
HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

Tuomas Korpilahti

ARCHITECTURE FOR DISTRIBUTED DEVELOPMENT OF
AN ONTOLOGY LIBRARY

Thesis submitted in partial fulfilment of the requirements for the degree of Master of
Science in Technology.

Espoo, March 31, 2004

Supervisor: Prof. Jorma Tarhio

Instructor: Prof. Eero Hyvönen

HELSINKI UNIVERSITY ABSTRACT OF THE
OF TECHNOLOGY MASTER’S THESIS
Author: Tuomas Korpilahti
Title: Architecture for Distributed Development of an Ontol-

ogy Library
Date: March 31, 2004 Pages: 60
Department: Department of Computer Science and Engineering
Professorship: T-106 Software Systems
Supervisor: Prof. Jorma Tarhio
Instructor: Prof. Eero Hyvönen

This thesis analyses a set of ontology change operations that break ontology depen-
dencies, and describes a client-server based ontology library architecture capable of
identifying those changes and helping to manage distributed ontology development.

The Semantic Web is the next generation of the Web, where computers are able to
understand the contents of the documents they store, and are able to intelligently link
and combine the documents based on their content. Ontologies are the core of the
Semantic Web. They are knowledge models that define the concepts used to describe
the documents and the semantic relations between them. The promise of the Semantic
Web requires shared, re-usable ontologies. To ease reuse, ontologies are collected into
public ontology libraries.

The main method of re-using an ontology is to include it as a part of another ontology.
The second ontology adds application specific knowledge by extending the definitions
of the first ontology. This approach allows ontology modularization and distributed
development. However, when the first ontology needs to evolve and is modified, the
changes may break the second ontology.

The thesis presents a set of ontology changes discussed in the literature. The effects of
each change operation to the depending ontologies are analysed, and the changes are
prioritized in terms of the severity of their effects and of the frequency of their use.

A client-server based architecture is designed to catch the changes that break ontologi-
cal dependencies. The system is capable of identifying the problem when the change is
made in an ontology editor, and can thus warn the ontology developer on the effects of
the change. The architecture framework allows building extensions to develop methods
for resolving the conflicts semi-automatically or automatically. For this, the architec-
ture can provide the exact cause of each problem and its effects in all ontologies that
depend on the one that is being modified.

The system incorporates a public ontology library where stable versions of ontolo-
gies can be published, and a development library where consistent version control is
enforced. A managed publishing process is established between the two libraries.

The system is demonstrated with a prototype, which was created to allow the dis-
tributed development of an upper level ontology: Yleinen Suomalainen Ontologia
(YSO, Standard upper Finnish ontology).

Keywords: ontologies, ontology libraries, distributed ontology development

ii

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ
Tekijä: Tuomas Korpilahti
Työn nimi: Hajautetun ontologiakirjaston kehittämisarkkitehtuuri
Päivämäärä: 31.3.2004 Sivuja: 60
Osasto: Tietotekniikan osasto
Professuuri: T-106 Ohjelmistojärjestelmät
Työn valvoja: Prof. Jorma Tarhio
Työn ohjaaja: Prof. Eero Hyvönen

Tämä työ luokittelee ontologian muutosoperaatiot, jotka rikkovat ontologioiden vä-
lisiä riippuvaisuuksia. Työssä kuvataan ontologiakirjastoarkkitehtuuri, joka havaitsee
vahingolliset muutokset ja jonka avulla niitä voidaan hallita.

Semanttinen web on tulevaisuutemme älykäs Internet, jossa tietokoneet kykenevät ym-
märtämään tallettamansa tiedon semanttiset suhteet. Semanttisten suhteiden perusteel-
la tietoa voidaan liittää yhteen uudella, tehokkaalla tavalla. Ontologiat ovat Semant-
tisen Webin ydin. Ne mallintavat tiedon taustalla olevien käsitteiden merkitykset ja
niiden väliset suhteet. Jotta Semanttinen Web voisi toteutua, tarvitaan yhteisiä, uudel-
leenkäytettäviä ontologioita tiedon merkitysten kuvailuun. Ontologiakirjastot kokoavat
ontologioita yhteen tukeakseen näiden uudelleenkäyttöä ja ontologioiden jakamista.

Tärkein tapa käyttää uudelleen jokin ontologia on sisällyttää se uuteen ontologiaan,
joka käyttötapauskohtaisesti tarkentaa ensimmäisen ontologian määritelmiä lisäämäl-
lä uusia käsitteitä ja suhteita. Tämä mahdollistaa ontologioiden jakamisen itsenäisiin
yksiköihin ja niiden hajautetun kehityksen. Ongelmaksi muodostuvat muutospaineet
käsitteiden muuttuessa; alkuperäisen ontologian käsitteitä joudutaan päivittämään, ja
muutokset voivat rikkoa siitä riippuvaisia ontologioita.

Tämä työ luokittelee joukon kirjallisuudessa tunnustettuja ontologian muutosoperaa-
tioita. Kunkin operaation seuraukset ontologiariippuvaisuuksille analysoidaan, ja muu-
tosoperaatiot asetetaan tärkeysjärjestykseen vaikutusten laajuuden ja operaation ylei-
syyden mukaan.

Luokitellut muutosoperaatiot voidaan havaita ontologiakirjastolla, jonka arkkitehtuu-
ri kuvataan. Asiakas-palvelin –pohjainen järjestelmä mahdollistaa virhetilanteiden ha-
vaitsemisen heti muutoksentekohetkellä ja tiedon välittämisen virheen syystä ja seu-
rauksista muille ontologioille. Virhetilanteiden käsittelyyn erikoistuneita komponent-
teja voidaan kehittää järjestelmän tarjoaman rajapinnan avulla.

Arkkitehtuuriin sisältyvät lisäksi julkinen ontologiakirjasto, jossa hyväksyttyjä onto-
logiaversioita voidaan julkaista, sekä kehitysympäristö, joka takaa yhtenäisen version-
hallinnan ontologioille. Ontologian julkaiseminen kehitysympäristöstä julkiseen onto-
logiakirjastoon tapahtuu hallitun julkaisuprosessin kautta.

Arkkitehtuurista on toteutettu prototyyppi, joka on rakennettu tukemaan Yleisen Suo-
malaisen Ontologian hajautettua kehitystä Helsingin Yliopistossa.

Avainsanat: ontologiat, ontologiakirjastot, hajautettu kehitys

iii

Acknowledgements

I am grateful to Professor Jorma Tarhio, my supervisor, for his valuable feedback on
this thesis.

I would like to express my appreciation to my instructor, Professor Eero Hyvönen, for
his guidance during the past few months.

I would also like to thank the people at the Semantic Computing Research Group at
the University of Helsinki for the enjoyable discussions, the visionary ideas and down-
to-earth criticism that helped me in pulling this all together.

My gratitude goes also to those who helped me to proofread this thesis.

Finally, I would like to thank my family and my fiancée Meri for their everlasting love
and support.

Espoo, March 31, 2004

Tuomas Korpilahti

iv

Contents

Glossary of Terms viii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Problem and Objectives 1

1.3 Benefits of Study . 2

1.4 Study Methods and Scope . 2

2 On Ontologies 4

2.1 Introduction . 4

2.2 Making Semantic Web Happen . 5

2.3 Ontology Re-Use by Inclusion . 6

2.4 Problems from Inclusion . 7

3 Problem Analyses 9

3.1 Introduction . 9

3.2 Change Analyses . 10

3.2.1 Atomic Changes . 10

3.2.2 Composite Changes . 15

3.3 Experiences from Building a Museum Ontology 19

3.4 Problems from Practice . 20

3.5 Prioritization of Changes . 21

3.6 Summary . 22

4 Existing Solutions 26

4.1 Introduction . 26

4.2 KAON Engineering Server . 26

4.3 Protégé . 27

v

4.4 OilEd . 27

4.5 Ontolingua . 27

4.6 WebODE . 28

4.7 OntoEdit . 28

5 Proposed Solution 29

5.1 ONKI Overview . 29

5.2 ONKI Server . 30

5.2.1 Service Registry . 32

5.2.2 User Management System 32

5.2.3 Development Library . 33

5.2.4 Dependency Management System 33

5.2.5 ONKI Messenger . 35

5.2.6 Public Ontology Library . 36

5.2.7 Publisher . 36

5.3 ONKI Client . 37

5.3.1 Change Identification Layer 37

5.3.2 Change Filtering Layer . 38

5.3.3 Problem Identification Interface 39

5.3.4 Problem Visualizer . 39

6 Implementation 41

6.1 Introduction . 41

6.2 Monitored Change Operations . 41

6.3 Stored Dependency Relations . 43

6.4 Server Implementation . 44

6.5 Client Implementation . 45

6.6 Performance Tests . 46

6.7 Test Results . 48

6.8 Results Explained . 49

7 Discussion and Conclusions 51

7.1 Changing an Included Ontology . 51

7.2 ONKI – an Architecture for Distributed Development of an Ontology
Library . 52

7.3 ONKI Prototype . 53

vi

7.4 Conclusions . 53

7.5 Significance of Results . 54

7.6 Future Work . 55

References 56

A Effects of Changes Prioritized 59

vii

Glossary of Terms

Affected element An ontology element that is modified by a change operation,
or that contains a reference that is broken by the change

Class An ontology element representing a categorical concept
IM Instant Messaging
Index term A thesaurus term meant for indexing data
Instance An individual representing a real world item belonging to a

certain ontology class
JDBC Java DataBase Connectivity
MAO MuseoAlan Ontologia, an upper level museum domain on-

tology
MASA MuseoAlan AsiaSanasto, a museum domain thesaurus
Metaclass A class having an instance that is also a class
MMS Multimedia Messaging Service
Non-descriptor A thesaurus term that should not be used to index data.

Points to an index term that should be used instead
Ontology A computer processable model defining the semantics of the

concepts and relations of some real world domain
Ontology element A class, a property, an instance or a metaclass of some on-

tology
Property A relation connecting a class or an instance to another class,

intance or to a literal value
SMS Short Message Service
URI Uniform Resource Identifier
YSA Yleinen Suomalainen Asiasanansto, a general Finnish the-

saurus
YSO Yleinen Suomalainen Ontologia, a general Finnish upper on-

tology being developed based on YSA
WWW World Wide Web

viii

Chapter 1

Introduction

1.1 Motivation

Knowledge modeling with ontologies is one of the key ideas of Semantic Web [1],
the next generation of the Web that is currently eliciting much research interest. On-
tologies, as defined by Struder and colleagues in [2], are machine comprehensible
knowledge models, that explicitly model the concepts and relations of the real world.
As Fensel argues in [3], ontologies must be interoperable and they must be publicly
shared in order to be able to gain the full benefits of Semantic Web.

According to Gruber’s ontology design principles [4], each real world concept is de-
fined only in one ontology, and all systems use the same definition for that concept.
This means that ontologies must be reusable in order to let ontology engineers benefit
from the increasing number of different domain-specific ontologies. A common way to
reuse ontologies is to include them in other ontologies, and then add new concepts and
relations. However, when the included ontology is modified, the changes may prove
critical for the including ontology and introduce inconsistencies that make the latter
unusable. The problem becomes worse when we acknowledge the fact that ontologies
are developed in a distributed manner, so that the including and included ontologies are
developed in geographically distributed locations by different people. As Stojanovic
et al. recognize in [5], Maedche et al. in [6] and Arpírez et al. in [7], a consistent
ontology development and maintenance architecture needs to be established in order
to manage the evolution of dependent ontologies. Nevertheless, Fensel’s note in [8]
still holds – methods and tools to support this complex task completely are currently
missing.

1.2 Research Problem and Objectives

Ontologies can be reused by including them in other ontologies and then adding new
concepts and relations. Severe consistency problems may arise when the included
ontology is changed. For example, deleting a concept or a property from an ontology

1

CHAPTER 1. INTRODUCTION 2

that is included in another ontology causes problems if the same concept or property
is referenced in the second ontology. This Master’s thesis is to propose how ontology
development and evolution could be done in a distributed environment in such a way
that whenever a developer performs a change, he is aware of its consequences to the
other ontologies that depend on the one he is editing. A specific use case for the thesis
is the development of Yleinen Suomalainen Ontologia (YSO, a general Finnish upper
ontology).

I will present an ontology library architecture that enables distributed developement
of inter-dependent ontologies. For this, I will identify the edit operations that can be
harmful and define when they are such. The architecture will provide a mechanism that
keeps the ontology developer informed of what consequences his changes will have in
ontologies that are dependent on the one he is editing. The goal of the architecture is
to create a system that could further be used to develop methodologies and techniques
that support the developer in the development process. The methodologies could guide
the developer to perform changes in such a way that minimizes the number of conflicts
in dependent ontologies. The architecture must therefore enable easy development of
extensions for handling the problematic changes.

1.3 Benefits of Study

I identify and analyze the change operations that cause problems with dependent on-
tologies. We can thus gain further understanding on the problems of distributed devel-
opment of mutually dependent ontologies.

The architecture can prevent unnecessary problems by warning the developer about
the consequences of his changes. As the developer now is notified about hazardous
changes, he gets a chance to think for alternative solutions and no longer makes a
malicious change by accident or by thinking it would not be harmfull. The number of
problems appearing to the reusers of the ontology is therefore smaller.

Catching edit operations that cause problems gives a possibility to guide the devel-
oper’s actions. It makes possible to propose the developer a set of alternative methods
to perform the same operation in such a way that dependency problems are smaller or
don’t even rise at all. Some suggestions of different methodologies have been made by
Stojanovic et al. in [5]. These and other methodologies can be easily developed and
tested on the architecture framework.

1.4 Study Methods and Scope

This study is a case study aimed at developing an architecture for ontology develop-
ment at the University of Helsinki. The specific target was to design a system to help
build and maintain a general Finnish upper ontology YSO that is currently under de-
velopment.

A literature study was conducted to gather and analyze problems in distributed devel-

CHAPTER 1. INTRODUCTION 3

opment of dependent ontologies. I interviewed the principal user of the system at the
National Library (Kansalliskirjasto) to further gather requirements and to gain insight
on the problems of this particular use case. I have also interviewed the key personnel
of one large scale ontology building project at the University of Helsinki to use their
experience in anticipating the problems that await the YSO developers. Based on the
findings, I designed an architecture that allows distributed development of dependent
ontologies. The concepts were tested by creating a prototype implementation of the
architecture to be used at the University of Helsinki and at the National Library.

The rest of this thesis is structured as follows. First the main challenges that distributed
ontology systems face are presented. Then the next Chapter identifies the change oper-
ations that may cause conflicts in an ontology dependency chain, and provides a more
profound analysis on their effects. After that, we will take a brief look at how those
problems are solved today. I then propose an ontology library architecture that recog-
nizes the problematic changes presented and that can be used to help to guide the user
to develop better ontologies. To build confidence in the solution, a prototype imple-
mented during the project is presented and evaluated. I will then conlude the thesis
with a discussion and a summary of my findings.

Chapter 2

On Ontologies

2.1 Introduction

According to the Computer Dictionary section of HyperDictionary [9], an ontology is
"an explicit formal specification of how to represent the objects, concepts and other
entities that are assumed to exist in some area of interest and the relationships that
hold among them". As the definition suggests, an ontology models different real life
concepts and their relationships in a commonly agreed way that can be shared and pro-
cessed by a machine. Uschold and Jasper [10] further explain the role of an ontology
in knowledge exchange by stating that "An ontology may take a variety of forms, but it
will necessarily include a vocabulary of terms and some specification of their meaning.
This includes definitions and an indication of how concepts are inter-related which col-
lectively impose a structure on the domain and constrain the possible interpretations
of terms.".

