
Public Web Services for Ontology Library Systems

Ville-Pekka Komulainen

Helsinki 8th January 2007
Master of Science Thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Ville-Pekka Komulainen

Public Web Services for Ontology Library Systems

Computer Science

M.Sc. Thesis 8th January 2007 60 pages + 18 appendix pages

Semantic Web, Ontologies, Ontology Library Systems, Web Services
Kumpula Science Library, serial number C-2007

Ontologies are the backbone of the semantic web vision and ontology re-use is focal
for this vision to realize. To promote re-use, public web services are proposed to the
ontology library systems. These services can enhance understanding of ontologies by
visualizing them, and by o�ering interfaces for ontology-aware applications to use.

To achieve an understanding of end-user requirements for ontology-based services,
high-level needs of di�erent users groups were identi�ed by describing use case scenar-
ios of users concerned in ontology development and utilization. A literature review
was carried out covering the support of state-of-the-art ontology library systems,
ontology browsers, and ontology interfaces for these tasks. Finally, the proposed
services were evaluated by implementing a prototype system Onki covering the re-
quirements. The prototype was tested by integrating it to a web-based semantic
annotation system to gain experiences from the service in practice.

As a result, three central user groups involved in ontology life-cycle were identi-
�ed, which all should be considered individually when developing ontology services.
Ontology developers, content annotators and ontology end-users all need speci�c ser-
vices, because their viewpoint and especially knowledge about ontologies is di�erent.
There is a need for ontology visualization and di�erent levels of programmatically
accessible interfaces, ranging from graphical components to Web Services.

ACM Computing Classi�cation System (CCS):
H.3.3 [Information Storage and Retrieval] : Information Search and Retrieval
H.3.5 [Information Storage and Retrieval] : Online Information Services
H 5.2 [Information Interfaces and Presentation] : User Interfaces

Tiedekunta/Osasto � Fakultet/Sektion � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents
1 Introduction 1

1.1 Semantic Web . 2
1.2 Ontology Library Systems . 5
1.3 Opportunities of the Semantic Web 7
1.4 Problem Statement . 8

2 Demand for Ontology Services 9
2.1 Content Work�ow Example . 9
2.2 User Groups for Semantic Web Ontologies 10

2.2.1 Content Annotators . 11
2.3 Use Cases and Technologies . 11

2.3.1 Browser-based Ontology Visualization 12
2.3.2 Semantic Annotation . 13
2.3.3 Interfacing Ontologies Using Web Services 15

3 Systems Providing Ontology Services 18
3.1 Ontology Development Environments 19
3.2 Ontology Browsers and Interfaces . 20
3.3 Programmatic Access to Controlled Vocabularies 23
3.4 Suggested Approach for Ontology Services 25

4 Requirements for Ontology Services 27
4.1 User Requirements . 28
4.2 Functional Requirements . 30
4.3 Non-Functional Requirements . 33

5 Onki � An Implementation of Ontology Services 35
5.1 Architectural Overview . 35
5.2 Onki-Browser � Visualization of Ontologies 42
5.3 Onki-API � Programmatic Access to Ontologies 44

6 Discussion 49
6.1 Services for the End-Users . 50
6.2 Initial Experiences . 51

iii

6.3 Future Work . 53

Acknowledgements 55

References 56

Appendices

1 An Example Onki Con�guration

2 Onki WSDL Interface

3 Onki Javascript API

1

1 Introduction

Ontologies [Gru93] are an integral part of Tim Berners-Lee's and others vision of the
semantic web [BLHL01]. The vision is an extension of the current www, which en-
ables semantically richer presentation of physical or abstract resources in a machine
interpretable and standard format. A key for achieving this is use of ontologies,
which describe the used concepts of a conceptual model and their relations in a for-
mal way [Gru93]. On the semantic web, concepts and their relations are identi�ed
with a URI and ontologies are usually serialized using standard formats, especially
XML, RDF and OWL speci�ed by the World Wide Web Consortium (W3C)1.

With shared ontologies it is possible to create more accurate information search-
ing methods and also to design intelligent agent-based applications working on a
common vocabulary [BLHL01]. However, the semantic web is yet to be established
outside the semantic web research community. Aside the fact that only a few on-
tologies are in real use, one reason for the semantic web waiting to emerge is that,
there are only few tools for managing, sharing and using ontologies.

To develop and share ontologies in a systematic manner, Fensel and Ding [DF01]
propose ontology library systems as a solution for the problem. These systems should
o�er tools for managing, versioning, visualization and re-use of ontologies. Knowing
that publication and re-using ontologies is the key for realizing the semantic web
vision, tools for ontology library systems are needed. This is promoted by the idea of
o�ering public web services for both humans and applications in need of ontological
information.

Deploying services into ontology library systems can be bene�cial for many user
groups in various use cases. First, XML-serialized ontologies are inconvenient for
humans to understand and therefore browser-based visualization can help users to
understand the ontology's semantic relations and structure as a whole. Second, ma-
chine accessible interfaces can be used in external annotation systems to search and
use concepts from ontologies stored in the ontology library system. With such a
mechanism, the annotation system can be designed as independent from the used
ontologies, because ontology managerial and retrieval tasks are left on the respon-
sibility of the server deploying ontologies. Third, programmatically accessible in-
terfaces can be used in semantic search engines and portals to enrich users' search
queries by for example using concept-based query expansion methods[JKN01].

1http://www.w3.org/

2

1.1 Semantic Web

Content in the current www is marked up using HTML, a content description lan-
guage mostly concerned with the presentation layer of the document. Therefore
it lacks the needed semantic information about the document, which would enable
more intelligent information processing [BLHL01]. For example, when a user queries
a web-based search engine using the keyword java, the results consist of pages con-
taining the term java in any context. The search engine does not and can not
understand if the user means the island of Java in Indonesia, the Java program-
ming language or perhaps the co�ee-�avor called Java. This is one problem that the
semantic web tries to overcome by o�ering a set of standards for presenting informa-
tion in a machine interpretable form. By using explicit identi�ers for each concept
and tagging the content with these identi�ers, the search engine could prompt the
user to specify the used search term's meaning, thus guiding the user towards the
documents he or she was actually looking for. On the semantic web, ontologies are
the mechanism for describing concepts and their relations to other concepts in an
explicit and machine interpretable format.

To realize the semantic web vision, technological standards are needed for expressing
the semantics of resources. W3C has proposed an architectural model and standards
for di�erent abstraction layers [KM02] depicted in �gure 1. On the bottom of the
model, Uniform Resource Identi�ers (URI) [BL05] are used for identifying either
abstract or physical resources, and Unicode is used to support di�erent character
sets. On the next level, XML2 and XML schema3 are used as markup language for
platform independent information exchange. Next, Resource Description Framework
(RDF) and RDF Schema (RDFS) provide essential tools for describing resources
and their relations to other resources. This layer enables the building of controlled
vocabularies, where resources can have semantically meaningful relations. On the
next layer, ontology vocabulary provides mechanisms for creating highly expressive
semantical statements about resources. The Web Ontology Language (OWL) is the
latest recommendation for this layer. Logic layer makes it possible to create rules
for the resources and relations between them. Finally, the proof layer together with
the trust layer evaluate whether an application should trust the provided content or
not.

RDF is a language for describing abstract or physical resources and metadata about
2http://www.w3.org/XML/
3http://www.w3.org/XML/Schema

3

Figure 1: Semantic Web stack by Tim Berners-Lee [KM02].

them [MM04]. It is based on using URI's as identi�ers for resources. For example,
the URI http://www.example.org/#CS-Dept could represent the Department of
Computer Science at the University of Helsinki. The basic idea of RDF is to describe
statements about resources in a machine processable format. A statement consists
of three parts: subject, predicate and object. Subject identi�es the resource and
object is the value for the subject's property de�ned as predicate. The object can
be an another resource or a simple literal value such as a string or an integer.
For example, subject http://www.example.org/#Helsinki could have the property
http://www.w3.org/2000/01/rdf-schema#label having a literal value Helsinki
for Finnish and Helsingfors for Swedish. This graph is illustrated in �gure 2.

RDF-graphs can be serialized into machine parseable data using di�erent serializa-
tions. RDF/XML and RDF/XML-ABBREV are XML-based formats, which are
inconvenient for a human user to read, because there is much overhead from XML
tags. The graph in �gure 2 could be serialized using RDF/XML as illustrated in
�gure 3.

Other serialization formats that are supported by popular semantic web tools such

4

http://www.example.org/#CS-Hel

http://www.example.org/#Helsinki

Helsinki

Computer Science

http://www.w3c.org/2000/01/rdf-schema#label @ fi

http://www.example.org/#location

Helsinginfors

Resource

Literal

Property

http://www.w3c.org/2000/01/rdf-schema#label @ sv

http://www.w3c.org/2000/01/rdf-schema#label @ en

Figure 2: A simple RDF-graph.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns="http://www.example.org/">
 <rdf:Description rdf:about="#CS-Hel" location="#Helsinki">
 <rdfs:label xml:lang="en">Computer Science</rdfs:label>
 </rdf:Description>
 <rdf:Description rdf:about="#Helsinki">
 <rdfs:label xml:lang="fi">Helsinki</rdfs:label>
 <rdfs:label xml:lang="se">Helsingfors</rdfs:label>
 </rdf:Description>
</rdf:RDF>

Figure 3: Simple RDF-graph serialized using RDF/XML.

as Jena4, Sesame5 and the Protege ontology editor6 are N-TRIPLE7, N38 and TUR-
TLE9. These formats are more suitable for human users than the XML-based for-
mats.

RDF Schema speci�cation de�nes the classes and properties that one can use to
de�ne own classes and properties [BG05]. It de�nes �ve core classes for expressing
the type of the class, which can be used to di�erentiate classes from properties and
literal values. Nine properties are de�ned to provide vocabulary developers a stan-

4http://jena.sourceforge.net
5http://www.openrdf.org/
6http://protege.stanford.edu/
7http://www.w3.org/2001/sw/RDFCore/ntriples/
8http://www.w3.org/DesignIssues/Notation3.html
9http://www.dajobe.org/2004/01/turtle/

5

dard mechanism for describing semantic relations between resources. For example,
rdfs:subClassOf and rdfs:subPropertyOf can be used to express generalization
of classes and properties. These relations have similarities with the semantics of
inheritance in object-oriented programming. Every instance of Class B that extends
Class A is also an instance of Class A. Vocabulary for describing collections, con-
tainers, rei�cation and other utilities is also de�ned. RDF Schema is not intended
to cover all the possible de�nitions that can be used to de�ne classes and properties.
For example, it is not possible to specify the minimum and maximum number of
values for each property of a class, or to perform set theoretic operations on classes
to de�ne new classes. These features and much more are introduced in the Web
Ontology Language (OWL).

OWL is an extension of RDFS for users who want to use more expressive semantics
in their ontologies [BvHH+04]. For example, OWL de�nes a more �ne-grained set of
properties such as owl:TransitiveProperty, owl:SymmetricProperty compared
to RDF's rdf:property. In OWL it is also possible to express the cardinality of
properties and create restrictions on properties.

There are three variants of OWL to provide di�erent levels of expressivity and
reasoning support. OWL Lite extends the RDFS by adding a subset of OWL con-
structors, but has also some limitations, such as the cardinality of properties can be
set to either 0 or 1. The idea behind OWL Lite limitations is to o�er a less complex
language to build ontologies when compared to OWL DL. OWL DL is intended to
support the description logic approach in providing desired computational proper-
ties for reasoners. It constraints on the use of RDFS and requires certain constraints
to be declared. For example it requires to declare disjointness between classes. The
most expressive OWL version, OWL Full, supports all the language constructs of
OWL and RDF, but does not share the same computational characteristics for rea-
soning as OWL DL.

1.2 Ontology Library Systems

Depending on the source, di�erent terms are used when large-scale ontology manage-
ment tools are discussed. Basically, all the terms refer to server systems facilitating
ontology editing, versioning, management and other essential tasks in the ontology
life-cycle. For example the terms Semantic Web Management System [VOSM03],
Ontology Software Environment [OVSM04], Ontology Server [FFR97] and Ontology
Library System [DF01] have been used. For consistency, the term Ontology Library

6

Systems by Ding and Fensel [DF01] is used through out the thesis.

Ding and Fensel propose ontology library systems as a solution for the lack and
di�culty of re-using ontologies [DF01]. In their survey, they suggest that at least
the following features should be implemented to facilitate ontology re-use which
are also depicted in �gure 4. First, management of ontologies should provide open
storage, identi�cation and versioning. Second, adaptation of ontologies should be
supported by o�ering tools for browsing and searching concepts and ontologies.
Third, a mechanism for editing and reasoning the ontologies should be available
and �nally, the ontologies should be stored in a standard format. This means,
that ontologies should be serialized in a widely used ontology languages such as
RDFS or OWL. However, the requirements presented by Ding and Fensel are mostly
concerning ontology development phase and the consideration about features needed
in using the ontologies from external applications is open. Also, the presented
requirements about ontology visualization are on an abstract level.

Ontology Library System

Management
- Storage
- Identification
- Versioning

Adaptation
- Searching
- Editing
- Reasoning

Standardization
- Language
- Upper-level ontology

Ontology A Ontology B Ontology C Ontology N

. . .

Figure 4: Requirements for ontology library systems [DF01].

Das et al. [DWM01] have studied ontology management system's requirements
for business needs in VerticalNet's e-commerce and B2B applications, and they
found nine essential requirements. One of them was that systems should have XML
interfaces supporting interoperability and ontology sharing . This con�rms the need
for machine processable interfaces, but there are many protocols and architectural
styles available from which to choose.

7

1.3 Opportunities of the Semantic Web

Although ontologies require much human-intensive work when creating them, once
produced they can enhance applications in several ways [McG01]. The adaptations
of the semantic web are in enhancing search capabilities of applications, provid-
ing common vocabularies for facilitating enterprise information integration, and en-
abling intelligent agent applications to work with di�erent services in dynamic web
environment.

Guinness et al. [McG01] present many examples of ontologies as tools for achieving
higher recall and precision in search-engines. Generalization or specialization of
search concepts can be used in situations where query returns too few or too many
results. For example, if a search for concert tickets in a booking system was done
with the term concert, the system might respond with a long list of any kind of
concerts from classical to jazz. If the system was using an ontology for categorizing
di�erent concert types, it could specialize the search concept and suggest the user
a more detailed list of concert types to look for. Developing such category-based
search-engines could be also established by using traditional database technologies,
but the bene�t of using ontologies comes from the vocabulary standards such as
RDFS and OWL published by W3C, thus making it easier to build generic tools
and methods for information processing. Once methods for an ontology are created,
it does not matter if the instances populating the ontology are changed � the
reasoner for the ontology is still viable.

According to Fensel [Fen01] enterprise information integration could bene�t from on-
tologies, because ontologies provide an extendable platform with explicit de�nitions
of the domain objects. If di�erent systems would use the same ontology to de�ne
the processes and data entities transmitted between the systems, then the task of
integration would become easier, because fever conversions and mappings between
systems would be needed. However, just using ontologies is not enough. The in-
terfaces to systems should be described as WSDL [CCMW01], published as SOAP
[BEK+00] and discovered from registries using UDDI10 for the integration process to
be extendable and re-usable. With the use of standard and re-usable components,
the work�ow between di�erent systems could be straightforward. It remains to be
seen if the business processes and domain models of diverse enterprise's are similar
enough for achieving collaboration on the basis of a shared ontology.

