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Abstract. View-based search provides a promising paradigm for formu-
lating complex semantic queries and representing results on the Semantic
Web. A challenge for the application of the paradigm is the complexity of
providing view-based search services through application programming
interfaces (API) and web services. This paper presents a solution on
how semantic view-based search can be provided efficiently through an
API or as web service to external applications. The approach has been
implemented as the open source tool Ontogator, that has been applied
successfully in several practical semantic portals on the web.
Keywords: semantic view-based search, view projection, Semantic Web
middleware

1 Interfacing Search Services

The Semantic Web enables querying data based on various combinations of se-
mantic relationships. Because of the RDF data model, these queries are usu-
ally drafted as possibly complex sets of semantic relation patterns. An example
would be “Find all toys manufactured in Europe in the 19th century, used by
someone born in the 20th century”. Here “toys”, “Europe”, “the 18th century”,
“someone” and “the 19th century” are ontological class restrictions on nodes
and “manufactured in”, “used by” and “time of birth” are the required con-
necting arcs in the pattern. While such queries are easy to formalize and query
as graph patterns, they remain problematic because they are not easy for users
to formulate. Therefore, much of the research in complex semantic queries has
been on user interfaces [1, 2] for creating complex query patterns as intuitively
as possible.

View-based search [3, 4] is a search interface paradigm based on a long-
running library tradition of faceted classification [5]. Usability studies done on
view-based search systems, such as Flamenco [6, 4] and Relation Browser++ [7]
have proved the paradigm both powerful and intuitive for end-users, particu-
larly in drafting complex queries. Thus, view-based search presents a promising
direction for semantic search interface design, if it can be successfully combined
with Semantic Web technologies.



The core idea of view-based search is to provide multiple, simultaneous views
to an information collection, each showing the collection categorized according
to some distinct, orthogonal aspect. A search in the system then proceeds by
selecting subsets of values from the views, constraining the search based on the
aspects selected. As an example, figure 1 shows the view-based search interface
of the Veturi [8] yellow pages service discovery portal. Here, the user is looking
for sweets, and has specified “marmalade”, “buy” and “Helsinki” as the Patient
(Mitä), Process (Prosessi) and Place (Paikka) aspects of the service, respectively.

Fig. 1. Locating shops that sell marmalade in Helsinki

A key feature that differentiates view-based search from traditional keyword
and Boolean search is the use of a preselected group of categorizing views in both
formulating queries and in representing the results. The views give the user the
query vocabulary and content classification scheme in an intuitive format. In
addition, at each step, the number of hits belonging to each category is shown.
Because the search proceeds by selecting these categories as further constraints,
the user always knows beforehand exactly how many items will be in the result
set after her next move. This prevents the user from making selections that lead
to empty or very large result sets, and guides her effectively in constraining the
search.

View-based search has been integrated with the Semantic Web in [9–11]. In
this semantic view-based search, the facets are constructed algorithmically from
a set of underlying ontologies that are used as the basis for annotating search
items. Furthermore, the mapping of search items onto search facets is defined
using logic rules. This facilitates more intelligent search of indirectly related
items. Another benefit is that the logic layer of rules make it possible to use the



same search engine for content of different kinds and annotated using different
annotation schemes.

As part of the work, five view-based semantic portals were created. Previous
research on the interfaces of the portals [10–12] have proved that regarding
interface flexibility and extensibility with other semantic techniques, the view-
based paradigm provides a versatile base for search on the Semantic Web. The
functionalities of the interfaces developed span the whole range of search tasks
identified in recent search behavior research[13, 14].

Underlying all these portals is the semantic portal tool OntoViews [15], avail-
able open source under the MIT license1. The tool is based on the Service Ori-
ented Architecture (SOA) approach, combining independent Semantic Web Ser-
vices into a working whole. This article presents the most important of these
services: the general semantic view-based search service Ontogator.

Ontogator presents a solution to the following problem: what kind of search
engine service and Application Programming Interface (API) are needed for
supporting a variety of semantic view-based search interfaces? For a traditional
Boolean logic or keyword based search engine such as Google, the API is fairly
simple2. The functionalities needed of a general view-based search API are much
more complex. It should support facet visualization, including hit counting, facet
selection, and result visualization in different ways in addition to the search logic.

Ontogator is a service with an XML/RDF-based API that provides an exter-
nal software agent with all the services needed for performing view-based search.
The system with its query language and implementation is described in detail in
[16]. In the following, we focus in more detail on the design principles underlying
the system, and the issues faced in general while designing and implementing
semantic view-based search as an independent, general service.

