible unless stated otherwise.[19] Though this approach has good reasons for
it and it is suited very well for a distributed web of data, it makes data validation
problematic.

The opposite situation is the closed world assumption, which is more typical
and traditional in most data applications dealing with bounded data. Every piece
of data needs to have a specific place to contain it, such as a specific column in a
database. Things we do not know anything about, or information we don’t have a
place to put in, can be assumed to be false. This makes for very easy validation. We
can go through every piece of data and validate it against the specific constraints
that belong to it. Violations of these constraints are simply errors.

In a way, validating data that typically resides in the open world, such as RDF
data in the semantic web, requires “closing the world” around some specific piece
of data. If we do this, we can interpret schema definitions in a strict sense and
dictate what is allowed instead of what is possible. This approach is discussed in
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Figure 5: Linked Open Data cloud diagram [1]

more detail in Sec. 4.1. Data is divided into three subtypes, and imperfect data is
further divided into many types of imperfection.

2.8 Types of Imperfection

The different types of imperfect data must be understood and enumerated so that
comprehensive quality control is possible. These types have often only minute se-
mantic differences and are partly up for definition—for the sake of consistency the
English terms for the types, along with their Finnish counterparts in parenthesis,
are listed here as they are used in the context of this work. A diagram of the types
can be seen in Fig. 6

Valid (käypä, validi)

Valid data is data without imperfections—no evidence has been found of the
features of imperfect data listed below.

Imperfect (epätäydellinen)

Imperfection is used as a superordinate term for all kinds of minor or major
unwanted aspects of the data. These can be unwanted in general or in the
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Figure 6: Types of data by quality

context of a certain application. Unlike erroneous data, imperfect data has
the makings of valid data but fail in some aspect or aspects.

Erroneous (virheellinen)

Erroneous data is known to be false. Even this kind of data should not nec-
essarily be deleted immediately – even erroneous data can be useful in some
applications. For example, one might want to explicitly mark erroneous all
common misconceptions about some subject. Unlike imperfect data which
can be fixed to be valid with relatively minor changes, fixing erroneous data
requires a drastic alteration to the underlying semantics of what the data
means.

Imperfect data is further divided into subordinate terms, listed below.

Incomplete (puutteellinen)

Incomplete data means that the data at hand is not enough for satisfactory
definition of something, even though all the data is fundamentally valid. For
example, we might have fragments of some historical text, but not a complete
version. Thus, our knowledge of the text is incomplete. Incomplete data is a
concept that, like many things in RDF data validation, clashes with the Open
World Assumption (Sec. 2.5).

Imprecise (epätarkka)

Imprecise data means insufficient data accuracy level or excessive granularity.
We might know the amount of participants in a historical battle only to be in
the range 50 000 – 500 000, which would be too imprecise for an application
that demands the amount with an accuracy of 10 000 people. Impreciseness
is quite application dependent and usually needs a context in which to assess
it—data that is too imprecise for some uses might be perfectly fine for others.
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Ambiguous (epäselvä, monitulkintainen)

Data is classified as ambiguous when there are multiple interpretations about
the state of something, possibly from multiple sources. For example, different
historians may have given different estimates on the amount of soldiers that
participated in a historical battle. In this case all the options must be marked
as ambiguous if there is no way to assess one of the sources as more reliable
than the others. Perhaps the most common case of ambiguity arises when
matching natural language to a vocabulary or ontology: lemmatizing (remov-
ing inflection of words to acquire the base form) is by nature an ambiguous
process because of the existence of homographs, words that share the same
spelling but have different meanings.

Uncertain (epävarma)

Data is uncertain when there is reason to doubt its truthfulness. Uncertain
data is further divided into objective and subjective uncertainty; objective
uncertainty is caused by things such as malfunctioning measuring devices,
unreliable human sources and uncertainty about if a historical event really
happened or not. Subjective uncertainty concerns concepts that are difficult
to objectively categorize, such as knowledge whether or not a person is “old”
or not. Uncertain data can be paired with confidence values telling the prob-
ability with which the data is valid.

One specific subordinate of uncertainty is volatility. We might know for sure
that the data is valid upon creation, but if we know the data is subject to
rapid change it is nevertheless imperfect. Weather phenomena such as wind
speed and direction are examples of volatile data.

What is discussed above is about the absolute quality of the data, indifferent of
the application it is used for. However, the quality of data is often relative to the
context in which it is used, and even more so in the future.[20] Generally speaking,
there should be no obstacle why this kind of contextual quality couldn’t be controlled
with the same methods as absolute quality.

Contextual quality can also be divided into different subtypes in a similar way
as absolute quality. Perhaps the most prevalent of these types is irrelevant data.
Often an application or task is focused around a specialized purpose, and much of
the overall data at hand is irrelevant. Optimally, all the irrelevant data is filtered
out based on a conception of contextual quality at that time. [21]
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3 Related Work

This thesis presents a framework where good quality semantically rich high quality
data can be produced. There is naturally a lot of related work in the area of enriching
text documents or textual property values with semantic concepts and other links
to external resources via using automatic annotation and similar techniques. Most
of these do not think of quality control as a separate entity or feature and simply
use built-in machine learning algorithms for ranking data. These systems generally
do not give confidence values or similar quality metadata as output.

A well known semantic enrichment system is OpenCalais1 [22]. In the core of
OpenCalais is a web service: unstructured data, such as a text document goes
in, and out comes a semantically enriched version of it; interlinked with resources
such as people, organizations, events and facts that are related to the contents
of the document. It is mainly domain independent and utilized for a wide range
of subjects [22–24]. Another similar system is Zemanta2, providing much of the
same functionality. It is also provided both as browser extensions, so the users can
semantically enrich any text they input in a browser, and server side plugins for
common content management systems such as Wordpress and Drupal.

These systems are good at what they are meant for [25], but not as general
solutions to the problem in this thesis. They are presented as black-box knowledge
engines: they only work for a limited set of languages, and even though they are
mostly domain independent, they work much better for some domains than others.
Most importantly, in the context of this work, the quality is in the hands of the
system, not the user. No confidence or similar information is provided.

For publishing one’s open datasets and providing a distributed collaboration
environment to modify them, the most common approach is to use CKAN (Com-
prehensive Knowledge Archive Network)3. CKAN provides a way to publish and edit
structured data, while maintaining a searchable index for the data stored within.
Pertaining to the Semantic Web, the open datasets of CKAN are also available in
RDF format4. However, this does not bring any more semantics into the data. As
CKAN uses simple tagging instead of concept ontologies, the data relations inherit
many of the problems the Semantic Web is trying to solve such as ambiguous or
unclear tags and lack of multilingual support. There are a number of commercial al-
ternatives to CKAN that also suffer from this lack of semantics, such as Infochimps5

and Socrata6.
A general approach to data-driven RDF applications is provided by the Calli-

machus Project7, a framework for easy building of RDF management applications,
among other things. A system similar to the one described in this thesis could,
for the most part, be built using Callimachus, and in general the all-encompassing

1http://www.opencalais.com/
2http://www.zemanta.com/
3http://ckan.net/
4http://semantic.ckan.net/
5http://www.infochimps.com/
6http://www.socrata.com/
7http://callimachusproject.org/
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paradigm is interesting in the context of data quality control on different levels.
However, the aim of this thesis is to focus attention to specific aspects of metadata
control with specifically tailored functionality to suit these needs.

Closer to the level of abstraction that this thesis will present, there are some
good tools for distributed collaboration on actual RDF data, triple by triple. The
most prevalent of these are PoolParty8, focusing on SKOS Thesaurus Management
[26], and Web Protégé9, focusing on ontology development [27]. They are somewhat
streamlined, perhaps lacking in extensibility, but they excel at their intended use
area.

Version control is a concept close to that of explicit quality control. OntoView
[28] is a versioning system for ontologies, which has the basic features of version
control: storing each version of a developed ontology and providing difference infor-
mation between any two versions of it.

In the other end of the spectrum, we have work that deals not with the creation
of new data, but only validating it, against a schema or otherwise. Much of this
work concerns XML, and due to the slight overlap between XML and the RDF
world, also concerns RDF. However, simple DTD or XML Schema definitions are
not very useful for validating XML-serialized RDF due to the inherent disparity
between XML and RDF and the numerous and sometimes unintuitive ways RDF
graphs are expressed in XML.