10http://www.uddi.org/

8

In Berners-Lee's vision [BLHL01] the semantic web's full potential will realize when
people start to create software agents searching information from di�erent web
sources and exchanging this information with other software agents. Such agents
become e�cient when more machine processable information exists in the web. For
example, software agent designed to �nd an optimal combination of �ight, accom-
modation and car rental for a person's vacation trip can not negotiate seamlessly
with service providers if the services are not described, published and discoverable
from a service registry. Moreover, if the services and the data entities are not de-
scribed using a shared ontology language, the software agent can not understand
which services to look for.

These opportunities can not be realized without proper o�ering and re-use of on-
tologies. Creating and maintaining them on restricted access slows the emergence
of semantic web applications to emerge, and the risk of semantic web becoming an
archipelago of individual islands grows [BLHL01]. Ontologies need to be publicly
accessible from the public web and system's responsible for ontology management
should facilitate human conception of ontologies as well as provide machine accessi-
ble interfaces [DWM01].

1.4 Problem Statement

Di�erent approaches for ontology services has been proposed in studies covering
ontology library systems [DF01], ontology tools [VOSM03] and visualization of on-
tologies [FSvH03]. Also, in the �eld of library science, thesaurus protocols have
been studied for accessing online thesaurus [BT04]. However, these studies o�er
solutions for each speci�c problem regardless of the context. Profound requirements
and an implementation of ontology library systems as public web services are yet to
be resolved.

This thesis is bounded to two view-points. First, a human viewpoint for visualizing
the ontology, especially in the context of semantic annotation. Second, a machine
viewpoint for connecting to an ontology library from external applications. The
objective of this thesis is to resolve the services which promote ontology re-use
considering these two viewpoints.

Following method was used for approaching the presented problem. Use case sce-
narios of common interactions between di�erent user groups and ontology library
systems were described to identify user requirements at a high abstraction level.

9

After this, a review at existing solutions was carried out, emphasizing their sup-
port for identi�ed user groups and their focal tasks. The presented requirements
were derived from the domain of the semantic web, identi�ed use cases and existing
solutions. In order to evaluate feasibility of the presented requirements, a system
covering the requirements was implemented and evaluated.

The remainder of the thesis is structured as follows. Chapter 2 focuses in motivating
and describing the research problem. After this, chapter 3 gives an overview of
the state of the art systems proposed as solutions for the presented problem. In
chapter 4, the requirements of public web services for ontology library systems are
presented, and the system implementing these requirements is described in chapter
5. Finally, in chapter 6 the conclusions of this thesis as well as ideas for future work
are presented.

2 Demand for Ontology Services

This chapter describes the need for public web services in ontology library systems
by identifying focal user groups and their interaction needs. Services for human
users and machine interpretable interfaces are discussed by providing motivating use
case scenarios. First, a content work�ow example is presented for identifying basic
interactions between users and an ontology library system, and di�erent user groups
in ontology life-cycle states are identi�ed. After this, the need for visualization
is examined in detail and then use cases for semantic annotation are discussed.
Finally, programmatically accessible interfaces and web services are considered from
the viewpoint of the found user groups.

2.1 Content Work�ow Example

To enhance the re-usability of semantic web content, i.e. ontologies and annotations,
they can be stored in an ontology library system which is responsible for storing,
versioning, editing and publishing of ontologies [DF01]. Di�erent re-use scenarios
are illustrated in �gure 5 from the viewpoint of ontology library system's public
web services. First, the user creates and edits an ontology with a suitable editor
and publishes the ontology in an ontology library system for himself and others to
use. Here, an interface for uploading the ontologies to the ontology library system
is needed. A mechanism for authenticating users is also required to avoid abuse. In

10

the second phase, user creates instances from the supplied ontology, or just simply
�nds concepts for his annotation, thus enriching his content to the possibilities that
semantic web technologies o�er. In this case, the user needs a browser for searching
proper concepts from the repository and an interface for connecting to the system
from a legacy content management system. Finally, the semantically annotated
content such as a library's collections are published in a portal for searching and
browsing the collections. An ontology-aware portal could use ontology library sys-
tem's query interfaces for generating view-based user interfaces or exploit semantic
query expansion methods for serving the users' needs.

Figure 5: A service utilization example.

2.2 User Groups for Semantic Web Ontologies

Semantic web ontologies can be used to solve di�erent problems in a variety of use
cases, such as in information indexing, in information retrieval and in modeling
application domains. Three focal user groups can be extracted from the presented
content work�ow example: ontology developers, users annotating content and users
taking advantage of ontologies in their work. Each use case has speci�c groups
involved in ontology life-cycle and all groups should be considered individually in
providing ontology services.

11

Ontology Developers

The �rst group, ontology developers, are responsible for editing the ontologies and
are usually experts in the modeled application domain. They use ontology editors
to model the ontology and require all the possible information of the ontology and
application domain in their work. Besides this, tools for analyzing and visualizing
the ontology as a whole are bene�cial for them.

2.2.1 Content Annotators

The second group, content annotators, participate in the semantic web development
by creating instances that are linked to available ontologies according to a speci�c
annotation schema or by creating instances of the available classes in ontologies.

Information Searchers and Ontology End Users

The third group consists of users who can be considered as semantic web end-users
� both humans and intelligent software agents. They are using ontologies and
annotations created by ontology developers and content annotators. For example,
users who are developing applications based on ontological data need visualization
support for gaining an understanding of the used ontologies as well as machine
accessible interfaces for using ontologies that are up to date in the ontology library
system.

2.3 Use Cases and Technologies

To understand di�erent user groups' demand for ontology services, use cases and
underlying technologies are introduced in this chapter. First, by identifying use
cases for browser-based visualization. After this, semantic annotation and arising
requirements are discussed. Finally the use cases where machine accessible interfaces
in ontology library systems are essential will be presented.

12

2.3.1 Browser-based Ontology Visualization

Ontologies are usually serialized in a format that is di�cult for humans to un-
derstand. Therefore browser-based visualization of ontologies is needed to support
human understanding of ontologies [PE03]. To realize the requirements for visualiza-
tion, Fluit et al. have identi�ed three stages in ontology life-cycle where visualization
is required [FSvH03]. First, in the development phase, visualization of concepts and
their relations is needed for achieving better understanding of the ontology as a
whole. As ontologies evolve with more concepts and relations, the more elegant
visualization methods are required. Second, when instantiating classes from the on-
tology using manual or semi-automatic annotation tools, the quality of annotations
can be elevated by o�ering visualization methods, which di�erentiate instances from
classes. Third, after publishing ontologies on the web, tools for analyzing, querying
and navigating ontologies are needed.

Ontology developers require additional information supporting the editing process,
because ontologies can have numerous concepts and relations between them. Such
information is provided by advanced ontology editors and ontology library systems.
For example, a method for versioning of ontologies and the possibility of tracking
changes between versions is presented by Kauppinen and Hyvönen [KH06]. Seeing
the version information and changes between di�erent versions can be bene�cial for
the ontology developers in their work.

Users instantiating ontologies and annotating content require a clear view to the
concepts and their relations for �nding the suitable concepts to use. These users
are probably not interested in seeing managerial information, such as versions and
changes between versions. Their view to ontology might be less technical and their
interests could include seeing broader semantic environment of each concepts in a
single view. Broader semantic view can guide the users to use more speci�c concepts,
thus elevating the quality of annotations.

Users dealing with ontological information in their daily work. These users might
want to see the most trivial and non-technical view to the ontology, because one can
not expect them to understand all the underlying semantics such as ontology devel-
opers do. As the introduced user group consisting of ontology annotators, also this
group's interest does not include to see complex ontology managerial information.

Ontology editors and ontology library systems provide visualization utilities sup-
porting the needs of ontology developers. However, majority of such systems o�er

13

only visualization in the editor's user interface which is often a desktop applica-
tion, therefore requiring additional software to browse the ontology. For example,
Protege's OntoViz Tab11 o�ers visualization in the editor. The problem in such
systems is that they do not provide straightforward publication process to a public
www-server, which can have own components responsible for the visualization. The
need for independent visualization components is realized and applications manag-
ing this has been developed. For example, a cluster map approach for visualization
has been suggested by Fluit et al. [FSvH03]. However, implementation of a novel
visualization using data structures such as cluster maps or hyperbolic tree [LRP95]
often relies on technologies such as Sun's Java Applets12 or Macromedia's Flash13

which can not be used without installing plug-ins to the client browser. With in-
creasing deployment of di�erent end devices capable of browsing the internet such
as mobile phones, personal digital assistants (PDA) and digital televisions, the need
for building applications supporting all platforms and devices is needed. Therefore,
common plug-ins in many desktop environments can not be expected to be installed
on all clients. To support as many platforms as possible, components responsible
for the visualization should be capable of presenting the data in markup languages
standardized by W3C such as XML or XHTML14.

2.3.2 Semantic Annotation

Semantic annotation is a metadata creation process, which aims to enable new
information processing methods and extend existing ones [KPO+05]. For exam-
ple, a webpage of an university researcher typically contains information such as
researcher's name, address of the university, research interests and a list of publica-
tions. On the current www this information is wrapped inside HTML-tags providing
the presentation layout and style of the document, regardless of the actual semantics
of the data. On the semantic web, the resources are annotated by describing the
relation of the content to other concepts using RDF. If the researcher's web page
was described using RDF-descriptions, then the information of researcher's univer-
sity could reference an instance of a organization ontology's University class, and
research interests could point to instances of a science ontology's ResearchField
class.

11http://protege.stanford.edu/plugins/ontoviz/ontoviz.htm
12http://java.sun.com/applets/
13http://www.macromedia.com/software/�ash/basic/
14http://www.w3.org/TR/xhtml1/

14

With explicit and formal annotations, it is possible to take advantage of seman-
tic web-based search technologies and integrate information to a research portal
e�ciently. These annotations can be produced by using di�erent approaches, de-
pending on the desired level of automation and quality of the process. Basically, the
semantic annotation process could be classi�ed into three categories:

1. Manual annotation

2. Automatic annotation

3. Semi-automatic annotation

In manual annotation, metadata is described by human users. This is a slow and
therefore expensive method, but the quality of the annotations are usually high.
Quality means that human user knows the context of the annotation, understands
the right disambiguation for terms which can have multiple meanings, and recognizes
the meaningful information to annotate. Tools have been produced to support
manual annotation of di�erent documents, such as Cream [HS02] for web pages and
more general purpose utilities, such as the Protege ontology editor [NSD+01].

Automatic annotation process depends solely on the algorithm responsible for the
process. It is based on di�erent information extraction methods, which try to guess
the best alternatives for each annotation. Although automatic annotations are more
likely less accurate than the ones created manually, Kiryakov et al. claim that au-
tomated process provides the needed scalability, and without such automation the
semantic web remains only a promising vision [KPO+05]. However, the automation
is a complex task and solutions are often domain and even case speci�c. For exam-
ple, multimedia content such as images, videos and audio are completely di�erent
scenario compared to textual documents, such as web pages. Text-based algorithms
can not be applied to binary formats and resolving the context of the annotation is
challenging task compared to annotation of textual documents. Fully automated an-
notation could be used to large document repositories, where achieving high-quality
annotations is not as important as the speed, and the data represents single ap-
plication domain. For example, news articles covering a certain domain such as
economics could be feasible to annotate using automated methods.

Semi-automatic annotation begins by applying the algorithms used in automated
annotation to the data and then leaving the human user the decision wheater to
accept the annotation or not [EMSS00], or the tool may provide for example, the user

15

suggestions for annotations by highlighting parts of the data, and o�ering suitable
mappings to concepts in an ontology. At this point, it is the responsibility of the
user to either reject the suggestion, to accept it or perhaps change it some other
annotation if the tool o�ers such functions. Semi-automatic approach combines the
bene�ts of user involvement in manual process and scalability from the automatic
annotation.

Annotations, wheater manual or automated need concepts and properties from on-
tologies. Thus it is essential that systems managing ontologies have suitable inter-
faces for annotation software to exploit. From the viewpoint of manual annotation,
feasible browsing and searching components are needed, and for the automated an-
notation, the need for machine accessible interfaces is evident.

2.3.3 Interfacing Ontologies Using Web Services

This section covers the needs of identi�ed user groups presented in chapter 2.1 from
the perspective of machine interpretable interfaces. In this context, the interfaces are
de�ned as ones which o�er an external application the possibility to interact with
the provided application. Implementation of interfaces can be based on various
techniques: language based API's, communication over HTTP by passing SOAP-
messages, REST-architectural approach introduced by Fielding [Fie00], or novel
AJAX-technologies [Pau05]15.

A Web Service is de�ned by W3C as a software system that is designed to sup-
port interoperable machine-to-machine interaction over network [IJ04]. Also the
interfaces to the services should be in machine interpretable format. To achieve
this, W3C enforces the use of standards such as Web Service Description Language
(WSDL)[CCMW01] and Simple Object Access Protocol (SOAP) [BEK+00] for de-
scribing and publishing the services. When the services are described by WSDL
descriptors and published as SOAP interfaces, applications built on di�erent plat-
forms can consume the services as long as they support XML and can communicate
over the network.

WSDL is an XML description of the available operations, used data types and end-
points where the services are accessible [CCMW01]. WSDL description contains all
the necessary information needed to use the services, which means that WSDL-aware

15http://adaptivepath.com/publications/essays/archives/000385.php Idea was �rst presented by
Adaptive Path's J.Garrett

16

applications can dynamically execute services described using WSDL. A simple ex-
ample of a WSDL description is a service used for purchasing books. The method
for purchasing a book could have the book's ISBN and purchaser identi�er as pa-
rameters, and it could return the delivery information to the invoking client. The
method is mapped to a SOAP endpoint and the data structures are described using
XML Schema datatypes. The use of XML Schema datatypes is focal, since this en-
ables language independent description of the value objects, which are transferred
between client and server applications. Sophisticated web service frameworks such
as Apache Axis16 have tools for converting WSDL descriptions to language speci�c
value objects and methods. These tools have also utilities that generate WSDL
descriptions of language speci�c interfaces. This lowers the entry barrier of imple-
menting client application invoking remote web services as well as publishing server
components as web services.

SOAP is a lightweight, platform independent protocol intended for decentralized
messaging with the use of XML messages [BEK+00]. Basically, SOAP is an abstrac-
tion layer which binds the underlying language speci�c interface implementation to
a language independent XML interface. Preferred communication layer in many web
services frameworks, including Apache Axis, is HTTP17, but W3C does not restrict
using other layers. For example Apache Axis also supports Simple Mail Transfer
Protocol18 (SMTP) and Java Messaging System19 (JMS).

W3C has founded Web APIs Working Group20 to gather ideas concerning web-based
application collaboration and integration. In the future there might be more inter-
action between ordinary web applications, because they are resembling more their
stand-alone desktop counterparts, and the e�orts of the W3C in providing stan-
dards for web application interoperability. Although these rising web technologies
are yet to gain full industry support, possibilities of using them in interfaces is also
discussed in this thesis.

Ontology developers edit ontologies with some GUI-based editor, for example Pro-
tege or Swoop21. From ontology managerial perspective, these systems provide
operations such as loading ontologies from a source, saving the ontology to some
repository and management of di�erent ontology versions and their dependencies.