2 Requirements for a View-Based Search API

Below are listed some services needed from the engine in a view-based semantic
portal, such as MuseumFinland [11], for providing the user with a useful view-
based user interface (UI).

1. Facets are exposed to the end-user in the UI for making category selections.
Therefore, querying facets with hit counts projected on categories is needed.

2. On the view-based UI, clicking on a category link in a facet activates view-
based search. The API therefore supports querying by Boolean category
search with term expansion along facets, i.e., basic view-based search.

3. Depending on the situation, some metadata of the RDF repository, such as
confidential information, should be filtered and consequently not be shown
on the UI. Therefore, a mechanism for specifying the form and content of
the results is useful.

1 http://www.seco.tkk.fi/projects/semweb/dist.php
2 see e.g. http://www.google.com/apis/reference.html#searchrequest



4. Reclassifying the result set along different facets and depths is needed when
inspecting the hit list. In MuseumFinland, for example, the UI provides the
user a link button for each view facet. By clicking it the museum collection
artifacts in the hit result set are reclassified along the selected facet, such as
Artifact type, Material type, Place of Manufacture, etc. A query mechanism
for this is needed.

5. Combining traditional keyword search with view-based search. Research has
shown [6, 4] that keyword search and view-based search complement each
other. In practice, both search paradigms have to be supported simultane-
ously, and a method for combining the paradigms is needed.

6. Support for knowledge-based semantic search. The search should be intel-
ligent in the sense that the engine can find, using domain knowledge, also
content that is only implicitly related with search categories. For example,
the underlying knowledge base of MuseumFinland has some 300 rules of
common knowledge that tell how artifacts are related to other concepts. If a
rule tells that doctor’s hats are used in academic ceremonial events, then a
search with the category ”Ceremonies” in the ”Events” facet should retrieve
all doctor’s hats even when the actual metadata of the hats in the underlying
databases does not directly mention ceremonies.

Generalizing these requirements and adding architectural constraints, in the
end the following design goals for the system were set:

1. Adaptability and domain independence. Ontogator should easily adapt to
variant domains and make use of the semantics of any data.

2. Standards. The query and response interfaces of Ontogator should conform
to established Semantic Web standards as independent semantic compo-
nents.

3. Extensibility. The system architecture should be extensible, especially with
regard to querying functionality.

4. Scalability. The system should scale to handle large amounts of semantic
metadata (millions of search items).

The challenge in designing the Ontogator search service was to find out how to
support these various needs of semantic view-based search in a computationally
scalable way. During design, it also became apparent that on the Semantic Web,
view category identification poses certain questions in itself. In the following,
these points will be discussed in their own sections.

3 Adaptability to different domains

A major issue in applying the view-based search paradigm is in how to create
the views used in the application as flexibly as possible. On the Semantic Web,
domains are described richly using ontologies. However, as in traditional clas-
sification systems, hierarchical hyponymy and meronymy relationships are still
important for structuring a domain. Therefore, these ontologies typically contain



a rich variety of such elements, most often defined with explicit relations, such
as “part-of” and “subclass-of”. This naturally leads to the idea of using these
hierarchical structures as bases for views in view-based searching. To carry this
out, Ontogator introduces a preprocessing phase termed view projection.

The transformation consists of two important parts: projecting a view tree
from the RDF graph, and linking items to the categories projected. Originally,
these tasks were performed by the Ontodella logic server [17], but recently have
been incorporated into Ontogator itself. For both tasks, Ontogator relies on
traversing the RDF graph guided by specified rules, picking up relevant con-
cepts and linking them into a view tree based on the relations they have in the
underlying knowledge base. The result of this phase is a set of indexed facet
structures linked with the actual content items to be searched for. The domain
dependent reasoning part of search is performed at this phase and means in
practice mapping search items to the search categories.

For describing the view projections, Ontogator uses an RDF-based configura-
tion format. The projection interface was designed to be modular and extensible,
so that new projection rule styles and constructs could be created and used in-
terchangeably in the system. Currently, the interface supports rules defined in
a simple RDF path language, as well as the Prova3 language, a Java version of
Prolog. This makes it possible to keep simple rule definitions simple, but also, if
needed, take advantage of the expression power of Prolog.