XCSL and Schematron are among the more expressive XML validation and con-
straint languages, and have functionality that is also useful when working with RDF
[29, 30]. Since they’re not actually meant for graph-based data models or RDF in
general, they do not work as general solutions, but can serve as baselines for other
systems. For RDF data using RDFS/OWL, there are some validation systems that
use very simple rules for checking common problems such as illegal URIs, such as
Jena Eyeball10

One well-rounded language with which constraint-like characteristics of a dataset
can be defined is Nepomuk Representational Language, NRL. NEPOMUK11, a
framework for Social Semantic Desktop applications, needed a generalized way to
store and validate its own metadata, and the solution was NRL. It serves its func-
tion well, but nevertheless needs to be specifically adopted when building one’s
own schemas, and doesn’t provide a way to explicitly store confidence information.
[31, 32]

Developing ontologies has been a big part of the growth of the Semantic Web, and
many tools and methodologies for ensuring consistency on this higher, ontological
semantic level have been developed. This is the other way to approach validity: not
from the syntactic level, bottom-up, but rather from the internal logic implications,
or top-down. The top-down approach includes pure logical methodologies such as
OntoClean [33] to remove redundancy and otherwise ensure ontological quality, and
pure development and evaluation tools such as OntoWiki [34] and ODEval [35].

8http://poolparty.punkt.at/
9http://protegewiki.stanford.edu/wiki/WebProtege

10http://openjena.org/Eyeball/
11http://nepomuk.semanticdesktop.org/
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From a quality perspective, the focus of this thesis lies between higher semantic
evaluation, like that of OntoWiki and ODEval, and the pure syntactic evaluation
level that XML Schema, or the W3C RDF Validator12 provides. From a data cre-
ation perspective, the aim is to provide a framework description for a system with
more fine-grained control on the created data than OpenCalais or Zemanta provide,
but with some automatic semantic enrichment and quality-focused abstractions,
which are not provided by the basic distributed RDF collaboration tools such as
PoolParty or WebProtege.

12http://www.w3.org/RDF/Validator/
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4 Methods and Markup

This section discusses actual methods for data quality assessment and control, both
on a theoretical and practical level. The methods include basic approaches to the
whole concept of quality on the Semantic Web, as well as concrete ways to actually
annotate quality metadata in RDF form.

4.1 Schema-based Validation

Schema-based validation is usually the first thing that comes to mind when talking
about the quality control and validation of big datasets. Especially data stores such
as most XML formats and relational databases rely heavily on schema validation
– the latter are completely built on it. Intuitively one might think that the same
principle can effortlessly be carried over onto the semantic web and RDF data; after
all, XML is even one of the main serialization forms for RDF graphs. However, the
matter is not as simple as that.

The languages that are used for describing the structure of an RDF model, RDFS
(RDF Schema) and OWL (Web Ontology Language), are not schema languages in
the traditional sense. Because the Open World Assumption is generally in effect in
RDF models, actual data validity can not be reasoned through the RDFS or OWL
descriptions of a dataset. The schema is used for reasoning additional information,
instead of validating the existing information. Let’s assume our schema tells that
“The members of the Virtanen family are policemen” (more formally, it is not false
to list their occupation as “policeman”, i.e., at least some of their occupation values
are that), and our data contains info that tells that “The father in the Virtanen
family is a fireman”. This can be expressed as an RDF Turtle (Notation 3) [13]
serialization as follows:

example:Occupation

rdf:type owl:Class .

example:Policeman

rdfs:subClassOf example:Occupation .

example:Fireman

rdfs:subClassOf example:Occupation .

example:Virtanen

owl:Restriction [

owl:onProperty example:hasOccupation ;

owl:someValuesFrom example:Policeman

] .

example:FatherVirtanen

example:hasOccupation example:Fireman ;

rdf:type example:Virtanen .
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By Closed World standards our data is erroneous since it does not conform to the
schema definition: It states that some of every Virtanen’s occupation values must be
Policeman, i.e., every Virtanen must have Policeman listed as their occupation, but
Father Virtanen only has Fireman listed. The Open World Assumption states that
our data is not erroneous and we can in fact make (automatic) additional reasoning:
either Mr. Virtanen is both a fireman and a policeman at the same time:

example:FatherVirtanen example:occupation example:Policeman .

or that a fireman, in the context in which our concept example:Fireman is de-
fined, also holds the semantic meaning of what it means to have the conceptual
occupation of example:Policeman, for example in areas where the same individual
handles these tasks:

example:Fireman rdfs:subClassOf example:Policeman .

or that the concepts example:Fireman and example:Policeman are semantically
equivalent types of occupation (though this can be refuted with common sense rea-
soning: clearly they are not):

example:Fireman owl:equivalentClass example:Policeman .

This kind of thinking is well suited especially for distributed environments such
as the Internet [36], where we can seldom assume that all relevant data is at hand.
The downside is that the same thinking is very ill-suited for applications where clear
knowledge about the validity of a certain set of data.

This desire to get validation information about a certain dataset does indeed arise
on the semantic web as well. It is especially needed in situations where we want
to analyze the complete dataset that some reasoning application uses. Extensive
semantic reasoning can lead to large problems if it is done on erroneous premises.
An example of such a system is the Finnish culture portal CultureSampo – the
portal utilizes converted data from dozens of sources, the melding of which could
not be guaranteed to be error free.[37] In a situation such as this we must forget
the Open World Assumption and “close” the world around our desired dataset for
validation purposes. Let us consider the definition of the property place of discovery
of a museum artifact in CultureSampo (as per the actual schema used in the system):

kulsa-schema:place_of_discovery

rdf:type owl:ObjectProperty ;

rdfs:domain kulsa-schema:museum_item ;

rdfs:label "place of discovery"@en , "löytöpaikka"@fi ;

rdfs:range kulsa-place:places ;

rdfs:subPropertyOf kulsa-schema:place_property .

If someone accidentally uses this property in the place of the property place of
collection
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kulsa-place:place_of_collection

rdf:type owl:ObjectProperty ;

rdfs:domain

[ owl:unionOf (kulsa-schema:musical_work kulsa-schema:poem)

] ;

rdfs:label "keräyspaikka"@fi , "place of collection"@en ,

"plats för uppsamling"@sv ;

rdfs:range kulsa-place:municipality ;

rdfs:subPropertyOf kulsa-schema:material_place .

to denote the collection place of a folkloric poem, that poem would be reasoned
to also be a museum artifact in addition to being a poem: a clear reasoning mistake.
If we close the world around the dataset for the validation (a similar assumption
to what is done in the Nepomuk Representational Language [32]), we can interpret
the domain clause strictly and display a warning if a property is used outside its
immediate domain. A prototype system called VERA (see Sec. 5.7) was tested
when the data of CultureSampo was being finalized and the preliminary results
were encouraging. [38]

In conclusion, schema validation can be done on the semantic web as well, but
it’s not a general solution. Using it is always case specific, and it can’t feasibly be
automatically applied for new datasets solely based on the schema and data that
supposedly conforms to it. However it is the only way to gather implicit valida-
tion information about the data, and thus it has its place in the quality control of
semantic web datasets.

4.2 Quality Annotations

Schema-based validation and similar methods have some problems that have to do
with its conflicts with the Open World Assumption based thinking. A semantically
lighter way that doesn’t conflict with it in the same way is a model, which this work
calls quality annotations. The basic principle of it is that the data contains explicit
info of what we know about the validity of individual pieces of data, or triples in
the case of RDF.

The main problem of this approach is that RDF and the usual specifications that
are used with it contain no standardized way to annotate data quality. The research
that has been done so far also has not focused on data quality control very much
at all, and thus there are no widespread conventions or pseudo-standards to tackle
this problem. In this section some previously suggested quality annotation models
are studied, with some new possible solutions as well, along with the pros and cons
of each choice.

There are some proposed extensions to standard RDF that aim for bringing
relational database features, like strict datatype constraints and referential integrity
to RDF data, such as the one proposed by Lausen et al.[39] However, such methods
haven’t acquired widespread popularity, as relational databases and RDF are wildly
different paradigms and in generals solutions used in one of them are not carried
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Figure 7: Trade-off between the expressiveness and complexity of a model

over very well to the other due to the confrontation between the Open and Closed
World Assumptions.

One of the important defining characteristics of a data storage model is its
complexity.[40] There are many differing needs for models with various extensive-
ness. The more extensive a model is, the more complex is the underlying model; and
a complex model hinders efficient computation and reasoning. However the model
must still be complex enough so that it remains versatile enough to be used in many
different applications. The case is a common trade-off situation (depicted in Fig. 7)
between two conflicting goals.

The premises of the semantic web rely heavily on description logic.[12, 41] With
a formal logic system such as that, everything from the ground up is meticulously
and axiomatically defined. Partly because of this, the same is true for all proposed
systems for data quality control: they are defined from a very low level upwards,
and aim for maximal representativeness at the cost of simplicity. The descriptions
of these systems generally do not touch actual practice and the actual RDF repre-
sentation of the system very much. [2, 3]

Then how extensive data quality control do we really need in practical applica-
tions? This question is largely unanswered in contemporary research. The research
has progressed the semantic web layer cake (Fig. 4) from the ground up and actual
end user applications have followed behind. Since the whole cake is meaningless
without the means for the end user to consume it, it would also be useful to ap-
proach the problem from the opposite direction starting from practical use cases.
This work discusses through practice what aspects of data quality control are actu-
ally useful and worth implementing.