16http://ws.apache.org/axis/
17http://www.ietf.org/rfc/rfc2616.txt
18http://www.ietf.org/rfc/rfc0821.txt
19http://java.sun.com/products/jms/
20http://www.w3.org/2006/webapi/
21http://www.mindswap.org/2004/SWOOP/

17

Such systems usually have built-in mechanisms for most of these operations, if not
for all of them. These managerial services could be provided by the ontology library
system, assuming that the services were well thought, covered the necessary func-
tions and were implemented using standard and platform independent techniques.
Because ontology developers require these operations for their editing environment,
these requirements should be considered when designing an ontology library system.
This architectural model would separate the ontology management from the editing
work, leaving the suitable tasks for the specialized systems. With this kind of Ser-
vice Oriented Architecture (SOA) [PL03], the design of ontology editing software is
guided towards component-oriented approach, thus making the whole solution less
dependent on a single service and the architecture is also less monolithic.

Manual ontology annotation is often done with computer aided tools. In these
systems, the ontology is loaded to the application and one can make instances of the
de�ned concepts within the application. This is suitable approach if the users are
working strictly on ontologies. However, current state of the art content management
systems (CMS) and enterprise resource planning systems (ERP) usually are based on
a relational database model. Therefore using specialized ontology-based annotation
tools is not always the best choice, because this forces the users to use at least two
di�erent systems for the same purpose. Deploying a new information system to an
organization encounters often change resistance among personnel. One solution is
to update the legacy systems to support semantic web URI's in the data indexing,
but this means that software vendors should develop components which can process
ontological information and provide presentation layer for visualizing the ontology.

An alternative solution would be to integrate legacy systems to an ontology library
system which provides necessary ontology services. First, by providing programmat-
ically accessible API o�ering all the required query and update services. Second,
by providing visualization of the ontology, which could be re-used by external ap-
plications. If HTML was used in the visualization, it could be used by stand-alone
applications as well as web applications.

Software developers designing tools for the semantic web could bene�t from central-
ized services of an ontology library system. For example, a semi-automatic anno-
tation tool developer probably needs functions for disambiguating term's meanings
matching multiple concepts or methods for traversing an ontology's hierarchical
structure. Knowing that ontology traversal and concept disambiguation methods
are common in ontology processing, they could be implemented to the ontology

18

library systems's interface. Once these services are deployed, software developers
can concentrate the interesting problems they are facing. For example, the semi-
automatic annotation tool developer can focus in natural language processing.

A user who is searching information from a semantic portal, can bene�t from more
intelligent search-operations than traditional keyword-based searches. For the end-
users to gain full bene�t, the portal developer has to implement ontology processing
methods to the application. However, this can be a time consuming process and
performing complex queries to a large ontology can take away processor time from
the actual portal application, if the processing is not on a dedicated server. These
services could by provided by the ontology library system, thus allowing the portal
developer to concentrate on portal speci�c issues and leaving the ontology processing
to the ontology library system.

An interesting scenario would be to o�er rich AJAX-based interfaces, which could
be used in generating novel GUI's to the portal. For example, when the user writes
a search term to a search �eld, the web application could query a list of matching
concepts from the ontology library using AJAX. The server would then send back
a HTML-formatted representation of proper search concepts, from which the user
could select the desired search concept. This could guide and help the end-user in
the searching task. This idea of using the �lter-paradigm familiar from stand-alone
GUI's has been implemented in Google suggest22 and Lyrics�y23 web-applications,
and the idea was introduced into a semantic level in [HM06]. This kind of inte-
gration is not the most elegant, because Javascript is not as standardized as other
programming languages or Web Services. However, it is easy and fast to implement,
and enables re-use of once implemented HTML user interface. Also the e�orts of the
W3C Web API's Working Group on standardization of di�erent co-operation ways
between web applications encourages the idea of lightweight web-based integration.

3 Systems Providing Ontology Services

In this chapter, existing solutions are described and evaluated to realize the need
for further development of ontology library system services. First, general ontology
development environments and especially the architectural support for interfacing
with such systems are evaluated. After this, various systems providing annotation

22http://www.google.com/webhp?complete=1&hl=en
23http://lyrics�y.com/

19

interfaces and visualization of ontologies are presente. Finally, a peek towards the-
saurus protocols is done to achieve an understanding of the work done in the related
library science �eld. None of the covered systems are adequate just by themselves
as a solution to the service need in ontology library systems, but they all o�er ele-
gant ideas for solving individual problems. Therefore all systems are evaluated from
the viewpoint they were designed for, and how they solve the individual problem of
visualization or programmatic access.

3.1 Ontology Development Environments

Ontology development environments focus on the editing and management of on-
tologies. Depending on the solution, some o�er just the tools for editing ontologies
and serializing them to a �le, while others provide sophisticated features such as
programmatically accessible interfaces, ontology visualization, versioning of ontolo-
gies, collaboration and user management. Two solutions, KAON [VOSM03] and
WebOde [VCFLGP03], are evaluated from the perspective of ontology services.

KAON is a semantic web infrastructure server developed at the University of Karl-
sruhe. The server is based on a platform which provides a plug-in architecture to
develop di�erent modules for ontology management tasks. It provides tools for con-
necting to the server using a local connection or remotely using Java RMI or Web
Services. However, the system uses a proprietary knowledge model extending RDFS,
which makes it di�cult to use it from external applications, because the semantics
is not shared with others and it extends existing standards. The user interface to
the system is implemented as web pages with Java Applets, and it o�ers utilities
for browsing and editing classes, properties and instances. The plug-in architecture
for di�erent ontology related modules is feasible from technical perspective, but as
a whole the framework is fairly heavy from the end-users viewpoint, who needs just
the tools to share his ontologies over the Internet. Implementation of KAON's suc-
cessor, KAON2, is initialized and the main di�erence between these versions is the
support of OWL-DL in the latter compared to the proprietary extension to RDFS
in the �rst version.

WebOde is a system for development and management of ontologies, which also
provides middleware components and services facilitating the building of ontology-
based applications. As a demonstration of the framework's maturity, it has been used

20

as a technological solution in the Esperonto24 semantic web portal project. In order
to access ontologies from the provided editor or from external clients, the Ontology
Access API of WebOde is implemented in Java RMI25, and these services are also
wrapped into Web Services. For visualizing ontologies, a component which creates
a browsable catalog from the ontologies is also provided, but no online browser is
provided. AlthoughWebOde does not o�er end-users sophisticated browsing support
or a convenient set of ontology querying services for accessing the ontologies, the
framework has strength in well-thought architecture and it o�ers ontology services
such as merging, mapping and evolution which should be considered in an ontology
library system.

3.2 Ontology Browsers and Interfaces

To enhance re-use and sharing of ontologies, browsers for visualization and inter-
faces for accessing ontologies have been proposed. Tools range from simple web
fronts to novel ontology access platforms used, for example, in automated annota-
tion. In the following, visualization is evaluated from the viewpoint of how these
systems illustrate ontological structures to end-users who are not familiar with on-
tologies. Systems providing interfaces to ontologies are evaluated from a more tech-
nical viewpoint. For example, support for SPARQL [PS05] or other semantic web
query language should be considered in the frameworks.

The Knowledge and Information Management (KIM) platform was designed espe-
cially for semantic annotation, but also as an infrastructure for semantic indexing
and retrieval [KPO+05]. Key components in the system are the Semantic Anno-
tation API, Document API, Query & Index API and Repository API. This makes
it possible to use KIM just for semantic annotation, or alternatively as an inte-
grated solution for information retrieval which is based on semantically annotated
content. For manual annotation, a browser plug-in compatible with Microsoft In-
ternet Explorer is provided as well as a web front for exploring the knowledge base.
The browser plug-in illustrated in �gured 6 supports semi-automatic annotation of
documents by high-lighting suggestions for annotations in the document. After the
annotations are approved by the user, one can upload annotations to the annota-
tion server within the plug-in. The platform has sophisticated support for semantic
annotation and information retrieval, considering both human users and applica-

24http://www.esperonto.net/semanticportal/jsp/frames.jsp
25http://java.sun.com/products/rmi-iiop/

21

tion developers, but the emphasis on annotation re�ects the solution as a whole.
Although the interfaces cover all the necessary functions, design decisions on using
platform speci�c interfaces such as Java and plug-in support for Microsoft Internet
Explorer restrict some users on interfacing with this otherwise skillful solution. How-
ever, application developers could prefer such interfaces to generic ones, because for
example the Internet Explorer plug-in can be integrated to other applications with
ease. Therefore such interfaces can be the ones adopted and utilized more easily by
the developer community compared to low-level APIs.

Figure 6: KIM-browser screenshot.

KSMSA Ontology Browser [Sev03] depicted in �gure 7 was designed for browsing
Suggested Upper Merged Ontology (SUMO). One goal for the project was to o�er
a user-friendly view to the ontology for users not familiar with the philosophy of
SUMO. The browser o�ers also an API for accessing SUMO via a C++-library which
is a wrapper used in the browser for SUMO-speci�c ontology querying. However,
the provided library does not support remote access over network.

The browser supports features common in many ontology visualization components.
For example, class hierarchy of concepts can be navigated by opening branches
from the left-hand side and the description of the class is provided at the same

22

time on the right-hand side of the screen. The classes can also be searched by a
keyword search. A unique feature in the browser is the support for multi-lingual
textual representation of SUMO-axioms in natural language. The browser o�ers
a decent visualization of the underlying ontology, but the solution is case-speci�c,
which explains partially the novel features such as textual representation of axioms
and image-maps of the class hierarchy. However, these features are worthwhile
to be considered in ontology visualization, because users who are not familiar with
ontologies might understand complex axioms and class hierarchies more clearly using
images and textual representation of axioms.

Figure 7: SUMO-browser screenshot.

The Protege community has developed a web-interface26 to the popular Protege
ontology editor for sharing and browsing ontologies over internet. The interface il-
lustrated in �gure 8 provides a similar view to the knowledge base as the stand-alone
application. It is also possible to make annotations from the client, but ontology
editing is not possible. Adding an independent component to Protege for visualiz-
ing the ontologies for web-users makes is possible to separate ontology development
from re-use and browsing needs of di�erent user groups who are not interested in
ontology development. However, the requirements of application developers is not
considered in the form of machine accessible interfaces. At the moment developers
need to use Protege's Java-API, which can not be used from remote clients.

26http://protege.stanford.edu/plugins/protegebrowser/

23

Figure 8: Protege Web Browse screenshot.

SchemaWeb27 is a simple portal for storing and querying ontologies. The portal
serves human users by supporting the following features: browsing the available
schemas, search them by keywords, query all the schemas simultaneously using an
online form, and tools to submit ontologies to the repository. For software develop-
ers and agents, there are interfaces for querying the schemas using either SOAP or
REST. At the moment there are more than 200 schemas stored in the repository.
Although SchemaWeb is basically just a directory for storing ontologies having very
little other functionalities, the concept might be something the end-users of ontolo-
gies are interested in. The idea of having an easy-to understand web front where
users can search for ontologies, submit them to repository and query them with
proper machine accessible interfaces should be taken into consideration as an user
interface of an ontology library system. The approach of keeping functions as sim-
ple as possible might not be rejected by the end users compared to feature-rich, but
complicated front-ends. Unfortunately, software running the portal is not publicly
available.

3.3 Programmatic Access to Controlled Vocabularies

Thesaurus protocols provide interfaces for navigating controlled vocabularies by se-
mantically meaningful relations. Similarities in the programmatic access to these
systems is considered, because thesauri are controlled vocabularies such as ontolo-

27http://www.schemaweb.info/

24

gies and they are used in creating metadata about resources. Thesauri often have at
least the following relations de�ned between the terms: related term, narrower term,
broader term and preferred term [ABG04]. These can be described easily by using
semantic web technologies. For example, all the presented relations can be described
by using the Simple Knowledge Organization System (SKOS)-format introduced by
W3C28. Binding [BT04] et al. have studied thesaurus protocols in their work and
recommend basic ideas for enhancing the protocols. For example, a single query to
a thesaurus should always return all the related terms of the queried term. From a
technical viewpoint, they suggest that services should cache the results of the queries
to provided needed performance. These ideas are also applicable to ontology service
in some extent.

SKOS API29 is an interface for accessing thesauri described in the SKOS-format.
SKOS is a W3C proposal for describing thesaurus in OWL. Basically it maps many
of the common relations used in thesaurusi by utilizing OWL Full semantics. The
motivation is to get users developing thesauruses to use a standardized format, which
is interoperable with semantic web languages. Using the standardized SKOS-format
makes it possible to use the same reasoner for all thesauri described in SKOS. The
lack of standardized interchange format and access to thesauri has restricted a wider
use of thesauri, which often contain semantically meaningful information.

The SKOS API is based on previous work on thesaurus access [BT04], which pro-
vided a basic set of operations for querying a thesaurus. The API has several useful
functions, which can be used to query the underlying thesaurus and is implemented
using Java. Furthermore, the provided Java-interface is exposed as Web Services.
Suggested operations for thesaurus access � which are quite self-explanatory � are
listed in table 1. For example, calling the method getConceptByPreferredLabel
with parameter 'car' the concept corresponding the label is be returned. After
this, it is possible to retrieve all the relatives of this concept by calling the method
getgetConceptRelatives with the concept as parameter. Binding and Tudhope
created a simple pilot browser to gain experiences of the API [BT05]. They learned
that providing a �xed set of operations is not always adequate and semantic web
query languages such as SPARQL should be supported.

The suggested API o�ers a starting point for standardized thesaurus interaction from
the viewpoint of an application developer in need of thesaurus access. However, it

28http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/
29http://www.w3.org/2001/sw/Europe/reports/thes/api/docs/

25

Method Signature
getAllConceptRelatives(Concept c)
getAllConceptRelativesByThesaurus(Concept c, URI thes)
getAllConceptsByPath(Concept c, Relation r, int dist)
getConcept(URI Uri)
getConceptByExternalID(String externalID, URI thes)
getConceptByPreferredLabel(String preferredLabel, URI thes)
getConceptRelatives(Concept c, Relation r)
getConceptRelativesByPath(Concept c, Relation r, URI thes, int dist)
getConceptRelativesByThesaurus(Concept c, Relation r, URI thes)
getConceptsMatchingKeyword(String key)
getConceptsMatchingKeywordByThesaurus(String key, URI thes)
getConceptsMatchingRegex(String regexp)
getConceptsMatchingRegexByThesaurus(String regexp, URI thes)
getSupportedSemanticRelations()
getSupportedSemanticRelationsByThesaurus(URI thes)
getTopConcepts(Concept c, URI thes)
getTopmostConcepts(URI thes)

Table 1: SKOS API methods in interface SKOSThesaurus [DB04]

can not be applied straight-forwardly to generic ontologies, because the assumption
on �xed set of used properties which exist in SKOS can not be done. Also, the lack
of methods which can be used to store information into the thesaurus could prove
useful, and as suggested by Binding and Tudhope, support for semantic web query
languages should be considered. Latest version of the API Javadoc30 intimates that
support for semantic web query languages has been considered.

3.4 Suggested Approach for Ontology Services

Various solutions for ontology re-use, utilization and visualization have been de-
veloped, each concentrating in either one of the areas, or providing a scalable all-
purpose workbench managing all of them. Large scale solutions provide most of the
necessary functions required in ontology library systems public web services, but
trade-o� for this is often the lack of end-user involvement in the design phase, mak-

30http://www.w3.org/2001/sw/Europe/reports/thes/api/docs/

26

ing such systems di�cult to use. As in contrast, lightweight solutions concentrating
in a speci�c problem such as novel visualization are not as scalable or lack important
requirements from other perspectives.

Ontology visualization is an important factor in ontology re-use for users who are
not experts in ontological engineering, because it is the �rst user interface that on-
tology users will confront when searching an ontology in an ontology library system.
One ontology repository providing user friendly portal is the SchemaWeb RDFS-
repository31, where users can �nd all the ontology related information without un-
necessary technical details.

