
ONKI-SKOS – Publishing and Utilizing Thesauri in the
Semantic Web

Jouni Tuominen, Matias Frosterus, Kim Viljanen and Eero Hyvönen
?Semantic Computing Research Group (SeCo)

Helsinki University of Technology and University of Helsinki
P.O. Box 5500, 02015 TKK, Finland

first.last@tkk.fi, http://www.seco.tkk.fi

Abstract

Thesauri and other controlled vocabularies act as building blocks of the Semantic Web by providing
shared terminology for facilitating information retrieval, data exchange and integration. Representa-
tion and publishing methods are needed for utilizing thesauri efficiently, e.g., in content indexing and
searching. W3C has provided the Simple Knowledge Organization System (SKOS) data model for
expressing concept schemes, such as thesauri. A standard representation format for thesauri eliminates
the need for implementing thesaurus specific rules or applications for processing them. However, there
do not exist general tools which provide out of the box support for publishing and utilizing SKOS
vocabularies in applications, without needing to implement application specific user interfaces for end
users. For solving this problem the ONKI-SKOS server is presented.

1 Introduction

Thesauri and other controlled vocabularies are used
primarily for improving information retrieval. This
is accomplished by using concepts or terms of a the-
saurus in content indexing, content searching or in
both of them, thus simplifying the matching of query
terms and the indexed resources (e.g. documents)
compared to using natural language (Aitchison et al.,
2000). For users, such as content indexers and
searchers, to be able to use thesauri, publishing and
finding methods for thesauri are needed (Hyvönen
et al., 2008). Thesauri are of great benefit for the
Semantic Web, enabling semantically disambiguated
data exchange and integration of data from different
sources, though not in the same extent as ontologies.

Publishing and utilizing thesauri is a laborous task
because representation formats of thesauri and fea-
tures they provide differ from each other. When uti-
lizing thesauri one has to be familiar with how to lo-
cate a given thesaurus and how to use the software the
thesaurus is published with. A thesaurus can even be
published as a plain text file or even worse, as a pa-
per document, with no proper support for utilizing it.
In such a case the users have to implement applica-
tions for processing the thesaurus in order to exploit
it. Therefore, standard ways for expressing and pub-
lishing thesauri would greatly facilitate the publish-
ing and utilizing processes of thesauri.

W3C has proposed a data model for expressing
concept schemes (e.g. thesauri), the Simple Knowl-
edge Organization System (SKOS)1 (Miles et al.,
2005), providing a standard way for creating vo-
cabularies and migrating existing vocabularies to the
Semantic Web. SKOS solves the problem of di-
verse, non-interoperable thesaurus representation for-
mats by offering a standard convention for presenta-
tion. For expressing existing thesauri in SKOS format
conversion methods are needed. When a thesaurus is
expressed as a SKOS vocabulary, it can be published
as a RDF file on the web, allowing the vocabulary
users to fetch the files and process them in a uniform
way. However, this does not solve the problem of
users having to implement their own applications for
processing vocabularies.

For publishing ontologies and vocabularies on the
Semantic Web, ontology servers have been proposed
in the research community (Ding and Fensel, 2001;
Ahmad and Colomb, 2007). Ontology servers are
used for managing ontologies and offering users ac-
cess to them. For accessing SKOS vocabularies, there
are some Web Service implementations, namely the
SKOS API2 developed in the SWAD-Europe project
and the terminology service by Tudhope et al.3. How-

1http://www.w3.org/TR/skos-reference/
2http://www.w3.org/2001/sw/Europe/reports/thes/skosapi.html
3The API of the service is based on a subset of

the SKOS API, with extensions for concept expansion.



ever, general tools for providing out of the box sup-
port for utilizing SKOS vocabularies in, e.g., content
indexing, without needing to implement application
specific user interfaces for end users do not exist. For
filling this gap, we present the ONKI-SKOS server
for publishing and utilizing thesauri.

2 Presenting thesauri with SKOS

W3C’s SKOS data model provides a vocabulary for
expressing the basic structure and contents of concept
schemes, such as thesauri, classification schemes and
taxonomies. The concept schemes are expressed as
RDF graphs by using RDFS classes and RDF proper-
ties specified in the SKOS specification, thus making
thesauri compatible with the Semantic Web. SKOS is
capable of representing resources which have consid-
erable resemblance to the influential ISO 2788 the-
saurus standard (van Assem et al., 2006).