The goal of creating good data is usually to eliminate all possible imperfections
from it. Because of this, it is good to keep in mind that the finalized version of
the data actually used by applications does not necessarily contain the data quality
annotations. It would be beneficial if the data quality model could be separated
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from the base model created with technologies such as RDFS, OWL and SKOS.
However, during the creation phase the quality model and the actual data model
should be integrated.

This section details various ways of quality annotation markup. For the sake of
clarity, they all contain a way of marking the triple portrayed in Fig. 8 as imperfect.
It should be noted though that because of the methods differ, so do the semantic
implications of them. As such, all of the figures to be presented are not semantically
completely equivalent to each other.

Figure 8: A basic example triple

4.2.1 Markup with a Model Expansion

Since RDFS or OWL do not as such provide ways to express imperfect data, a natural
way to solve the problem is to expand them with features that allow it. One such
model that is built on OWL but provides quality annotation tools is proposed by
Preuveneers et al.[4] and is shown in Fig. 9. With the model one can provide direct
quantitative quality control data such as correctness, confidence and resolution.

With the model one can annotate property specific confidence values directly to
the schema. As a downside of this method, the literal values for different types of
quality cannot be dynamically set: if we want to have a hundred different confidence
values for some property, we need to create a hundred new properties. This problem
stems from the triple-based structure of RDF and is present in some way in all models
that do not use reification.[4] Fig. 10 illustrates how this specific model expansion
can be used to mark a triple as imperfect. The original property is replaced with
a custom one with a different type. Then all relevant quality information for this
custom property are listed as literals. In the example, only a percentual correctness
is listed, as 80%.

The major upside of using model expansion is generality – the expansion can
be published with finalized formal definitions, so anyone can adopt it and easily
generate data that conforms to it. The principle is widely used: many common
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Figure 9: An OWL-extension that enables quality annotations [4]

Figure 10: Data quality annotation with model expansion

vocabularies such as Dublin Core are designed with expandability in mind [42] and
are expanded with dozens of different expansions [43]. However, adopting a general
expansion usually leads to needless complexity, if the expansion isn’t specifically
designed for the application context at hand. To conform to the generally defined
expansion, one might need to use parts of it that wouldn’t be strictly necessary.

4.2.2 Markup with Reification

Reification is a feature in RDF that, even though it is fundamentally represented
with triples, is a deviation from the basic graph/triple structure. Reification means
the process of reifying an RDF statement (triple) by giving it an unique identifier as a
whole: this enables them to be used as a part of another triple—either the subject or
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the object. If used as the subject, instead of the regular (subject - predicate -

object) structure it would be ((subject - predicate - object) - predicate

- object). This allows native support for more complicated semantic structures
such as “Weather was sunny at noon”, which would otherwise be non-trivial to
implement with triples.

Reification can be used for quality annotations, by marking triple-specific meta-
data to support or doubt the validity of them.[44]. A simple method of quality
annotation markup with reification is shown in Fig. 11. Statements have been
marked as uncertain by linking them to a general “uncertain resource” via an object
property. This method is general in the sense that the properties can be arbitrary
and there can be many of them. For example, we could easily give a numerical
confidence value for the uncertainty with a literal-valued triple, similarly to Fig. 10.

Figure 11: Data quality annotation with reification

However, reification fails as a solution for applications like this both in theory
and practice. The theoretical problems have to do with the underlying formal im-
plications of reified statements. In practice the problem is the complexity of this
method: reification partly breaks the general triple structure of subject-predicate-
object -statements model in RDF. This means that reification should be separately
taken into account in any application that uses the data. The most common use
cases for semantic web data, such as recommendation systems and automatic data
enrichment, are considerably harder to implement and computationally more expen-
sive with data that contains reified statements. [20, 45]
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4.2.3 Markup with Quads

One method to achieve the wanted goal is to use named graphs for storing extra
information about a triple.[46] Basically this means that instead of triples, the data
store utilizes quads, where the subject-predicate-object combination additionally has
a named graph (URI) attached. These kind of named graphs are directly supported
in the RDF format specification [5] so there is no need to avoid straying from a
basic triple structure like this. Once the triples are linked to named graphs, we can
store information about the graphs: for example, their origin, method of creation
and authors. This kind of extra information is usually called provenance, and the
method is widely used on the Semantic Web by many large organizations.

The method is somewhat similar to the reification method described in Sec. 4.2.2,
but is simpler and more elegant as it clutters the data less and is more intuitive and
transparent. However, it is more suited to provide provenance than direct quality
information since that is its original purpose. If we use it for quality information
instead, like in Fig. 12, we must tag the whole graph with the same quality infor-
mation, or alternatively divide the graph into a multitude of subgraphs. Having the
ability to annotate single triples and resources is useful, but dividing the graph into
small subgraphs is counterproductive if we also want to annotate the provenance
of a graph as a whole. This is a problem as both quality and provenance informa-
tion should be allowed to coexist in the same RDF dataset. An alternative is to
simply track the quality of whole datasets instead of smaller units such as triples
or resources [47], but that is a much more broad and general approach as the one
assumed in this thesis.

Figure 12: Quality annotation with named graphs in quads
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4.2.4 Markup with Ad-hoc Local Instances

For certain applications, linking uncertain data into an existing knowledge base is
enough to solve the data quality annotation problem. If we have a knowledge base
we know we can trust, and some unknown data whose quality we want to annotate,
it’s sometimes enough to create a mapping between these datasets instead of actually
figuring out confidence values and other metadata. Fig. 13 illustrates this process:
we create a local instance of every possibly interesting resource, and link these to
a pre-existing knowledge base using, for example, the property owl:sameAs13 if we
consider them to be exactly the same, or some other relation. In the case of reference
ontologies and classes, like in Fig. 13 (generally birds instead of some specific bird
entities), this relation is often rdfs:subClassOf14, as it is a very strong thing to say
that two classes as exactly the same. This marks them as being semantically similar
and links them to the whole knowledge base, whereas local instances deemed as
invalid are left to be orphans or semantic “dead ends”, without links to meaningful
resources.

Figure 13: Data mapping using local instances

Due to the nature of this method, it has limited use. Primarily it can be used in
the context of automatic annotation and converting legacy data over to the semantic
web.[48] In this application, everything is about linking old data to new data, essen-
tially the equivalence of resources. For most quality control needs, such as actually
representing data imperfections, this type of model is not sufficient.

13http://www.w3.org/2002/07/owl#sameAs
14http://www.w3.org/2000/01/rdf-schema#subClassOf
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4.2.5 Markup with Hierarchic Relations

The problem with the referred model expansion was the need to make explicit and
numerous properties. Creating a new property for each percentage value is cumber-
some and clutters the model. The problem with reification, among other things, is
that it breaks the natural triple structure of RDF, even though it is intuitively a good
choice. A novel way to avoid these problems, and in a way combine the mentioned
two methods, is using hierarchic relations to tag triples with quality annotations.
The theory behind the method is outlined here, and then applied to practice and
described in further detail in Sec. 5.3.

Triples are characterized by their predicate. If the predicate is substituted with
another predicate that is both a subproperty of the original one and a general im-
perfect property, it can be tagged as imperfect in a versatile and simple way, without
loss of data during the process. Since the link to the original property exists through
the subproperty relation, the operation can easily be reversed—the original property
is an immediate superproperty.

Figure 14: Quality annotation with hierarchic relations

Fig. 14 shows the example triple marked as imperfect with this type of annota-
tion. There are many upsides with this kind of approach. The operation of marking
a triple as imperfect can be reversed, i.e., the quality annotation removed so that
the triple is back to its original state (Fig. 8). Because all the imperfect triples refer
to the same general imperfect property, they can all be found very quickly by taking
the transitive closure of that property. The method is versatile and can be applied
to many varying quality annotation needs. It is also extensible, as the created prop-
erties can be given any custom properties necessary. If they were given numerical
confidence values, the method is somewhat similar to the model expansion method
described in Sec. 4.2.1.

One downside is that this type of quality annotation requires relatively many
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triple changes when creating new properties for imperfect triples. If an existing and
applicable quality annotation property is not found, a new one needs to be created
and the property hierarchy altered to mark it both as a subproperty of the original
property and the general imperfect property. This problem is somewhat mitigated
by the fact that the properties are indeed very reusable: not every annotated triple
requires a new property. As long as the substituted property is the same and the
type of imperfection is the same, existing subproperties of the general imperfect
property can be used.

If we want to tag a whole resource, i.e., all triples that have the resource as subject
or object instead of just a single triple, the same can be done to that resource’s type.
The process is exactly the same in all aspects, only with subclass relations instead of
subproperty ones. This is a much simpler method than modifying each triple with
the resource as subject, and is useful when we have reason to doubt the validity of
the existence of an entire resource instead just a single triple.