The two statements above underline the aspect that an ontology introduces a structure
on a domain of activity. We can readily find important application possibilities for
such domain structurization. On one hand, ontologies can be used to index documents
by linking the documents to the concepts that are most relevant to the contents of the
document. This process is called annotating the documents. On the other hand, given
a document, different ontologies can be used to find other documents with closely
related information by following the relations between the concepts in the ontologies.
The relations define the semantics of each document, that is, how it is related to other
documents in the universe. The semantic links carry specific information on what the
links mean – we are able to know the context of related things and in what role each
document is with regard to others. Having that information in hand allows search
engines to infere what information we might be currently interested in by looking at
the history of the documents that we have been viewing. Based on that reasoning the
search engines can intelligently sort search results, leave out irrelevant results, or even
propose us to view some documents that would not be found with a normal search but
could be interesting because their semantic links are closely related to the documents
we are currently viewing [3].

4

CHAPTER 2. ON ONTOLOGIES 5

2.2 Making Semantic Web Happen

In order to deliver the promise of intelligent indexing and information retrieval, the
ontologies used to index the documents should be publicly shared. Otherwise, if each
document would be indexed according to its private domain ontology no semantic
links could be established between the documents. Of course, closed systems could be
constructed on top of private ontologies but they would be unable to share information
and pass it from one system to another without individually tailored interfaces between
each system. Ontology sharing is hence an important issue in Semantic Web. Ontology
library systems as described by Ding and Fensel in [8] are a means of sharing ontolo-
gies to a wide user base. They are systems that aim to facilitate ontology sharing by
gathering a set of ontologies into one place. Ontology reuse is another main function
of an ontology library. Existing library implementations have different strategies to
support ontology reuse, ranging from a simple approach of copying existing concepts
as a basis for a new ontology to advanced ontology inclusion and merging capabili-
ties. Partly related to ontology reuse are the libraries abilities to structurize the library
contents – the ontologies, that is – according to some pattern. Some libraries provide
ontology structurization by using standard upper level ontologies [11, 12] while others
[13, 8] use less advanced means such as directory hierarchies. Library structuriza-
tion is a stepping stone to ontology management services, which become an important
feature of an ontology library as the number of ontologies in the library grows.

Ontology libraries group ontologies together to provide a common access point to a
set of ontologies. By promoting a single access to ontologies the libraries allow dif-
ferent parties to acquire the same set of ontologies as a basis for their applications.
But as always, each use case is different and is likely to need a customized ontology.
Thrust from applications thus pushes towards case-specific ontologies, but the system
as a whole will not function if the ontologies are not shared. Would there be a resolu-
tion for these conflicting needs? To be of any use, ontologies must be specific enough
to support the individual use cases, which may pose even conflicting requirements to
some concepts. At the same time, ontologies should be general enough to allow the
concepts of each use case to be linked to the concepts of the other use cases. The an-
swer is to create some general level ontologies, and then reuse and modify them to form
case specific ontologies. The general level ontologies provide the connecting frame-
work that allows semantic links between different case specific concepts. The details
of each particular case can be hidden inside the case specific ontologies. Promoting
ontology reuse is indeed another important goal of ontology library systems.

Modeling a domain by defining its concepts and their relations is a non-trivial task;
it requires domain expertise and is heavily affected by the intended use case of the
ontology. As is the case in any modeling, given the same problem domain two dif-
ferent persons can come up with completely different ontologies. Ontology reuse is
thus encouraged to benefit from the work already done in order to speed up ontology
development and cut down costs. By re-using the existing ontologies the information
annotated according to different application specific ontologies can be put into a wider
perspective and combined in innovative ways. A reuse method that is similar to soft-
ware engineering methods is to design ontologies as compact, independent modules.
These modules can then be combined to create more and more complex systems. Mod-
ularization of an ontology library is an effective way to support ontology reuse, as Ding

CHAPTER 2. ON ONTOLOGIES 6

and Fensel [8] point out.

Ontology modularization allows another important aspect of ontology library design,
that is the use of standard upper level ontologies. A standard upper level ontology is a
general ontology that defines general concepts that occur often in the domain ontolo-
gies that are used in applications. Its function is to tie together the different bits and
pieces of the re-usable ontologies by providing a common framework that can be ref-
erenced from the individual, re-usable modules. Applications can then use the upper
level ontology to find relations between two semantically distant concepts. In essence,
as ontologies structure the world, an upper level ontology is critical to structure the
ontology library itself [8]. However, there is something that starts to tear down this
powerful and expressive system into pieces even before it has been completed. This
demolishing force is called change.

The next sections will take a closer look at one of the principal methods of ontology
reuse, including existing ontologies into new ones. They show how it is done and what
it means for the concepts and for the ontologies themselves. Then we will consider the
challenges the combined ontology structure faces when a change is introduced in the
system. A clear example illustrates the problems that are caused by ontology reuse by
inclusion. These problems will be further analysed in the next chaper.

2.3 Ontology Re-Use by Inclusion

Ontologies can be reused in other ontologies by including them in each other ontology
as a part of the other ontology. The inclusion is done by including all definitions of the
original ontology in the other ontology. The developer can then add more definitions
to the other ontology to tailor it for its special use case. The new definitions can refer
to and reuse the concepts and relations defined in the included ontologies. Inclusion
means that the original definitions of the included statements remain in the included
ontology. Thus, any time the original definitions are changed, the changes affect all
including ontologies. Note that we are not only copying the statements into the new
ontology but want to base the new ontology on a set of re-usable modules.

Definition: Ontology
�

includes ontology � if and only if
�

includes all of � ’s state-
ments.

An ontology could be included in another ontology partially, also. However, as Maed-
che et al. point out in [6], it is much more difficult to prove ontological consistency
in the case of partial inclusion as some statements might be missing that would be
required by the included statements. Therefore, I have defined ontology inclusion to
mean including the entire ontology. Ontology inclusion could be cyclic, too, so that
ontology

�
includes � and � includes

�
. Cyclic inclusion chains are not consid-

ered because changes propagated through the cyclic chain would produce too complex
problems. For the rest of this thesis, ontology inclusion is never cyclic.

A need for a change imposes great challenges for ontology inclusion. As the world
changes, the reused ontologies must be adapted to the changed world or they become
obsolete. But there are other ontologies that are affected by the changes that are made

CHAPTER 2. ON ONTOLOGIES 7

to the reused ontologies, namely, the ontologies that are re-using them. They have
become dependent on the ontologies they included for reuse. Changes in the included
ontologies may invalidate the dependency relations from the including ontologies to
the included ones. Of course, instead of including an ontology we could merely copy
its contents to the new ontology. This time the original ontology could be changed
freely, and the new ontology would remain consistent because it would have its own
definitions of the concepts defined in the original ontology. Eventually this approach
would lead to a chaos; each ontology would need to be modified separately. There
would be no guarantees that the change would be implemented similarly in all includ-
ing ontologies. As these ontologies would in turn be reused, we would soon be having
a multitude of ontologies containing different versions of the same concepts with no
way to tell what they really mean and how they are related to one another. That is why
ontology reuse should be done by including ontologies instead of simply copying their
contents. As a consequence, when changing a reused ontology there is always a risk
that some other ontologies might become broken due to the change.

2.4 Problems from Inclusion

Ontology inclusion is a powerful and widely accepted way of re-using ontologies. It
can, however, lead to development problems when an included ontology is changed.
The following example clarifies the cause of problems, and introduces one problem
type.

Figure 2.1: Museum ontology including country ontology.

Assume an ontology of countries, which contains concepts such as "Country" and
"Union of Countries". As instances, the ontology would have, for example, "Finland",
"Sweden", "Estonia" and "European Union". Let’s now build a museum ontology
which contains museum artifacts, and connects them to the country in which they
were created. To reuse the countries already defined, the museum ontology includes
the country ontology. Suppose we have in a museum a hat that was manufactured in
Czechoslovakia, and we would like to add it to our ontology. We would first add to
the museum ontology a concept "Hat", create an instance of it, and then associate it

CHAPTER 2. ON ONTOLOGIES 8

with the instance "Czechoslovakia". The museum ontology is now dependent on the
country ontology, as Figure 2.1 depicts.

As Czechoslovakia no longer exists but was divided into the Czech Republic and Slo-
vakia, the developers of the country ontology remove it from the ontology. The situ-
ation is illustrated in Figure 2.2. This change breaks the museum ontology because it
contains a reference to an instance that no longer exists. A change made and verified
to be safe by one party has thus caused a serious problem to another party.

Figure 2.2: Museum and country ontologies after removal of Chechoslovakia.

In the example the effects were seen at the instance level but we run into similar prob-
lems at the class level very easily. This is because ontologies are a model of the world,
and need to be adjusted to fit current understanding of the world at each point in time.
Concepts do become outdated and are made obsolete by other concepts. Sometimes
the concept remains but its meaning changes with time. Ontologies thus need to be
changed. Until it is possible to detect what kind of effects a change would cause to
other ontologies, ontology engineers are unable to evaluate the results of a change, and
thus are incapable of comparing several changes that could be performed to fulfill the
need for change.

Chapter 3

Problem Analyses

3.1 Introduction

In this Chapter I will focus on the problem of ontology evolution and changing depen-
dent ontologies. Changes introduced by ontology evolution become harmful if they
affect other ontologies that depend on the one that is being changed. Ontology de-
pendency boils down to a reference from one ontology element (a metaclass, a class,
a property or an instance) to another, which is defined in a different ontology. Be-
cause the referenced ontology must contain the complete definition of the element, the
reference must be either from an element "lower" in the element hierarchy to an "up-
per" element (an instantiation or a subconcept relationship) or a direct reference where
the referenced element is the value of a property in another ontology. I have thus fo-
cused my analyses of a change operation to the children of the changed element – its
subclasses and instances – and to the direct references pointing to the element.

Noy and Klein [14] have identified ontology change operations and analyzed them with
respect to the instance-data preservation dimension. They define 22 change operations,
which can be grouped to the following categories: creating and deleting things, moving
a class (a property) up or down the class (property) hierarchy, adding and removing su-
perclasses, connecting and detaching class and property hierarchies (adding a property
to a class / removing a property from a class), re-classifying a class as an instance or
vice-versa, altering a restriction for a property, declaring two classes disjoint, moving
properties to another class, and merging and splitting classes. For these cases, Noy
and Klein provide valuable information by describing what data would be lost at the
instances in the changed ontology and further are there means to avoid the data loss.
However, a closer inspection of the change operations they have identified reveals that
some of them can be composed from the other change operations by performing the
other operations in a certain sequence. As a consequence, in the analyses presented by
Noy and Klein the same consequences are presented several times for different com-
posed operations. In my opinion, this suggests that a more expressive solution would
be to define a set of atomic change operations that perform fundamental changes to the
ontology structure, and then analyse the more complex operations by looking at the
combined effects of the atomic operations that can be used to compose them.

9

CHAPTER 3. PROBLEM ANALYSES 10

In the following section I present a set of atomic operations and analyse their effects
on the ontology that is changed. I show how they can be combined to form the more
complex operations suggested by Noy and Klein. In doing so I extend the analyses
of Noy and Klein with the class and property hierarchy aspects, i.e. how the class
and property models are affected by the change operations. I analyse the operations
from the viewpoint of inter-dependent ontologies, i.e. what are the effects of a change
with respect to the instance-data perservation dimension and with respect to the class
and property model consistency when the change affects an element that is referenced
from another ontology. Having completed the analyses of change operations, I move
the focus of the thesis towards the use case by briefly describing the problems and ex-
periences obtained by interviewing the future principal user of my system and the key
personnel of a similar project at the University of Helsinki. Based on the theoretical
analyses and on the practical problems, I prioritize the need of support for the different
change operations. A summary of the results concludes this Chapter.

3.2 Change Analyses

Some of the change operations presented in the analyses of Noy and Klein can be de-
composed into a more primitive operations. These atomic operations can be performed
in some sequence to produce the effects of the compound operation. For example, an
operation of merging a set of classes into one class can be decomposed into adding
all the properties of one class to another, then changing all the instances of the first
class to be instances of the second class, moving all property values pointing to the
first class to point to the second class, and then deleting the first class from the on-
tology. The same process can be repeated several times to merge more classes. The
next section suggests a set of atomic operations that could be used to compose the
compound change operations. One might argue that some atomic change operations
could be again decomposed into other operations, for example, adding a property to a
class is in fact a special case of widening a restriction for a property. However, those
operations are very fundamental in nature to build ontologies and therefore deserve a
more detailed analyses.

3.2.1 Atomic Changes

Creating Things Creating something that does not exist before is definitely an
atomic change. Creating a new class, property or instance adds a new URI to the
ontology. By definition the URI cannot have existed before in the ontology where it
is being created. However, it could be already used in another ontology. If there is an
ontology that includes the changed ontology and already contains an element with the
same URI, this results in a naming conflict. A Semantic Web practice is that any two
things with equal URIs are considered to be the same thing. If the types of the two
things are different – for example, "http://foo#bar" is a class in an ontology � and a
property in an ontology � , and � includes � – it is not clear what is the meaning of the
concept in the including ontology � . A conflict is thus introduced into the including
ontology � .

CHAPTER 3. PROBLEM ANALYSES 11

Deleting Things Deleting a class, property or an instance from an ontology removes
the URI and all references to it from the ontology. When deleting a class � , we must
decide what to do with its subclasses and instances. They can either be deleted or set
to become the subclasses and instances of the superclass of � or of the root class as
Maedche et al. illustrate in [15]. The first strategy simply increases the number of
deleted elements. It deletes all instances of � , all of � ’s subclasses and all of their
instances. It is a strategy that causes the maximal amount of data loss. Even though a
delete operation removes all references to the deleted things in the changed ontology,
it does not modify the including ontologies. They remain as they were and become
broken if they reference the deleted elements or any of their subelements or instances.
In the latter approach the instances of the class � have a less specific type and lose the
values of the propertied defined in � . The subclasses lose the properties defined in � .
All properties lose � from their range and domain. In the ontologies that include the
modified ontology instances still contain values for the properties that were defined in
� , and direct subclasses of � keep declaring � as their superclass. As � no longer
exists, all elements referencing to it become broken. The change is a data-loss change
at both class and instance levels, and may break the class model in the referencing
ontologies.

Deleting a property � removes the property from all classes, and the value of � for
all instances is lost; again a data-loss change. For the subproperties of � the change
equals the removal of a superclass: According to the selected strategy they are either
deleted or they become the subproperties of � ’s superproperty, losing the domain and
range inherited from � . The effects to the property hierarchy are identical to the effects
to the class hierarchy explained above. In addition to the broken property hierarchy,
there may be classes in the including ontologies that have � associated to them. These
classes become broken. Deleting an instance � invalidates in including ontologies
those instances that have � as the value of some of their properties. The class model is
not affected.

Adding a Property to a Class When a property � is added to a class � , the instance
data remains intact. The subclasses of � inherit the new property. Even if a subclass����� � already has the property � , normally no problems arise. Inheritance is used
to attach � to

����� � and the definitions between � and
����� � refine the relationship.