As an example of the configuration format, a snippet from the Veturi portal,
slightly adapted for demonstration purposes, is provided:

<ogt:HierarchyDefinition rdf:nodeID="patient">
<ogt:root rdf:resource="&object;Object"/>
<ogt:incProperty rdf:resource="&rdfs;label"/>
<ogt:subCategoryLink>

<ogt:ProvaLink rdf:nodeID="coicopSubClasses">
<ogt:isLeaf>false</ogt:isLeaf>
<ogt:linkRule>

rdf(Target,’coicop:hasParent’,Source).
</ogt:linkRule>

</ogt:ProvaLink>
</ogt:subCategoryLink>
<ogt:subCategoryLink rdf:nodeID="sumoSubClasses"/>
<ogt:itemLink rdf:nodeID="sumoItems"/>

</ogt:HierarchyDefinition>

In the example, in the tree projection phase a “Patient” hierarchy is pro-
jected, using two “subCategoryLink” rules for recursively adding subcategories
to the view. The first is a simple Prova rule for the COICOP [18] product hier-
archy. The second subcategory rule for projecting the Suggested Upper Merged
Ontology (SUMO) [19] -based process hierarchy is not actually defined here, but
refers to a Prova definition elsewhere in the RDF document. This possibility
for rule reuse is a nice property of the RDF model. As an example of a more
complex rule, consider the actual definition of the linked rule:

% base case, handle categories where we’re not told to stop, nor to skip
sumo_sub_category(Source,Target) :-

3 http://www.prova.ws/



Skip = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#skip’,
rdf(Target,’rdfs:subClassOf’, Source),
not(rdf(Target,’sumo_ui:display’,Skip)),
not(sumo_subcategory_not_acceptable(Target)).

% if we’re told to skip a category, then do it.
sumo_sub_category(Source,Target) :-

Skip = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#skip’,
rdf(SubClass,’rdfs:subClassOf’, Source),
rdf(SubClass,’sumo_ui:display’, Skip ),
sumo_sub_category(SubClass,Target).

% don’t process MILO categories
sumo_subcategory_not_acceptable(SubClass) :-

Milo = ’http://reliant.teknowledge.com/DAML/MILO.owl#’,
not(rdf_split_url(Milo,Prop,SubClass)).

% don’t process if we’re told to stop
sumo_subcategory_not_acceptable(SubClass) :-

Stop = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#stop’,
rdf( SubClass, ’sumo_ui:display’, Stop).

% don’t process if someone above us told us to stop
sumo_subcategory_not_acceptable(SubClass) :-

Stop = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#stop’,
rdf( Y, ’sumo_ui:display’, Stop ),
not( rdf_transitive(SubClass,’rdfs:subClassOf’,Y)).

Here, while the basis for hierarchy formulation is still the “rdfs:subClassOf”
relationship, complexity arises because it is not used as-is. The class hierarchy
of the SUMO ontology is designed mainly to support computerized inference,
and is not necessarily intuitive to a human end user. To make the hierarchy
less off-putting for a user, two additional rules are used, based on configuration
information encoded directly into the RDF data model. First, categories in the
middle of the tree that make sense ontologically but not to the user should be
skipped, bumping subcategories up one level. Second, sometimes whole subtrees
should be eliminated. In addition, in the data model there are also classes of
the Mid Level Ontology (MILO) [20] extending the SUMO tree. These are used
elsewhere to add textual material to the categories for text-based matching, but
are not to be directly processed into the tree.

From an algorithmical perspective, in projecting a tree from a directed graph,
there are always two things that must be considered. First, possible loops in the
source data must be dealt with to produce a Directed Acyclic Graph (DAG).
This usually means just dismissing arcs that would form cycles in the projection
process. Second, classes with multiple superclasses must be dealt with to project
the DAG into a tree. Usually such classes are either assigned to a single superclass
or cloned, which results in cloning also the whole subtree below.

The second phase of view projection is associating the actual information
items searched for with the categories. Most often, this is just a simple case of
selecting a property that links the items to the categories, but it can get more
complex than that here, too. Back in the first listing, the third link rule is an
“itemLink”, referring to the following rule:

<ogt:RDFPathLink rdf:nodeID="sumoItems">
<ogt:isLeaf>true</ogt:isLeaf>
<ogt:linkRule>



^sumo:patient^process:subProcess
</ogt:linkRule>

</ogt:RDFPathLink>

This rule is again defined using the simple RDF path format. The backwards
path in the example specifies that to locate the service processes associated with
a category of objects, one should first locate all processes where the category
is specified as the patient type. From there, one can then find the services that
contain those subprocesses.