4.3 Quality through Reasoning

Explicit metadata annotation of data quality is only one approach to the whole
quality control problem. Often it’s not feasible to keep track of the eligibility of
data and instead pass the problem onwards. For example, in recommendation-
based systems the system can keep track of the preferences of the user and the
dates when those preferences are set. Then we can implicitly assume that older
preferences are more likely to be of worse quality than newer ones, without having
specific annotations about that information that would change day by day. This
brings the whole data quality problem to a new level in this use case. Instead of
having explicit knowledge about data quality we can reason that knowledge in real
time from other information, such as the input date of the user preferences in this
case.

The same situation arises in communal, distributed metadata creation. Opti-
mally if any user can add information into a system, we would have some way to
set a confidence value for that user. The system could keep track of that value and
continuously update the system metadata accordingly, but maintaining this infor-
mation can become cumbersome. Instead, we can assign this task to the reasoning
logic as well: the confidence value of a user can be dynamically assessed based on
info about that user. For example, in a culture portal such as CultureSampo [37]
the confidence value of a user would be greatly boosted if we know that he is a
professional in an appropriate museum or association.

Reasoning confidence values in addition to explicitly annotating them can be an
elegant addition to a solution. However, it is not always possible—either we do not
have enough secondary data on hand to accurately assess it, or the subject matter
is such that reasoning confidence is not even theoretically feasible. For example, in
black box type free natural text annotation against a reference ontology can be such
a convoluted process that annotating the justifications for a confidence value instead
of simply annotating the value is not practical. Transferring data from one system
to another is also more complicated, since much of the semantic meaning of the
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data is included in the logic of the system instead of exportable data, and cannot
be transferred in a simple way. Other systems can come to completely different
conclusions about the data with different logic rules. Such problems could also arise
with explicit confidence values, but at least in theory they are easier to take into
account, because theoretically all the information is present in the data.



29

5 Design and Implementation

This section covers the details behind the prototype system and work flow: the how
of the solutions to the expressed problems, and also why these specific solutions to
quality control problems described in the previous section were chosen. The focus
is on technical low-level decisions and the justification of the choices made.

5.1 Quality Refinement Work Flow

To support the background covered in the previous sections, examples of real use
cases and methods which can utilize data quality control are described. The aim is
to show that real problems in the field of semantic web data creation can benefit
from data quality control.

The aim of a system that utilizes data quality control is the efficient enhancement
of data quality utilizing both automatic reasoning and user expertise. The starting
data quality can be assessed using different machine reasoning heuristics, which give
confidence value metadata as output. A domain expert can then assess the data
quality by hand in priority order according to these heuristics, correcting errors as
they appear.

Figure 15: The route from documents to valid data

The basic process of creating new data for the Semantic Web is illustrated in Fig.
15. We begin with data in any traditional data format, such as plain text, XML,
CSV or a relational database. Then, a direct transformation from the source format
to RDF is applied. RDF is so expressive that, given proper parameters, practically
any data format can have a relatively straightforward RDF transformation applied
to it. However, because of the same expressiveness, there is a multitude of ways to
express data as RDF, and a direct, mechanical transformation is often quite crude
due to errors in the source data and the transformation process. The source code
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for a direct example XML to RDF transformer with no data-specific assumptions is
given in Appendix 7. It transforms any kind of XML data into RDF, changing the
hierarchical tree structure of XML into triples for the graph structure of RDF.

To refine the newly created RDF, it is imported it into a framework that can
flexibly be used to modify it in ways that improve its quality. The quality of an RDF
transformation outlined above is one aspect to consider, but there are others as well.
Any data format transformation is inherently quite prone to errors, and additionally
the source data may contain erroneous information that manifests itself only after
a data format change. The framework should be able to take all these things into
consideration.

Figure 16: Structure of a quality control annotation environment

Different types of quality considerations require different modules in the frame-
work to handle them. Fig. 16 outlines the basic inter-module interaction for improv-
ing data quality. The systematical crudeness of raw RDF must usually be handled
with application specific logic, applied externally to the dataset through small pro-
grams or scripts. This is not part of the framework per se, but nevertheless the
framework must be designed to allow this, by enabling easy exporting and import-
ing of data. This logic can fix larger issues in the data, but it can also be a source of
quality metadata, which in turn can be stored in the data graph with the methods
described in Sec. 4.2.

If an automatic annotation system was used that provides quality information,
that information can also be converted to quality annotations. This can be a major
source of quality information, especially when creating new RDF data from other
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data formats or directly from documents or plain text. As there are many differ-
ent automatic annotation systems which give quality and confidence information in
varying ways, each one requires a case-specific mapping to the used quality annota-
tion system. Such a mapping isn’t necessarily a complex one and should be domain
independent in most cases, so developing one is not a big undertaking.

Often we have to work with RDF datasets that we do not know anything about
in addition to the raw data. The origins, source format or more accurate semantics
are things that are integral to developing application specific logic, so it’s hard to
generate quality information or fix the data directly based on our knowledge of it.
While coming up with quality information based only on the data and the schema
contained within is hard, it is possible to a degree. For this scenario when we
don’t know anything else, schema-based validation, as described in Sec. 4.1, is often
useful. It can provide a solid starting point for refining the data quality and pinpoint
potential systematic problems the dataset may have. Similar to application specific
logic, the pinpointed items can either be directly fixed or simply stored as quality
annotations.

In the heart of things is an editor with which users can edit any aspect of the data
he wants, without restricting themselves to a single paradigm of improving quality,
such as schema-based validation. Since the quality annotations are an integral part
of the basic data, the data can be marked accordingly in the user interface as the
user comes across a piece of data that is described with them. Manual editing is
slow, but can plug all the holes the other methods can’t access, and also directly
utilize the quality annotations.

Finally, after the data is modified in the framework and deemed to be of suffi-
cient quality, it can then be exported as a self-contained dataset and readily used
in different applications. The specifics of how the system proposed here would work
internally, and the services and interfaces required for the components to work to-
gether, are described in the next section.

5.2 Use Case

A good target for applying semantic web principles and technologies are information
portals on the Internet that have much data, often user generated, that have related
content but are not actually explicitly linked to each other through the use of hy-
perlinks and common categories. An example of such a website is Sosiaaliportti15,
a portal that provides both expert- and peer-provided information about child and
social welfare.

Data from Sosiaaliportti provides for a good base for testing metadata quality
control, because automated annotation has already been tested for it and compared
to a baseline established by multiple human expert annotators.[49] The data consists
of two types of documents: excerpts from the site’s handbook for child welfare, and
question-answer pairs from the consultancy service archive. The documents were
annotated using concepts from the Finnish Ontology of Health and Welfare, TERO,
by six domain experts and automated annotation (Sec. 5.5).

15http://www.sosiaaliportti.fi
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The previous research on the Sosiaaliportti data was to compare how automated
annotation compares to human indexing. The results were encouraging: automated
annotation is quite good, but still not quite on the same level as domain expert
humans can achieve. This is where quality control steps in: since we have a baseline
quality for what the annotation should be, and an automated “best guess” annota-
tion, we can provide an environment that enables a domain expert to easily smooth
out the edges of the automated process, and ultimately prepare a good quality anno-
tation with much less work than it would take for the human to do it from scratch.
A good editor with a quality control aspect can make things a lot simpler and faster.

A somewhat similar use case with a differing paradigm is analyzing an RDF con-
version of the Finnish Defense Force’s dataset of norms and standards. [50] There,
unlike with Sosiaaliportti data, the data is also initially structured. Nevertheless
it can serve as an example of the problems that can arise when a supposedly well-
structured dataset is subjected to a data format conversion. Instead of automatic
annotation, manual fixing, application specific logic and schema validation are em-
phasized. This, alongside with directly creating new RDF data from unstructured
text documents or other free-form formats, is the other main paradigm to which
quality control needs to be applied.

5.3 Quality Annotation Markup

Handling quality annotations is a vital part of a system like the one described here,
and the method of how it is done must be chosen carefully. Sec. 4.2 described various
ways in which the quality of triples and resources can be annotated. Each have their
specific strengths and weaknesses, and not all are suitable as a general solution, as
is required here.

The chosen, novel method is to implement the functionality with hierarchic re-
lations (Sec. 4.2.5): it offers an intuitive way for implementation in an editor envi-
ronment with enough flexibility for various possible needs that might arise. It also
isn’t necessarily too complex on the graph level, so it doesn’t clutter small datasets
with a disproportionate amount of additional metadata.

The granularity, or the amount of accuracy levels of the quality annotation model
is an important decision (Sec. 4.2). An intuitive, and often the first choice considered
as a way to rate imperfection and confidence is with percentage values. This is also
the approach taken by Preuveneers et al. in their OWL quality control extension.
[4]

However, percentages are actually much too accurate if the whole spectrum is
used—humans cannot make distinctions between different amounts of imperfection
on such a fine-grained level. It has been found that just a handful of imperfection
levels, whose relations to each other is known, is enough for human perception.[51,
52] Thus, if we need varying imperfection levels for triples with a certain property,
it is enough to create a handful of uncertain subproperties for it. That handful can
then be internally sorted in an order from the least uncertain to the most uncertain.
The whole idea is depicted in Fig. 17. Different imperfection levels are arranged in
relation with each other with subproperty of -relations (for triple-specific annotation)
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and subclass of -relations (for resource-specific annotation), divided into different
types of imperfection. Additionally, levels of imperfection for different types can
be marked equal through equallyValidTo-relations, so even the different types of
imperfection are somehow comparable.