However, as Noy and Klein point out in [14], if the property restrictions inherited from���	��
�� � are incompatible with the local restrictions for the same property in
���� � ,

then the property values may become invalid and the operation would be a data-loss
operation. This can happen in the including ontologies, also, but otherwise they are
not affected. As the property � is added to the class � , � is added to the domain of �
and of its subproperties. This widens the group of classes that are associated with the
subproperties of � , and thus causes no problems.

Removing a Property from a Class Removing a property � from a class � removes
it from the subclasses of � , too. Instances of � (and of its subclasses) lose their values
for the property � . The class � is removed from the domain of all subproperties of � ,
and the instances of � and of the subclasses of � lose all values for those properties.
If the range of � is a class or an instance � , removing � from � removes a semantic

CHAPTER 3. PROBLEM ANALYSES 12

relation between � and the range class or instance � . The situation becomes very
unclear here, because the key idea behind re-using ontologies is to reuse and enrich the
semantic information stored in them. When this information is altered, the meaning of
the changed ontology changes. If the meaning is changed enough, the entire context
of the changed ontology may change. It should no longer be used in its previous
context but in some other context. As a consequence, the semantics of the change in
the including ontologies are unknown. At worst, the change can break the semantics
of ontologies including the changed ontology rendering them useless. In addition, the
including ontologies continue to reference to � from the instances of � and of its
subclasses. Those references are broken. The change loses data on instance level,
may break the semantics of the class model, and may introduce invalid references to
referencing ontologies.

Adding a Superclass or a Superproperty Adding a new subclass-superclass link
between a subclass

����� � and a superclass
��� �
�� � adds to

����� � new properties in-
herited from

���	��
�� � . In most cases, inheriting new properties is equivalent to adding
properties, which was shown to be safe in most cases. However, the warning said
about adding properties that already exist in the subclasses should be beared in mind.
Another effect of adding the subclass-superclass link is that the identity of

����� � (an
all of its subclasses) is changed as it inherits the identity of

��� �
�� � (it can be treated
as

��� �
�� �). The change does not restrict the current use of
����� � , so it is considered

a safe change. The property hierarchy and instances are not affected by the change.

If a new subproperty-superproperty link is added between a subproperty
���� � and a

superproperty
���	��
�� � , the same applies to the property hierarchy.

���� � inherits the
domain and range of

���	��
�� � , which essentially means widening the restrictions for����� � .
����� � can now be used in place of

���	��
�� � . Possible problems may arise if
there are property restrictions in the two properties that are not compatible with each
other. For example, if one of the properties is defined to be transitive or symmetric and
the other is not, there may be some values for the properties that break the transitivity
or symmetricity restriction. These values would become invalid. Because one must be
able to use all subproperties in the place of their superproperties, all subproperties of����� � – defined in the changed ontology or in the included ontologies - comply with
the restrictions posed by

����� � . Therefore, a validity check can be done in the changed
ontology by checking if there would be a conflict between the property restrictions of����� � and

��� �
�� � . If a conflict is not found, the change is safe. Otherwise, the change
poses the same problems in all including ontologies as it does in the changed ontology.

Removing a Superclass or a Superproperty When a subclass-superclass link be-
tween a subclass

����� � and a superclass
���	��
�� � is removed,

���� � no longer has the
properties it inherited from

���	��
�� � . We have already looked at the effects while talk-
ing about removing a property from a class. In addition to that, the identity of

���� �
changes as it can no longer be treated as

���	��
�� � . The change makes invalid all prop-
erty values belonging to a property that has defined

���	��
�� � of an instance of
���	��
�� �

as its range and has
����� � or an instance of

����� � as its value. These properties may
be defined in other ontologies as well.

Removing a subproperty-superproperty relationship between a subproperty
����� � and

CHAPTER 3. PROBLEM ANALYSES 13

a superproperty
���	��
�� � causes the same changes in the property hierarchy. In addi-

tion, as
����� � no longer inherits

���	��
�� � , the domain and the range of
���� � are de-

creased. Decreasing the domain of
����� � essentially removes

���� � from the classes
of

���	��
�� � ’s domain. Decreasing the range causes a problem if
����� � has at some

instance a value that no longer belongs to the range of
����� � . Thus, removing a super-

class causes data loss on instance level and may break the class model. These problems
arise in the including ontologies, also. The change does not cause any broken refer-
ences.

Re-classifying an Instance as a Class As an instance � is re-classified as a class, its
type changes. The number of instances in the ontology is decreased and the number
of classes increased by one. There is no change of URIs. The change invalidates
property values that have � as the value for properties that have an instance as their
value type. Essentially the change may cause a property value to break a property
restriction. Such property values and restrictions may be in the changed ontology or in
the including ontologies.

Even though re-classifying an instance as a class does not necessarily cause data loss,
re-classifying an element as another type of element fundamentally changes the seman-
tics of the re-classified element. It is thus questionable if other ontologies can continue
to reference that element without an experienced ontology engineer validating first
that the concept is still relevant to the referencing ontology and reference context. Hu-
man intervention should be considered each time before the changes are automatically
propagated to the including ontologies.

Re-classifying a Class as an Instance An inverse operation to re-classifying an in-
stance as a class is re-classifying a class as an instance. Its effects are not comparable,
however. If a class � is re-classified as an instance, all instances of � become become
instances of the superclasses of � . This means that they become less specifically typed
and lose the properties defined in � . The subclasses of � become the subclasses of � ’s
superclasses. The identity of � itself is then changed. The re-classification invalidates
property values that have � as their value and belong to a property that has a class
as its value type. The same problem appears in the including ontologies. In addition,
if the including ontologies define subclasses for � the class hierarchy is broken for
those classes. This in turn breaks the instances of those classes and any properties that
have � , the subclasses or their instances in the range. Finally, as was discussed above
the semantics of � change considerably and the context in which � is reused in the
including ontologies should be revised by an experienced ontology developer.

Declaring Classes � � and ��� Disjoint Declaring classes � � and ��� disjoint means
that they have no common instances nor common subclasses. Thus, the change in-
validates instances that belong to both � � and ��� , and all common subclasses. If an
including ontology defines a common subclass

����� � for � � and ��� , it and all of its
instances become invalid. A more severe effect is that the semantics of the class model
have changed. Again, reusers of the changed ontology should revise how they have
reused � � and ��� to ensure that their new meaning is relevant in the context of the in-

CHAPTER 3. PROBLEM ANALYSES 14

cluding ontology’s use case. One could assume that if there exists common subclasses
or instances in the including ontology then the reuse context of the changed ontology is
quite different from the one originally considered by the changed ontology developers.

Defining a Property as Transitive or Symmetric When a property � is defined as
transitive or symmetric, all property values that violated the transitivity or symmetry
become invalid. This can happen either directly in the values of the property or in the
values of some subproperty of � . The symmetric relationship is likely to pose more
problems, as it would require that the domain and the range of � (and of all of its
subclasses) are identical, and that each instance that has a value � for � is the value
of � in � . Such a property network can be non-complete simply because of human
factors – the ontology developer may not have remembered or simply bothered to add
the property values everywhere, or has simply made a mistake while adding the values.
This problem applies in the changed ontology as well as in the including ontologies,
and each ontology must be checked separately.

Widening a Restriction for a Property As we have already seen, properties can
have restrictions, for example the number of allowed values, the number of required
values, domain of the property, range or the property etc. Widening a restriction is
a generalization of a change operation that means making the restriction less strict,
for example increasing the number of allowed values, adding a class to the range or
replacing a range class with its superclass. The effect is that the slot can be used
more freely, and all current associations are preserved. Including ontologies that use
the property include the wider restriction and the existing ontological relations remain
intact. The change does not pose restrictions the subproperties of the changed property.
The change is thus safe.

Narrowing a Restriction for a Property Narrowing a restriction of a property is
the opposite of widening it, e.g. increasing the number of required values, removing
a class from its range or replacing it with a subclass etc. Existing property values
that violate the narrower restriction become invalid. The subproperties of the changed
property may introduce such values, also. As each subproperty chould be used in place
of the changed property, their values should conform to the restrictions posed by the
changed property. Because a restriction was narrowed, the values of the subproperties
may not fulfil the new, stricter restriction and a conflict is arosed. The violations can
occur in the current ontology as well as in including ontologies.

The change operations described above form the set of atomic changes, that is changes
that can be used to compose all other type of changes that one is able to perform on
ontologies. In the next section we shall take a look at the composite changes and how
their effects can be analysed.

CHAPTER 3. PROBLEM ANALYSES 15

3.2.2 Composite Changes

A composite change can be composed from a number of atomic changes by performing
the atomic changes in some order. Often there exists some freedom of choice on which
order the atomic changes can be performed but the result of the operation can also de-
pend on the execution order. It is obvious that the effect of the composite change cannot
be greater than the combined effects of the individual changes composing it. However,
an important observation is that in some cases the effect can be smaller. For example,
when a class is moved to another branch in the class tree it first loses the properties
it inherited from the old superclasses and then inherits the properties from the new
superclasses. Some of the lost properties may be reinherited in the second phase; this
happens if the properties belong to the new superclasses. In such cases, the values of
those properties need not be lost – the system would thus need to remove and add only
a subset of the properties that the atomic changes would require. Therefore, there is an
upper limit to the effects of a composite change. The effects cannot be greater than the
effects of each atomic change performed sequentially on the ontology. The composite
change approach allows us to minimize the effects of different composite changes by
breaking them into atomic changes and then eliminating redundant changes from the
change sequence. This is equal to calculating the delta, i.e. the difference between the
state of the ontology before and after the composite change. The analyses presented
in the previous section allows us to focus our search of difference on a subset of the
ontology elements. In the following paragraphs we will investigate different composite
changes and see how their effects can be minimized.

Moving a Property Up the Class Hierarchy Moving a property � up the class
hierarchy means that � is moved from a subclass

����� � to a superclass
���	��
�� � . In

other words, � ’s domain class
����� � is replaced with its superclass

���	��
�� � . The
change is equal to removing

����� � from the domain of � and then adding
���	��
�� �

to the domain of � . As we consider the change sequence from
���� � point of view

we notice that delta of its state before and after the composite change is an empty set,
that is, from

����� � point of view nothing needs to be changed. The class
����� � still

inherits the property � , and no data need be lost. However,
���	��
�� � might have other

subclasses and some of those subclasses or their subclasses might already contain � .
In this case the property restrictions need to be checked for consistency, as was notified
while discussing adding a property. Such subclasses could be defined in the including
ontologies, also. Moving a property up the class hierarchy is thus a relatively safe
operation, provided that the property is not used elsewhere in the subtree.

Moving a Property Down the Class Hierarchy When a property � is moved down
the class hierarchy, it is moved from a superclass

��� �
�� � to its subclass
����� � . Ef-

fectively, the domain class
���	��
�� � is replaced by its subclass

����� � . As with moving
a property up the class hierarchy, in this case also the change can be decomposed into
successive remove property and add property operations. The property � is removed
from

���	��
�� � and then added to
���� � . After the change the class

���	��
�� � no longer
has the property, and all instances of

���	��
�� � lose their value for � . The subtree start-
ing from

����� � perceives no change, and is not affected by the change. This combined
effects are thus equal to removing a property but ruling one subtree out from the set

CHAPTER 3. PROBLEM ANALYSES 16

of affected elements. The effects were discussed earlier as we looked at removing a
property from a class, but in this case we have managed to limit the number of affected
elements by being able to state that the concept tree starting from

����� � is not affected
by the change.

Changing the Superproperty of a Property to a Property Higher in the Prop-
erty Hierarchy Changing the superproperty of a property � to a property higher in
the property hierarchy means that the superproperty relationship of the property � is
moved to point to a superproperty of its current superproperty

��� �
�� � . The operation
can be decomposed into sequentially removing the subproperty-superproperty link be-
tween � and

���	��
�� � , and then adding a subproperty-superproperty link between �
and the superproperty of

���	��
�� � . As a result, � becomes the brother of its ancient
superproperty

���	��
�� � and no longer inherits the domain and range of
���	��
�� � . The

lost domain classes lose � from them, and their instances lose all values for � . This
was discussed while considering the effects of removing a property from a class. As
it was seen in that case, the same problems apply for all subproperties of � . Some of
these subproperties can be defined in the including ontologies. This time the effects
are limited to the domain and range of

���	��
�� � – � still inherits the domain and range
of the superproperty of

���	��
�� � , and all of its superproperties.

Changing the Superproperty of a Property To a Property Lower In the Property
Hierarchy When the superproperty of a property � is changed to a property lower
in the property hierarchy, the superproperty relationship of property � is moved to
point to a subproperty

����� � of � ’s current subproperties. The composite operation
can be decomposed into changing the subproperty-superproperty link between

����� �
and � to be between

����� � and
���	��
�� � , removing the subproperty-superproperty link

between � and
���	��
�� � , and then adding a subproperty-superproperty link between �

and
����� � . The delta of the composite operation shows that

����� � no longer inherits
� , and � inherits

����� � . From the point of view of
���� � , the change is equal to

moving it up the property hierarachy, which was discussed above. From the point
of view of � , new classes may have been added to its domain and range definitions.
The change breaks the property hierarchy if � does not fulfill all value restrictions
defined in

����� � . This is because a subproperty must fulfill all value restrictions of its
superproperty.

Moving a Property from a Class � � to a Referenced Class ��� A property � is
moved from a class � � to a class ��� referenced by � � . The operation can be performed
by adding � to the class ��� , copying the values for � at the instances of � � to the
instances of ��� , and then removing � from � � . In [14] Noy and Klein suggest that no
data is lost if the values for � at instances of � � are moved to instances of ��� . Moving
the values as was described can only be done if there exists one instance of � � for
each value of � at the instances of � � . If several instances of � � reference the same
instance of ��� and have different values for property � , more instances of � � must
be created or data is lost. Creating new instances could affect the semantics of the
changed ontology, there again that is exactly what moving a property to a referenced
class does; it moves a semantic relation from one concept to another. That is why the

CHAPTER 3. PROBLEM ANALYSES 17

ontology reuse context should be revised after the change. Also, even if the change
can be made to retain all information in the instance level in the local ontology, the
instances of � � and of its subclasses in including ontologies still contain references to
� . For them, the change equals removing the property � from � � . This can cause
problems and it has been discussed before.

Figure 3.1: Moving a property � from a class � � to a referenced class ��� [14].

Moving a Property from a Class � � to a New Class Moving a property � from a
class � � to a new class

�
means creating a new class

�
, adding a reference from � �

to
�

, and then moving the property � from � � to
�

. This time new instances of the
new class

�
are created so that the data can be transferred without loss. However, rest

of the problems of the previous section still remain. Such a structural change cannot
be automatically carried out in the including ontologies but their structure is broken.
This means that if � � or its subclasses are subclasses or instantiated in the including
ontologies, they are broken by the change.

Figure 3.2: Moving a property � from a class � � to a new class [14].

Changing the Superclass of a Class to a Class Higher in Class Hierarchy Chang-
ing the superclass of a class � to a class higher in the class hierarchy means that
the subclass-superclass relation between a class � and its superclass

���	��
�� � is re-
placed by a relation between � and a superclass of

���	��
�� � . Therefore, � becomes

CHAPTER 3. PROBLEM ANALYSES 18

the brother of
���	��
�� � and no longer inherits

���	��
�� � . This is equivalent to sequen-
tially removing the subclass-superclass relation between � and its superclass

���	��
�� �
and adding a new subclass-superclass relation between � and a superclass of

���	��
�� � .
The effects were explained while we were looking at removing a superclass, but are
limited to the properties inherited from

���	��
�� � and to the use of � as
���	��
�� � . It

is therefore enough to check for problems with regard to one ancient superclass, only.
Unfortunately, the effects cannot be verified by looking at the changed ontology be-
cause the same problems can be raised in the including ontologies.