A layout for the browser, where concepts are visualized on the left side of the screen
and properties on the right, is favored in many solutions such as KIM, Protege
Browser and KSMSA Ontology Browser. A hyperbolic tree visualization [LRP95]
is feasible for small ontologies, but the graph might get tangled on large ontologies
consisting of numerous classes and properties. Other useful features found in most of
the solutions are: searching classes and instances by keyword, textual representation
of axioms, localization and partial graphical rendering of ontologies using images.
However, none of the presented solutions considered di�erent user groups in the
visualization.

Each of the presented solutions have solid ideas to enrich from ontology re-use and
utilization approach. KIM and SKOS API suggest a group of services that should
be included as an integral part of ontology library systems public web services.
Methods for navigation the ontology and the support for semantic concept based
expansion should be o�ered, because these are easier for the developers to adopt.
However, a standard query language interface should also be deployed [BT04]. Issue
that has not been tackled, is the return format of the web services methods. If
SKOS Web Services API would be used, then it would be easy to deserialize the
XML into language speci�c datatypes, because the returned objects are described
in XML Schema datatypes, which can be deserialized for example into JavaBeans32.
However, this is not possible for general ontologies because the SKOS approach
works on �xed set of classes and properties, instead of working on a general OWL
model where it is not feasible to enumerate all the possible classes in an ontology.
As suggested in SKOS API, metadata about the stored ontologies should also be
accessible programmatically. For example, information about used properties in

31http://www.schemaweb.info
32java.sun.com/products/javabeans/

27

the underlying ontologies and the human readable labels of the concepts is useful.
Technically, the web services standards should be favored as an alternative for a
language speci�c ones, because ontologies are described in machine independent
format, therefore the service for them should also be. As discussed in chapter 2,
the emergence of AJAX technology and work of the W3C WebAPI working group
makes it possible to create re-usable user interface components to ontology library
system for web applications to re-use.

The range from heavy server solutions managing all aspects of re-using ontologies
to simple lightweight ontology visualization is vast, therefore leaving a gap for a
solution providing the essential re-use and visualization services from end-users'
viewpoint. Such solution should combine strengths from all the presented systems,
but still avoid the pitfall of making it too complex. Therefore there is a need for
end-user centric approach solving the needs of di�erent user groups in a user-friendly
manner.

4 Requirements for Ontology Services

This chapter describes a proposal for the requirements of ontology library system's
public web services. These requirements were derived from the use cases presented
in chapter 2 and from the evaluation of existing solutions in chapter 3. Require-
ments are expressed in an abstract level, to avoid verbose requirements speci�cation
and considering scope of the study. he classi�cation of requirements is done using
established methods.

The requirements were classi�ed into user requirements and system requirements,
which is the separation recommended in many software engineering studies and
books, such as [Som00]. User requirements re�ect end user's need from a non-
technical viewpoint, as in contrast the system requirements are presented from a
technical perspective. System requirements were categorized into two categories:
functional and non-functional as advised in [RO85]. Each system requirement, both
functional and non-functional, has a source, which is a user requirement expressing
an end-users actual need. Functional requirements model the user's needs about
what the system should do and what kind of services it should o�er, for example,
the possibility to interact with other software through an interface. Non-functional
requirements constrain the provided services or functionalities. Such constraints
can be performance related, such as maximum response time on a web page request,

28

or constraining to use certain standards or protocols in the implementation. For
example, the use of XML in interfaces or extendable system architecture system can
be considered as non-functional requirements.

4.1 User Requirements

User requirements of the three user groups involved in ontology life-cycle were ex-
tracted from the scenarios described in chapter 2. These requirements are presented
as a UML use case diagram [GB05] in �gure 9. Any user, either a human or machine,
is considered as an actor in the UML use case diagram. There are four actors who
need services from the ontology library system: 1) ontology developers, 2) content
annotators, 3) information searchers and 4) external applications. First three user
groups are human users and the last describes an external software, which is used by
the human users. External application can be for example a content management
system, ontology editing system or a portal's search-engine. A detailed descriptions
of use cases and the corresponding user requirements are presented in the following
section. First presenting rationale for each requirement and then the requirement
itself.

Download Ontologies

Content annotators, ontology developers and external applications need a service
where they can download and reference ontologies to use in their work. Therefore
ontology library system should provide interfaces for both applications and human
users for downloading di�erent versions of stored ontologies.

Store Ontologies

To encourage users in sharing ontologies, and to provide a service for publishing
ontologies as a centralized service, an easy-to-use service for uploading ontologies
is required. Ontology editors and external applications should be provided with a
service for uploading new ontologies and updating existing ones with new revisions.
To avoid abuse of a random user updating ontologies maintained by other users, the
service should be accessible only by authenticated users.

29

Content Annotator

Ontology Editor

Information Searcher

Ontology Library System

Download Ontologies

Store Ontologies

Browse Ontologies

Perform Query Expansion

External Program Query Concepts

Insert Concepts

Collaborate with Users

Figure 9: Ontology Library System. An end user's use cases.

Browse Ontologies Online

All actors using an ontology library system require ontology visualization for gaining
a clear perspective to the ontology as a whole. The ontology browsing component
should provide operations for navigating the ontological relations and searching con-
cepts by keywords. The browser should also provide di�erent abstraction levels to
the ontology according to the user group, because users have di�erent knowledge
about ontologies. To facilitate the work of developers building ontological applica-
tions, visualization components should also be re-usable from external applications.

Collaborate with Other Users

Ontologies can have dependencies with other ontologies. For example a concept
in an ontology A can extend a concept in an ontology B. Therefore developers of
depending ontologies need to communicate with each other about possible changes
that can create con�icts to depending ontologies. The collaboration can also hap-

30

pen between content annotators and ontology developers. To support collaboration
between users, a communication system between users should be provided.

Perform Query Expansion

External applications can bene�t from services o�ering query expansion for con-
cepts. With intelligent information retrieval algorithms using query expansion, a
higher recall can be achieved for example in search engines. A group of program-
matically accessible services should be provided, which enable applications to search
concepts by keyword and expand concept de�nitions by traversing ontological re-
lations. Metadata about stored ontologies, such as root concepts, used properties
and properties re�ecting human readable labels of concepts should be provided to
enable dynamic composition of queries.

Query Concepts

Service for querying concepts is required by external applications to enable interac-
tion between an application and the ontology library system. Therefore a semantic
web query language interface with convenience methods should be provided to an on-
tology library system. Such services can be used internally by the ontology browser
interface.

Store Concepts

Users annotating content can bene�t from a interface, which provides a service
for storing annotations in the ontology library. With such a service, it is possible
to share instances of concepts with other users. To achieve this, an interface for
uploading annotations to the system should be provided, but the services should
be restricted to authenticated users. Otherwise there is a risk that malicious users
abuse the service by deleting or modifying annotations.

4.2 Functional Requirements

This chapter describes functional requirements for the end-user services. Such ser-
vices include: browsing ontologies, searching concepts by a keyword search, provid-
ing utilities for semantic annotation of content and interfaces for querying concepts.

31

Provide Browsing Interface to Ontologies

As suggested by Ding and Fensel [DF01], ontology browsing is a key element in an
ontology library systems. Therefore, a browser providing HTML33-pages of concepts
and their relations should be o�ered. Essentially, the browser should visualize each
concept and related concepts clearly to the user. Because human readable labels of
the concepts can be described using di�erent languages, the user interface should
also support internationalization.

Di�erent Views to Concepts

Users with di�erent knowledge about ontologies have di�erent requirements for on-
tology visualization as discussed in chapter 2.3.1. This should be supported in the
ontology browser by providing alternative views to concepts depending on the users
needs. To achieve this, there should be a switch in the user interface, which changes
the properties shown to the user. For example, ontology developer's view should
include all the technical details of concepts as in contrast for content annotators
and information searchers the view should be less technical and provide as much
information in natural language form instead of RDF-triplets. This is especially
bene�cial for users migrating from thesauri to ontologies in information indexing,
because thesauri contain less technical information compared to ontologies.

User Authentication

Functions such as messaging between users and storing ontologies to the system
require an user authentication. In most cases, ontology browsing and querying can
be done without authentication, but it should be considered that not all ontologies
are necessarily public in the future. For example, some intra-enterprise ontologies
could contain either delicate user information or the ontology is seen as a source of
revenue and organizations do not want to publish it without fee.

Application Programming Interface (API)

Communication between external applications and an ontology library system is not
possible without exposing services as interfaces. Especially operations for navigating
the ontology by semantic relations and searching concepts by keyword should be

33http://www.w3.org/TR/html4/

32

supported, because such operations enable for example query expansion. Interface
presented in SKOS API [DB04] contains most necessary functions, but the services
should be altered to support generic ontologies.

A lightweight API o�ering ready-to-use user interface components would facilitate
integration of external applications, because invoking client can use once generated
user interface in the ontology library system. This can be implemented either by pro-
viding a library containing language speci�c graphical widgets such as Java Swing, or
alternatively the components can be delivered as HTML pages using asynchronous
HTTP-request (XMLHttpRequest)34.

Store Annotations

Users annotating content can bene�t from a service for storing annotations to an
ontology library. With such a service, users are able to share there annotations with
each other. This service requires that there is an interface for storing the instances.
It should be considered that a public interface that writes content to an ontology
library requires users to be authenticated before any transactions are done.

Store and Retrieve Ontologies

Central requirement for an ontology library system is to o�er services for users
to store ontologies to the system, as well as the opportunity to retrieve them for
further use. It should be considered that ontologies evolve [Sto04] over time with
new published versions and therefore the interface for storing and retrieving should
manage di�erent versions of one ontology. This implies that there should be an
operation for querying a list of all available ontologies in the system, as well as an
operation for resolving all the versions of selected ontology.

Messaging Services for Users

To enhance collaboration between users, an integrated messaging system should be
designed to the system. For example, an organization A uses an ontology developed
by organization B and is interested in sending change requests for the ontology.
Change request could be a demand for a new concept to the ontology. Because
ontology library system provides browsing services for the ontology, it could also

34http://www.w3.org/TR/2006/WD-XMLHttpRequest-20060927/

33

o�er a feedback channel for ontology developers. This could be implemented as a
simple feedback-form in the browser.

4.3 Non-Functional Requirements

Non-functional requirements describe the requirements from a technical viewpoint
and have e�ect on the design and implementation of software. Applications manag-
ing and providing services for ontologies have non-functional characteristics which
are described in the following.

Scalability

Semantic web ontologies can be very small covering a well-de�ned domain ontology
or large constructed of existing thesauri having numerous classes and instances such
as the General Finnish ontology [HVK+05]. Also, an ontology library can contain
many ontologies, and multiple clients can access the system simultaneously. There-
fore, the system should scale well even with large ontologies and a heavy load.

Web Services Interfaces

Interfaces of an ontology library system should be accessible from all clients de-
veloped on di�erent platforms, because ontologies are also described in machine
independent format. Therefore, a proper protocol for the interfaces is SOAP with
corresponding WSDL descriptors, because they are modeled using XML and are not
platform speci�c.

Con�gurability

Ontologies can be described using di�erent classes, instances and properties and also
be serialized using various formats. For example, di�erent properties can be used to
describe hierarchical relations of concepts or human readable labels. Furthermore,
ontologies can be stored either in a �le, database, revision control system or on a
remote HTTP-server. Therefore it is essential that a system implementing ontology
services is highly con�gurable. Without adequate system con�guration, the services
can only be used with certain kind of ontologies.

34

Support Standard Ontology Languages

As suggested in [DF01], any ontology library system should support standard on-
tology languages recommended by W3C, especially RDFS and OWL. However, the
application logic should not depend on the underlying ontology language and con-
nection to ontologies should be decoupled from the application logic.

Extendable Architecture

The architecture should be extendable in a sense that the provided services can be
modi�ed without changes to the public interfaces. In object oriented programming
this means preferring interfaces over classes. For example, a system can de�ne an
interface for a general synonym repository, which can be used in searches if an im-
plementation for the interface is developed. A motivating example of extendable
architecture is the Protege ontology editor, which has many interfaces for program-
mers to develop plug-ins such as the OWL-editor.

Layer Architecture

The purpose of the layer architecture is to separate presentation, application logic,
data access and data from each other to enable a system design where all layers are
independent [BMR+96]. In such an architecture each layer is only coupled to the
layer below it and therefore changing a layer, for example the presentation tier, does
not e�ect the system as a whole. Layer architecture is essential for ontology-based
applications, because semantic web technologies like RDF-frameworks are under
constant evolution. For ontology library system web services, a three-layer model
is proposed. On the bottom there is the data access layer which is responsible for
retrieving concepts from the ontology storage such as a database or a �le. This layer
does not have any application logic, it just queries ontologies. After this there is
the application logic layer, which queries concepts using the data access layer. This
layer is responsible for providing all the application logic, such as expanding the
user's queries using external synonym repositories. Finally, there is the presentation
layer which consists of HTML pages that are generated by classes that control the
user interface �ow.

35

5 Onki � An Implementation of Ontology Services

This chapter describes the architecture and technical details of the implementation
for ontology library system's public web services. These are the end-user services for
the ontology library system described in [KVH05] and [KH04]. A prototype realizing
the requirements presented in chapter 4 was implemented to evaluate the suggested
requirements in practice. However, user authentication and messaging services were
not implemented in the prototype, because they are not core services for ontologies
compared to, for example, visualization. A demonstration of the presented software
is available at http://demo.seco.hut.fi/onki/.

Onki-system consists of three components, which all can be used by each user group
in di�erent use cases. First, the ontology browser is a web application providing
ontology visualization. Second, a subset of the browser's visualization components
can be used from external applications by the provided Javascript API. This pro-
vides re-usable user interface components for web applications. Third, web service
interface (SOAP, WSDL) provides access to the underlying ontologies for platform
independent interoperability.

Figure 10 illustrates Onki from the end-users viewpoint. In the inner circle, there are
the services provided by an ontology library system. Such services are for example
ontology storage and versioning. Public web services demonstrated in Onki are on
the outer circle providing the end-user services. Such decoupling of core ontology
services from end user services enables the services to be implemented independently
from each other. Next, the functional components for di�erent user groups are
depicted with gray boxes. Content annotators are provided with a web service
interface as well as Javascript API, which can be used to create annotations from
external web applications. Ontology developers can use the ontology browser to
see the contents of the underlying ontologies as a whole. Users who are searching
information or are working with ontological information can use the browser to �nd
the right concepts for their use.

5.1 Architectural Overview

This chapter describes the general architecture of the implemented public web ser-
vices and how the system meets the presented non-functional constraints in chapter
4.3. First, it is described how non-functional requirements are satis�ed and after this
the architecture is explained using use case diagrams and UML package diagrams.

36

Figure 10: Supporting users in their tasks.

Finally, Onki con�guration is unfolded to achieve an understanding of how the sys-
tem can be adjusted to di�erent ontologies. Scalability was achieved by using Jena
semantic web framework, which is capable of storing ontologies in a database. It is
also possible to use it as an in-memory RDF-storage, which results in faster queries
but trading of memory space. For example an ontology of 1,000,000 RDF-triplets
requires approximately 2 Gb of RAM from the server. One of the key bene�ts of
using Jena is, that it supports W3C standardized ontology languages such as RDFS
and OWL.