Figure 17: Different types of unconfirmed properties

With this kind of model, the complexity of the quality model is entirely cus-
tomizable, regardless of the intrinsic properties of the data. This is made possible
due to the fact that the model focuses on relative quality levels instead of absolute
ones. This kind of approach loses some fidelity when observed out of context, but the
level of imperfection some piece of data has is only really relevant when compared to
some other data on another level of imperfection. Thus, the absolute imperfection
levels are not as important as knowing the relation between the imperfection levels.

No explicit information is stored of what the original property was that got
replaced. This means that when reversing the operation, all the superproperties are
considered, so unconfirming a triple is not a trivially reversible operation without
knowledge of what the property was before it. The reason for this behavior is that
we can not be certain that the immediate superproperty is the originating one, and
there can also be multiple immediate superproperties. Formally this means that the
unconfirmation operation is a surjection and there is no straightforward inverse.



34

5.4 EMO: RDF Management Framework with Quality Con-
trol

Managing the input and output of our RDF data and the quality annotations in it
is a large undertaking, and the answer proposed in this thesis is a multi-pronged
prototype framework called EMO. Fig. 18 describes the architecture. Functionally,
EMO is the data index behind the scenes, very efficient and scalable, plus the sum
of the separate parts which create and modify the data within. In addition to being
highly scalable, the data index also provides inferring, meaning that conclusions
such as the equivalence of individuals and classes are calculated on the fly as data
is being added.

In the core of the framework is SAHA [53], where the actual editing of the data
takes place, and the quality annotations that go along with it. Interacting with it
are three kinds of systems that act as a source of quality information for the quality
annotations. Two of them, schema validation and and application specific logic
systems, also directly interact with the data based on their view of the quality of
the data.

EMO can also be thought about simply as a collection of synergic data-handling
applications that share the same common data store. Below, the different appli-
cations that deal with the creation and modification of data (as per Fig. 18) are
described in more detail.

Figure 18: Metadata quality annotation management
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5.5 ARPA: Centralized Automated Annotation

We often want to automatically match text documents against an ontology or vocab-
ulary of some sort to get a basic machine understandable idea of what the documents
are about and how their contents relate to each other. This process is called topic
extraction, or automated annotation, and is a great way to bring semantics into
applications based on traditional ones. [54, 55]

A centralized system for providing automatic annotations is helpful for efficient
combining of many different autoannotation tasks to a single service. Such a sys-
tem, called ARPA, is integrated into EMO, to be used either by any external source
or another part of EMO, such as SAHA. ARPA receives parameters for annota-
tion requests from clients, and then queries the back-end systems, engines, accord-
ingly. Figure 19 shows the architecture of ARPA. The parameters of the REST API
through which clients interact with ARPA are listed below.

Figure 19: The architecture of ARPA

project
The main level of abstraction for ARPA is an ARPA project. It is intended
to hold all linguistic details in one single entity that can be easily referred to
in the API.

Name Name of the project. This is the main identifier of the project when
referred to from the API.
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Description A short description of the project.

Engine The part of the system that actually performs the annotation. Two
main types of engines are used currently as can be seen from Fig. 19:
Maui and POKA.

Lemmatizer/Stemmer The baseform services, i.e., the systems that han-
dle the removal of inflection from the words of the input, are separated
from the engine, even though some engines can handle baseforming as
well. Currently, three different systems have been tested: Omorfi16 (open
source) and FDG17 (presently known as Connexor’s Machinese Syntax,
commercial) for Finnish, and Snowball18 for English and Swedish.

Language The language the project is meant to annotate. Generally, almost
all engines and baseform services are tailored for a single language, and
so this parameter is not actual input to the system. It is just meant
to provide the language information to the user as part of the project
description.

threshold The confidence threshold (∈ [0, 1]) that serves as the minimum for the
shown results. Note that some engines do not provide confidence information;
in this case the confidence of every annotation is set to 1.

amount The maximum amount of results received. If the engine would otherwise
return more than this amount, only the ones with highest confidences are
shown. In case of tied confidences (such as when an engine does not provide
confidence information) the choice is arbitrary.

input data The actual textual input to be annotated. There is no upper limit for
the length of the input, save for the constraints of the HTTP GET protocol.

5.5.1 Autoannotation Engines

ARPA is just a front-end for annotating documents automatically. The actual con-
cept matching is done by underlying subsystems, or engines. Many such engines
exist, and different ones focus on different things. Some focus on simplicity and
performance, while others aim for complexity in order to reach better annotation
quality. Two systems with relatively orthogonal approaches are currently coveredin
ARPA: Maui topic indexer [55] and POKA information extractor [56].

Maui is a indexing system whose main purpose in the context of automatic
annotation is to extract the most relevant ontological concepts from a text document
using a pre-built model based on authoritative learning data [55]. The teaching
process requires several (preferably around 50) example documents and good-quality
annotations for them. Using the example annotations and the ontological structure
of the provided vocabulary, the model to automatically annotate future documents

16http://home.gna.org/omorfi/omorfi/
17http://www.connexor.eu/technology/machinese/
18http://snowball.tartarus.org/
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is built. This model is then used to give an individual confidence value, among
other metrics, to each ontological concept found in a document. The internal logic
of Maui is built on previous keyphrase extraction systems, KEA [57] and KEA++
[58], and the implementation is based on the WEKA machine learning toolset [59].

POKA is a general information extraction system, with focus on functional sim-
plicity and extensiveness over quality. Unlike Maui, it does not require teaching,
which makes adopting it easier. On the other hand, this means that the results
are not graded by confidence, making it hard to choose just a handful of the most
relevant concepts pertaining to a document. In addition to ontological matching,
POKA also does named entity recognition (NER), finding entities such as people
and places in the processed documents. [56]

5.5.2 Maui Confidence Markup

It was stated earlier that a very fine level of detail for confidence (∈ [0,1]) values is
unnecessary for human perception and only clutters the metadata model (Sec. 5.3).
However, some sort of hierarchical confidence prioritization must still be made. For
annotations that use Maui as the ARPA-engine, such a hierarchy was made based
on the performance of the Sosiaaliportti Maui project (Sec. 5.1) against a set of test
data, shown in Fig. 20. The figure shows the amount of correct and incorrect (i.e.,
differing from the human annotators) Maui annotations. Noting the logarithmic
scale, we can see that there are a lot more results with low confidence than a high
one, and that the precision increases steadily as the confidence rises, as expected.
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Figure 20: Frequency of hit/miss Maui annotations

Fig. 21 shows the percentual precision of annotations by confidence. The best
precision overall acquired in the testing process was around 40%, which is already
quite close to the precision between different human annotators [49], so all anno-
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tations above that can be classified together as the least improbable class. Also,
it is useful to have the classes with lowest confidence as the most common, so the
better quality guesses can be used as a higher level abstraction level. Moreover, it
is expected that for every good guess there is a multitude of bad ones.

Generally, assuming an exponentially diminishing class population (as can be
seen from Fig. 20) and a continuous distribution, the confidence thresholds
Tx, x ∈ {1, 2, . . . ,m} are formally defined by P (X ≤ Tx) ≤

∑x
k=1(m+1−k)pTh∑m
k=1(m+1−k)p

P (X ≥ Tx) ≥ 1−
∑x

k=1(m+1−k)pTh∑m
k=1(m+1−k)p

, (1)

where p is the parameter that controls the relative class sizes (which nevertheless
are exponential) and Th is the threshold when the precision is comparable to human
annotators (note that Tm = Th). The equations originate from the definition of
median and percentiles for a continuous distribution, but instead of equally spaced
percentiles, the equations give exponentially shrinking ones for growing values of x,
so the lower levels are more common than the higher ones.
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Figure 21: Precision of Maui annotations by confidence

Computed for our sample data with m = 3 (to yield 4 hierarchy levels separated
by 3 thresholds) and Th = 0.4, this gives us the thresholds shown in Table 1.

Table 1: Maui confidence thresholds

x threshold
1 0.029
2 0.200
3 0.402
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This is only an exemplary mapping from an arbitrary data quality representa-
tion to the proposed quality annotation system in RDF. It is presented as proof of
concept of the usability and versatility of the metadata model in the context of data
conversion. This is an important aspect to consider since the creation of new data
is integral to the development of the Semantic Web. However the mapping is not
only a throwaway example as it solves a common use case in this area: converting
percentage-based quality information of an established automatic annotation system
into the proposed quality annotation metadata model (Sec. 5.3) with a semantically
sound justification.

In the end we would have RDF data that has its quality annotated triple by
triple with the markup described in Sec. 5.3, divided to four different levels whose
appropriate properties are separated by the lessValidThan-relations depicted in
Fig. 17. Then we can proceed to assess the data in priority order, starting from the
level with least confidence, as given by our automatic annotation process.