Although semantically richer RDFS/OWL ontolo-
gies enable more extensive ways to perform logical
inferencing than SKOS vocabularies, in several cases
thesauri represented with SKOS are sufficient. In our
opinion, the first and the most obvious benefit of us-
ing Semantic Web ontologies/vocabularies in content
indexing is their ability to disambiguate concept ref-
erences in a universal way. This is achieved by using
persistent URIs as a identification mechanism. Com-
pared to controlled vocabularies using plain concept
labels as identifiers, this is a tremendous advantage.
When using concept labels as identifiers, identifica-
tion problems can be encountered. As a thesaurus
evolves, the labels of its concepts may change, and
concepts may be splitted or merged. In such cases
the labels of concepts are not a permanent identifica-
tion method, and the references to the concepts may
become invalid.

Not only being an identification mechanism, URIs
provide means for accessing the concept definitions
and thesauri. With proper server configuration URIs
can act as URLs, thereby providing users additional
information about the concepts4. In addition to these
general RDF characteristics, SKOS provides a way
for expressing relations between concepts suitable for
the needs of thesauri, thus providing conceptual con-
text for concepts.

As stated by van Assem et al. (2006), using a com-
mon representation model (e.g. SKOS) for thesauri
either enables or greatly reduces the cost of (a) shar-
ing thesauri; (b) using different thesauri in conjunc-

http://hypermedia.research.glam.ac.uk/kos/terminology services/
4http://www.w3.org/TR/swbp-vocab-pub/

tion within one application; (c) development of stan-
dard software to process them.

3 Accessing thesauri

ONKI-SKOS is an ontology server implementation
for publishing and utilizing thesauri and lightweight
concept ontologies. It conforms to the general ONKI
vision and API (Viljanen et al., 2008), and is thus us-
able via ONKI ontology services as easily integrable
user interface components and Web Services.

The Semantic Web applications typically use on-
tologies which are either straightforward conversions
of well-established thesauri, application-specific vo-
cabularies or semantically richer ontologies, that can
be presented and accessed in similar ways as the-
sauri (van Assem et al., 2004; Hyvönen et al., 2008).
Since SKOS defines a suitable model for expressing
thesauri, it was chosen as the primary data model sup-
ported by the ONKI-SKOS server.

ONKI-SKOS can be used to browse, search
and visualize any vocabulary conforming to the
SKOS specification and also RDFS/OWL ontologies.
ONKI-SKOS does simple reasoning (e.g. transi-
tive closure over class and part-of hierarchies). The
implementation has been piloted using various the-
sauri and ontologies, e.g., Medical Subject Headings
MeSH5, the General Finnish Upper Ontology YSO6

and Iconclass7.
When utilizing thesauri represented as SKOS vo-

cabularies and published on the ONKI-SKOS server,
several benefits are gained. Firstly, SKOS provides a
universal way of expressing thesauri. Thus process-
ing different thesauri can be done in the same way,
eliminating the use of thesaurus specific processing
rules in applications or separate converters between
various formats. Secondly, ONKI-SKOS provides ac-
cess to all published thesauri in the same way, so one
does not have to use thesaurus specific implementa-
tions of thesaurus browsers and other tools developed
by different parties, which is the predominant way.
Also, one of the goals of the ONKI ontology ser-
vices is that all the essential ontologies/thesauri can
be found at the same location, thus eliminating the
need to search for other thesaurus sources.

The typical way to use thesaurus specific publish-
ing systems in content indexing and searching is ei-
ther by using their browser user interface for finding
desired concepts and then copying and pasting the

5http://www.nlm.nih.gov/mesh/meshhome.html
6http://www.seco.tkk.fi/ontologies/yso/
7http://www.iconclass.nl/



concept label to the used indexing system8, or by us-
ing Web Services for accessing and querying the the-
saurus (Tudhope and Binding, 2005). Both methods
have some drawbacks. The first method introduces
rather uncomfortable task of constant switching be-
tween two applications and the clumsy copy-paste
procedure. The second method leaves the implemen-
tation job of the user interface entirely to the parties
utilizing the thesaurus.

While ONKI-SKOS supports both the aforemen-
tioned thesauri utilizing methods, in addition, as
part of the ONKI ontology services, it provides a
lightweight web widget for integrating general the-
sauri accessing functionalities into HTML based ap-
plications on the user interface level. The widget de-
picted in Figure 1 can be used to search and browse
thesauri, fetch URI references and labels of desired
concepts and storing them in a concept collector.
Similar ideas have been proposed by Hildebrand et al.
(2007) for providing search widget for general RDF
repositories, and by Vizine-Goetz et al. (2005) for
providing widget for accessing thesauri through the
side bar of the Internet Explorer web browser.