Onki was designed and implemented using a layered architecture [BMR+96], which
enables modular design from the user interface to ontologies. With the separation
of user interface, application logic and data access, theoretically all layers are inde-
pendent of the each other. The architecture is depicted in �gure 11. At the bottom
there is the data layer, which represents the ontologies serialized in a standard for-
mat. Ontologies can be physically stored in a local �le, remote HTTP endpoint or
a database. Second, the data access layer is responsible for querying and storing
ontologies to ontology repository. This layer encapsulates connection to ontologies

37

using the Data Access Object (DAO)35 pattern. This enables that application layer
can access the ontologies regardless of the underlying RDF framework. Next, ap-
plication logic layer o�ers services which can be used at the user interface layer.
These services are also exposed as Web Services, thus ful�lling the requirement of
platform independent connectivity. Finally, the presentation layer o�ers end-users
browsing and searching utilities. The presentation layer has also a Javascript API,
which enables lightweight integration of other web applications to the ontology li-
brary system. The provided Javascript API has functions for remote applications
to query concepts easily from the server. Concepts matching queries are returned
in an HTML block providing a visualization of the ontology.

Ontologies

Ontology Connector

Web Services Onki Services Utilities

Web Front
Javascript API

Presentation

Application logic

Data Access

Data

Figure 11: Layer architecture.

From a more detailed design viewpoint, a UML diagram illustrating central package
structure is depicted in �gure 12. From this �gure it is possible to realize the layered
architecture, as each package contains classes from a single layer. These packages
and core classes in them are described in the following.

• �.tkk.seco.onki.dao This package contains interfaces and classes responsi-
ble for ontology access. There are separate implementations for connecting
to ontologies stored in either �le, database or HTTP address. For example,
implementing IOnkiDao interface it would be easy to provide a connection to

35http://java.sun.com/blueprints/patterns/DAO.html

38

fi.tkk.seco.onki.ui

Templates
fi.tkk.seco.onki.dao

fi.tkk.seco.onki.utilfi.tkk.seco.onki.ws

fi.tkk.seco.onki.logic

OnkiServlet
ErrorServlet

OnkiService
TestClient

ILexicalUtil
ISynSetUtil
ISpellerUil
SynsetImpl

OnkiService
OnkiConfigurator
IOnkiDao
IOnkiResultComparator
PropertiesComparatorImpl
ResourceComparatorImpl

OnkiService
OnkiConfigurator
IOnkiDao
FileDaoImpl
HttpDaoImpl
JenaDbDaoImpl

HTML templates
JavaScript

onki-client
onki-server
onki-autocomplete

Figure 12: Onki Package diagram.

ontologies stored in a revision control system repository, such as CVS36.

• �.tkk.seco.onki.logic, �.tkk.seco.onki.util, �.tkk.seco.onki.ws Next, there
is the application layer, which contains classes for ontology processing. This
layer represents Model in the Model-View-Controller (MVC)-design pattern.
Application logic is responsible for creating queries to ontologies and also for
binding concepts together based on de�ned properties, such as rdfs:subClassOf.
Additional logic, such as using external lexicons or synonym libraries is de�ned
and implemented here.

• �.tkk.seco.onki.ui, Javascript, templates Finally, the user interface layer
represents View and Controller in the MVC-design pattern. Java Servlets are
responsible for controlling application �ow and Apache Velocity37 templates

36http://www.nongnu.org/cvs/
37http://jakarta.apache.org/velocity/

39

are used for creating HTML pages.

User

OnkiServlet: VelocityServlet OnkiService: Service FileDaoImpl: OnkiDao SynSetImpl:ISynsetImpl

1: search(String)

2: concepts

1.1: getSynonyms(String)

1.2: synonyms

1.3: findConcepts(String)

1.4: concepts

3: resolveTemplate()

Web-page

Figure 13: Onki sequence diagram.

For achieving a broader view to the architecture, a UML sequence diagram of a
simple service is provided in �gure 13. This is a common use case of an ontology
library system's web service, where end-user searches for concepts. For example,
a user searches for a concept de�ning a pupil for his annotation. First, user types
search string 'pupil' to her browser's search form and the query is processed in
OnkiServlet, which delegates query to the component responsible for application
logic, the OnkiService. If an utility for resolving synonyms for the query string
is con�gured, then the service resolves possible synonyms using provided interface
ISynSetImpl, which o�ers a synonym repository connection. For example, the
synonym-repository could resolve the term 'student' as a synonym of 'pupil'. Now,
after the synonyms are resolved, both of the search strings, 'student' and 'pupil'
are dispatched for the ontology access layer. Here, Jena is used to query the on-
tology for concepts whoese labels match either of the search string. If the ontology
contained only a concept that had a label 'student', then the user's query 'pupil'
had not matched any concepts. With the introduced utility for resolving synonyms
from an external repository, the user's query matched the concept with label 'Stu-
dent'. After this, the �ow return to the controller servlet, which resolves the right
HTML template for user's request. Finally, the resulting concept with it's hierarchy
and semantical relations is shown to the user. This sequence is similar to the use

40

case where query is executed from a remote client using either SOAP or provided
Javascript API. Only the invoking client changes and the �ow from OnkiService
follows the same sequence.

Used ontologies and visualization is con�gured using an XML con�guration �le,
which enables deployment of di�erent ontologies to the server. Con�guration has
elements for adjusting visualized ontological properties and the structure of the
ontology. For example, it is possible to con�gure the properties used to create class
hierarchy and also to specify properties used for text-based searching. Additionally,
con�guration controls the sorting of query results, localization of the user interface
and con�guration of external utilities. For brevity, each con�guration element is
described brie�y and thorough con�guration with additional comments is described
in appendix 1.

Ontology Repositories
The most essential con�guration element speci�es the used ontologies, because it
allows the Onki to be used with various ontologies. In this setting it is possible to
con�gure 1..n ontologies to the system. Additionally, it can be speci�ed if the used
ontologies are located in a local �le, relational database or HTTP address.

Annotation Repository
Besides the ontologies for browsing and interfacing via services, also a repository
for storing annotations can be con�gured. Such repository is bene�cial for content
annotators, because this provides them a possibility to store and share created in-
stances of ontology concepts. The annotation repository is separated from the main
ontology repository for two purposes. Fist, it is easier to separate annotations from
the ontologies, if this is later seen as a necessary operation. Second, when ontologies
and instances are stored in di�erent locations, it is possible to use in-memory storage
for ontologies and database for annotations.

Root Concepts, Properties and Property for Creating Hierarchy
To create an hierarchy of the concepts and properties for the visualization, root
concepts of ontologies must be speci�ed in the con�guration. 1..n root concepts
can be speci�ed for a single ontology. Also, a property for creating concept hi-
erarchy must be con�gured. Although ontologies are often constructed using the
rdfs:subClassOf hierarchy, not all share this characteristic. For example, in SKOS-
thesauruses hierarchical relations between concepts are developed using skos:narrower
and skos:broader which are not sub-properties of rdfs:subClassOf.

41

Textual Representation of Concepts
The textual representation of concepts is usually described using a speci�ed property,
for example rdfs:label. In Onki, one can specify 1..n properties, which are shown
to the user when browsing concepts within the system. The properties speci�ed here
are also used in searching concepts.

Alphabetical Index of Concepts
An Alphabetical index can be bene�cial for users who are not familiar with the
hierarchical approach in looking up for concepts. To create an alphabetical index of
concepts, all the alphabets from which the indexes are created must be enumerated
in the con�guration. Alternatively the index could be generated in runtime, but
for large and evolving ontologies real-time determination of index alphabets can be
time consuming.

Concept Sorting
To sort the concepts and properties of concepts in the user interface, a con�guration
specifying this is required. Without such sorting, the visualized concepts would be
in a random order, because concepts do not have any special property specifying
their internal order within an ontology. To achieve sorting of concepts, one can
specify a property, which is used in sorting. For example, it can be speci�ed that
rdfs:label or any other property is used for sorting the results of a user's search.

Localization
To enable multilingual user interface, there is a parameter for specifying all the
possible localizations of the user interface. It is also possible to con�gure the default
language for the user interface. Technically, localizations of user interface are stored
in a separate localization �le called a 'resourcebundle'.

External Utilities for Extending Queries
Because ontologies do not always contain all the lexical information of the concepts,
a utility interface for adding such tools to the system is provided. These are used
only when user does keyword queries to ontologies. Onki provides interfaces for this,
and also a simple �le-based implementation for synonym-repository.

42

5.2 Onki-Browser � Visualization of Ontologies

Onki-Browser is used for illustrating concepts relations, for searching concepts and
for exploring the ontology as a whole. The browser can also be used for annotating
content from web applications. A screenshot of the browser visualizing the concept
Ear in the biomedical MeSh-ontology[SGD04] is depicted in �gure 14. Browsing
functions are available in the navigation menu identi�ed with a red rectangle. Con-
cepts can be searched using the search �eld and the ontology's hierarchy can be
explored from by navigating concepts relationships illustrated in the green rectan-
gle. The hierarchy contains all the generalizations of the concept, sibling concepts
and direct sub-concepts of the currently browsed concept. In the concepts view, all
properties related to the concept are listed in the blue rectangle. This is the view
that is shown to the user when a concept is selected by either searching a concept
using search �eld, selecting it from the alphabetical index or traversing ontological
relations from other concepts. Because concepts can have di�erent textual represen-
tations depending on the language, it is possible to change the localization of the
user interface from the provided combobox. When the user changes the language,
Onki-browser resolves and visualizes corresponding language of the concepts in the
user interface.

Figure 14: Basic view to the concepts in the browser.

In addition to traditional browsing between concepts based on their semantical re-
lations, Onki provides a search utility for searching concepts matching the concept's
labels to users query. An example of user querying for concepts matching for 'taide'

43

is illustrated in �gure 15. When the user enters characters to the query �eld, appli-
cation sends the query after every character pressing to the server using XmlHttpRe-
quest. This technology enables asynchronous messaging between Onki's client-side
Javascript code and server-side Java-code. Such messaging provides fast response to
user's search, because only the query is sent to the server and the results are shown
in a lightweight layer on the screen. Additionally, user receives instant feedback to
his query to see if there were any matching concepts.

Figure 15: A user querying concepts using autocompletion.

To provide e�cient text-based searching of concepts, Onki queries are executed to
match all the labels that are con�gured to represent the concept's human readable
labels. Furthermore, an the synonym-repository can be used to expand a single
search term to multiple search terms. Using more than one label for searching, and
having the possibility to connect to a synonym repository provides higher recall to
users searches. However, the precision in such searches can be lower, because the
expanded query matches more concepts. A better implementation of the utility
would expand the query in such cases when the user's query doesn't match any
concepts.

The features for searching and browsing ontologies are useful for illustrating the
ontology and gaining an understanding of the ontology. Furthermore, these features
can be used from external web application using the provided Javascript API. As
a proof-of-concept, the browser was integrated to the content annotation system
SAHA [VH06] illustrated in �gure 16. First, the user types �rst characters from

44

the concept that he or she wants to use as an annotation. After this, the query
is sent to Onki and the results are rendered to the invoking client browser, and
annotation system user can select one or more of the concepts to the application
by clicking them. The Javascript API has functions for binding Onki-Browser and
remote systems to each other by using few simple API methods.

Figure 16: Using browser's components from external web-applications.

5.3 Onki-API � Programmatic Access to Ontologies

The idea of Onki-API is to o�er facilities for querying concepts, but also to store an-
notations to the system. Provided interface is not intended as an semantic web appli-
cation framework � such utilities already exist, for example Jena, Kowari [WGA05],
Sesame [BKvH02], OntoViews [MHSV04] and Protege. The API consists of a web
service interface and a Javascript API, which provide di�erent mechanisms to inter-
act with Onki. Web services provide platform independent integration, as in contrast
the Javascript API can only be used from a web application. Using web services in-
terface requires more time for integration compared to the Javascript API. However,
the Javascript API is more of an experimental solution compared to standardized
web services.

Web Services

SOAP and WSDL was chosen as the implementation, because they provide platform
interoperability and a standard language for describing and invoking services. Con-

45

ventional communication frameworks such as RMI were not considered, because they
are restricted to language speci�c implementations. One possible implementation
technique, the REST-method [Fie00] introduced by Fielding, was not considered be-
cause the tools are yet to be developed and it is more of an ad-hoc method compared
to standardized web services. However, REST is very similar to SOAP � communi-
cation is done over network using, for example HTTP and XML is used to transfer
data. However, the invoked services can not be parameterized as web services.

SOAP methods were generated by using the Apache Axis-toolkit38. The toolkit
generates WSDL descriptors and SOAP endpoints from a speci�ed class or inter-
face automatically. The provided services are listed in table 2 and a more detailed
description is in appendix 2. These services were implemented, because they pro-
vide application developers tools for navigating the ontology's structure, and �nding
concepts using free-text search.

For example, a hardware store's clerk annotates his product catalog for tools' ma-
terial descriptions. First, an annotation application could query concepts that match
the user's query 'Iron' using the method getConceptsMatchingLabel('Iron', 'en').
The method returns an RDF/XML-serialization of the concepts matching the query
and the application presents the results to the user. In this case the concept 'Iron'
would be returned. If the user is not satis�ed with the returned concepts, the ap-
plication could have a built-in mechanism for searching all the subconcepts for the
returned concept. This is achieved by calling the method getSubConcepts('Iron',
true). Using this method all the transitive subconcepts would be returned to the
user. The ontology could contain, for example, the concept 'Stainless steel' as a
subconcept of the concept 'Iron', and it would be returned to the user.

Each service for querying ontologies returns an RDF/XML-serialization of the state-
ments matching the query. These services resemble functions in SKOS API, but the
methods have been generalized to support any ontologies, because SKOS API is
based on the SKOS knowledge model. The knowledge model in SKOS speci�es a
�xed set of properties for concepts, and therefore it can not be applied to an ontology
library system supporting di�erent kind of ontologies.

However, when the services were tested using a simple demonstration client, it was
found that using web services to transfer concepts or subgraphs of ontologies is
challenging, because the RDF-model does not �t well to the web services concept.
Web services use transfer objects as the parameters of the services. The transfer

38http://ws.apache.org/axis/

46

Method and input parameters, all return a subgraph matching the query
getConcept(uri)
getConceptsMatchingLabel(match, lang)
getConceptsMatchingRegex(regexp, lang)
getOntologies()
getOntologyProperties(uri)
getOntologyLabels(uri)
getRelatedConcepts(uri, dist)
getRootConcepts(uri)
getSiblingConcepts(uri)
getSubConcepts(uri, transitive)
getSubConceptsMatching(match, subClassOf, begin, end, xmlLang)
getSuperConcepts(uri, transitive)
querySparql(query)

Table 2: Onki web services API.

objects39 are described using XML Schema and later transformed to language spe-
ci�c objects in the invoking client. General ontology services can not be speci�ed
to use pre-determined format for concepts, because then the services could not be
used for all ontologies. The return format of Onki Web Services is a subgraph of
the ontology matching the query. This is a generic approach, which can be used
for all ontologies, but as a trade-o� requires much RDF-processing in the invoking
client. This is resolved in SKOS API by using a speci�c transfer object representing
the SKOS-concept (skos:concept). However, this approach can not be used in
di�erent ontologies, because concepts between ontologies can be di�erent from each
other. This fundamental di�erence between object-oriented software engineering
and ontological engineering is challenging for the development of ontology services.

Javascript API

An alternative integration method was implemented to provide application devel-
opers an API to use Onki's visualization components from web applications. It was
implemented as a Javascript interface, which allows web applications to interact
with Onki. The lightweight interface enables use of Onki-visualization by query-

39http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

47

ing concepts from the repository and binding the found concepts to the external
application. The services were packaged into a Javascript library, which can be dis-
tributed and re-used by including the library from the used Onki-server. To test the
applicability of the library, services were piloted in a web-based annotation system
SAHA [VH06].