Changing the Superclass of a Class to a Class Lower in Class Hierarchy When
the superclass of a class � is changed to a class lower in the class hierarchy, the
subclass-superclass relationship between a class � and

���	��
�� � is moved to a class
lower in the class hierarchy; i.e. to a class

����� � , a subclass of � . Effectively, the
subclass-superclass relationship between

���� � and � is changed to be a relationship
between

����� � and
���	��
�� � . For � , after the operation it has possibly inherited addi-

tional properties from
����� � but no data is lost. For

����� � , which used to be a subclass
of � , this case is equivalent to changing the superclass to a class higher in the class
hierarchy. This case was discussed above. So, this time we are looking at the same op-
eration from the � ’s point of view. For � there are no problems as long as the property
restrictions match.

Moving a Class in the Class Hierarchy Moving a class � is to another location in
the class hierarchy is a very common ontology change operation. However, it can be
easily decomposed into a sequence of superclass removals and additions. The conse-
quences of the move operation are essentially defined by the difference in the set of
superclasses � has before and after the operation. Let

���
denote the set of superclasses

of � before the operation and
�
� the set of superclasses after the operation. By defini-

tion,
�
� cannot be equal to

���
because that would mean that the class was not moved

at all. If
�
� contains

���
, the operation is safe. In such case only problems can emerge

from the property restrictions of the properties in the new superclasses that are not con-
tained in

���
. If

�
� does not contain

���
, the operation becomes a superclass removal. �

loses all superclasses that are in
���

but not in
�
� , and with them � loses all properties

inherited from those classes. Some of the properties may be reinherited from the new
superclasses in

�
� . However, after the operation � can no longer be used in place of its

old superclasses, which can invalidate properties and property values as was explained
when analysing the removal of a superclass. This may break the ontology structure
of the including ontologies, and most certainly causes data loss. The move operation
can thus be either a safe operation or a data loss operation that breaks the ontology
structure of the including ontologies.

Merging Classes When a set of classes are merged the superclasses, subclasses,
and properties of the merged class are the union of the superclasses, subclasses, and
properties of the original classes. This can be done by creating a new class, adding it
as a subclass of all superclasses of one class to be merged, moving all properties of the
class to be merged to the new class, changing all instances of the class to be merged to
be the instances of the new class, changing all references to the class to be merged to

CHAPTER 3. PROBLEM ANALYSES 19

point to the new class (a reference to a class means that the class is in the range of some
property, or is a value for some property at some instance), and then deleting the class
to be merged. The process is repeated for each class to be merged. Instance data can be
preserved if property values are moved to the instances of the merged class. However,
if the original classes contained conflicting property restrictions for same classes, these
values cannot be moved to the new class. As the classes are merged their original URIs
are removed as well as the URIs of their instances. Including ontologies are broken, if
they reference those URIs. If the classes to be merged are subclasses or instantiated in
the including ontologies, the structure of the including ontologies is broken for those
parts. If the including ontologies define properties that have in their domain or range
any of the classes that were merged, those properties together with their subproperties
become broken. Merging classes thus breaks all including ontologies that refer the
removed URIs in any way.

Splitting a Class A class can be splitted into several classes by splitting the proper-
ties into the new classes. The properties of the new classes then specify which instances
belong to which class. All property values at the instances can be moved but it might
be necessary to split instances, too, if they contain properties from two new classes.
While doing so the original URIs of the instances would be removed. In any case, the
URI of the original class must be removed. If the including ontologies reference the
removed URIs, they become broken as was explained while analysing the deletion of
concepts.

3.3 Experiences from Building a Museum Ontology

My research group had previous experience on building a large upper level ontology in
another Semantic Web project. I interviewed the project manager, the domain expert
and the ontology engineer of the project to gain more insight on the problems that
could stand in the way of YSO developers.

Prior to my study, the research group had carried out a research project to create a se-
mantically linked web site from the collections of three Finnish museums. A museum
domain ontology MuseoAlan Ontologia (MAO) was created from the museum domain
thesaurus MuseoAlan AsiaSanasto (MASA) [16] to classify the domain. Currently
MAO contains 6500 classes and 10 properties. Individual ontologies were created for
each museum to annotate the collections of the museums. Those ontologies include
MAO and define instance data of the collection objects only. The number of instances
in each ontology varies from 1200 to 2100, totalling 4900 instances for the three on-
tologies.

The development of MAO corresponds much to YSO development. YSO is about to
become a shared, national upper level ontology. As MAO, it is based on a thesaurus
(Yleinen Suomalainen Asiasanasto, YSA [17]). YSO will be referenced from many
ontologies, exactly as MAO is. A difference between YSO and MAO is the size of the
ontology. YSA contains approximately 14000 index terms and 3000 non-descriptors
whereas MASA contained "only" 6000 terms. The development records of MAO are

CHAPTER 3. PROBLEM ANALYSES 20

thus a good source of information for estimating the problems that YSO development
is likely to face in its first phases.

During the museum project it had become clear that most problems would arise when
a URI that existed in MAO was changed or removed. This one change could in turn
invalidate hundreds of instances in the annotation ontologies, and it was discovered
difficult to find out exacly where the invalid instance data lied. Another observation
was that during the project the class hierarchy of MAO was heavily changed and re-
constructed. This posed problems in the including ontologies because they contained
instances that had property values, which became invalid as the MAO classes to which
they pointed were no longer in the range of the properties. Also, the application de-
velopment that was running in parallel with the ontology development had suffered a
great deal from the instability of the class hierarcy, since the changes could invalidate
the inference rules written in Prolog that described how the ontology was to be used in
the application.

To summarize, the results of the interviews of the key personnel in a similar real-world
project suggested that the problem area would be twofold. On one hand, the experience
from the museum project leveraged problems related to the removal of a URI from an
included ontology. On the other hand, the modification of the class hierarachy had been
done quite often, which had led not only to ontology consistency problems but above
all to problems in application development. Even though application development is
not the precise subject of this thesis, it is a crucial aspect if Semantic Web is about to
emerge - if there are no applications that can use ontologies, there is no Semantic Web,
and thus no need for ontologies. Also, heavy restructuration of an included ontology is
likely to affect the way in which it should be reused by the including ontologies, and is
therefore an important concern for high quality ontology development environments.

3.4 Problems from Practice

The thesaurus Yleinen Suomalainen Asiasanasto (YSA) [17] is maintained by the Na-
tional Library. When YSO is finished, the administrators of YSA will take on YSO
maintenance responsibilities according to the project plan. I interviewed the main
adinistrator to find out what kind of changes are most common in the maintenance
phase. The maintenance process of YSA is quite rigid. All change requests requires
a throughout disquisition on the use of the term in question. The disquisition can in-
volve several domain experts. After the disquisition, the change request is handled in a
board of directors and experts. If the request is approved, the change is made to YSA.
Otherwise the change request is archived for later use.

Mostly modifications are adding new terms. Delete operations occur virtually never.
The administrator recalled two or three term deletions during the past ten years. The
relations between the existing terms are modified more often, as the semantics of exist-
ing terms change. The introduction of new terms or the changed semantics of existing
ones may cause merging and splitting terms in the thesaurus. A major problem was
conceived to be expressing terms with multiple semantical meanings. For example,
"model" can be a profession of a person performing in a fashion show, or a description

CHAPTER 3. PROBLEM ANALYSES 21

of some system.

The architecture for a system to be used in YSO development needs to support a con-
trolled process to publish changes, yet it must feature an environment where it is easy
to try different modeling solutions. Most operations during the maintenance phase are
adding new concepts that often make existing concepts obsolete. Merging and splitting
concepts can occur sometimes.

3.5 Prioritization of Changes

The theoretical analyses as well as the experiences from a previous upper level ontol-
ogy project suggest that the most critical issue of ontology dependence problems is the
modification or removal of a URI. Deleting a class, a property or an instance loses data
both in the changed ontology and breaks the including ontologies. Changing a URI
breaks the including ontolgies.

Changing the class or property hierarchy by removing a superclass or a superproperty,
by moving a class in the hierarchy or by moving the superclass of a class or the su-
perproperty of a property to an element higher in the hierarchy is the next important
thing. It changes the identity of the classes (or properties) and the direct type of its the
instances, which can severely break the including ontologies. The changed direct type
of instances can lead to invalid property values in including ontologies. Removing a
property from a class can introduce a large loss of information, and is therefore ranked
next. Moving the property down the class hierarchy produces the same results for the
classes from which it is removed.

The experiences from MAO development lift up narrowing a restriction for a prop-
erty to be the next most important change. It can cause serious data loss but primarily
introduces into the including ontologies conflicts that are difficult to find. Narrow-
ing a restriction is closely followed by the need of support for merging and splitting
classes, as those operations are likely to be one of the main causes of problems during
YSO maintenance phase. They are estimated to be common operations during YSO
development, also, as the ontology is iteratively re-structured.

Moving a property from a class to a referenced class or to a new class are ranked next.
They are generic ontology modification operations that are likely to prove valuable
during the early construction phases of YSO, when the ontology structure is changing
rapidly. Declaring two classes disjoint is a quite rare operation in practical ontology
work; the need for it did not arise during MAO construction, ever. However, it contains
a risk of data loss, and should be monitored. Defining a property transitive or symmet-
ric occurs more often but has more limited consequences, and is therefore considered
less important.

When new classes, properties and instances are created the new URI may introduce a
naming conflict. Also, if the same URI did not appear twice in the ontology library,
even in two disjoint ontologies, the library would be more consistent, which is one of
Gruber’s ontology design principles [4]. Checking the including ontologies, or even
the entire ontology library for similar names when a new URI is created is a very

CHAPTER 3. PROBLEM ANALYSES 22

handy practical aid to ontology development. However, because the risks involved
with duplicate URIs are very small, it is not considered a priority issue.

The next group of changes includes adding a property to a class, adding a superclass or
a superproperty, and moving a property up the class hierarchy. Under some particular
cases they can introduce problems in the including ontologies, but this happens very
rarely. The operations themselves are performed rather often, and gain thus a higher
priority than re-classifying a class as an instance. The need for re-classifying never
occurred during MAO development and both re-classifying operations are considered
rather rarely used. Since re-classifying a class as an instance may cause data loss, it
is prioritized higher than re-classifying an instance as a class, which may only cause
some property values become invalid.

The lowest priority was given to the completely safe operations of widening a restric-
tion for a property, changing the superproperty of a property to a property lower in the
property hierarchy, and changing the superclass of a class to a class lower in the class
hierarchy. When inspected from the point of view of the class or property that is being
modified, these operations do not pose any problems to the ontologies. However, one
should bear in mind that the last two operations can be viewed also from the point of
view of the old subclass or subproperty. From that point of view, the operations equal
the opposite operations of moving a superclass or a superproperty to a class or a prop-
erty higher in the hierarchy. These are both high priority operations and potentially
cause problems in the changed ontology as well as in the including ontologies.

3.6 Summary

In this Chapter the different ontology change operations were presented and analysed,
and experiences from practical ontology work were introduced. The main problems
of current working methods were briefly presented to evaluate the future needs of the
system users. The experiences, problems and analyses results were put in the context of
the thesis use case; the results were prioritized for YSO development and maintenance.
The results are summarized in Tables 3.1, 3.2 and 3.3, which group the results into
three groups. Table A.1 in the appendices groups the results in one table.

Table 3.1 presents the change operations that cause most problems in distributed devel-
opment of dependent ontologies. Any ontology library system aiming to support dis-
tributed ontology development is strongly adviced provide means to detect and handle
these operations. Table 3.2 illustrates a set of ontology change operations that should
be considered in a practically oriented ontology development environment in addition
to the operations presented in Table 3.1. Their priorization is highly influenced by the
YSO case context. Revising the priorities may increase performance or usability when
a system is used in other type of ontology construction.

Table 3.3 lists the changes that are relatively safe. Ontology library systems aiming to
improve the user experience when the user is using the system may implement support
for some of these changes. For example, functionality to find similar names from
the ontologies of the ontology library when the user creates a new concept would be
handy indeed. However, the problems caused by the operations are very limited, or

CHAPTER 3. PROBLEM ANALYSES 23

Table 3.1: Most critical edit operations.

Priority Operation Comment on effect

High Deleting a class, a property, or

an instance

Data loss, breaks referencing ontolo-

gies

High Changing a URI Equals to delete in referencing on-

tologies

High Removing a superclass or a su-

perproperty

Identity of subelements changes.

Breaks referencing ontologies

High Moving a class in the class hi-

erarchy

May be safe, or may equal removing

of several superclasses

High Changing the superclass or the

superproperty to a class or a

property higher in the hierarchy

Equals removing some superclasses

or superproperties

Medium-

High

Removing a property from a

class

Loss of data. Breaks referencing on-

tologies

Medium-

High

Moving a property down the

class hierarchy

Equals removing a property for some

classes

the operations are used so rarely that they are not very interesting from keeping the
referencing ontologies consistent point of view.

CHAPTER 3. PROBLEM ANALYSES 24

Table 3.2: Changes that should be supported by an ontology engineering architecture.

Priority Operation Comment on effect

Medium Narrowing a restriction for a

slot

Data loss. Introduces hard to find

conflicts into referencing ontologies

Medium Merging classes Breaks referencing ontologies. Com-

mon operation in YSO development

and maintenance

Medium Splitting a class Breaks referencing ontologies. Com-

mon operation in YSO development

and maintenance

Medium-

Low

Moving a property to a refer-

enced class

Breaks referencing ontologies. Use-

ful operation in ontology restructur-

ing

Medium-

Low

Moving a property to a new

class

Breaks referencing ontologies. Use-

ful operation in ontology restructur-

ing

Low Declaring two classes disjoint Rare operation. Breaks the semantics

of referencing ontologies

Low Defining a property transitive

or symmetric

More common than declaring classes

disjoint, but less dangerous. Breaks

the semantics of referencing ontolo-

gies

CHAPTER 3. PROBLEM ANALYSES 25

Table 3.3: Safe changes.

Priority Operation Comment on effect

Very

Low

Adding a new URI: a class, a

property or an instance

Common operation. Problems occur

very rarely, limited consequences

Very

Low

Adding a property to a class Very rarely conflicts if the same prop-

erty exists in a subclass and property

restrictions conflict

Very

Low

Adding a superclass or a super-

property

Safe, may introduce same problems

as adding a property. Very safe oper-

ation

Very

Low

Moving a property up the class

hierarchy

May cause same problems as adding

a property if the class has other sub-

classes which already have the prop-

erty

Very

Low

Re-classifying a class as an in-

stance

Very rare operation. Loses data.

Breaks referencing ontologies

Very

Low

Re-classifying an instance as a

class

Very rare operation. Breaks referenc-

ing ontologies

Safe Changing the superclass or the

superproperty to one higher in

the hierarchy

No problems for the class or property

in question

Safe Widening a restriction for a

property

Completely safe change

Chapter 4

Existing Solutions

4.1 Introduction

The problems caused by ontology reuse by inclusion have been acknowledged, and
different solutions exist to tackle the problem. In this Chapter I will present some ex-
isting systems and methods, and briefly explain their focus in regard with the conflicts
raising from changing an included ontology.