The reason for introducing the projection preprocessing phase is two-fold.
First, in this way the Ontogator search engine can be made completely indepen-
dent of the domain knowledge and of the annotation schema used. It does not
know anything about the domain semantics of the original knowledge base or
the annotation schema used, but only about semantics of view-based search. Sec-
ond, during knowledge compilation, efficient indices facilitating computationally
scalable semantic view-based search to millions of search items can be created.
A problem of the preprocessing approach is that the contents cannot, at least in
the current implementation, be updated gradually.

The extensibility of the Ontogator projection architecture is based on combin-
ing only a few well defined component roles to create more complex structures.
There are in essence only two types of components in the architecture: those
linking individual resources to each other, and those producing resource trees.
Based on these roles it is easy to reuse components, for example using the same
linkers both for item and subcategory links, or creating a compound hierarchy by
including individual hierarchies. Using the RDF data model for configuring the
projection further supports this, giving a clear format for expressing these com-
binatory structures, and even making it possible to refer to and reuse common
component instances.

4 Category Identification

Because of the projection, categories in semantic view-based search cannot be
identified by the URIs of the original resources. First, the same resources may
feature in multiple views, such as when a place is used in both a “Place of Use”
and a “Place of Manufacture” view. Second, even inside one view, breaking
multiple inheritance may result in cloning resources. Therefore, some method
for generating category identifiers is needed.

An important consideration in this is how persistent the created identifiers
need to be. In a web application for example, it is often useful for identifiers
to stay the same as long as possible, to allow the user to long-term bookmark
their search state in their browser. A simple approach for generating persistent
category identifiers would start by just concatenating the URIs of categories in
the full path from the tree root to the current category to account for multiple
inheritance. Then an additional URI would have to be added, for differentiating
between the semantic sense by which the actual information items are related to
the categories, e.g. “Place of Use” and “Place of Manufacture” again. This will



create identifiers resilient to all changes in the underlying ontology knowledge
base other than adding or moving categories in the middle of an existing hier-
archy. And even in that case, good heuristics would be available for relocating
lost categories. This will, however, result in very long category identifiers.

If persistence is not critical, many schemes can be applied to generate shorter
category identifiers. In Ontogator, a prefix labeling scheme [21] based on sub-
category relationships is used: the subcategories of a will be identified as aa, ab
and so on. This scheme was selected because it makes finding out the subcate-
gories of a given category very easy, a useful property in result set calculation,
described later. The potential problem here is that even if the order in which
subcategories are projected is preserved, adding resources to, or removing them
from the ontology may result in categories with different identifiers. That is, a
category with the identifier aba that used to represent e.g. “Finland” could turn
out to represent “Norway”, with no means for the system to know about the
change. As the original portals created on top of OntoViews were fairly static,
this was not judged to be a problem outweighing the benefits.

5 Standards: Interfacing with Other Semantic
Components

On the Semantic Web, it is important that the interfaces of programs conform
to established standards, particularly for semantic services intended to be of
general use. To this end, both the queries and results of Ontogator are expressed
in RDF. The query interface is defined as an OWL ontology4, and is therefore
immediately usable by any application capable of producing either RDF, or XML
conforming to the RDF/XML serialization.

As for conforming to different functional needs, the interface itself then con-
tains plenty of options to filter, group, cut, annotate and otherwise modify the
results returned. These options allow the basic interface to efficiently meet dif-
ferent demands, as evidenced by the wide variety of interfaces[11, 8, 12] created
using the system. For example, when constructing a view-based query for an UI
page depicting the facets, one can specify that only the facet structure with hit
counts but without the actual hits is returned. On a hit list page the attributes
can be selected so that the actual hits are returned classified along the direct
subcategories of an arbitrary facet category.

Because Ontogator mainly works with tree hierarchies inherent in ontologies,
it is only natural that also the result of the search engine is expressed as an RDF
tree. This tree structure also conforms to a fixed XML-structure. This is done to
allow the use of XML tools such as XSLT to process the results. This provides
both a fall-back to well established technologies, and allows for the use of tools
especially designed to process hierarchical document structures. In OntoViews,
for example, the XML/RDF results of Ontogator are transformed into XHTML
UI pages by using XSLT.