When the desired concepts have been selected with
the ONKI Widget they can be stored into, e.g., the
database of the application by using an HTML form.
Either the URIs or the labels of the concepts can
be transferred into the application, thus support for
the Semantic Web and legacy applications is pro-
vided. For browsing the context of concepts in the-
sauri, the ONKI-SKOS Browser can be opened by
pressing a button. Desired concepts can be fetched
from the browser to the application by pressing the
“Fetch Concept” button. Thus, there is no need for
copy-paste procedures or user interface implementa-
tion projects. For content searching use cases, ONKI-
SKOS provides support for expanding the query term
with the subconcepts of the selected query term con-
cept.

The Web Service interface of the ONKI-SKOS
server can be used for querying for concepts by label
matching, getting label for a given URI or for query-
ing for supported languages of a thesaurus.

The ONKI-SKOS Browser (see Figure 2) is the
graphical user interface of ONKI-SKOS. It consists
of three main components: 1) semantic autocomple-
tion concept search, 2) concept hierarchy and 3) con-
cept properties. When typing text to the search field,
a query is performed to match the concepts’ labels.
The result list shows the matching concepts, which

8This is the way the Finnish General Thesaurus YSA has
been used previously via the VESA Web Thesaurus Service,
http://vesa.lib.helsinki.fi/.

   

ontology
selector search field

language
selector

open
ONKI Browser

search results

concept collector

1. ONKI Concept Search Widget with a search result

2. Concept collector for selected concepts

Figure 1: The ONKI Widget for concept searching.

can be selected for further examination.
When a concept is selected, its concept hierarchy

is visualized as a tree structure. The ONKI-SKOS
Browser supports multi-inheritance of the concepts
(i.e. a concept can have multiple parents). Whenever
a multi-inheritance structure is met, a new branch is
formed to the tree. This leads to cloning of nodes,
i.e. a concept can appear multiple times in the hierar-
chy tree. As a negative side effect, this increases the
overall size of the tree. Next to the concept hierarchy
tree, the properties of the selected concept are shown
in the user interface.

ONKI-SKOS is implemented as a Java Servlet us-
ing the Jena Semantic Web Framework9, the Direct
Web Remoting library10 and the Lucene11 text search
engine.

4 Configuring ONKI-SKOS with
SKOS structures

ONKI-SKOS supports straightforward loading of
SKOS vocabularies with minimal configuration
needs. For using other data models than SKOS, var-
ious configuration properties are specified to enable
ONKI-SKOS to process the thesauri/ontologies as de-
sired. The configurable properties include the onto-
logical properties used in hierarchy generation, the
properties used to label the concepts, the concept to

9http://jena.sourceforge.net/
10http://directwebremoting.org/
11http://lucene.apache.org/java



Figure 2: The ONKI-SKOS Browser.

be shown in the default view and the default concept
type used in restricting the concept search.

When the ONKI-SKOS Browser is accessed with
no URL parameters, information related to the con-
cept configured to be shown as default is shown.
Usually this resource is the root resource of the vo-
cabulary, if the vocabulary forms a full-blown tree
hierarchy with one single root. In SKOS concept
schemes the root resource is the resource represent-
ing the concept scheme itself, i.e. the resource of type
skos:ConceptScheme.

The concept hierarchy of a concept is generated by
traversing the configured properties. In SKOS these
properties are skos:narrower and skos:broader and
they are used to express the hierarchical relations be-
tween concepts . Hierarchical relations between the
root resource representing the concept scheme and
the top concepts of the concept scheme are defined
with the property skos:hasTopConcept.

Labels of concepts are needed in visualizing search
results, concept hierarchies, and related concepts in
the concept property view. In SKOS the labels are
expressed with the property skos:prefLabel. The label
is of the same language as the currently selected user
interface language, if such a label exists. Otherwise
any label is used.

The semantic autocompletion search of ONKI-
SKOS works by searching for concepts whose labels
match the search string. To support this, the labels
of the concepts are indexed. The indexed proper-
ties can be configured. In SKOS these properties are

skos:prefLabel, skos:altLabel and
skos:hiddenLabel. When the user searches, e.g., with
the search term “cat”, all concepts which have one
of the aforementioned properties with values starting
with the string “cat” are shown in the search results.
The autocompletion search also supports wildcards,
so a search with a string “*cat” returns the concepts
which have the string “cat” as any part of their label.