4.2 KAON Engineering Server

KAON ontology development environment [6] has been developed in the University
of Karlsruhe in Germany. In KAON architecture (extended with Engineering Server
and JBoss) the ontologies can reside on different hosts and include other ontologies.
Included ontologies are duplicated, and changes are allowed only to the original on-
tology. The changes are then propagated to the duplicate ontologies, and the user is
asked if he would like to accept the proposed changes or keep the older version of
the included ontology. This functionality is explained by Maedche, Stojanovic and
colleagues in [6], [18] and [5].

KAON focuses on fluent propagation of changes between the remote ontology copies.
It provides tools to help the user to understand the impacts of the proposed changes
and lets the user decide if the changes are to be executed. However, it does not provide
means to help the user, who made the original change, to understand what problems
his change will cause for others. This is because KAON targets a more distributed,
larger ontology library system than what is needed for YSO development.

26

CHAPTER 4. EXISTING SOLUTIONS 27

4.3 Protégé

Protégé 2000 [19] is a widely used ontology editor developed at the Stanford Uni-
versity. It offers an intuitive graphical user interface, and its support for ontology
inclusion is one of the best in the field. Protégé can store ontologies in files and in
relational databases, but ontology inclusion is supported in file based ontologies, only.
Information about each ontology is stored in a project file, and class and instance data
are separated to different files. The project file defines the location of the class and in-
stance files, and which ontologies are included. Ontology inclusion is done by loading
the projects in order. Protégé maintains ontological consistency by preventing users to
modify the included ontologies. All changes must therefore be made to the original
ontology. Changes appear in the including ontologies as soon as the including projects
are reloaded. Protégé does not provide any means to see what effects the change has
in the including ontologies. Developers can thus easily break the including ontologies
as was explained in section 2.4.

4.4 OilEd

OilEd is an editor for ontology languages OIL [20] and DAML+OIL [21]. It is de-
veloped at the University of Manchester and its functionality is further explained by
Bechhofer et al. in [22]. OilEd does not support ontology inclusion in the sense that
was defined in section 2.3. For OilEd, ontology inclusion means merging copies of
the included definitions into the model to be edited. After the merge operation, the
information on the origin of a definition is lost. As was discussed earlier, this approach
is safe from dependency problems, because there are no dependencies between on-
tologies. At the same time it introduces severe consistency problems as the ontologies
need to evolve. Because there is no information on where each concept definition has
come from, each ontology needs to be modified independently of other ontologies.
One modification must be done several times to different ontologies. There are no
guarantees that the changes would be same, much less that the different ontologies re-
using the same ontology would remain inter-operable. This causes serious problems in
application development.

4.5 Ontolingua

Ontolingua [11] is a collaborative ontology development tool that supports even cycli-
cal ontology inclusion. As was mentioned in section 2.3, cyclical ontology dependency
chains can introduce very complex problems when the effects of the changes should
be checked or propagated to the including ontologies. Alas, despite of its powerful
inclusion mechanism Ontolingua does not provide support for changing the original
ontology and propagating the changes to the including ontologies.

CHAPTER 4. EXISTING SOLUTIONS 28

4.6 WebODE

WebODE [7] is a web based ontology editor initially developed for editing OIL on-
tologies. It is based on METHONTOLOGY, a methodology for ontology development
first introduced in [23] and then refined in [24]. WebODE uses a database to store on-
tologies. It utilises a concept of user groups to establish access control to ontologies,
and has synchronization mechanisms to prevent errors from concurrent access. In [7]
the authors state that it supports collaborative ontology editing at the knowledge level,
but do not explain more precisely what this means. WebODE introduces an interesting
ontology reuse feature that it calls the instance sets. As WebODE does the separation
of class and instance data, it allows the user to easily create different sets of instance
data to be used individually with one class model. Each instance set can represent a dif-
ferent use case of the ontology. For example, given an enterprise storehouse ontology,
different instance sets can represent the stores of different companies.

Ontology inclusion support in WebODE is far less advanced than the instance set ap-
proach would suggest. The system allows the developer to import only classes from
other ontologies, and demands that each class is imported individually. Properties or
instances cannot be imported. Even though WebODE implements support for some
interesting features such as the instances sets, its inclusion mechanism is somewhat
limited. According to my understanding, the system does not provide means to propa-
gate ontology changes to dependent ontologies in a well-controlled manner.

4.7 OntoEdit

OntoEdit is an ontology engineering environment, which concentrates on tasks in-
volved with ontology requirements specification, refinement and evaluation. It com-
bines methodology-based ontology development with collaboration and inferencing,
as explained in [25]. Due to its focus on the early phases of the ontology life cycle,
it does not offer any support for ontology evolution. However, it has been acknowl-
edged for example in [8] and in [6] that ontology evolution should be considered a very
important aspect in the ontology life cycle.

Chapter 5

Proposed Solution

5.1 ONKI Overview

In the previous chapters the role of ontologies in Semantic Web and their modular
reuse was discussed. It was found that the modular reuse may introduce consistency
problems when the reused ontology is modified. Different change operations were
examined and their results were analysed with regard to ontological consistency in de-
pendent ontologies. We reviewed some lessons learned from practice, and the change
operations were prioritized based on their occurence frequency and on the serious-
ness of their effects. We briefly looked the different stands the existing systems take
on these issues. In this Chapter an architecture is presented for a system that could be
used in distributed ontology development and maintenance. The system’s primary goal
is to provide a framework for YSO development. While focusing on this particular use
case, the system architecture is also aimed at supporting upper level ontology creation
and maintenance work and providing a work bench for researchers to try out differ-
ent ontology engineering methodologies. The system incorporates ontology library
and distributed ontology development fuctionalities and integrates a set of supporting
acitivities into the same tool.

I propose a client-server based ontology library architecture (ONKI, ONtologiaKIr-
jasto) for distributed development of an ontology library [8]. The architecture is de-
signed to enforce disciplined ontology development and release processes with user
access control. The need for managed ontology development is recognized by Gruber
in [4] and Farquhar in [11]. ONKI contains a centralized storage with version control
for ontologies under development. The server incorporates an ontology dependency
model, which keeps track of the dependencies between different ontologies. During
ontology development it is used to guide developers if they attemp to do changes that
would break other ontologies than the one they are editing. End users and application
developers access the ontologies via a public ontology library, where developers can
publish their ontologies as they reach a stable and mature enough state. If a developer
decides to commit a change that breaks other ontologies, a notification is automatically
sent to the developers of the broken ontologies.

29

CHAPTER 5. PROPOSED SOLUTION 30

Figure 5.1: Conceptual ONKI architecture.

The ONKI architecture incorporates an ontology editor, which checks the safety of op-
erations from the server before executing them. Ontology editing is performed locally
at the developer’s workstation, and the results are committed back to the central repos-
itory. When a user wants to develop an ontology A, he first creates a new ontology. He
then checks out from the version control system any ontologies he wishes to include
(B and C). The user starts developing ontology A locally, and regularly commits the
changes to the server. At commit time the system updates the ontology dependency
model to contain the relations that point from ontology A to ontologies B and C. If
the developers of B or C now try to make a change that would affect ontology A, their
clients warn them about the consequences of the change and give them a change to
proceed with the change or to cancel it. This ensures that if a change in the upper on-
tology is needed, its developers know what it will mean for those ontologies that reuse
the upper ontology. The developers can therefore try different alternatives to come up
with a change that is backwards compatible or affects as few including ontologies as
possible. No-one can anymore accidentally break another ontology by changing an
included ontology without warning.

5.2 ONKI Server

A client-server architecture is seen important in collaborative editing and versioning,
as among others Ding and Fensel acknowledge in [8]. The key purpose of the client-
server architecture is to offer a common access point where the edits performed by
different users can be checked in order to keep the edited ontologies in a consistent
state. ONKI Server provides the ontology developers a common access point to on-
tologies in the ontology library. It offers a persistent storage of ontologies with version

CHAPTER 5. PROPOSED SOLUTION 31

Figure 5.2: Detailed ONKI Server architecture.

control, user management and authentication, real-time querying of dependencies be-
tween ontologies and a public ontology library to publish finished ontologies.

The core of the server is the Service Registry and the authentication module of the
User Management System. Other components connect to the system by registering
themselves as services in the Service Registry. All services can then be accessed via
the Service Registry. The process is illustrated in Figure 5.3. Figure 5.2 omits the
processes of authentication and locating a service and shows the server architecture in
more detail. It displays the functional connections that the Service Registry creates on
request between different system components.

The server components form a system that enforces a disciplined process for ontology
development. The developers develop ontologies in the Development Library, which
integrates version control and modular design of ontologies. Most other solutions lack
the versioning support, as Ding and Fensel point out in [8]. The Dependency Manage-
ment System and ONKI Messenger help to coordinate collaborative development of
inter-dependent ontologies so that developers do not introduce errors in including on-
tologies while modifying their own ontology. The ONKI Client checks all edit opera-
tions from the Dependency Management System, and warns the user when he attemps
a change that would break other ontologies. If the user decides to proceed with the
change and commits it to the Development Library, ONKI Messenger automatically
sends notifications to the developers of those ontologies that have become broken by
the change. Those developers then have the change to bring their ontologies up to date
with the new version of the reused ontology, or to decide to remain compatible with the
previously released version. As ontologies come ready for public access, they are pub-
lished in the Public Ontology Library. The Publisher enforces a consistent ontology

CHAPTER 5. PROPOSED SOLUTION 32

publishing policy with official and developer releases of ontologies. The functionality
of each of the components is presented in more detail in the next sections.

5.2.1 Service Registry

The Service Registry is the heart of the ONKI architecture. As the components of the
ONKI server could be distributed across the network, the Service Registry provides
the system information on where each component is located. It thus provides an ac-
cess point for services that the server components implement. All server components
join the ONKI server architecture by registering themselves as services in the Service
Registry. They can then be accessed by requesting a connection to a specific service
from the Service Registry.

The Service Registry enforces communication security by authorizing each service
request from the User Management System. As a user edits the ontology, his ONKI
client requests services from the Service Registry. If the users has the right to use those
services, the Service Registry establishes a secure communcation channel between the
client and the service component. The channel is then forwarded to the client to be
used for communication.

Figure 5.3: Locating a service.

5.2.2 User Management System

The User Management System offers authentication services to the ONKI system. As
a user requests the Service Registry for a service, the registry queries the User Man-
agement System to check if that user has the right to access the specified service. If the

CHAPTER 5. PROPOSED SOLUTION 33

access is granted, a secure communication channel is created between the client and
the service. Otherwise, the client’s request fails.

Another function of the User Management System is to contain an ontology-based
module that stores the information on developers registered to develop the ontologies
of the Development Library. The user ontology has a username, real name, organiza-
tion and contact information for each user. The contact information can include any
number of email addresses, phone or fax numbers or postal addresses. The informa-
tion in collected as a user registers himsef as a developer of certain ontologies. The
registration is handled by the User Management System. Having registered, the users
can then receive automatic notifications on any changes that affect the ontologies they
develop. The automatic notification service is provided by the ONKI Messenger and
is described later in more detail.

5.2.3 Development Library

The Development Library provides a centralized storage for ontologies under devel-
opment. Its main purpose is to integrate version control to the ontology development
process, which is a prequisite for serious ontology development. Consistent ontol-
ogy versioning and version control is widely considered as a core requirement for an
ontology library system (see [26], [8], [12]).

The version control system in ONKI is based on CVS1 [27], a popular and freely avail-
able open source version control software. The system keeps track of the versions of
class and instance models, as well as of a file containing separate project information.
A project binds a class and an instance model together to form an ontology; users may
create several separate projects based on the same class or instance data to create dif-
ferenct ontologies. Klein et al. [26] suggest separating the identity of ontologies from
the indentity of the files in which the data resides. An ontology library modularization
[8] can be based on this separation. The purpose of the modularization and the identity
separation is to promote ontology reuse. The design allows ONKI system to support
the use of class sets as well as instance sets as proposed in [7]. Analogously to an
instance set, a class set is a class and property model that can be used to structurize
certain data represented by an instance set. Several class sets can be created for the
same instance set to view the data from different perspectives, or to use the data for
different purposes.

5.2.4 Dependency Management System

The Dependency Management System is the core value-adding component of the
ONKI architecture. Its purpose is to support collaborative editing and ontology reuse,
which are one of the most important functions of an ontology library system [8, 11].
All dependencies between the ontologies in the Development Library are stored in
the Dependency Management System. The underlying data model is an ontology that

1http://www.cvshome.org

CHAPTER 5. PROPOSED SOLUTION 34

stores information on which elements in which ontologies reference which other el-
ements in which other ontologies. It also contains weight factors for the referecing
elements. The weight factors are class tree weight and instance tree weight. The class
and instance tree weights are used to estimate the magnitude of the effects to the refer-
encing ontology if a particular element would be broken. This way the developer can
see an estimation of the severity of the problems the change would cause to other on-
tologies, and can use this value to compare different change operations. The class tree
weight represents the number of classes in the ontology that will become broken if the
element is broken. Correspondingly, the instance tree weight represents the number of
instances that refer to the element and would hence be broken with the element. Prop-
erties can be included in those Figures by thinking of them as classes and instances. A
definition for a property is considered a class and hence increases the class tree weight.
The attachment of a property to a class is considered an instance and this time the
instance tree weight is increased.

Figure 5.4: An example of the Dependency Ontology.

Figure 5.4 illustrates the Dependency Ontology. It shows the relations that the system
would need to solve the case of the Czechoslovakian hat in the museum from section
2.4. The class hierarchy beginning from the element "Hat from 1959" contains one
instance and no classes; its class tree weight in the Dependency Ontology is zero,
and its instance tree weight is one. When the ontology developer is about to make a
change to an ontology, the client software determines which elements in that ontology
would be affected by the change. The client then queries the Dependency Management
System to see what other elements in other ontologies would be affected by the change.
From the information represented in Figure 5.4 the Dependency Management System
would reason that if the instance "Czechoslovakia" would be removed from the country

CHAPTER 5. PROPOSED SOLUTION 35

ontology, the element "Hat from 1959" in the museum ontology would become broken.
The problem would affect one instance in the museum ontology, that is, the element
"Hat from 1959". The developers of country and museum ontologies would know that
no other classes or instances would be broken.

Of course, the same results could be obtained if the Development Library supported
real-time querying of the ontologies it stores. However, individual ontologies can be-
come quite large, counting several thousands or even millions of elements. Querying
several ontologies of such size would soon tear down any ontology library implementa-
tion. That is why the ontology dependency checking functionality and the Dependency
Ontology have been separated into a dedicated server component. The Dependency
Management System needs to be able to rapidly answer questions of type "What on-
tologies (and how) depend on a given ontology?". It would often be too expensive to
query the entire contents of the Development Library.

5.2.5 ONKI Messenger

When an ontology developer has reused another ontology by including it into the one
he is developing, he needs to know if someone changes the included ontology so that
the changes would affect his own ontology. This is where ONKI Messenger service
steps in. When an ontology is committed back to the Development Library, its depen-
dencies are updated to the Dependency Management System. If the existing references
to the ontology are broken due to the commit, ONKI Messenger uses the ontology’s
change log to automatically generate notifications [11] to the registered developers of
the ontologies that have become broken. The developer that initiated the commit may
add clarifications, explications or instructions to the messages to help other develop-
ers understand the change and how the committed ontology should be reused by the
broken ontologies.