Two di�erent methods for using the Javascript API were implemented. First,
an AJAX-based solution, enabling asynchronous communication with the ontology
server. Second, a window referencing approach, which o�ers the whole user interface
to be used from other applications. A technical detailed description of the API is in
appendix 3. Both approaches are based on the idea of linking a web application's
HTML-form to an API-method, which searches concepts from Onki. After the user
�nds the desired concept, the URI of the concept can be linked to the calling ap-
plication's HTML-form. Both approaches o�er the ability to either search concepts
matching a search string, or alternatively constrain the search to subconcepts of a
certain concept. Using a subconcept constrain can be useful, because annotation
schemas properties have often rdfs:range limiting the set of appropriate concepts.
For example, an annotation schema for artwork can de�ne that a value for the
property de�ning the artistic style must be an instance of certain concept from an
art-ontology.

The concepts and �ow for using the interface is illustrated in �gure 17. In the AJAX-
approach, the user types in characters of the name of the concept he or she is looking
for. After each character entry, the search string is sent to Onki-server, which returns
an HTML-layer for the calling application. From this layer, the user can select the
desired concept to the calling application by clicking the concept. Technically, each
returned concept is attached with a link which binds the clicked concept's URI to
the HTML form's input �eld in the client application. The Onki-browser can be
used as a whole by using the window-referencing approach depicted also in �gure
17. In the image red rectangles describe user's actions, either selecting a link or
clicking a button. This solution is technically similar to the AJAX-approach, the
basic idea is to bind HTML-form's input �elds to the called API-methods. Using
window-referencing, Onki-browser is opened to the user, where he or she can take
full advantage of the ontology visualization and provided search mechanisms. After
the desired concept is found, the user just selects the concept by clicking the Fetch
concept' link in the browser. The URI and label are transferred to the calling
application's HTML-form's �elds.

48

Figure 17: Two ways to use Onki Javascript API.

However, the provided Javascript API has limitations which are listed in table 3.
AJAX-approach can not be used in all circumstances, because current web browsers
are only capable of creating XmlHttpRequests to a server which is in the same
domain as the client application. For example, a web application in the domain
http://www.helsinki.fi/ can not communicate using XmlHttpRequest to a server
in the domain http://www.tkk.fi/. This is restricted in all browsers, because
there are security issues which might be exploited by hostile users. Fortunately, this
restriction can be by-passed in Mozilla Firefox and Microsoft Internet Explorer by
adjusting browser settings.

In the Internet Explorer, one can set the security level for each domain so that it is
possible to use XmlHttpRequest from di�erent domains. Mozilla Firefox introduces
the idea of signed scripts, which can be used to authenticate the request and therefore

49

Application deployment / Integration method Window referencing AJAX-approach
Application and Onki are in the same domain MS Internet Explorer All browsers
Application and Onki are in di�erent domains - All browsers
Using a by-pass proxy All browsers All browsers

Table 3: Browser support for Onki's Javascript API.

remote calls to a di�erent domain is permitted. The restriction can also be by-passed
by using a proxy script. The idea is that the remote calls are forwarded to a local
address, which forwards the requests internally to the remote server. When such a
mechanism is used, the browser has no problem in creating the XmlHttpRequest,
because the calls are sent to a local address � although the requests are actually
forwarded to the remote server.

The alternative integration using window-referencing has similar security-related re-
strictions, when the applications are not in the same domain. However, in contrast
to the AJAX-approach, the restriction in window-referencing can not be bypassed
by any browser settings. The window-referencing can only be used with a bypass
proxy if the application and Onki are on di�erent servers. Using Ajax in the com-
munication lowers the need for bandwidth, because only a small part of the page is
fetched compared to a whole page. Also the response time is faster than in window-
referencing.

6 Discussion

Objective of this thesis was to resolve what services are needed to an ontology
library system, and how to implement them. A human and a machine viewpoints
were considered with respect to application possibilities in the semantic web domain.
This was achieved by �rst discussing the general service need for ontologies and then
evaluating how the state-of-the-art solutions support these objectives. After this,
the requirements were presented. A subset of them was implemented in the ontology
services prototype, Onki.

This thesis presented the end-users's need, requirements and di�erent approaches for
providing public web services to an ontology library system. Suggested services o�er
end users an interface for browsing and searching concepts in underlying ontologies.

50

The services also enhance ontology re-use, because ontologies can be published to the
server and used from external applications by using the provided programmatically
accessible interfaces. Prototype implementation for demonstrating the services was
also introduced and evaluated.

The requirements, user pro�les and implementation ideas for the services were iden-
ti�ed by describing use case scenarios of tasks which are related to ontology re-use.
It seems that performing thorough user requirement elicitation by user-centric meth-
ods could have been more feasible, but such methods were not used for two reason.
First, semantic web ontologies are relatively new and potential end-users are not
familiar with the arising possibilities. Second, requirements elicitation is out of the
thesis's scope.

Ontology libraries, ontology visualization tools and ontology services were evaluated
for achieving an understanding of the shortcomings in state-of-the-art systems. Each
solution o�ered solid features to a certain user need, but all lacked end-user centric
approach to the services. Also, the evaluated systems did not consider the concept
of o�ering these features as a centralized service.

6.1 Services for the End-Users

The result of the study were the proposed services for an ontology library system, and
the identi�ed user groups of such services. Functional and non-functional require-
ments as well as the implementation was considered from an end user perspective.
Following user groups were found in need of ontology services: ontology developers,
content annotators and users in need of ontological information. All user groups
were found to have individual requirements for the services as well as overlapping
ones. Although di�erent user groups had similar service needs, each user group
should still be o�ered a tailored version of the services to avoid pitfalls in many
existing solutions.

It was found that there is a need for services, which provide visualization of ontolo-
gies. Also, interfaces for querying concepts and creating annotations to an ontology
library system are useful. To be more speci�c, the visualization and browsing should
o�er mechanisms for illustrating ontological hierarchies and various search mecha-
nisms, such as keyword search. Also, possible internationalization of ontologies
should be considered in the user interface. From the interface point of view, ser-
vices should o�er methods for traversing the ontology's hierarchy and o�er tools and

51

methods disambiguating search terms. A semantic web query language interface is
also required, since pre-built methods are often inadequate.

A suggestion of non-functional requirements for the services was proposed describ-
ing what are the technical constraints and requirements. The system implemen-
tation should consider the following technical features: scalability, con�gurability
and extendability. Demand for these arise from the semantic web domain because
ontologies can contain numerous concepts and be very di�erent by structure. Provid-
ing web services interfaces ensures interoperability on di�erent platforms, because
WSDL and SOAP does not address the implementations programming language.
Finally, layered architecture ensures that the system is easy to modify, and di�erent
user interfaces or services can be developed to the system.

As a proof of concept, a part of the introduced requirements were realized in a pro-
totype implementation, which provided a platform for evaluating the requirements
in practice. To support ontology visualization, a web application providing a hi-
erarchical view to the ontology was implemented. It also o�ers detailed view to
concept de�nitions and utilities for searching. Decision of implementing a standard
web application was preferred over techniques o�ering novel visualization such as
Macromedia Flash, because the system had to be re-usable from all clients. To
support ontology re-use, especially considering annotation and search engines, web
services interfaces for querying and storing annotations to the ontologies was devel-
oped. However, using web services requires external application developers to code
the user interface to ontologies and therefore an alternative lightweight Javascript
API was introduced, which enables fast and easy integration to the system.

6.2 Initial Experiences

Ontology visualization using a web application was considered to be useful, especially
as a communication channel between ontology developers, but also between ontology
developers and end-users. However, browsing and visualization as sole services were
not as essential as the Javascript API built on top of the browser. Need for ontology
visualization tools and the concept of public ontology portal will gain importance
when ontologies are published and adapted outside the research community.

The idea of lightweight Javascript API as an integration interface for web-applications
was adopted in two demonstrations. First, it was tested in a commercial content
management system's pilot version supporting semantic annotation. It was found

52

that Javascript API supported rapid application development, because almost all
the functionality, including the user interface is in the ontology library system. The
second adaptation was the web-based annotation too SAHA [VH06] developed in
the Semantic Computing Research Group at the Helsinki University of Technology.
The idea of searching concepts for annotation using Javascript API allowed the
application developer to focus in the annotation software, rather than to ontology
visualization. This ensured that the ontologies are up to date, because it is on the
responsibility of the ontology library system. From software performance viewpoint
this model also removes the burden of external application from processing large
and memory-greedy ontologies.

Unfortunately, the Javascript API can be used only when both the ontology library
system and an external application are deployed on the same server. This limitation
arises form the risk of cross-site scripting, which can be seen as a security issue.
There are technical solutions to avoid this limitation, but it does not remove the
fact that the Javascript API is unstable for industrial usage, because Javascript,
and especially XMLHttpRequest implementations vary between browsers and the
suggested solutions for avoiding the limitations are not standardized. However,
W3C has established a Web APIs Working Group40, which works on standards
for web-application interfaces. If the working group o�ers feasible standards which
are implemented in forthcoming browsers, then presented Javascript API can be a
noteworthy integration method.

To test the web services in practice, a simple client was developed for demonstrating
di�erent query expansion techniques. Available methods were useful for query ex-
pansion, because they covered many common tasks such as disambiguation, concept
generalization and specialization. However, from a technical viewpoint the sugges-
tion of returning RDF/XML subgraphs matching the query was not ideal, because
the result had to be transformed in the invoking client to Jena Framework model for
iterating the results feasibly. Also, from a plain text-search viewpoint it would be
useful, if the services could be parameterized to return just the textual representa-
tions of the concepts. Such approach would be feasible for applications that are not
ontology-aware, but could bene�t from the ontological information. For example,
classic text-based search engines could use services for gaining higher recall to the
search engines queries.

40http://www.w3.org/2006/webapi/

53

6.3 Future Work

This study resolved the initial requirements and o�ered a proposal for ontology
library system services from the end-user perspective. In the future the services
should be evaluated by doing user tests from two viewpoints. First, the visualization
of ontologies needs to be evaluated. Second, the interfaces should be evaluated from
application developers viewpoint to see what services are useful and how they are
used, and most importantly, are the services adequate.

As described in chapter 5.1, the implemented service framework Onki, o�ers ontol-
ogy services for such ontologies, that are con�gured in the system con�guration at
the server startup. This is adequate when there are only a few ontologies on the
server, but it does not support dynamic service con�guration for the uploaded on-
tologies. To enable easier ontology publication to the server, ontology library system
should support online publication of ontologies. This could be realized by o�ering
an interactive web form, which either prompts the con�guration from the end-user
or alternatively the system should resolve the con�guration automatically.

Ontologies evolve over time [Sto04] and new versions of ontologies are published
when errors in the modeled domain are �xed and new information is added in form of
new concepts and relations between them. Visualization of changes between versions
and browsing from one version to another was not considered in this thesis, although
such information would be useful to users developing and maintaining ontologies.
Providing version information visually as well as programmatically accessible version
information is one future research track.

Although ontology development tools such as Jena and Protege support ontology
persistence to relational databases, the tools are not mature compared to object-
relational-mapping (ORM) tools used in conventional relational-database appli-
cations. E�cient ORM-frameworks, for example Hibernate41 and tools mapping
business-tier services to web services are driving forces for developing classic rela-
tional database application. Such tools are also needed for ontologies to facilitate
semantic web application development.

The proposed solution was designed from the viewpoint that the system contains
ontologies, which are browsed and utilized separately. However, when more ontolo-
gies are published, mapping them together using vocabulary de�ned in the OWL
speci�cation is needed to gain full bene�t from the published ontologies. The more

41http://www.hibernate.org

54

such mappings exist, the more complicated will the visualization of interlinked on-
tologies become, and the problem of providing feasible ontology visualization should
be tackled.

Provided programmatically accessible web services return format was implemented
as RDF/XML serialized subgraphs of the ontology. Such approach is not convenient
for the invoking client to process when compared to the SKOS API [DB04] suggestion
on presenting the concepts using XML Schema which enables easy transformation
of the messages to native language classes, regardless of the programming language
as long as object oriented methods are applied. However, the approach used in the
SKOS API does not suite generic ontologies, because the assumption of a �xed set
of concept's properties can not be done. Therefore it should be resolved if the web
services need to be developed individually for all ontologies, thus ful�lling the needs
of application developers.

The initial experiences of the Javascript API suggest that the work on providing
ready-to-use user interface components should be continued. First, from a web
application viewpoint, but also from a desktop application viewpoint. For example,
ontology library services could be o�ered as a library containing Java Swing or C#
graphical widgets providing ontology visualization and integration point to external
applications.

Finally, from an architectonic viewpoint, the idea of providing high con�gurabil-
ity to a system implementing ontology services is suitable for ontologies that are
developed using few properties. It is also su�cient, when the services required by
ontology end-users are simple, such as browsing an ontology and providing basic
search functionalities. When the system was tested using di�erent ontologies and
end-users, the need for di�erent visualization, support for di�erent ontology stan-
dards and annotation services raised. These requirements were realized by extending
the core implementation by adding new features which could be adjusted by mod-
ifying the system con�guration. However, maintainability of a system supporting
di�erent and ontology-speci�c use-cases is challenging and is prone to produce low
quality design and code. Therefore the idea of a con�gurable multipurpose ontology
services tool is not feasible when designing general ontology services for end-users. A
better approach would be a system that provides a set of core services and interfaces
which a developer can extend to the speci�c needs of his ontology.

The presented ontology services prototype Onki was implemented to gain experi-
ences of the services. The focus was in implementing the use cases rather than in

55

design and architecture. The next generation ontology services could be considered
as a lightweight ontology services framework based on the concept of 'inversion of
control' (IOC) [JF88]. IOC is based on the idea of minimizing dependencies between
components in an application. The dependencies are minimized by con�guring each
component as an individual service, and the application is assembled from these
services by con�gurating the application rather than coding it. For example, frame-
works such as Spring42, HiveMind43 and PicoContainer44 provide mechanisms for
creating applications that are based on this idea. Using such approach it is possible
to develop a set of core ontology services and interfaces described in this thesis. Such
an architecture could respond well to the arising need from di�erent ontologies when
compared to the implemented architecture. Basic implementation for the services
could also be provided, leaving complex implementation of services for the developer
community involved with domain ontologies.

Acknowledgements

This thesis is part of the National Finnish Ontology Project (FinnONTO) 2003-
200745, funded mainly by The National Technology Agency (Tekes) and a consortium
of 37 companies and public organizations.

I want to thank all my colleagues in the Semantic Computing Research Group46

at the University of Helsinki and Helsinki University of Technology for ideas and
suggestions considering the implemented prototype and the thesis as a whole. Es-
pecially fellow researchers Thomas Häggström Tomi Kauppinen, Tuukka Ruotsalo
and Arttu Valo deserve to be mentioned. Although most of the ideas born in that
room were "o� target" and in most cases had nothing to do with my thesis, those
moments ignited the spark for new ideas and o�ered occasional time o� from the
thesis writing process. Finally, and by no means least, I would like to express grat-
itude to my supervisor, Professor Eero Hyvönen, for the opportunity to work in
the FinnONTO-project and most importantly for the guidance in getting the thesis
done.

42http://www.springframework.org/
43http://hivemind.apache.org/
44http://www.picocontainer.org/
45http://www.seco.tkk.�/projects/�nnonto/
46http://www.seco.tkk.�

56

References

ABG04 Aitchison, J., Bawden, D. Gilchrist, A., Thesaurus Construction and
Use: A Practical Manual, 3th edition. Routledge, 2004.