The search can be limited to certain types of con-
cepts only. To accomplish this, the types of the con-
cepts (which are expressed with the property rdf:type)
are indexed. It is also possible to limit the search to
a certain subtree of the concept hierarchy by restrict-
ing the search to the children of a specific concept.
Therefore also the parents of concepts are indexed.

Many thesauri include structures for representing
categories of concepts. To support category-based
concept search, another search field is provided.
When a category is selected from the category search
view, the concept search is restricted to the concepts
belonging to the selected category. SKOS includes a
concept collection structure, skos:Collection, which
can be used for expressing such categories. How-
ever, skos:Collection is often used for slightly differ-
ent purposes, namely for node labels12. For this rea-
son resources of type skos:Collection are not used for
category-based concept search by default.

12A construct for displaying grouping concepts in systematic
displays of thesauri. They are not actual concepts, and thus they
should not be used for indexing. An example node label is “milk
by source animal”.



5 Converting thesauri to SKOS –
case YSA

Publishing a thesaurus in the ONKI-SKOS server is
straightforward. To load a SKOS vocabulary into the
server, only the location path of the RDF file of the
vocabulary needs to be configured manually. After
rebooting the ONKI-SKOS, the RDF file is loaded,
indexed and made accessible for users. ONKI-SKOS
provides the developers of thesauri a simple way to
publish their thesauri.

There exists quite amount of well-established key-
word lists, thesauri and other non-RDF controlled vo-
cabularies which have been used in traditional ap-
proaches in harmonizing content indexing. In order
to reuse the effort already invested developing these
resources by publishing these vocabularies in ONKI-
SKOS server, conversion processes need to be de-
veloped. This idea has also been suggested by van
Assem et al. (2006). We have implemented transfor-
mation scripts for, e.g., MARCXML format13, XML
dumps from SQL databases and proprietary XML
schemas.

An example of the SKOS transformation and pub-
lishing process is the case of YSA, the Finnish Gen-
eral Thesaurus14. YSA is developed by the National
Library of Finland and exported into MARCXML
format.

The constantly up-to-date version of the YSA
XML file resides at the web server of the National
Library of Finland, from where it is fetched via OAI-
PMH protocol15 to our server. This process is auto-
mated and the new version of the XML file is fetched
daily. After fetching a new version of the file, the
transformation process depicted in Figure 3 is started
by loading the MARCXML file (ysa.xml). The Java-
based converter first creates the necessary structure
and namespaces for the SKOS model utilizing Jena
Semantic Web Framework. Next, the relations in
YSA are translated into their respective SKOS coun-
terparts, which is depicted in Figure 4.

A URI for the new concept entry is created through
the unique ID in the source file. The preferred and
alternative labels can be converted straightforwardly
from one syntax to another. Similarly the type and
scheme definitions are added to the SKOS model.
Since the relations in the MARCXML refer not to the
identifiers but rather to the labels, the source file is
searched for an entry that has the given label and then
its ID is recorded for the SKOS relation.

13http://www.loc.gov/standards/marcxml/
14http://www.nationallibrary.fi/libraries/thesauri/ysa.html
15http://www.openarchives.org/OAI/openarchivesprotocol.html

Figure 3: The SKOS transformation process of YSA.

Once the SKOS transformation is ready, the con-
verter fetches the labels for the concept categories
from a separate file (ysa-groups.owl) - these labels
are not included in the MARCXML file. Finally, a
RDF file is written and imported into ONKI-SKOS.

6 Discussion

The main contribution of this paper was depicting
how thesauri can be published and utilized easily in
the Semantic Web. The benefits of the use of W3C’s
SKOS data model as a uniform vocabulary repre-
sentation framework were emphasized. The ONKI-
SKOS server was presented as a proof of concept for
cost-efficient thesauri utilization method. By using
ONKI-SKOS, general thesauri accessing functionali-
ties can be easily integrated into applications without
the need for users to implement their own user inter-
faces for this. The processing of the SKOS structures
in an ontology server was depicted in context of the
ONKI-SKOS server. The case of the Finnish General
Thesaurus was presented as an example how an exist-
ing thesaurus can be converted into the SKOS format
and published on the ONKI-SKOS server.

Future work includes creating a more extensive
Web Service interface for supporting, e.g., querying
for properties of a given concept and for discovering
concepts which are related to a given concept. The
starting point for this API will be the SKOS API.