ONKI Messenger abstracts the message transmission channel so that messages can be
sent to whatever device necessary. The message can for example be an email, an in-
stant message, an MMS message or an SMS message. This allows ONKI integration
to support mission critical ontology development. For example, an ontology could
be used to filter the news feed of an international new agency. The system filtering
the news could also perform content analyses on the news articles by using various
data mining techniques [28]. The results of the data mining could then be automati-
cally converted into ontology edit operations that expand and restructure the ontology.
For example, the system could automatically add new classes and relations between
different ontology elements, or split and merge classes. As the core ontology would
propably be reused in various case specific ontologies to produce more customized ser-
vices such as a sports news service, a domestic political news service and an economic
news service, the system would need to ensure that these value added services would
keep on running as the core ontology is enriched.

CHAPTER 5. PROPOSED SOLUTION 36

5.2.6 Public Ontology Library

As ontologies have been developed, a need emerges to publish them for the wide au-
dience. ONKI Server supports this task with the Public Ontology Library and the
Publisher modules. The Public Ontology Library abstracts the concept of a publicly
accessible ontology library. For developers, the library has a service to add a new on-
tology or a new version of an ontology to the library and set a status for the ontology
version. Ontology development can continue in the Development Library while ap-
plication developers can use the published, stable releases to develop applications and
services based on the ontologies. Pre-release ontology versions can be published to
support application development and they are clearly distinguished from the official
ontology versions.

For the library end users, the Public Ontology Library architecture features a extensi-
ble set of library implementations into which the new ontology is added. The library
can be accessed through several interfaces. A WWW-site where end users and applica-
tion developers can download entire ontologies is probably one of the principal access
methods. This is the standard way most ontology libraries work. WWW-based access
is easy to implement and readily available to everyone with today’s telecommunication
infrastructure. No wonder that Ding and Fensel raise it as one important feature of an
ontology library in [8].

Another way to access the Public Ontology Library would be via a queryable database
with a WWW-based user interface. Advanced users and application developers could
query for a certain concept in a certain ontology. An example of this kind of access
is Verkkosanasto VESA, http://vesa.lib.helsinki.fi/, which provides a query interface
to the thesauri Yleinen Suomalainen Asiasanasto YSA (General Finnish Thesaurus),
Allmän tesaurus på svenska ALLÄRS (Swedish version of YSA), and Musiikin asi-
asanasto MUSA/CILLA (Thesaurus of Music).

The two approaches presented above both aim to satisfy the ontological needs of a
human user. But the library user profile should not be limited to mere humans. The
software that is being developed these days incorporates more and more often auto-
matic upgrading capabilities. As the Internet has become widespread and the end user
network speeds are growing due to increased number of broad band subscriptions, the
mere nature of software is facing a change. It is becoming more like a service fulfilling
the end user’s need than a stand-alone product. As ontologies are used to add intelli-
gence to the software applications, an ontology library must be capable of providing
programmatic access to the ontologies in order to become a truly useful library plat-
form. Different software components can access the Public Ontology Library through
a Java API to automatically download ontologies as they need them to interact with
other software components or to perform automatical updating of the ontology when a
new version is published.

5.2.7 Publisher

To bridge the gap between the Development Library and the Public Ontology Library
one needs a dedicated ontology publishing tool. The Publisher contains functionality

CHAPTER 5. PROPOSED SOLUTION 37

to publishes a specified version of an ontology from the Development Library to the
Public Ontology Library. It enforces a consistent ontology publishing discipline with
official and developer releases of ontologies. The release thinking is a step towards
thinking ontology management as product management, a shift needed to create an in-
tegrated environment that supports efficient ontology use. Official releases are releases
that have been tested with the official releases of the ontologies that they include, and
are guaranteed to be stable. They form the basis for ontology-based application devel-
opment. Software developers link their systems and knowledge bases with officially
released ontologies. These ideas have been suggested by Farquhar et al. [11] and
Gruber [4], but the stability guarantee given by a commitment to an official release is
needed for the promises of ontology use to become reality.

Developer releases can come out more often that official releases. An ontology de-
veloper may wish to give the application developers a preview of his ontology, even
though it is not yet complete. The developer release does not guarantee anything; any
concept or relation might be changed or removed any time. The purpose of these re-
leases is to speed up application development. Software developers can start creating
software of the new version of the ontology already before the official release is ready.

5.3 ONKI Client

The client system consists of an ontology editor, of a knowledge base storing the on-
tology to be edited, and of a dependency client. There are quite a few ontology editors
available on the market, and any one of them could be selected. The only restriction
is that the editor must provide the change identification layer of the dependency client
some way to intercept edit operations before they are written to the ontology knowl-
edge base. Figure 5.5 illustrates the client architecture and information flow when
the user makes an edit operation at the editor. Let us next look what happens in the
dependency checking mechanism lying between the editor and the knowledge base.

5.3.1 Change Identification Layer

At the surface of the dependency client lies the Change Identification Layer. When the
ontology developer edits an ontology, he uses an ontology editor to perform a series
of edit operations on the knowledge base containing the ontology. The edit operations
must be caught before they enter the knowledge base or the system is not capable of
preventing the user from breaking dependent ontologies. The Change Identification
Layer serves as an interface to the ONKI client. Different implementations can be
created to attach the ONKI system to different 3rd party ontology editors. The duty of
the Change Identification Layer is to recognize any edit or modification attempted by
the editor, intercept it, and forward it up the ONKI client component chain. As an edit
is detected, the Change Identification Layer first identifies and classifies it according
to the classification presented in Chapter 3. The edit is decomposed into individual
change operations and then forwarded to the filtering layer that validates its safety.

CHAPTER 5. PROPOSED SOLUTION 38

Figure 5.5: ONKI Client components.

5.3.2 Change Filtering Layer

Change Filtering Layer receives individual edits from the Change Identification Layer.
It calculates the elements that are affected by the edit as explained in Chapter 3. As we
remember from the change analyses, the edits are formed from a sequence of change
operations that are used to perform the edit. The system can use these change op-
erations to compute the delta between the knowledge base state before and after the
edit. The result is exactly the elements that are affected by the edit. Having gathered
all affected elements, the layer contacts the Dependency Management System on the
server and asks which elements have dependent elements in other ontologies. The
server replies with a list of dependency trees. At the root of the dependency tree is
the affected element from the local ontology. Its child nodes identify the elements that
depend on the root element and are defined in other ontologies, and the ontology in
which those elements are defined.

If the returned set of dependency trees is not empty, the edit will break other ontolo-
gies. In this case the layer creates a dependency event that identifies the original edit
operation as the cause of the problem, and attaches the dependency trees to the event to
specify the consequences of the operation. The created dependency event is forwarded
to the Problem Identification Interface. In the case when the server reply is empty, no
other ontologies are affected by the change. Dependency processing then ends silently.

CHAPTER 5. PROPOSED SOLUTION 39

5.3.3 Problem Identification Interface

The Problem Identification Interface is where external software can detect dependency
problems. The interface has an event dispatching mechanism that distributes depen-
dency events on the identified dependency problems (for example, "removing of class
http://www.cs.helsinki.fi/testProject#foo breaks its subclass
http://www.test.fi/testProject2#bar in ontology http://www.cs.helsinki.fi/testOntology").
Problem handling components or user interface software can listen to these events and
try to solve the problems automatically, or present the consequences to the user and
ask for confirmation.

A second event dispatching mechanism is included to distribute events about the under-
lying dependency model itself (such as "model processing","model saved" etc.). This
is provided to let user interface software get information on how dependency checking
is progressing, and use this to customize the user interface accordingly. This is impor-
tant because the processing involves calls over a network. The network may be slow,
and the user should be informed that something really is happening and the software
has not crashed.

3rd party software components can implement one, the other, or both of the event
listener interfaces, and register themselves to listen to the events. Then they receive
events when the user attemps to perform a change that would cause problems to other
ontologies. They also recieve information on the state and execution progress of the
dependency plugin.

5.3.4 Problem Visualizer

Problem Visualizer is a simple component built on top of the problem identification
layer. It listens to dependency events, shows them in appropriate detail to the user
and asks the user to confirm or cancel the change that causes problems. If the user
proceeds, the change is made to the underlying knowledge base. Otherwise, entire
change is cancelled. Figure 5.6 shows a draft of the Problem Visualizer output. The
example shows a rather simplistic visualization approach, and from the Figure one can
readily see why the approach should be kept simple.

Figure 5.6: Warning displayed by the Problem Visualizer.

The amount of affected items in the ontologies can be quite large in some cases as the

CHAPTER 5. PROPOSED SOLUTION 40

tourism ontology case shows. The visualizer needs hence to summarize the informa-
tion it receives from the Dependency Management System. A new button could be
added to the output dialog for retrieving further details. The button could extend the
information presented to the user by showing all problem details such as which ele-
ments in other ontologies are affected, how they are affected, who of the developers
are developing the affected ontologies, and how many users the affected ontologies
have. The needed information could be retrieved from the Dependency Management
System, the User Management System and from the Public Ontology Library.

Chapter 6

Implementation

6.1 Introduction

To demonstrate the architecture described in the previous section, I have built a pro-
totype implementation of it. I chose to use Protégé 2.01 [19] as the ontology editor.
Protégé is one of the most popular ontology editors in the world. It is an open source
product written in Java2 [29] and has an intuitive graphical user interface, which makes
it easy to learn. Protégé originates from the Stanford University, where it is actively de-
veloped further. It has a plugin architecture that allows extending the original product
in various ways. The ONKI Client was implemented as a plugin to Protégé.

The ONKI Server prototype features the Service Registry, the Dependency Manage-
ment System, the Development Library, the Publisher and the Public Ontology Library.
The implementation was written mostly in Java. The Publisher was prototyped as a
Unix Shell Script. The Development Library is based on CVS [27] and the knowledge
base of the Dependency Management System on Jena 2.0 [30]. CVS is the Concurrent
Versions System, the dominant open-source network-transparent version control sys-
tem.3 It is freely available under the GNU Public License. Jena is a Java framework
for building Semantic Web applications. It provides a programmatic environment for
RDF, RDFS and OWL, including a rule-based inference engine. Jena is open source
and grown out of work with the HP Labs Semantic Web Programme.4

6.2 Monitored Change Operations

Before deciding which change operations the ONKI prototype system should monitor,
one must first consider a couple of issues. ONKI will be used to develop YSO from
material that is based on the YSA thesaurus. On one hand, YSO is an upper level

1http://protege.stanford.edu
2http://java.sun.com
3http://www.cvshome.org
4http://jena.sourceforge.net

41

CHAPTER 6. IMPLEMENTATION 42

Figure 6.1: Protégé 2.0 ontology editor.

ontology, and thus is not likely to contain many instances compared to the number of
classes. On the other hand, the Protégé editor offers mainly views that are structured
around the class hierarchy and represent a class as the most central ontology building
block. Also, the experiences obtained from the construction of MAO indicate that
focusing on classes would benefit the ontology engineer the most.

The change operations that the system would monitor were selected based on the pri-
orization done in section 3.5. The most critical change operations listed in Table 3.1
were all implemented, except the support for monitoring for moving a property down
the class hierarchy, which is not supported by Protégé as a single operation. Support
for monitoring instances for loss of the direct type was added, too. This happens as a
side effect of a superclass removal, and can be done as an individual operation in the
Protégé editor, too.

From the second set of changes (the "should-have" features) listed in Table 3.2 Protégé
supports directly only narrowing a property restriction and defining a property symmet-
ric. From the experiences of MAO development I decided to implement a functionality
to check for a change in the range of a property. This can cause serious data loss and
can easily introduce into the including ontologies conflicts that are difficult to find.
Other types of property restrictions were not considered in the prototype. Defining a
property symmetric was estimated to occur so rarely that it would not be a priority
issue in the prototype.

The features presented in Table 3.3 were not implemented. On the first hand Protégé
does not support the re-classifying changes as one operation. On the other hand the rest
of the changes pose a minimal risk of conflicts to the ontology dependency structure,
and were therfore left out from the prototype. Table 6.1 summarizes the monitored
operations.

CHAPTER 6. IMPLEMENTATION 43

Table 6.1: Monitored change operations.

Operation Comment on effect

Deleting a thing (a class, a property

or an instance)

Data loss, broken references

Changing a URI Data loss, broken references

Removing a property from a class Data loss, broken references

Removing a direct superclass from a

class

Data loss, change of semantics in an in-

cluding model

Moving a class in the class hierarchy May equal removal of several superclasses

Removing instance’s direct type Data loss, conflicts in an including model

Changing the range of a property Data loss, conflicts in an including model

6.3 Stored Dependency Relations

To be able to use automatic inferencing to decide if the above mentioned change opera-
tions are harmful or not, the Dependency Management System needs to store informa-
tion on the dependency relations between the dependent ontologies. When populating
the Dependency Ontology, the system iterates the classes, properties and instances of
the ontology � that is open in the editor.

For a class � defined in an ontology � , the system checks if it has a superclass
���	��
�� �

that is defined in an included ontology � . If
��� �
�� � exists, the Dependency Manage-

ment System marks that � in ontology � depends on
��� �
�� � in ontology � . Similarly,

if � has a property � that is defined in the included ontology � , dependence from � to
� is stored.

In addition to the class hierarchy dependencies, the property hierarchy may also be
reused in an including ontology. Therefore the dependencies in the property hierarchy
must be stored. If a property � has a superproperty

���	��
�� � that is defined in an
included ontology, a dependency from � to

���	��
�� � is stored. This is sufficient to
deal with the property hierarchy dependencies, but other types of dependencies can
be created between different classes and properties. A relation between two classes is
created by creating a property that has one class in its domain and another one in its
range. The range of a property is a set that defines what type of values the property may
have. The range may include classes and instances; they create a dependency from the
property � to the range class or instance � , which must be stored. The domain of the
property was already handled while inspecting the class � .

Classes may have class level properties. Class level properties are properties that are
attached to a metaclass

�
of the class � . � is thus an instance of

�
. Originally, the

ontology hierarchy is an
�

layer model. A class
�

can be instantiated, an instance �
is created and its type is

�
. The instance � can be further instantiated by creating an

instance � that has � as its type. Now � is an instance, � is a class (because it has an
instance, �) and an instance (of

�
), and

�
is a metaclass because it is a class, which

has an instance that is also a class (�). Properties attached to
�

can have values in

CHAPTER 6. IMPLEMENTATION 44

Table 6.2: Dependency relations stored in the Dependency Management System.

Element Relation

Class Is a subclass of an included class

Class Has an included property

Class The value of some class level property is a reference to an in-

cluded class or instance (Class is an instance of a metaclass.

Class level properties are the properties of the metaclass)

Property Is a subproperty of an included property

Property Has an included class or instance in the range

Instance Is an instance of an included class

Instance The value of some property is a reference to an included class

or instance

� , and properties attached to � can have values at � . Properties of
�

are class level
properties; they have values that are attached to a class (�). Roughly speaking, a class
level property is a property that can be assigned a value at some class. If the value
of such a property in class � is a reference to an included class or instance � , the
dependency from � to � is stored to the Dependency Management System.

For an instance � , the system checks if it is an instance of an included class � , in which
case the dependency from � to � is recorded. I can have values for its properties. If
the value of a property is a reference to a class or an instance � and � is defined in
an included ontology, a dependency from � to � is stored. Table 6.2 summarizes the
dependency relations that are stored in the Dependency Management System.

6.4 Server Implementation

The server core implementation includes the Service Registry, a network abstraction
module and a threading model. The User Management System is not implemented,
and thus in the prototype the Service Registry does not offer authentication services.
The network abstraction module implements a protocol to transfer service requests,
parameters and request results over the network. The threading model has two threads
for each client; one thread processes the request and another monitors the network
connection and sends progress reports back to the client.