5.6 SAHA: Collaborative Metadata Editing

SAHA is a WWW-based tool for distributed creation of instance data for the se-
mantic web in RDF form. It is designed from the ground up to be robustly usable
for collaboration, without people interfering with each others work. This is very
important in any collaborative tool which aggregates clusters of triples as some kind
of entities (such as resources) to be worked on.

The basis features of SAHA include:

• Creating, deleting and editing of resources denoted by URIs in a robust dis-
tributed web environment

• Searching instance either by their ontological class or with a global autocom-
pletion search

• Inserting ontology concepts for defined fields from external ONKI ontology
services [60]

• Creating and editing point/area/route location data with a map interface

• Accessing the data from a SPARQL endpoint [61] or other REST and web
service APIs

• Exporting the data as RDF/XML, Turtle (Notation 3) [13] or N-Triples

• Searching data with an integrated single object property based customizable
facet-search engine, HAKO [53]

5.6.1 SAHA Technical Architecture

The general system architecture is shown in Fig. 22. The central component in the
architecture is the MVC framework. As the MVC system, the Spring Framework19

19http://www.springsource.org/
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is used, and Freemarker20 is the template engine. Both these and the business layer
code are written in Java. It receives page load requests, queries the persistence
store, acquires the correct template and fills it with the right data. In addition to
normal requests, the MVC system handles asynchronous requests used throughout
the system in the form of DWR calls.21

Figure 22: SAHA system architecture

Data access from the website is twofold. All the data is stored as triples in the
custom triple store, which maintains both a general store and separate indices for
common operations such as label and type searches. It is also monitoring changes
and inferring in real time, meaning that all triples added or modified are checked for
possible implications concerning reasoning—some types of triples that require addi-
tional actions upon inference are resources marked as identical through owl:sameAs,
and triples that are part of an auxiliary index, such as resource labels. Exactly
what is considered a label, in addition to commonly known label properties such as
rdfs:label can depend on the data and is configured separately.

20http://freemarker.sourceforge.net/
21http://directwebremoting.org/
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An alternate way to access the data is through a SPARQL endpoint. Custom
global or graph (project) specific queries can be executed to the triple store directly.
Another way to retrieve data from a graph in the triple store is to use the ONKI [60]
web service API. This is quite useful as then, in addition to regular ONKI ontologies,
projects in SAHA can be queried from other projects through the regular ontology
autocompletion search for object properties. Similarly, any site or application that
makes use of ONKI ontologies through its web service API can utilize SAHA projects
in a similar manner.

5.6.2 SAHA Quality Control Tools

To actually modify the quality annotations described in Sec. 4.2, the user interface
of SAHA must have specific views for this purpose. Optimally, these views would
be tailor-made to suit the most common tasks the user faces when manually edit-
ing the quality information. Two such ways to interact with the annotations are
implemented in SAHA.

The main view concerning the quality annotations is the general unconfirmed
data view, shown in Fig. 23. It shows all the triples annotated as unconfirmed in
the data, grouped by subject; often the same resource has many unconfirmed pieces
of information about it. The resources are listed in priority order as per the model
described in Fig. 17, with resources containing the least probable triples listed first
(alternatively, the amount of unconfirmed triples a single resource has could also be
a factor). This allows the user to check the validity of the “biggest offenders” first,
as those are the ones that most probably need fixing.

The fixing of a triple works as follows. As explained in Sec. 4.2, the validity
of a triple is controlled through the subproperty relations of its predicate. All
the superproperties for the predicate that are also not subproperties of the general
unconfirmed property are computed, and offered as choices for the user, like name
and label in Fig. 23. When a user chooses one of these choices, the property of the
triple is replaced with that choice, and thus the unconfirmed state is ended for that
triple.

The other view concerning quality annotations is showing them alongside with
other data when browsing data normally. This behavior can be seen in Fig. 24. Un-
confirmed triples are marked with a distinct color, and the same fixing functionality
is offered here as in the general view. This allows the usage of quality annotations
alongside regular data management operations: if the user happens to come across
an unconfirmed piece of data when creating or modifying normal data, he may assess
it at the same time.

5.7 VERA: Schema Validation and Data Integrity Checking

VERA is a system that generates quality and validation info about RDF data when
compared to its schema defined in RDFS and OWL. The generated info is compiled
as a report presented in HTML. In this work VERA is used as an integrated module
in the SAHA metadata management environment, but it was originally designed and
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Figure 23: General unconfirmed data view of SAHA

implemented as a standalone application that functions both from the command line
and through a web interface.

5.7.1 Report Structure

The report is essentially a list of items that each represent a potential issue with the
data, divided into different categories by severity: errors, warnings, notifications and
information. The report is further divided into items about validity and integrity.
Validity items mostly have to do with the relation between the schema and the data.
They show discrepancies about the schema-based assumptions of the data and the
actual data, for example the objects for triples based on the restrictions given in the
schema. Integrity items concern the general structure of the RDF graph, notifying
about things such as orphaned resources: resources with no incoming or outgoing
links to other resources.

It is important to note that none of the items listed by VERA need not necessarily
be actual errors. Rather, it gives a list of possible problems that an expert user can
assess and modify the schema or data if needed. Many of the items are not actual
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Figure 24: Unconfirmed data in the resource view of SAHA

problems even in the majority of use cases. Below, different types of items are
listed, along with a short explanation detailing when and why the item appears in
a report. An example view of a VERA report is shown in Fig. 25, for a piece of
an older version of the BookSampo [62] dataset, validated here for testing purposes.
Figures 26 and 27 also depict real life examples from the same dataset.

Errors
Errors are the worst class of report items, and can be directly considered marks
of erroneous data regardless of semantic interpretation.

Illegal object node type on a triple
The most common form of a serious semantic (as opposed to syntac-
tic) error in RDF data is having literal values on properties that are
marked as object properties or vice versa (mainly by being of types
owl:ObjectProperty22 or owl:DatatypeProperty23). Many applica-
tions assume that all values on object properties are indeed resources
instead of literals, and will cause errors if this is not the case.

A subset of this type of item is further highlighted: if a type24 of a
resource is set as a literal instead of a resource value, it provides a separate
report item.

22http://www.w3.org/2002/07/owl#ObjectProperty
23http://www.w3.org/2002/07/owl#DatatypeProperty
24http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Figure 25: An example VERA report

Malformed definitions
The interal consistency of owl:Restrictions is checked, and a report
item provided if something unexpected is found. Examples of such oc-
currences are a cardinality value on a restriction that is not an integer, a
restriction with no owl:onProperty definition, or a literal found when a
resource was expected, for example as a part of an RDF list.

A restriction in the schema is not used on any class
Even though it is not an error in a strict sense, an error report item is
provided if a restriction does not pertain to any class: formally, no class
is a subclass of the restriction.

Warnings
Warnings are mostly notes about how the data conforms to the schema, and
what the validation system thinks are the parts in the data that conflict this
conception.

A class/property in data that does not exist in schema
There are situations where you thoroughly want to control which classes
and properties are used in the data you have. Hence, a warning type item
is generated if the data uses a property and class that is not explicitly
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defined. In most applications at least the type should be defined explicitly
for each resource used as a class or property.

Domain/Range violation
Special attention is given to the rdfs:domain and rdfs:range definitions
in the schema, whose semantics were described in Sec. 2.2. A domain vi-
olation item is generated for each occurrence where a property is used on
a resource whose type is not defined as its domain in the schema. Like-
wise, a range violation is generated for each occurrence where a property
value does not match the expected pattern from its range definition in
the schema. This interpretation is not what those definitions semantically
mean (as explained in Sec. 2.2), but is useful in the context of validation
and used in other applications in the same area as well [63].

The warning report generated is more complex than most others. Instead
of a single row or information, three distinct aspects of the items are
listed. The first is a list of the instances affected by the property/type
combination the item is about. In the integrated SAHA environment
this provides for easy access to go and fix the problems where they exist,
should that be necessary. The second is a list of the properties that would
make the triple valid if the current one was substituted with one of them.

The last is a list of the types for the triple’s subject (for domain viola-
tions) or object (for range violations) that would make the triple valid
if the current one was substituted for them. The last one is not unam-
biguous, because there might be multiple required types through multiple
domain/range definitions, possibly through inheritance. Also there might
be optional type requirements if the domain/range definitions are unions
instead of simple resources. The arbitrary type pattern is computed and
shown in the report. An example domain violation report item is shown
in Fig. 26, which shows that 7 out of the 45 occurrences of the property
kuvittaja (illustrator) have a subject of type kansi (cover), which goes
against the schema definition of what the type should be. In this case
the schema says that the instances should also be of type physical work,
hinting that there could be an issue with the class hierarchy, since cover
was not also found to be a physical work.