Related to the ONKI ontology services, there are
plans for implementing a web widget intended for
content searching. It will help the user to find relevant
query concepts from thesauri and perform semantic
query expansion (subconcepts, related concepts etc.)



Figure 4: An example of the SKOS transformation of YSA.

for using other relevant concepts in the query. After
selecting the desired query terms, the query is passed
to the search component of the underlying system.
The widget will enable multilingual search based on
the languages provided by the used thesaurus. If the
thesaurus contains, e.g., English and Finnish labels
for the concepts, the search for relevant query con-
cepts can be done in English or Finnish, and in the ac-
tual search either the URIs, English labels or Finnish
labels can be used as query terms, depending on how
the content is annotated in the underlying system.

Acknowledgements
We thank Ville Komulainen for his work on the orig-
inal ONKI server. This work is a part of the Na-
tional Semantic Web Ontology project in Finland16

(FinnONTO) and its follow-up project Semantic Web
2.017 (FinnONTO 2.0, 2008-2010), funded mainly
by the National Technology and Innovation Agency
(Tekes) and a consortium of 38 private, public and
non-governmental organizations.

References
Mohammad Nazir Ahmad and Robert M. Colomb.

Managing ontologies: a comparative study of
ontology servers. In Proceedings of the eigh-
teenth Conference on Australasian Database (ADC
2007), pages 13–22, Ballarat, Victoria, Australia,
January 30 - February 2 2007.

Jean Aitchison, Alan Gilchrist, and David Bawden.
Thesaurus Construction and Use: A Practical
Manual. Europa Publications, 4th edition, 2000.

16http://www.seco.tkk.fi/projects/finnonto/
17http://www.seco.tkk.fi/projects/sw20/

Ying Ding and Dieter Fensel. Ontology library sys-
tems: The key to successful ontology reuse. In
Proceedings of SWWS’01, The first Semantic Web
Working Symposium, Stanford University, USA,
pages 93–112, August 1 2001.

Michiel Hildebrand, Jacco van Ossenbruggen,
Alia Amin, Lora Aroyo, Jan Wielemaker, and
Lynda Hardman. The design space of a con-
figurable autocompletion component. Technical
Report INS-E0708, Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, 2007. URL
http://www.cwi.nl/ftp/CWIreports/
INS/INS-E0708.pdf.

Eero Hyvönen, Kim Viljanen, Jouni Tuominen, and
Katri Seppälä. Building a national semantic web
ontology and ontology service infrastructure—the
finnonto approach. In Proceedings of the 5th Eu-
ropean Semantic Web Conference (ESWC 2008),
June 1-5 2008.

Alistair Miles, Brian Matthews, Michael Wilson, and
Dan Brickley. SKOS Core: Simple knowledge or-
ganisation for the web. In Proceedings of the Inter-
national Conference on Dublin Core and Metadata
Applications (DC 2005), Madrid, Spain, Septem-
ber 12-15 2005.

Douglas Tudhope and Ceri Binding. Towards ter-
minology service: experiences with a pilot web
service thesaurus browser. In Proceedings of
the International Conference on Dublin Core and
Metadata Applications (DC 2005), pages 269–273,
Madrid, Spain, September 12-15 2005.

Mark van Assem, Maarten R. Menken, Guus
Schreiber, Jan Wielemaker, and Bob Wielinga. A
method for converting thesauri to RDF/OWL. In
Proceedings of the Third International Semantic



Web Conference (ISWC 2004), pages 17–31, Hi-
roshima, Japan, November 7-11 2004.

Mark van Assem, Véronique Malaisé, Alistair Miles,
and Guus Schreiber. A method to convert thesauri
to SKOS. In Proceedings of the third European Se-
mantic Web Conference (ESWC 2006), pages 95–
109, Budva, Montenegro, June 11-14 2006.

Kim Viljanen, Jouni Tuominen, and Eero Hyvönen.
Publishing and using ontologies as mash-up ser-
vices. In Proceedings of the 4th Workshop on
Scripting for the Semantic Web (SFSW 2008), 5th
European Semantic Web Conference 2008 (ESWC
2008), Tenerife, Spain, June 1-5 2008.

Diane Vizine-Goetz, Eric Childress, and Andrew
Houghton. Web services for genre vocabularies.
In Proceedings of the International Conference on
Dublin Core and Metadata (DC 2005), Madrid,
Spain, September 12-15 2005.