4 http://www.cs.helsinki.fi/group/seco/ns/2004/03/ontogator#



The need for defining a new kind of tree-based query language, and not
using existing query schemes for relational databases, XML, or RDF is due to
the nature of the view-based search and to reasons of computational efficiency. In
view-based search, the UI is heavily based of tree structures exposing to the end-
user versatile information about the search categories and results. Supporting
the creation of such structures by a search engine makes application development
easier. The search and result construction is also more efficient this way. Firstly,
the needed structures can be constructed at the time of the search where the
information needed is easily available. Secondly, in this way the indices and
search algorithms can be optimized for view-based search in particular. In our
first implementation tests, some generic Semantic Web tools such as Jena were
used for implementing the search operations, but in the end, special purpose
Java programs were developed leading to a much more efficient implementation.

6 Extensibility

The RDF-based query language created for Ontogator was designed to be as
flexible and extensible as possible also with regard to querying functionality.
The basic query format is based on two components: an items clause for selecting
items for the result set, and a categories clause for selecting a subtree of categories
to be used in grouping the results for presentation. This format enables flexibly
grouping the results using any category clause, for example organizing items
based on a keyword query according to geolocations near the user.

The way both clauses work is based on an extensible set of selectors, compo-
nents that produce a list of matching resource identifiers based on some criteria
particular to them. The current implementation allows searching for view cate-
gories using 1) the category identifier, 2) the resource URI of which the category
is projected and 3) a keyword, possibly targeted at a specific property value of
the category. These category selectors can also be used also to select items. In
this case the selector selects all items that relate to the found categories. Items
can additionally directly be queried using their own keyword and URI selectors.
Different selectors can be combined to form more complex queries using special
union and intersection selectors.

Ontogator can be extended by defining and implementing new selectors. This
provides a lot of freedom, as the only requirement for a selector is that it produce
a list of matching items. The selector itself can implement its functionality in
any way desired. For example, a selector selecting items based on location could
act as a mere proxy, relaying the request to a GIS server using the user’s current
location as a parameter and returning results directly for further processing.

7 Scalability

The full vision of the Semantic Web requires search engines to be able to process
large amounts of data. Therefore, the scalability of the system was an important
consideration in the design of Ontogator. With testing on fabricated data, it was



deduced that in general, Ontogator performance degrades linearly with respect to
both increasing the average number of items related to a category and increasing
the amount of categories as a whole, with the amount of items in isolation
not having much effect. As for real-world performance, table 1 lists the results
of search performance tests done on the major portals developed. Because the
queries used in the different portals differ in complexity, the results do not scale
directly with regard to size, but still approximately conform to the results of the
earlier tests.

Portal Views Categories Items Avg. items Avg. response
/ category time

dmoz.org test 21 275,707 2,300,000 8.91 3.50 seconds

Veturi 5 2,637 196,166 128.80 2.70 seconds

MuseumFinland 9 7,637 4,132 5.10 0.22 seconds

SW-Suomi.fi 6 229 152 3.55 0.10 seconds

Orava 5 139 2,142 84.00 0.06 seconds
Table 1. Ontogator performance comparison

Of the performance test results, the ones done on the dmoz.org Open Di-
rectory Project website catalog data provide an obvious comparison point with
current web portals, and confirm that this implementation of view-based search
is sufficiently scalable for even large amounts of real life data. This scalability
in Ontogator has been achieved using a fast memory-resident prefix label index-
ing scheme [21], as well as query options restricting result size and necessary
processing complexity. These considerations taken are detailed below:

7.1 Indexing

The tree hierarchy -based search as presented here requires that related to a
category, direct subcategories, directly linked items, the transitive closure of
linked items and the path to the tree root can be computed efficiently. The
reverse relation of mapping an item to all categories it belongs to also needs to
be efficiently calculated.

Ontogator uses custom Java objects (in memory) to model the direct relations
of categories and items. All other data related to the categories and items, such
as labels or descriptions are retrieved from an associated Jena5 RDF model.

Both direct subcategories and directly linked items are recorded in memory
for each category to allow for speedy retrieval. A full closure of linked items is
not recorded, but calculated at runtime. To do this, Ontogator makes use of a
subcategory closure, gathering together all items in all the found subcategories.
The subcategory closure itself is acquired efficiently by making use of the prefix
5 http://jena.sourceforge.net/, the leading Java RDF toolkit, developed under an open

source licence at HP labs



labeling scheme used for the categories. After generation, the labels are stored
in a lexically sorted index, so that the subcategories of any given category are
placed immediately after it in the index. This way, any subcategory closure can
be listed in O(log(n) + n) time, by enumerating all categories in the index after
the queried resource, until a prefix not matching the current resource is found.
The use of prefix labeling also means that the whole path from view root to a
given category is directly recorded in its label. Another advantage is that the
identifiers are short, and easy to handle using standard Java utility classes.