Literal value doesn’t conform to range (XSD datatype or regexp)
Technically a subset of range violations, ranges on literal valued triples
are handled slightly differently. If the range consists of XSD datatypes
[64], the literal is validated to make sure it conforms to those datatypes.
There is also an experimental way to have regular expressions as range
definitions, but this functionality is currently not used and thus a de-
scription of it is not included in this work.

Restriction violation
All of the owl:Restrictions in the schema are interpreted strictly and
if the data would require additional triples to conform to them, an item is
generated. The restrictions checked are owl:maxCardinality, owl:minCardinality,
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Figure 26: An example domain violation in a VERA report

owl:cardinality, owl:allValuesFrom,
owl:someValuesFrom and owl:hasValue. The item shows the offending
value and the range of correct values.

Notifications
Notifications are items that can sometimes be interesting, but are usually not
errors by themselves per se.

Resource has no information besides type
A resource with no rdf:type definition generates a notification. Ac-
cording to OWL semantics, every resource should preferably have a type
defined somewhere on the data graph. [6]

Orphaned resources
Resources in data with no references in or out to other resources generate
a notification. As the aim of RDF data is to provide an interlinked
web of data, orphaned resources are often unwanted and useless, perhaps
remnants of deprecated data constructs.

Data redefines schema elements
If the validation is run in a mode where the schema and data are separate
models instead of a single one, an item is generated for each entry where
a schema item is also defined in the data. It is not checked whether the
definitions differ, only that both the schema and the data define the same
resource.

Schema redefines core RDF resources (RDF, RDFS, OWL)
Another item that can at times be considered unwanted, is redefinitions
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of the core RDF resources in the schema. Formally, the item is generated
if the validated RDF contains triples that have a core RDF resource, such
as owl:Class or rdfs:domain, as subject. If such triples have ended up
in the data by accident, it can have vast and unpredictable consequences
on machine reasoning.

Resource used as object but not subject
Sometimes we want to explicitly give information about each resource
referred in the data. A notification item is generated for each resource
that is used as an object in a triple, but does not have any explicit
definitions, such as a label or a type.

Information
The Information section contains items that are not considered faults in the
data by the validation process, but that might nevertheless be of interest to
the user.

Unused schema definition
This item is generated if there are classes or properties defined in the
schema that are never used in the data. This information could be useful
for finding deprecated or otherwise useless schema definitions that can
subsequently be deleted.

Figure 27: Language definition list in a VERA report

Language definitions
The report details the use of different language definitions for the literals
in the data. Based on the xml:lang definitions in the data, the different
languages used are listed, along with a list of how big a proportion of
each property uses each language: Fig. 27 illustrates the matter: each
language present has its own entry, including literal triples with no lan-
guage definition. It tells how big a proportion of the literals are in that
language overall, and the same separately for each literal property. In
the figure we can see that, e.g., 2% of the literals in the data overall and
7% of the nimi literal values are in English.
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5.7.2 Example Report Items

The report items given by VERA do not represent clear data errors except in some
extreme cases. It is always up to the user and domain expert to assess them to
ascertain that there really is a problem that needs fixing. To demonstrate this
process, here are some example report items given by VERA when developing and
testing the Finnish Defense Force public norm dataset [50] and smoothing out the
rough edges of its RDF model. At this stage, the dataset was directly transformed
from XML to RDF, with minimal dataset-specific considerations. Systematic errors
in such transformations are very common due to anomalies in the source data and
the actual transformation process logic.

Figure 28: Example domain report item

Fig. 28 shows a domain violation report item in a VERA report. It is triggered
by the fact that typeless resources use properties (collective) that have a domain
definition (Agent) listed in the schema. Namely, a certain type was expected for the
resource due to the domain definition, but none was found in the data. This is a good
example of an issue that either could be a problem, or it could be the data work-
ing completely as intended. In this case, closer inspection reveals that all the 706
typeless resources in question are indeed Agents as suggested by the domain of the
property used in them, but without explicit typing. Thus, a simple reasoner could
have generated the type triples for us without generating erroneous data. However
this is not always the case and explicit typing is often a fair requirement—hence the
validation report item.

Figure 29: Example integrity report item

Fig. 29 shows a general report item about common properties (labels and types)
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missing. Part of this item stems from the same root problem as the previous one—it
is relatively common for one root cause to manifest itself in many different report
items. From this item we see that in addition to the resources concerning Fig. 28,
there are other resources without a type as well. The list below shows that while
most are without a label, some are not, so the group of typeless resources is diverse.
Should the user want to fix some resources by hand by explicitly typing them, it
can be done easily by navigating to the editor view directly from here by clicking
on their respective URIs. Since there are so many, the more feasible way is to use
application specific logic as per Fig. 18 and fix the situation with a small program
or script.

Figure 30: Example language report item

From a data integrity perspective, even semantically sound data with a healthy
schema-data relationship can have much room for improvement. One example of
this is language definition usage for triples with literal values. Optimally, every
literal that’s specifically written in some language (i.e., not a numerical value or
an accepted common name) should have a language definition. Usually, values of a
certain property are either all written in a specific language or none of them are. In
Fig. 30 we see the language definition analysis of the data: only 17% of the literal
triples have language definitions, and there are two common ones (title and label)
with some but not all marked with a language definition. This could warrant a
reconsideration of the language definition usage of the dataset. Sporadic language
markings is usually not problematic in a single dataset, but when combining data
from multiple sources annotated in multiple languages, the importance of them rises
considerably.
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6 Conclusions

Controlling data quality on the Semantic Web is a colossal undertaking, and the
problem cannot be solved with a single work alone. This work proposes solutions to
some aspects of the problem, both on a theoretical and practical level. One focus
is the very method of annotating quality-related metadata in RDF, to which multi-
ple solutions are offered with one being chosen for the implementation and refined
further. The other focus is a framework that can utilize this kind of annotations.
The basis for this framework is provided, along with a prototype implementation
and qualitative analysis to justify the choices made.

To the research questions posed in the introduction, the following conclusions
can be made:

How can data imperfection be taken into account on the Semantic Web?
Knowing about data imperfection has intrinsic value, even if we do not explic-
itly use that knowledge right away. The Semantic Web is about storing and
combining pieces of information, even when they are not immediately useful
for the task at hand. In the open world, any sensible piece of data can be
useful to some other agent.

Naturally, if we can efficiently find out the imperfections of a dataset and fix
them, this raises the value of our data. Finding underlying data imperfections
is generally hard for RDF datasets, but machine reasoning can alleviate the
problem to an extent. The methods differ from those used for more traditional
data storage, but some exist for many stages of the data life cycle.

There are also many direct ways in which known data imperfection can be
taken into account. Known unreliable data can be weighed as less relevant in
reasoning or recommendation systems. It can also be found easily for modifi-
cation or deletion, or omitted temporarily for certain tasks. In addition, all the
different types of imperfect data listed in Sec. 2.8 can be handled differently
as needed. Contextual quality is a special case: it can viably have application
specific tailor-made logic defined to handle it specifically, while not affecting
functionality oblivious to that kind of quality annotation at all.

How can data imperfection be annotated as metadata for RDF-based datasets?
This question covers the crux of the theoretical part of the work, described
in full detail in Sec. 4.2. Many ways to annotate quality metadata in RDF
are presented, with many different paradigms to the same problem. Some are
more universal than others, while some are tailored to fit a narrower range of
problems.

One novel approach, annotation with hierarchic relations of elements, is picked
out as a suitable approach for the purposes described in this work. It uses ad
hoc subproperties (for triple-specific annotation) or subtypes (for resource-
specific annotation) to annotate metadata directly to the same RDF graph.
The approach is implemented as part of the practical section of the work, to
show prototype functionality that can be implemented with quality metadata.
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The method was chosen because of its versatility and semantic validity. It’s
versatile in the sense that it can be used for most imaginable use cases for
quality control while not forcing the user of the data to use it or know anything
about it. Meanwhile, utilizing multiple inheritance is an elegant solution to
the kind of data markup problems where a piece of data has characteristics of
widely varying concepts.

How can data quality control be utilized in automatic or manual annotation?
There is no single all-encompassing answer to this question. The aim of the
majority of the practical section in this work is to offer a single, possible an-
swer, as the developed framework utilizes quality control in multiple places,
both in automated and manual tasks.

For automatic annotation, quality control can be used to give quality informa-
tion in addition to the achieved results, should the annotator provide them.
Then the quality metadata can be used for any purpose, some of which are
listed under the conclusions for the first research question above. They are of
special use in semiautomatic annotation where a human ensures the quality of
the automatic annotations, as then the ensuring process can be prioritized to
handle the most probable errors first. A prototype combination for producing
quality-annotated RDF from the Maui automatic annotator is presented, along
with a way to produce useful quality rankings based on the linear confidence
values an annotator system gives as output. The ranking is based on a single
use case, but can also be used globally. This is due to the mathematics behind
it being quite general, and the system behind the prototype data being tested
as quite domain independent. [49]

For manual annotation, most of the same benefits and uses apply similarly.
Furthermore, Web 2.0 applications that utilize crowd sourcing and distributed
collaboration can benefit directly from explicit quality control. The reliabil-
ity of each collaborator can be weighed and the data they create annotated
accordingly as trusted or untrusted, an example of contextual quality.