The Dependency Management System is based on Jena 2.0, which is used to store the
Dependency Ontology. The system is integrated with the Service Registry as a ser-
vice. The Development Library is prototyped with a CVS repository. The versioning
metadata is automatically provided by the Revision Ontology [31] through CVS in-
teroperability. The Development Library prototype is not currently integrated to the
service architecture. The integration could be done by using JCVS5 [32].

5http://www.jcvs.org

CHAPTER 6. IMPLEMENTATION 45

The Public Ontology Library and the Publisher are prototyped with a Perl script that is
run in a directory where the ontologies have been checked out from the Development
Library. The script tags with a given product tag the version currently in the directory
for each file. It then creates a subdirectory in a public directory on a WWW server,
names the subdirectory with the product tag, and copies all tagged files to that directory.
Finally, it publishes the new ontology to the WWW server users by seting the read
permissions of the directory and the files.

The prototype implementation was done quickly in order to create a proof of concept
for the architecture and test the most interesting system features. Even though all
components are not integrated to the Service Registry, the server prototype can be
used to test different ontology development processes in a distributed setting. The
ONKI Server prototype supports the development, publishing and maintenance phases
of the ontology life cycle. Distributed ontology development and maintenance was
considered a priority during the prototype implementation.

6.5 Client Implementation

The ONKI Client is based on Protégé. It offers a powerful plugin architecture that
allows one to create graphical plugins to perform different tasks related to ontology
editing. Tab plugins add a tab in the user interface. The developer can add to the tab
whatever functionality he feels necessary. The ONKI Client was implemented as a tab
plugin. Other type of plugins can be implemented, too. Slot plugins can be created
to display the value of a certain property. For example, if the property value is an
URL address, a slot plugin can display the value as a hyperlink and start the default
web browser if the user clicks the link. Backend plugins allow developers to cre-
ate different ontology serializations and knowledge base implementations. Different
backend plungins have been implemented, for example an RDF(S) plugin, an OWL
plugin, and database backend plugins. They allow users to save their ontology in a
different format, effectively translating an ontology from one language to another, or
to store the ontology in a database to support large ontologies. At the Protégé’s web
page (http://protege.stanford.edu/plugins/) exists a library of plugins freely available
for download.

Despite its powerful plugin architecture, Protégé API lacks documentation and imple-
mentations to some functions. The implementation of the ONKI Client plugin was
not easy and the RDF(S) backend plugin source code had to be modified. The client
plugin checks the consequences of a change operation after it has been performed on
the knowledge base. This is not a serious limitation, because as the user is warned he
can use the undo functionality of Protégé or revert to a previous save of the ontology.
The information flow is represented in Figure 6.2. The changes that break other on-
tologies are logged, and the log is saved at the same time as the ontology. Therefore,
the log contains only the saved modifications that have broken other ontologies. The
log details could be used to automatically specify which elements in other ontologies
are broken, and why.

CHAPTER 6. IMPLEMENTATION 46

Figure 6.2: ONKI Client protoype.

6.6 Performance Tests

YSO development has not yet started, and it could not be used to evaluate the ONKI
architecture. To get some performance data, I set up a development environment for
the ontologies created in the museum project, and used it to analyse the performance
of the architecture. The primary goal of the performance tests was to demonstrate
the architecture in action and show that it is capable of correctly recognizing problem
situations. The secondary goal was to evaluate the scalability of the architecture by
identifying possible bottlenecks in the prototype. The last goal of the tests was to
provide evidence that a usable system can be created from the architecture by showing
that the delays caused by the remote dependency checks are not too long to hinder
editor usability.

The test data from the museum project totals 9 ontologies. It is formed by 4 upper level
ontologies, by 2 referencing ontologies that include the same top level ontology, and
by 3 bottom level ontologies that include all the upper level ontologies. The data is
presented in Figure 6.3. The top level ontologies are standalone ontologies that do not
include other ontologies. The museum domain ontology MAO contains 6757 classes
and 11 properties. It does not define any instances. The actor ontology introduces
different organizations and individuals that have some role with respect to the items in
the museum collections. This ontology has 14 classes, 6 relations and 1715 instances.
The locations ontology defines different geographic locations. It has 21 classes, 9
properties and 862 instances. The collections ontology stores information about the
different collections in different museums. It defines 10 classes, 23 properties and 123

CHAPTER 6. IMPLEMENTATION 47

Figure 6.3: ONKI prototype test data.

instances.

The museums had indexed their collection items using a terminology specific for each
museum. To add the collection items of a museum into the system, a mapping ontology
was created to connect the terms used in the museum indexing to the concepts used in
MAO. Similar mapping ontologies had been created for other top level ontologies, too,
but they were not available. The mapping ontology for museum A defined 31 classes, 6
properties and 2584 instances. The ontology for museum B had 34 classes, 6 properties
and 2473 instances. The mapping ontology for museum C was not available.

To annotate the items of the museum collections, a bottom level ontology had been
created for each museum. Each item ontology included all top level ontologies. One
instance in the item ontology corresponded to an object in a museum collection. The
information about the item was converted to references to other elements in the ontol-
ogy and in the included ontologies. The resulting item ontologies defined 1 class and
38 properties each. The item ontology for museum A had 1192 instances, the ontology
for museum B 1592 instances, and the ontology for museum C had 2110 instances.

The tests started by first loading the ontological dependencies into the Dependency
Management System. Ontology development was then simulated by modifying the
upper level ontologies to test if the prototype could recognize the problematic edits
and how long it would need to process the client requests. During the tests, the ONKI
Server was running on machine with a Pentium 4 processor running at 1.8 GHz. 200
MB of memory were allocated to the Java virtual machine. The ONKI client was
running as a Protégé plugin on a similar machine.

Each of the bottom level ontologies was loaded into Protégé, and the ONKI client was
used to calculate the dependency relations and store them to the Dependency Manage-
ment System. The same was done for the two MAO mapping ontologies. MAO was
then opened with Protégé, and the ONKI system was tested by removing classes and
properties, removing properties from classes, and by moving classes to other branches
in the class hierarchy. The ONKI Client was modified to recorded the time that it

CHAPTER 6. IMPLEMENTATION 48

needed to check the effects of each change operation from the server.

6.7 Test Results

The time needed to calculate the dependencies from the mapping ontologies to MAO
and then update them to the server was found adequate. The mapping ontology for
museum A defined 2584 instances, which created 2918 dependency relations from
the ontology to MAO. Updating the dependencies to the server took 4.9 seconds. The
mapping ontology for museum B had 2473 instances, and resulted in 1835 dependency
relations. Processing took 4.4 seconds.

The item ontologies defined solely new instances that had an included class as their
direct type. The instances possibly referenced each other or other included instances.
The item ontology for museum A defined 1192 instances, and generated 11956 depen-
dency relations. Updating the server dependency model took 2.6 minutes. The item
ontology for museum B added 1592 instances, which led to 17398 dependency rela-
tions. The server needed 4.7 minutes to add the relations to the dependency model. The
item ontology for museum C defined 2110 instances, and generated 20270 dependency
relations. The server dependency model was updated in 6.3 minutes.

After these initial setup operations the Dependency Ontology contained 12979 in-
stances and 50955 dependency relations. Elements of MAO ontology were referenced
by 31149 relations, elements of the actor ontology by 8949 relations, elements of the
location ontology by 5996 relations, elements or the collection ontology by 4861 re-
lations. The number of references to one element varied between one and 2110. The
system was now setup and ready to undergo the functionality testing needed to find out
if it performance was adequate for real-life ontology development.

Ontology development was simulated by performing a series of change operations to
the largest upper level ontology stored in the system. When MAO was opened and
modified, a warning was displayed for all modifications that caused a referencing on-
tology to break. Checking any individual change took less than 500 milliseconds, even
if an entire top level branch was deleted from MAO. The test results are presented in
Table 6.3. Columns C, P and I indicate the number of classes, properties and instances
the ontology defines. Column RE shows the number of referenced elements in the
upper level ontologies, and the number of referencing elements in the bottom level on-
tologies. Column R shows the number of dependency relations towards the upper level
ontologies, and the number of dependency relations from the bottom level ontologies.
For the Dependency Ontology, R shows the number of dependency relations stored
in the model. Column R/RE shows the average number of dependency relations per
referenced element in the top level ontologies, and the average number of dependency
relations per referencing element in the bottom level ontologies. The last line in the
table shows the size of the Dependency Ontology in the server. The values R and R/RE
are not applicable to the Dependency Ontology.

CHAPTER 6. IMPLEMENTATION 49

Table 6.3: Performance test results. C=Classes, P=Properties, I=Instances,

RE=Referenced/referencing Elements, R=dependency Relations, R/RE=Relations per

Element.

Ontology C P I RE R R/RE

MAO 6757 11 0 2101 31149 14

Actors 14 6 1715 1368 8949 6

Locations 21 9 862 350 5996 17

Collections 10 23 123 15 4861 324

Mapping A 31 6 2584 2563 2918 1

Mapping B 34 6 2473 1680 1835 1

Items A 1 38 1192 1192 11956 9

Items B 1 38 1592 1591 17398 10

Items C 1 38 2110 2110 20270 10

Dependency

Ontology

10 17 12979 - 50955 -

6.8 Results Explained

When the ONKI prototype was tested against the material gathered from a project
similar to the one in which the prototype will be used, it proved to be capable of rec-
ognizing the problems that editing an included ontology may cause. Even though the
initial storing of dependency relations to the system took a rather long time to process,
checking the effects of an individual edit was done in less than 500 milliseconds. This
response time kept the editor usable at all times. ONKI performance in detecting haz-
ardous changes was thus found quite acceptable. With the test data described in the
previous section, the prototype system showed potential to help the ontology developer
keep the ontological dependencies consistent while storing a considerable amount of
dependency relations (51000 relations) in the Dependency Management System.

The scalability of the ONKI architecture is greatly affected by three factors: the num-
ber of dependency relations the system must handle at any client request, the number of
dependency relations in the Dependency Ontology, and the ontology engine used inside
the Dependency Management System to store that ontology. The prototype implemen-
tation used Jena 2.0. A major bottleneck was found in the prototype, where adding
new dependency relations took much too long to process. The bottleneck was caused
by the sequential search and add operations to the Jena API during a Dependency On-
tology update. A rewrite of the update method could improve the performance but the
problem is likely to be solved better by replacing the file based Jena ontology with a
database backed one.

The number of dependency relations in the Dependency Management System is a func-
tion of the number of ontologies stored in the Development Library and of the level of
dependencies between the ontologies. The number of relations the system must handle

CHAPTER 6. IMPLEMENTATION 50

at any client request is itself a function of the level of dependencies between the ontolo-
gies. These Figures depend on how the ontologies are reused, and vary heavily with the
specific use case of the ontology. From the Table 6.3 we can see that the bottom level
ontologies used in the test had a relatively high level of dependency. The amount of
referenced elements compared to the total amount of elements in the ontology varied
between 10 and 80 percent (MAO 31%, Actors 79%, Locations 39%, and Collections
10%). These Figures were caused by the way the ontologies were reused and linked
in the MAO project that served as the test data. Such high levels of dependency sug-
gest problems to ontology maintenance and consistency as the ontologies evolve. They
also surface a need for serious process and product management practices in ontology
development, publishing and maintenance in order to prevent chaos in the ontology
library. Having said that, however, one must remember that the results were caused
by the data that came from one project only. The sample data itself might cause bias
in the results. Nevertheless, if similar results would be obtained from a more detailed
dependency analyses of other ontologies, it would be an important issue for ontology
reuse.

The system was found to function as expected with the given test data. If the system
works in practice as this set of tests suggest, then the ONKI architecture can be con-
sidered as a possible solution to the problem of distributed ontology development. The
ONKI prototype successfully identifies the changes that cause problems in distributed
ontology development. In the prototype implementation updating the Jena ontology in-
side the prototype of the Dependency Management System is very slow, but otherwise
the prototype performance is high enough to be used in real ontology development.
Scalability issues are likely to come up in the function the performance limitations of
the ontology engine used in the Dependency Management System.

Chapter 7

Discussion and Conclusions

A set of ontology change operations was presented and analysed in Chapter 3. Existing
solutions were briefly described in Chapter 4. Chapter 5 presented an architecture that
allowed catching these change operations and evaluating their effects on dependent
ontologies. A prototype was implemented as described in Chapter 6 and it was found
usable for distributed development of an upper level ontology. The thesis thus reached
the goals that were set in Chapter 1. This Chapter will briefly summarize the change
analyses, the designed ONKI architecture and the prototype implementation. It will
then draw conclusions from the results, discuss their significance, and propose ideas
for future work.

7.1 Changing an Included Ontology

Changing an included ontology may cause conflicts in the including ontologies that
reference the changed concepts. An edit operation that is performed by the user may be
decomposed into a set of atomic changes that limit the effects of the operation. The edit
decomposition can be used to calculate a change of the state of the ontology before and
after the edit operation to more precisely identify a set of concepts that may be affected
by an edit operation. Ontology edit operations themselves can be divided into three
categories based on their severity: Removing or changing a URI, removing a superclass
or a superproperty or changing it to a one higher in the class or property hierarchy,
removing a property from a class and moving a property down the class hierarchy form
the first category of changes. These edits modify the class and the property hierarchies
and cause invalid references in the including ontologies. They occur frequently in
ontology editing and have severe consequences to the including ontologies, causing
data loss and large inconsistencies. A distributed ontology development environment
needs to protect the developers of inter-dependent ontologies against these changes.

The second category is formed by narrowing a restriction for a slot, merging or split-
ting classes, moving a property to a referenced class or to a new class, and declaring
two classes disjoint and defining a property transitive or symmetric. The effects of
these operations are more limited than the ones of the first category, or they occur less

51

CHAPTER 7. DISCUSSION AND CONCLUSIONS 52

frequently. Distributed ontology development environments should help the users with
these changes, if they are considered to be common in the specific type of ontologies
the users are creating. At least they should be identified by the system.

The last category contains the edits that either virtually never cause problems or are
performed very rarely. These operations are adding a new URI, adding a property
to a class, adding a superclass or a superproperty, moving a property up the class
hierarchy, re-classifying a class as an instance or vice versa, changing a superclass or
a superproperty to a class higher in the class or property hierarchy, and widening a
restriction for a slot. Ontology editors can fairly safely ignore these kinds of changes
when considering conflicts between dependent ontologies. They may be supported for
other reasons, for example user convenience; listing similar URIs from the ontology
library when the user creates a new concept would improve the editor usability.

7.2 ONKI – an Architecture for Distributed Develop-

ment of an Ontology Library

The ONKI architecture was designed to be used in distributed development of depen-
dent ontologies. It supports effective ontology management and distributed develop-
ment in the development and maintenance phases of the ontology life cycle. The safety
of edit operations can be checked and the problematic changes caught with a client-
server based architecture. The ONKI server is based on a service architecture, where
all service requests are first sent to the Service Registry. Using the User Management
System, it authenticates the request and creates a secure communication channel be-
tween the requester and the service. The most important service is the Dependency
Management System, which keeps track of the dependencies between the ontologies
in the system. Clients can check the effects of a change operation from there. The De-
pendency Management System is connected to the Development Library that stores the
ontologies under development. The library enforces consistent version control on the
ontologies. If an ontology is committed back to the development library and it causes
conflicts to some other ontologies that depend on it, the ONKI Messenger automati-
cally notifies the developers of the affected ontologies. It uses the User Management
System to find the contact information, and provides different messaging channels such
as email or MMS.