BEK+00 Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N.,
Nielsen, H. F., Thatte, S. Winer, D., Simple Object Access Proto-
col (SOAP) 1.1. W3C, 2000. URL http://www.w3.org/TR/2000/
NOTE-SOAP-20000508/.

BG05 Brickley, D. Guha, R., RDF Vocabulary Description Language 1.0:
RDF Schema. W3C, 2005. URL http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/.

BKvH02 Broekstra, J., Kampman, A. van Harmelen, F., Sesame: A generic
architecture for storing and querying rdf and rdf schema. Proceedings
of the 1st International Semantic Web Conference (ISWC 2002). ACM
Press, 2002, 54�69.

BL05 Berners-Lee, T., Uniform Resource Identi�er (URI): Generic Syntax,
2005. URL http://www.gbiv.com/protocols/uri/rfc/rfc3986.
html.

BLHL01 Berners-Lee, T., Hendler, J. Lassila, O., The semantic web. Scienti�c
American, 284,5(2001), 34�43.

BMR+96 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. Stal, M.,
Pattern-Oriented Software Architecture, Volume 1: A System of Pat-
terns. John Wiley & Sons, 1996.

BT04 Binding, C. Tudhope, D., Kos at your service: Programmatic access
to knowledge organisation systems. Journal of Digital Information,
4,4(2004).

BT05 Binding, C. Tudhope, D., Towards terminology services: experiences
with a pilot web service thesaurus browser. Proceedings of the Inter-
national Conference on Dublin Core and Metadata Applications, 2005,
269�273.

BvHH+04 Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuin-
ness, D. L., Patel-Schneider, P. F. Stein, L. A., OWL Web Ontology

57

Language Reference. W3C, 2004. URL http://www.w3.org/TR/2004/
REC-owl-ref-20040210/.

CCMW01 Christensen, E., Curbera, F., Meredith, G. Weerawarana, S., Web
Services Description Language. W3C, Version 1.1, 2001. URL http:
//www.w3.org/TR/2001/NOTE-wsdl-20010315/.

DB04 Dave Beckett, Nikki Rogers, A. M., The Simple Knowledge Or-
ganisation System (SKOS) API: SKOSThesaurus, 2004. URL
http://www.w3.org/2001/sw/Europe/reports/thes/api/docs/
org/w3/y2001/sw/Europe/skos/SKOSThesaurus.html.

DF01 Ding, Y. Fensel, D., Ontology library systems: The key to success-
ful ontology reuse. Proceedings of SWWS'01, The �rst Semantic Web
Working Symposium. Springer Verlag, 2001, 93�112.

DWM01 Das, A., Wu, W. McGuinness, D. L., Industrial strength ontology man-
agement. Proceedings of SWWS'01, The �rst Semantic Web Working
Symposium. Springer-Verlag, 2001, 17�37.

EMSS00 Erdmann, M., Maedche, A., Schnurr, H. Staab, S., From manual to
semi-automatic semantic annotation: About ontology-based text anno-
tation tools. Proceedings of the COLING 2000 Workshop on Semantic
Annotation and Intelligent Content, 2000.

Fen01 Fensel, D., Ontologies: Silver Bullet for Knowledge Management and
Electronic Commerce. Springer-Verlag, 2001.

FFR97 Farquhar, A., Fikes, R. Rice, J., The ontolingua server: a tool for
collaborative ontology construction. International Journal of Human-
Computer Studies, 46,6(1997), 707�727.

Fie00 Fielding, R. T., Architectural Styles and the Design of Network-based
Software Architectures, PhD Thesis. , University of California, 2000.

FSvH03 Fluit, C., Sabou, M. van Harmelen, F. Supporting User Tasks through
Visualisation of Light-weight Ontologies, Handbook on Ontologies in
Information Systems. Springer-Verlag, 2003.

GB05 Grady Booch, Ivar jacobson, J. R., Uni�ed Modeling Language Refer-
ence Manual, 2nd Edition. Addison Wesley, 2005.

58

Gru93 Gruber, T. R., A translation approach to portable ontology spesi�ca-
tions. Knowledge Acquisition, 5,2(1993), 199�220.

HM06 Hyvönen, E. Mäkelä, E., Semantic autocompletion. Proceedings of the
�rst Asia Semantic Web Conference (ASWC 2006), Beijing. Springer-
Verlag, 2006.

HS02 Handschuh, S. Staab, S., Authoring and annotation of web pages in
cream. WWW '02: Proceedings of the 11th international conference on
World Wide Web. ACM Press, 2002, 462�473.

HVK+05 Hyvönen, E., Valo, A., Komulainen, V., Seppälä, K., Kauppinen, T.,
Ruotsalo, T., Salminen, M. Ylisalmi, A., Finnish national ontologies
for the semantic web - towards a content and service infrastructure.
Proceedings of International Conference on Dublin Core and Metadata
Applications (DC 2005), 2005.

IJ04 Ian Jacobs, N. W., Web Services Architecture. W3C, 2004. URL http:
//www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

JF88 Johnson, R. E. Foote, B., Designing reusable classes. Journal of Object-
Oriented Programming, 1,2(1988), 22�35.

JKN01 Järvelin, K., Kekäläinen, J. Niemi, T., Expansiontool: Concept-based
query expansion and construction. Information Retrieval, 4,3-4(2001),
231�255.

KH04 Korpilahti, T. Hyvönen, E., An architecture for collaborative ontol-
ogy library development. Proceedings of the 16th European Conference
on Arti�cial Intelligence (ECAI2004), Workshop on Application of Se-
mantic Web Technologies to Web Communities, 2004.

KH06 Kauppinen, T. Hyvönen, E. Modeling and Reasoning about Changes in
Ontology Time Series, Ontologies: A Handbook of Principles, Concepts
and Applications in Information Systems, 319�338. Springer-Verlag,
2006.

KM02 Koivunen, M. Miller, E., W3C semantic web activity. Proceedings of
the Semantic Web Kick-O� in Finland - Vision, Technologies, Research,
and Applications. Helsinki Institute for Information Technology, HIIT
Publications, 2002, 27�44.

59

KPO+05 Kiryakov, A., Popov, B., Ognyano�, D., Manov, D. Kirilov, A., Se-
mantic annotation, indexing, and retrieval. Journal of Web Semantics,
10,2(2005), 39�78.

KVH05 Komulainen, V., Valo, A. Hyvönen, E., A tool for collaborative ontol-
ogy development for the semantic web. Proceedings of International
Conference on Dublin Core and Metadata Applications (DC 2005),
2005.

LRP95 Lamping, J., Rao, R. Pirolli, P., A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. CHI '95: Proceed-
ings of the SIGCHI conference on Human factors in computing systems.
ACM Press, 1995, 401�408.

McG01 McGuinness, D. L. Ontologies Come of Age, The Semantic Web: Why,
What, and How, 98�99. MIT Press, 2001.

MHSV04 Mäkelä, E., Hyvönen, E., Saarela, S. Viljanen, K., Ontoviews - a tool
for creating semantic web portals. Proceedings of the International Se-
mantic Web Conference. Springer-Verlag, 2004, 797�811.

MM04 Menola, F. Miller, E., RDF Primer. W3C, 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

NSD+01 Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W.
Musen, M. A., Creating semantic web contents with protege. IEEE
Intelligent Systems, 16,2(2001), 60�71.

OVSM04 Oberle, D., Volz, R., Staab, S. Motik, B. An Extensible Ontology Soft-
ware Environment, Handbook on Ontologies in Information Systems,
299�320. Springer-Verlag, 2004.

Pau05 Paulson, L. D., Building rich web applications with ajax. IEEE Com-
puter, 38,10(2005), 14�17.

PE03 P. Eklund, R. Cole, N. R. Retrieving and Exploring Ontology-based In-
formation, Handbook on Ontologies in Information Systems. Springer-
Verlag, 2003.

PL03 Perrey, R. Lycett, M., Service-oriented architecture. SAINT Work-
shops. IEEE Computer Society, 2003, 116�119.

60

PS05 Prud'hommeaux, E. Seaborne, A., SPARQL Query Language
for RDF. W3C, 2005. URL http://www.w3.org/TR/2006/
WD-rdf-sparql-query-20061004/.

RO85 Rzepka, W. Ohno, Y., Requirements engineering environments: Soft-
ware tools for modeling user needs - guest editors' introduction. IEEE
Computer, 18,4(1985), 9�12.

Sev03 Sevcenko, M., Online presentation of an upper ontology. Proceedings of
Znalosti 2003, 2003.

SGD04 Soualmia, L. F., Golbreich, C. Darmoni, S. J., Representing the mesh in
owl: Towards a semi-automatic migration. Proceedings of the KR 2004
Workshop on Formal Biomedical Knowledge Representation. CEUR-
WS.org, 2004, 81�87.

Som00 Sommerville, I., Software Engineering. Addison Wesley, 2000.

Sto04 Stojanovic, L., Methods and Tools for Ontology Evolution, PhD Thesis.
, Universität Karlsruhe, 2004.

VCFLGP03 Vega, J. C. A., Corcho, Ó., Fernández-López, M. Gómez-Pérez, A.,
Webode in a nutshell. AI Magazine, 24,3(2003), 37�47.

VH06 Valkeapää, O. Hyvönen, E., A browser-based tool for collaborative
distributed annotation for the semantic web. 5th International Semantic
Web Conference, Semantic Authoring and Annotation Workshop, 2006.

VOSM03 Volz, R., Oberle, D., Staab, S. Motik, B., Kaon server - a semantic
web management system. Alternate Track Proceedings of the Twelfth
International World Wide Web Conference, WWW2003. ACM Press,
2003.

WGA05 Wood, D., Gearon, P. Adams, T., Kowari: A platform for semantic
web storage and analysis. Proceedings of the 14th International WWW
Conference. Springer-Verlag, 2005.

Appendix 1. An Example Onki Con�guration

As described in chapter 5.1, Onki provides an xml-con�guration �le to adjust the
services framework for di�erent ontologies. Following high-level parameters can be
used to customize the provided services for various purposes. The example con�gu-
ration describes detailed con�guration alternatives of each element.

• Repository-element is used for specifying the data access to ontologies, which
can be stored in either database, �le or HTTP address.

• Annotation-repository-element provides a mechanism for storing annota-
tions in the system.

• Rule-engine-element con�gures the use of external rule-storage for the ontol-
ogy.

• Classes-element contains parameters for setting the visualizes concepts and
their properties.

• Result-order-element is used for sorting the visualized concepts and proper-
ties.

• Visualization-element speci�es what information of the concepts is shown
to the user.

• Utils-element is an extension point for di�erent utility tools for enhancing
queries. For example a synonym-backend can be con�gured.

• Login-element enables authentication and user management to the system.

<?xml version="1.0" encoding="UTF-8" ?> <onki-services-conf>

<!-- === 1. Set up connection to used ontologies ====================== -->
<!-- impl: -->
<!-- File(s) : fi.helsinki.cs.seco.onki.logic.impl.FileConnector -->
<!-- Jena DB : fi.helsinki.cs.seco.onki.logic.impl.JenaDbConnector -->
<!-- Http : fi.helsinki.cs.seco.onki.logic.impl.HttpConnector -->
<!-- -->
<!-- model: -->
<!-- Look for static fields in com.hp.hpl.jena.ontology.OntModelSpec. -->
<!-- Prefer non-inference models. -->

<!-- == -->
<repository impl="fi.helsinki.cs.seco.onki.logic.impl.FileConnector"

model="OWL_FULL_MEM">

<!-- === 1.1 Jena Database Configuration ========================== -->
<!-- driver: -->
<!-- JDBC-driver classname (remember to put in lib/). -->
<!-- url: -->
<!-- jdbc-url (jdbc:protocol://server/database). -->
<!-- username: -->
<!-- Database username/login. -->
<!-- password: -->
<!-- Corresponding password for the username. -->
<!-- engine: -->
<!-- One of (MySQL, PostgreSQL, Oracle). -->
<!-- == -->
<database>

<driver>com.mysql.jdbc.Driver</driver>
<url>jdbc:mysql://localhost/ONKI_VAO</url>
<username>root</username>
<password>root</password>
<engine>MySQL</engine>

</database>

<!-- === 1.2 Ontologies in file(s) configuration ================== -->
<!-- Can have 1..n <include>/path/to/file.owl</include> elements. -->
<!-- == -->
<file>

<include>webapps/onki/samples/YSO-UO.owl</include>
</file>

<!-- === 1.3 Ontologies in HTTP-repository ======================== -->
<!-- Can have 1..n <url>/path/to/file.owl</url> elements. -->
<!-- == -->
<http>

<url>http://localhost:8081/YSO.rdfs</url>
</http>
</repository>

<!-- === 2. Set up connection to an annotation repository ============ -->
<!-- For external clients to upload/insert annotations, which can be -->
<!-- browsed and viewed in this Onki-browser. -->
<!-- At the moment only persistent annotation repositories is used -->
<!-- -->
<!-- enabled: (boolean true/false) -->
<!-- boolean (false, true) : is the annotation repository used -->
<!-- === -->
<annotation-repository enabled="false"

impl="fi.helsinki.cs.seco.onki.logic.impl.JenaDbConnector"
model="OWL_DL_MEM">

<database>
<driver>com.mysql.jdbc.Driver</driver>
<url>jdbc:mysql://wrk-2.seco.hut.fi/onki</url>
<username>onki</username>
<password>onki</password>
<engine>MySQL</engine>

</database>
</annotation-repository>

<!-- === 3. Jena Rule-engine to derive more statements to model ====== -->
<!-- Makes it possible to use external rule-file for generating -->
<!-- more statements to the underlying ontology model. -->
<!-- -->
<!-- enabled: (boolean true/false) -->
<!-- is the rule-engine used or not. -->
<!-- input: (one element) -->
<!-- The location of rules as URL. -->
<!-- === -->
<rule-engine enabled="false">

<input>file:conf/onki.rules</input>
</rule-engine>

<!-- === 4. Define used root classes and properties as well as labels = -->
<!-- Configures the root classes and properties that are used in -->
<!-- rendering hierarchies. Also defines labels that are shown -->
<!-- from the concepts. Possibility to restrict the browser of -->
<!-- showing only concepts that have certain metaclass. -->
<!-- == -->

<classes>

<!-- === 4.1 Property used in building hierarchy ================== -->
<!-- The property which creates the class-hierarchy. -->
<!-- == -->
<follow>http://www.w3.org/2000/01/rdf-schema#subClassOf</follow>

<!-- === 4.2 Root concepts of the ontology ======================== -->
<!-- Roots-node can have 1..nc root-elements. -->
<!-- == -->
<roots mode="EXACT">

<root>http://www.cs.helsinki.fi/group/seco/ns/2004/04/YSO#endurant</root>
<root>http://www.cs.helsinki.fi/group/seco/ns/2004/04/YSO#perdurant</root>
<root>http://www.cs.helsinki.fi/group/seco/ns/2004/04/YSO#abstrakti</root>

</roots>

<!-- === 4.3 Labels of concepts =================================== -->
<!-- Labels-node can have 1..n label-elements. -->
<!-- -->
<!-- Having multiple labels is useful, if browser is constructed -->
<!-- from many ontologies, which have different label describing -->
<!-- the human readable label. -->
<!-- == -->
<labels>

<label>http://www.cs.helsinki.fi/group/seco/ns/2004/04/YSO#label</label>
<label>http://yso.fi/mao#label</label>
<label>http://www.cs.helsinki.fi/group/seco/ns/2004/04/YSO#label</label>
<label>http://www.cs.helsinki.fi/group/seco/ns/2004/05/VAO#label</label>
<label>http://www.w3.org/2000/01/rdf-schema#label</label>