7.2 Result complexity management

To decrease result file size as well as result computation complexity, Ontogator
provides many options to turn off various result components. If grouping is not
wanted, inclusion of categories can be turned off and respectively if items are
not desired, their inclusion can be turned off. Turning both off can be used to
gain metadata of the query’s results, such as number of item or category hits.

The most important of these options, with regards to query efficiency, deals
with the hit counts. Turning item hit counting off for categories speeds up the
search by a fair amount. Used generally, however, this deprives the tree-views
of their important function as categorizations of the data. Therefore, the option
makes most sense in pre-queries and background queries, as well as a last effort
to increase throughput when dealing with massive amounts of data.

7.3 Result breadth management

Result breadth options in Ontogator deal with limiting the maximum number
of items or categories returned in a single query. They can either be defined
globally, or to apply only to specified categories. With options to skip categories
or items, this functionality can also be used for (sub)paging.

In MuseumFinland, a metadata-generating pre-query is used before the ac-
tual search query, to optimize the result breadth options used. The query results
are used to specify the maximum number of items returned for each shown cat-
egory — if the result contains only a few categories, more items can be fitted in
each category in the user interface.

7.4 Result depth management

Depending on the nature of the view-based user interface, hierarchies of different
depths are needed. Currently Ontogator supports three subhierarchy inclusion
options. These are

none No subcategories of found categories are included in the result. This option
is used in category keyword queries: only categories directly matching the
given keyword will be returned.

direct Direct subcategories of found categories will be included in the result.
This option is used to build the basic views in MuseumFinland.



all The whole subhierarchy of found categories will be included in the result.
This option is used to show the whole classification page in MuseumFinland,
as well as the main view in Veturi, which give the user an overview of how
the items are distributed in the hierarchy.

Similar options are available for controlling if and how paths to the selected
category from the view root are to be returned.

With result breadth limits, these options can be used to limit the maximum
size of the result set. This is especially important in limited bandwidth environ-
ments.

8 Discussion

Several lessons were learned in designing and implementing Ontogator. First, the
projection formalism, particularly coupled with the expressive power of Prolog
rules provide a flexible base on which to build view projection. However, Prolog
is unfamiliar to many programmers. To counter this, projection configuration in
Ontogator also allows defining and using simpler formalisms for cases where not
so much expressive power is needed.

Second, to increase adaptability and component reuse, the old UNIX motto
for creating distinct components that do one thing well, but can be connected to
perform complex operations continues to apply. On the Semantic Web, it makes
sense for the components to both consume and produce, as well as define their
API in RDF and/or OWL.

Third, for scalable tree hierarchy-based search, an efficient index for calcu-
lating a transitive closure of items is needed, and it should be possible to curtail
result calculation complexity with options. Also, problems of category identifi-
cation need to be sorted out.

A limitation of the approach was also noted. Ontogator was designed as a
stateless SOA service with the expectation that queries would be largely in-
dependent of each other. However, for some applications, such as the Veturi
interface presented, this expectation does not hold. When navigating the tree
hierarchies in Veturi, most queries are just opening further branches in a result
tree that is already partially calculated. Currently, the whole visible tree needs
to be recalculated and returned. A possible solution using the current architec-
ture would be to maintain in Ontogator a cache of recently calculated result sets
for reuse. This would not be a large task, as the API already uses such a cache
in calculating category hit counts for the various views inside a single query.

9 Related Implementations

During the timeframe of this research, other implementations of view-based
search for the Semantic Web have also surfaced. The Longwell RDF browser6

6 http://simile.mit.edu/longwell/



provides a general view-based search interface for any data. However, it supports
only flat, RDF-property-based views. The SWED directory portal [22] is a se-
mantic view hierarchy-based search portal for environmental organisations and
projects. However, the view hierarchies used in the portal are not projections
from full-fledged ontologies, but are manually crafted using the W3C SKOS [23]
schema for simple thesauri. The portal does, however, support distributed main-
tenance of the portal data. The Seamark Navigator7 by Siderean Software, Inc.
is a commercial implementation of view-based semantic search. It also, however,
only supports simple flat categorizations.
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