A Public Ontology Library contains the ontology versions that have been published. It
is designed to be an interface to a multitude of library implementations ranging from
a searchable database backed library to a simple WWW site to a programmatically
accessible library. Publishing an ontology from the Development Library to the Public
Ontology Library is done with the Publisher, which allows a managed deployment
process to be established.

The ONKI client consists of a client module, which is inserted in an ontology edi-
tor. The Change Identification Layer in the client module interrupts all change oper-
ations before they are performed to the editor knowledge base. The Change Filtering
Layer determines, which local ontology elements would be affected by the change,

CHAPTER 7. DISCUSSION AND CONCLUSIONS 53

and checks from the server what effects those modifications would have in other on-
tologies. All changes that would cause problems are forwarded to the Problem Iden-
tification Interface, which distributes notifications about the problems to all registered
listeners. Listener applications can then attempt to solve the problems or even prevent
the conflicting changes from being written to the knowledge base. A sample listener
application would just show the problems in detail and confirm the problematic edit
operations from the user, allowing or discarding them based on his input.

7.3 ONKI Prototype

A prototype of the ONKI architecture was implemented to be used in the distribution
of the development of an upper level ontology YSO. The server prototype is based on
Jena 2.0 and CVS. The client prototype works on top of Protégé 2.0 ontology editor.
The prototype identifies the problematic changes and warns the ontology developer
about them. A detailed log is also created, and it can be used to find the cause and
consequences of any breaking change. Due to missing method implementations in
the Protégé API the client integration required changing the source code of Protégé’s
RDF(S) plugin. However, all problems were overcome.

The prototype was tested by simulating the development of MAO, a museum domain
upper level ontology. The prototype showed good performance in identifying the prob-
lematic changes, but updating the Dependency Management System’s dependency on-
tology turned out to be quite slow. The server performance could be increased by using
a database backend instead of a file based system. Jena supports relational databases
MySQL, PostgreSQL and Oracle through a JDBC connection. Also, modifying the
client implementation to send just the modified dependencies based on the log col-
lected would dramatically cut down the number of dependencies the server must pro-
cess during an update.

7.4 Conclusions

Ontology reuse can be based on the modularization of ontologies and on the inclusion
of those modules in other ontologies to form larger entities. A client-server based ar-
chitecture can be used to implement an ontology library system that allows distributed
development of ontologies and helps the developers in developing and maintaining the
inter-dependent ontologies. The client-server architecture need only be a logical ar-
chitecture. In reality, the server architecture can be distributed to balance server load
and increase scalability. To do this, a centralized registry is needed where different
services can be located. This can be done transparent to the user. It is essential that
the ontology developers are kept up to date on the effects of their edits because, in
the case of inter-dependent ontologies, a seemingly small change in one ontology can
cause massive effects in several other ontologies.

All changes do not cause problems to the referencing ontologies. Change operations
can be classified according to the severity of their effects, and the classification can

CHAPTER 7. DISCUSSION AND CONCLUSIONS 54

be used as a prioritization for ontology development environment implementations.
Different composite changes can be created by grouping individual change operations.
The upper boundary for their effects is formed by the effects of the individual changes
that form them. However, their effects can be smaller because some of the composing
changes can re-establish conditions that were broken by other composing changes.
This information can be used to decide at the client end if an operation is safe, despite
the fact that it is composed from unsafe operations. This can be used to increase
ontology editor performance.

The dependency level between two ontologies varies heavily based on how the on-
tologies are reused. In the test case the ontology dependencies from the lower level
ontologies to MAO and other upper level ontologies proved to be quite strong. Thirty
to eighty percent of the upper level ontology concepts were referenced, and the aver-
age number of references per referenced element was from 6 to 17 (324 in one case).
The average number of references from a bottom level ontology element was 10. In
my opinion, such levels of dependency suggest problems with the maintainability of
ontologies. However, the test data was from one project only and it might be balanced.

7.5 Significance of Results

To promote ontology reuse, it is important to solve the problems of distributed devel-
opment of inter-dependent ontologies. Serious ontology development requires a set
of quality tools to manage, develop and maintain ontologies and the dependencies be-
tween them in a disciplined manner. The results of the thesis show that these tools can
be based on a client-server architecture. There exist other systems similar to ONKI,
such as the KAON Engineering Server. Those systems may be better in some particu-
lar ontology development tasks such as allowing a more powerful ontology inclusion
mechanism, propagating the changes to the dependent ontologies, merging two on-
tologies, translating ontologies from one language to another, offering methodological
support to ontology development, or supporting ontology versioning. However, the
problem of those systems is, on one hand, the non-impugning approach they take on
any single change operation and, on the other hand, the rigid barriers some of them im-
pose between different ontology development tasks. Even if a change has massive neg-
ative impacts on the including ontologies, it is never considered if the change should
be made in another way. The ONKI architecture embraces change in an intelligent
manner, guiding the ontology developers towards conscious development decisions by
helping them to create backward compatible changes that keep the ontological depen-
dencies consistent. For this to be possible, one must take an integrated approach to
ontology library design. The integrated approach is crucial in creating the full set of
easy-to-use utilities that are needed to allow the wide-spread use of ontologies. Such
systems should be prepared to handle large numbers of dependencies between ontolo-
gies, as the ontologies can be reused with different instance sets.

CHAPTER 7. DISCUSSION AND CONCLUSIONS 55

7.6 Future Work

More research on different ways to reuse ontologies should be done in order to find
ways to cut the level of dependencies between ontologies. The development records of
MAO indicated one type of reuse, where the including ontologies add mainly instance
data. This causes heavy dependence between the ontologies, and is against the sound
ontology design principles presented by Gruber [4]. However, it is an intuitive way to
reuse ontologies while building intelligent applications, and it would be interesting to
know if it is the way most ontologies are being reused. This would shake the image
that we have today on ontology reuse.

For ONKI to become a full, industry-class distributed ontology development and man-
agement environment, the performance problems related to Jena need to be solved.
This was discussed in section 7.3 and a proposition was made to guide future develop-
ment. The User Management System and authentication should be implemented, and
the server components could be distributed to support larger user volumes and big-
ger ontology libraries. ONKI could be extended by implementing a support for some
composite changes such as moving a property up the class hierarchy. These operations
could be implemented at the ONKI client. It would reduce the amount of inference
that must be done in the Dependency Management System and would thus directly
increase performance. Clients could cache relevant parts of the dependency model lo-
cally, so that network calls could be reduced. This, again, would improve the system
performance.

The Development Library, the Publisher and the Public Ontology Library should be
integrated as services in the ONKI architecture. The user could then perform all devel-
opment tasks from his graphical client, which would make the ontology development
process more effective. The ONKI Messenger could be implemented, and support for
semi-automatic merging of changes from included ontologies could be done according
to the principles presented by Maedche et al. in [15].

References

[1] Sean Bechhofer, Leslie Carr, Carole Goble, and Wendy Hall. Conceptual Open
Hypermedia = The Semantic Web? In Proceedings of the WWW2001, Semantic
Web Workshop, Hongkong, 2001.

[2] R. Struder, V.R. Benjamins, and D. Fensel. Knowledge engineering: Principles
and methods. IEEE Transactions on Data and Knowledge Engineering 25(1–2),
pages 161–197, 1998.

[3] D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, 2001.

[4] T. R. Gruber. Towards Principles for the Design of Ontologies Used for Knowl-
edge Sharing. In N. Guarino and R. Poli, editors, Formal Ontology in Concep-
tual Analysis and Knowledge Representation, Deventer, The Netherlands, 1993.
Kluwer Academic Publishers.

[5] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Stojanovic.
User-driven ontology evolution management. In European Conf. Knowledge Eng.
and Management (EKAW 2002), pages 285–300. Springer-Verlag, 2002.

[6] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infrastructure
for searching, reusing and evolving distributed ontologies. In Proceedings of
the twelfth international conference on World Wide Web, pages 439–448. ACM
Press, 2003.

[7] Julio C. Arpírez, Oscar Corcho, Mariano Fernández-López, and Asunción
Gómez-Pérez. Webode: a scalable workbench for ontological engineering. In
Proceedings of the international conference on Knowledge capture, pages 6–13,
Victoria, British Columbia, Canada, 2001. ACM Press.

[8] Ying Ding and Dieter Fensel. Ontology library systems: The key to success-
ful ontology re-use. In The first Semantic web working symposium (SWWS1),
Stanford, USA, July 29–August 1 2001.

[9] Hyperdictionary home page. http://www.hyperdictionary.com/computing/ontology,
accessed March 5, 2004.

[10] M. Uschold and R. Jasper. A framework for understanding and classifying on-
tology applications. In Benjamins VR (ed) IJCAI ’99 Workshop on Ontology and

56

REFERENCES 57

Problem Solving Methods: Lessons Learned and Future Trends. Stockholm, Swe-
den. CEUR Workshop Proceedings 18:11.1-11.12. Amsterdam, The Netherlands,
1999.

[11] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: A tool for collabora-
tive ontology construction. Technical report, Stanford KSL 96-26, 1996.

[12] Jeff Heflin and James A. Hendler. Dynamic ontologies on the web. In AAAI/IAAI,
pages 443–449, 2000.

[13] J. Domingue. Tadzebao and WebOnto: Discussing, Browsing and Editing on the
Web. In Proceedings of the 11th Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada, April 18th–23th 1998.

[14] N. Noy and M. Klein. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 5, 2003.

[15] A. Maedche, B. Motik, and L. Stojanovic. Managing multiple and distributed
ontologies on the semantic web. The VLDB Journal, 12(4):286–302, 2003.

[16] R.L. Leskinen, editor. Museoalan asiasanasto. Museovirasto, Helsinki, Finland,
1997.

[17] Yleinen suomalainen asiasanasto. http://vesa.lib.helsinki.fi/ysa/, accessed March
23, 2004.

[18] Maedche, Alexander and Motik, Boris and Stojanovic, Ljiljana and Studer, Rudi
and Volz, Raphael. Ontologies for enterprise knowledge management. IEEE
Intelligent Systems, 18(02):26–33, 2003.

[19] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowl-
edge modeling at the millennium – the design and evolution of protege-2000.
In Proceedings of the 12 th International Workshop on Knowledge Acquisition,
Modeling and Mangement (KAW’99), Banff, Canada, October 1999.

[20] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker, Michael Erd-
mann, and Michel C. A. Klein. OIL in a nutshell. In Knowledge Acquisition,
Modeling and Management, pages 1–16, 2000.

[21] I. Horrocks D. L. McGuinness P. F. Patel-Schneider D. Connolly, F. van Harme-
len and L. A. Stein. DAML+OIL (March 2001) Reference Description,
http://www.w3.org/TR/daml+oil-reference, March 2001, accessed March 1,
2004.

[22] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a
reason-able ontology editor for the semantic web. In Proceedings of KI2001,
Joint German/Austrian conference on Artificial Intelligence, number 2174 in
Lecture Notes in Computer Science, pages 396–408, Vienna, September 2001.
Springer-Verlag.

[23] A Gomez-Perez, M Fernandez, and A.J. De Vicente. Towards a method to con-
ceptualize domain ontologies. In ECAI-96 Workshop on Ontological Engineer-
ing, Budapest, Hungary, 1996.

REFERENCES 58

[24] M Fernandez, A Gomez-Perez, and N. Juristo. METHONTOLOGY: From on-
tological art towards ontological engineering. In AAAI-97 Spring Symposium on
Ontological Engineering, Stanford University, March 24th–26th 1997.

[25] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Proceedings of the
first International Semantic Web Conference 2002 (ISWC 2002), June 9-12 2002,
Sardinia, Italia. Springer, LNCS 2342, 2002.

[26] Michel Klein, Dieter Fensel, Atanas Kiryakov, and Damyan Ognyanov. Ontology
versioning and change detection on the web. In 13th International Conference
on Knowledge Engineering and Knowledge Management (EKAW02), Sigüenza,
Spain, October 1–4 2002.

[27] Free Software Foundation. Concurrent versions system,
http://www.cvshome.org, accessed February 23, 2004.

[28] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2000.

[29] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. GO-
TOP Information Inc., 5F, No.7, Lane 50, Sec.3 Nan Kang Road Taipei, Taiwan;
Unit 1905, Metro Plaza Tower 2, No. 223 Hing Fong Road, Kwai Chung, N.T.,
Hong Kong, 1996.

[30] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the semantic web recommendations.
Technical Report HPL-2003-146, HP Labs, December 24, 2003.

[31] T. Kauppinen. Ontology versioning framework. Master’s thesis, University of
Helsinki, forthcoming in 2004.

[32] The JCVS home page, http://www.jcvs.org/, accessed February 24, 2004.

Appendix A

Effects of Changes Prioritized

Table A.1: Effect of changes for classes, properties, instan-
cies and dependency relations.

Priority Operation Comment on effect
High Deleting a class, a property, or

an instance
Data loss, breaks referencing ontolo-
gies

High Changing a URI Equals to delete in referencing on-
tologies

High Removing a superclass or a su-
perproperty

Identity of subelements changes.
Breaks referencing ontologies

High Moving a class in the class hi-
erarchy

May be safe, or may equal removing
of several superclasses

High Changing the superclass or the
superproperty to a class or a
property higher in the hierarchy

Equals removing some superclasses
or superproperties

Medium-
High

Removing a property from a
class

Loss of data. Breaks referencing on-
tologies

Medium-
High

Moving a property down the
class hierarchy

Equals removing a property for some
classes

Medium Narrowing a restriction for a
slot

Data loss. Introduces hard to find
conflicts into referencing ontologies

Medium Merging classes Breaks referencing ontologies. Com-
mon operation in YSO development
and maintenance

Medium Splitting a class Breaks referencing ontologies. Com-
mon operation in YSO development
and maintenance

Medium-
Low

Moving a property to a refer-
enced class

Breaks referencing ontologies. Use-
full operation in ontology restructur-
ing

59

APPENDIX A. EFFECTS OF CHANGES PRIORITIZED 60

Table A.1: Effect of changes for classes, properties, instan-
cies and dependency relations.

Medium-
Low

Moving a property to a new
class

Breaks referencing ontologies. Use-
full operation in ontology restructur-
ing

Low Declaring two classes disjoint Rare operation. Breaks the semantics
of referencing ontologies

Low Defining a property transitive
or symmetric

More common than declaring classes
disjoint, but less dangerous. Breaks
the semantics of referencing ontolo-
gies

Very
Low

Adding a new URI: a class, a
property or an instance

Common operation. Problems occur
very rarely, limited consequences

Very
Low

Adding a property to a class Very rarely conflicts if the same prop-
erty exists in a subclass and property
restrictions conflict

Very
Low

Adding a superclass or a super-
property

Safe, may introduce same problems
as adding a property. Very safe oper-
ation

Very
Low

Moving a property up the class
hierarchy

May cause same problems as adding
a property if the class has other sub-
classes which already have the prop-
erty

Very
Low

Re-classifying a class as an in-
stance

Very rare operation. Loses data.
Breaks referencing ontologies

Very
Low

Re-classifying an instance as a
class

Very rare operation. Breaks referenc-
ing ontologies

Safe Changing the superclass or the
superproperty to one higher in
the hierarchy

No problems for the class or property
in question

Safe Widening a restriction for a
property

Completely safe change