The kind of quality control functionality described here could be applied to
many kinds of semiautomatic or manual annotation processes, but not specif-
ically as a complete solution for RDF datasets. Having the quality metadata
in the same RDF graph as the data allows for greater portability and sim-
plicity of the tools used. The data can be reused anywhere, with the quality
annotations seamlessly integrated as a part of the dataset.

In addition to explicit quality annotations, schema validation (Sec. 4.1) similar
to XML Schemas or relational databases also has a place on the Semantic Web.
Special precautions and presumptions must be taken since the Open World
Assumption (Sec. 2.5) is often in effect for the datasets in question. Schema
validation is useful if a dataset is self contained on some level. Even then a
validation report is not a list of errors per se, but rather a list of potential issues
a domain expert can assess and fix the data accordingly if needed. There is a
strong similarity to the confidence values an automatic annotator can present:
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they are only the system’s guess based on some heuristics and it is up to a
human to scrutinize the potential problems.

There is yet much research to be done in the area of quality control on the
Semantic Web. Analyzing the ideas and implementations of the thesis and any
possible problems they might have is prudent. For known possible issues, some
solutions are presented below which could provide a foundation for future research
on the subject.

A shortcoming of the quality annotation model developed in this thesis (de-
scribed in Sec. 5.3 and more thoroughly when implemented in Sec. 4.2) is that the
operation of marking a triple as imperfect doesn’t have a unique inverse, i.e., the
mapping is not a bijection. Like in Fig. 23, since the unconfirmed property has mul-
tiple superproperties (name and label), we cannot know which one was originally
used for the triple before it was annotated as imperfect. Generally speaking, the
consequences of annotating a triple are bigger when the operation can not be easily
and instantly reversed. This matter could be addressed in a couple of ways. The
deannotation process logic could be remade to only accept a single superproperty.
This does weaken the versatility of the annotation method however, as then there
is no intrinsic support for the common case where a triple is fixed by swapping its
property with a more generic superproperty. Alternatively, the framework could
be expanded to provide an explicit bijective function for annotating each property,
possibly with a separate data model to keep track of these relations. This would fix
the issue, but would make the method much more complex.

As for the implementation of the quality control tools, multiple small improve-
ments could be made. The theoretical introduction of the quality annotation method
in Sec. 5.3 notes that the same method can also be used on a resource level and not
just triple level. Currently only the triple level functionality is implemented as part
of SAHA, but implementing the resource level control would provide additional ben-
efits: the use cases tested so far show that resource-level imperfection annotations
would indeed be useful. Also, the user interface could be implemented to indicate
different validity levels with different styles, such as different colors in the resource
view (Fig. 24).

The range and extent of RDFS and OWL constructs covered by VERA in its
validation results are not clearly defined. For example, some OWL Full constructs
are covered, while some OWL DL expressions remain uncovered. Examples of
such expressions that are currently not covered by VERA are owl:disjointWith,
owl:FunctionalProperty and owl:InverseFunctionalProperty. Checking for
the expected usage of most of these might be of interest in some cases. This would
optimally be rectified by making different validation processes for different OWL
levels: validating a model as, e.g., OWL DL would be relatively straightforward and
useful. The most extensive validation mode should optimally include all possible
OWL expressions that might interest the user.

The framework as a whole, unlike the regular version of SAHA, has not seen much
production use as of yet. Mainly this is due to much lower stability than the simple
architecture of the standalone version. In order to vastly improve efficiency over
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regular data stores such as the one used in standalone SAHA, the index system used
for data storage in this framework (Sec. 5.4) is much more complex, and originally
designed mainly with read-only usage in mind. This approach is less robust and
less tested, resulting in more data inconsistencies and errors. The testing and fixing
these minor stability bugs is an ongoing process but at present there is still much
to be done in this area.

Perhaps the area where this work is most lacking is robust and quantitative
user experience testing. In particular, it would be interesting to see how common
annotator tasks are done from start to finish with and without quality control, and
how it affects the methods used and the efficiency of the work. However, designing
a suitable test scenario and performing the testing would take a lot of effort and be
very time consuming, and as such could not be incorporated into this work. What
was done instead was thorough reasoning behind the choices and smaller scale test
use without a methodological testing procedure.
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ODEval: a tool for evaluating RDF (S), DAML+ OIL, and OWL concept
taxonomies. Artificial Intelligence Applications and Innovations, pages 369–
382. Springer–Verlag, 2004.

[36] L. Baresi, E. Di Nitto, and C. Ghezzi. Toward open-world software: Issue and
challenges. Computer, 39(10):36–43. IEEE Press, 2006.
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Appendix

Generic XML to RDF transformer in Java

Below is the source code for a generic XML to RDF transformer, written in the
Java programming language. It takes any XML file as input and provides an RDF
model as output. It does not make any assumptions of the source format, so it is
guaranteed to work on any kind of XML, though the quality of the output depends
on how well the source data translates into triple-based data.

import java.io.File;

import java.io.FileReader;

import java.util.Stack;

import org.apache.xerces.parsers.SAXParser;

import org.xml.sax.Attributes;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdf.model.Resource;

import com.hp.hpl.jena.vocabulary.RDF;

import com.hp.hpl.jena.vocabulary.RDFS;

/**

*

* A generic XML to RDF transformer.

* Depends on Apache Xerces for XML and

* the Jena framework for RDF manipulation

*

* @author Joonas Laitio

*/

public class XMLToRDFParser extends DefaultHandler

{

/**

* Controls if empty elements or elements containing only whitespace should

* be generated into empty literal triples in the RDF output.

*/

private static final boolean makeEmptyLiteralTriples = false;

private final String NS;

private Model m;

private Stack <Resource > elementStack = new Stack <Resource >();

private int serial = 0;

private String lastOpened;

private StringBuilder lastValue = null;

private XMLToRDFParser(String prefix , String uri)

{

this.m = ModelFactory.createDefaultModel ();

this.m.setNsPrefix(prefix , uri);

this.NS = uri;

}

@Override

public void startElement(String uri , String localName ,

String qName , Attributes attributes)
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throws SAXException

{

this.lastOpened = qName;

if (serial % 10000 == 0)

System.out.print(".");

if (serial % 1000000 == 0)

System.out.println ();

// Create a new resource for this element (if this element happens

// to contain only a text node , no triples are ever made for this

// resource)

Resource r = m.getResource(NS + qName

+ Long.toHexString(System.currentTimeMillis ())

+ Long.toHexString (++ serial));

if (attributes.getLength () > 0)

{

for (int i = 0 ; i < attributes.getLength () ; i++)

m.add(r, m.getProperty(NS + attributes.getLocalName(i)),

attributes.getValue(i));

}

this.elementStack.push(r);

this.lastValue = new StringBuilder ();

}

@Override

public void characters(char[] ch , int start , int length)

throws SAXException

{

String value = new String(ch, start , length);

if (value.trim().isEmpty ())

return;

this.lastValue.append(value);

}

@Override

public void endElement(String uri , String localName ,

String qName)

throws SAXException

{

if (lastOpened.equals(qName) && lastValue != null &&

this.elementStack.size() > 1)

{

// Literal value

this.elementStack.pop();

String value = this.lastValue.toString ();

if (!value.trim().isEmpty () || makeEmptyLiteralTriples)

m.add(this.elementStack.peek(), m.getProperty(NS + qName), value);

this.lastValue = null;

}

else if (! lastOpened.equals(qName) && this.elementStack.size() > 1)

{

// Object value

Resource was = this.elementStack.pop();

m.add(this.elementStack.peek(), m.getProperty(NS + "has_" + qName),

was);

m.add(was , RDF.type , m.getResource(NS + qName));

}

else if (this.elementStack.size() <= 1)

this.elementStack.pop();

this.lastValue = new StringBuilder ();

}
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private Model getModel ()

{

return this.m;

}

/**

* Transforms an XML file into RDF

*

* @param file The XML file

* @param prefix Desired namespace prefix for the document (e.g. "seco -core")

* @param uri The URI corresponding to the above namespace prefix

* (e.g. "http ://www.yso.fi/onto/seco -core /")

* @return Jena Model of the generated RDF

*/

public static Model parse(File file , String prefix , String uri)

{

XMLToRDFParser parser = new XMLToRDFParser(prefix , uri);

try

{

InputSource data = new InputSource(new FileReader(file));

SAXParser saxParser = new SAXParser ();

saxParser.setContentHandler(parser);

saxParser.parse(data);

}

catch (Exception e) {

e.printStackTrace ();

}

System.out.println ();

parser.getModel ().setNsPrefix("rdf", RDF.getURI ());

parser.getModel ().setNsPrefix("rdfs", RDFS.getURI ());

return parser.getModel ();

}

}