</labels>

<!-- === 4.4 Restriction on NOT showing certain concepts ========== -->
<!-- enabled: (boolean true/false) -->
<!-- Is the restriction used or not. -->
<!-- predicate: -->
<!-- predicate defining the metaclass (rdf:type). -->
<!-- -->
<!-- allowed-types node can have 1..n type-elements. -->
<!-- == -->

<allowed-types enabled="false"
predicate="http://www.w3.org/1999/02/22-rdf-syntax-ns#type">

<type>http://yso.fi/YSO#YSOconcept</type>
<type>http://yso.fi/YSO#YSOgroupConcept</type>

</allowed-types>

<!-- === 4.4 Alphabetical index configuration ==================== -->
<!-- Alphabetical concept index is generated from this -->
<!-- comma separated list. -->
<!-- == -->
<alpha-index>A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z</alpha-index>
</classes>

<!-- === 5. Define how the concepts and properties are sorted ======== -->
<!-- In most configurations, the properties describing the human -->
<!-- readable label of the concept is in the predicate-element. -->
<!-- -->
<!-- Both concepts and properties predicates-node can have -->
<!-- 1..n predicate-elements. -->
<!-- It is possible to write custom sorting algorithm, as long as it -->
<!-- implements the Comparator-interface in Java. -->
<!-- === -->
<result-order>
<concepts

impl="fi.helsinki.cs.seco.onki.logic.impl.ConceptAlbhabethicalComparator">
<predicates>

<predicate>http://yso.fi/YSO#prefLabel</predicate>
<predicate>http://www.w3.org/2000/01/rdf-schema#label</predicate>

</predicates>
<ascending>true</ascending>

</concepts>

<properties
impl="fi.helsinki.cs.seco.onki.logic.impl.PropertiesAlbhabethicalComparator">
<predicates>

<predicate>http://www.w3.org/2000/01/rdf-schema#label</predicate>
<predicate>http://yso.fi/#label</predicate>

</predicates>
<ascending>true</ascending>

</properties>
</result-order>

<!-- === 6. Define external plug-ins, which can be used in searching ==== -->
<!-- Ideas for external connectors, which can be used in searching. -->
<!-- However, none of these have been implemented yet. -->
<!-- == -->
<utils>
<synset enabled="false" impl="fi.cs.helsinki.seco.onki.utils.impl.SimpleSynset"/>
<speller enabled="false" impl="fi.cs.helsinki.seco.onki.utils.impl.SimpleSpeller"/>
<lexical enabled="false" impl="fi.cs.helsinki.seco.onki.utils.impl.SimpleLexor"/>
</utils>

<!-- === 7. Define visualization of ontologies ======================== -->
<!-- Defines visualization of the browser. -->
<!-- == -->
<visualization>

<!-- === Define available locales and default locale for the UI === -->
<!-- ResourceBundles containing the locales are stored in -->
<!-- WEB-INF/classes/OnkiLocales_**.properties. Each locale -->
<!-- should have own bundle. -->
<!-- -->
<!-- id: -->
<!-- language-code for the locale, OnkiLocales_id-file should -->
<!-- contain the localization. -->
<!-- value: -->
<!-- Locale name shown in the UI. -->
<!-- == -->
<locales default="fi">

<locale id="fi">Suomi</locale>
<locale id="en">English</locale>
<locale id="se">Svenska</locale>

</locales>

<!-- === External file containing labels for properties =========== -->
<!-- For example, one could want to use localized label for -->
<!-- rdfs:label. These are read from conf/onki-visualization.rdf. -->
<!-- -->

<!-- enabled boolean (true/false) -->
<!-- Are external label-"ontology used or not. -->
<!-- == -->
<external-labels enabled="true"/>

<!-- === Stripping of long concept labels ========================= -->
<!-- enabled: boolean (true/false) -->
<!-- Is stripping of long labels used or not. -->
<!-- Value: -->
<!-- Integer of the maximum length. -->
<!-- == -->
<strip-long-labels enabled="true">20</strip-long-labels>

<!-- === Show namespace for concepts and properties in the UI ===== -->
<!-- concepts (boolean true/false) -->
<!-- Is the namespace shown for the concepts. -->
<!-- properties (boolean true/false) -->
<!-- Is the namespace shown for the properties. -->
<!-- == -->
<show-namespace concepts="true" properties="true"/>

<!-- === Paging of large search results and alphabetical index ==== -->
<!-- enabled (boolean true/false) -->
<!-- Is paging enabled or not. -->
<!-- value (Integer) -->
<!-- Is the namespace shown for the properties. -->
<!-- == -->
<result-paging enabled="true">90</result-paging>

<!-- === Restriction of concept's properties view ================== -->
<!-- Restricting the shown properties of concepts based on the -->
<!-- end user's knowledge of ontologies. The view could be changed -->
<!-- from the user interface. -->
<!-- -->
<!-- roles:novice and expert. For novice only the selected are -->
<!-- shown and for others all are shown. -->
<!-- === -->
<novice>

<property>rdfs:label</property>

<property>rdfs:comment</property>
<property>rdfs:subClassOf</property>
<property>YSO:actuality</property>

</novice>
</visualization>

<!-- === 8. Define user accounts ======================================= -->
<!-- User authentication -->
<!-- === -->
<login enabled="true"

impl="fi.helsinki.cs.seco.onki.logic.impl.OnkiUserSimpleBackend">
<user user="john" password="doe"/>
<user user="foo" password="bar"/>

</login>
</onki-services-conf>

Appendix 2. Onki WSDL Interface
Onki provides a SOAP-interface for querying underlying ontologies. All SOAP-methods
return a string containing Base64-encoded subgraph matching the query. A description
of these methods is listed below. For a complete reference of the interface, the WSDL-
description is also included.

• getConcept(String uri) Returns the concept matching the parameter given uri.

• getConceptsMatchingLabel(String search, String lang)Returns concepts match-
ing the given label and language.

• getConceptsMatchingRegex(String regexp, String lang)Returns concepts whose
labels match the given regular expression and language.

• getOntologies() Returns all the ontologies in the system.

• getOntologyProperties(String ns)Returns all the properties in the given namespace.

• getOntologyLabels(String uri) Returns properties which are con�gured as con-
cepts's labels in the parameter given ontology.

• getRelatedConcepts(String uri, Integer dist) Returns all the concepts which
are linked with some property to the parameter given one. The parameter 'dist'
speci�es how far in terms of edges is traversed from the concept. For example, value
1 would return only such concepts which are directly related to it.

• getRootConcepts(String ns) Returns root concepts of the given ontology. Con-
cepts which have the same namespace are considered to belong to the same ontology.

• getSiblingConcepts(String uri) Returns all the concepts which have the same
superclass as the parameter given one.

• getSubConcepts(String uri, Boolean transitive) Returns all subclasses or in-
stances of the parameter given concept. Either direct or transitive concepts are
returned depending on the boolean parameter.

• getSubConceptsMatching(String search, String uri, Boolean begin, Boolean
end, String lang) Returns all the concepts which are subclasses or instances of the
parameter given one. The label must match the parameter 'search' in the language
'lang'. The boolean parameters are used to add wildcards to the search string.

• getSuperConcepts(String uri, Boolean transitive) Returns all superclasses of
the parameter given concept. Either direct or transitive classes are returned depend-
ing on the boolean parameter.

• querySparql(String query) Returns the subgraph matching the parameter given
SPARQL-query.

<?xml version="1.0" encoding="UTF-8"?> <wsdl:definitions
targetNamespace="http://localhost:8080/onki/services/OnkiService"
xmlns:impl="http://localhost:8080/onki/services/OnkiService"
xmlns:intf="http://localhost:8080/onki/services/OnkiService"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="getSuperConceptsAllRequest">
<wsdl:part name="uri" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSubClassesMatchingResponse">
<wsdl:part name="getSubClassesMatchingReturn"

type="soapenc:string"/>
</wsdl:message>

<wsdl:message name="getConceptResponse">
<wsdl:part name="getConceptReturn" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSiblingConceptsResponse">
<wsdl:part name="getSiblingConceptsReturn" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSiblingConceptsRequest">
<wsdl:part name="uri" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getConceptNodesRequest">
<wsdl:part name="uri" type="soapenc:string"/>

<wsdl:part name="length" type="xsd:int"/>
</wsdl:message>

<wsdl:message name="getMatchingConceptsResponse">
<wsdl:part name="getMatchingConceptsReturn"

type="soapenc:string"/>
</wsdl:message>

<wsdl:message name="getMatchingConceptsRequest">
<wsdl:part name="match" type="soapenc:string"/>
<wsdl:part name="begin" type="xsd:boolean"/>

<wsdl:part name="end" type="xsd:boolean"/>
</wsdl:message>

<wsdl:message name="getSubConceptsRequest">
<wsdl:part name="uri" type="soapenc:string"/>
<wsdl:part name="direct" type="xsd:boolean"/>

</wsdl:message>

<wsdl:message name="getSuperConceptsResponse">
<wsdl:part name="getSuperConceptsReturn" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSuperConceptsAllResponse">
<wsdl:part name="getSuperConceptsAllReturn"

type="soapenc:string"/>
</wsdl:message>

<wsdl:message name="getConceptRequest">
<wsdl:part name="uri" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSuperConceptsRequest">
<wsdl:part name="uri" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSubClassesMatchingRequest">
<wsdl:part name="match" type="soapenc:string"/>
<wsdl:part name="subClassOf" type="soapenc:string"/>
<wsdl:part name="begin" type="xsd:boolean"/>
<wsdl:part name="end" type="xsd:boolean"/>
<wsdl:part name="xmlLang" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getSubConceptsResponse">
<wsdl:part name="getSubConceptsReturn" type="soapenc:string"/>

</wsdl:message>

<wsdl:message name="getConceptNodesResponse">
<wsdl:part name="getConceptNodesReturn" type="soapenc:string"/>

</wsdl:message>

<wsdl:portType name="OnkiService">
<wsdl:operation name="getConcept" parameterOrder="uri">
<wsdl:input name="getConceptRequest"

message="impl:getConceptRequest"/>
<wsdl:output name="getConceptResponse"

message="impl:getConceptResponse"/>
</wsdl:operation>

<wsdl:operation name="getSubConcepts" parameterOrder="uri direct">
<wsdl:input name="getSubConceptsRequest"

message="impl:getSubConceptsRequest"/>
<wsdl:output name="getSubConceptsResponse"

message="impl:getSubConceptsResponse"/>
</wsdl:operation>

<wsdl:operation name="getSiblingConcepts" parameterOrder="uri">
<wsdl:input name="getSiblingConceptsRequest"

message="impl:getSiblingConceptsRequest"/>
<wsdl:output name="getSiblingConceptsResponse"

message="impl:getSiblingConceptsResponse"/>
</wsdl:operation>

<wsdl:operation name="getSuperConcepts" parameterOrder="uri">
<wsdl:input name="getSuperConceptsRequest"

message="impl:getSuperConceptsRequest"/>
<wsdl:output name="getSuperConceptsResponse"

message="impl:getSuperConceptsResponse"/>
</wsdl:operation>

<wsdl:operation name="getSubClassesMatching"
parameterOrder="match subClassOf begin end xmlLang">

<wsdl:input name="getSubClassesMatchingRequest"
message="impl:getSubClassesMatchingRequest"/>

<wsdl:output name="getSubClassesMatchingResponse"
message="impl:getSubClassesMatchingResponse"/>

</wsdl:operation>

<wsdl:operation name="getMatchingConcepts" parameterOrder="match begin end">
<wsdl:input name="getMatchingConceptsRequest"

message="impl:getMatchingConceptsRequest"/>
<wsdl:output name="getMatchingConceptsResponse"

message="impl:getMatchingConceptsResponse"/>
</wsdl:operation>

<wsdl:operation name="getConceptNodes" parameterOrder="uri length">
<wsdl:input name="getConceptNodesRequest"

message="impl:getConceptNodesRequest"/>
<wsdl:output name="getConceptNodesResponse"

message="impl:getConceptNodesResponse"/>
</wsdl:operation>

<wsdl:operation name="getSuperConceptsAll" parameterOrder="uri">
<wsdl:input name="getSuperConceptsAllRequest"

message="impl:getSuperConceptsAllRequest"/>
<wsdl:output name="getSuperConceptsAllResponse"

message="impl:getSuperConceptsAllResponse"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="OnkiServiceSoapBinding" type="impl:OnkiService">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="getConcept">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getConceptRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://ws.onki.seco.cs.helsinki.fi"/>
</wsdl:input>
<wsdl:output name="getConceptResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getSubConcepts">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getSubConceptsRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getSubConceptsResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getSiblingConcepts">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getSiblingConceptsRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getSiblingConceptsResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getSuperConcepts">
<wsdlsoap:operation soapAction=""/>

<wsdl:input name="getSuperConceptsRequest">
<wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getSuperConceptsResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getSubClassesMatching">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getSubClassesMatchingRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getSubClassesMatchingResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getMatchingConcepts">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getMatchingConceptsRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getMatchingConceptsResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getConceptNodes">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getConceptNodesRequest">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getConceptNodesResponse">

<wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

<wsdl:operation name="getSuperConceptsAll">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getSuperConceptsAllRequest">
<wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:input>
<wsdl:output name="getSuperConceptsAllResponse">
<wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://ws.onki.seco.cs.helsinki.fi"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="OnkiServiceService">
<wsdl:port name="OnkiService"

binding="impl:OnkiServiceSoapBinding">
<wsdlsoap:address location="http://localhost:8080/onki/services/OnkiService"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Appendix 3. Onki Javascript API
Onki Javascript API provides a lightweight integration method for web applications. These
methods can be used by including the javascript from the Onki-server to the calling remote
application. For example, an annotation application or a portal can bene�t from these
functions.

• openOnki is used for opening the whole Onki-browser for annotation purposes.

• sendOnkiXMLQuery provides an AJAX-bridge to Onki's text-based concept search.

// ==
// Version : $Id: onki-client.js,v 1.0 2005/05/16 10:28:42 vpkomula Exp $
// Author : vpkomula
// Date : 28.04.2006
//
// Description:
//
// Ontology Library System Onki Javascript API for using the browser
// from external web-applications. Examples of using Javascript API,
// check http://demo.seco.tkk.fi/onki/mao/annotation/ for details.
// ==

// ==
// Public API-methods (Use these from external applications)
// ==

/**===
* Integrate to Onki-Browser using window referencing
*
* @param onkiUrl = Base
* @param destinationFieldUriId = Form field ID where URI is fetched
* @param destinationFieldLabelId = Form field ID where Label is fetched
* @param delimiter = Delimiter used in Label and URI field,
* if multiple values are fetched
* @param rangeRestriction = Set the Range-restriction to query
* ==

*/
function openOnki(onkiUrl, destinationFieldUriId,

destinationFieldLabelId, delimiter, rangeRestriction)

/**==
* Integrate to Onki-Browser using xmlHttpRequest and autocompletion
*
* @param onkiUrl = Base Onki-URL
* @param destinationFieldUriId = Form field ID where URI is fetched
* @param destinationFieldLabelId = Form field ID where Label is fetched
* @param delimiter = Delimiter used in Label and URI field,
* if multiple values are fetched
* @param rangeRestriction = Set the Range-restriction to query
* @param returnId = Where to return the focus (html-anchor)
* @param autocompleteId = What is the id of the autocomplete layer
* ==
*/
function sendOnkiXMLQuery(onkiUrl, key, uriFieldName, delimiter,

rangeRestriction, returnId,
autocompleteId)

