
Creating LOD
from databases
Annastiina Ahola, Heikki Rantala

Converting Data to RDF
● Converting good, clean structured data is pretty easy, but

data is rarely that good.
● What do you need to consider?

○ Controlled vocabularies
○ URIs (identifiers)
○ Data models / ontologies
○ …

Tools for Converting Data to RDF

● Programming libraries
○ RDFLib (Python), Jena (Java)...

● RDF Mapping Language (RML)
● OpenRefine
● Lots of other tools…

Example data: OperaSampo
● Evening-specific data on opera and music theatre

performances in Finland 1830–1960
○ Information on compositions, performances, venues as well as people

involved in the performances (opera singers, directors, etc.)
○ approx. 9,500 performances, 4,700 people, 750 compositions, 7,000

role characters and 130 performance venues
● Originally part of a SQL-based Reprises database

○ Running on legacy software and would likely soon cease to function
→ Linked Data service and portal as the new solution

OperaSampo transformation process

● Data from the SQL database as a dump of CSV files
○ Each CSV file corresponding to one table in the original database

■ 18 CSV files (/tables) total → 16 relevant
● Data conversion from CSV files to RDF done using Python scripts
● The script iterates over each row in each of the relevant CSV files and

extracts the values in the columns of each file
○ URIs are formed based on the identifiers available in the original data
○ For XML formatted fields, the textual content and language information is

extracted and stored as a string literal with the relevant language tag attached

CSV example: OperaSampo

personRoleId|personId|role

...

3581517|3563392|role.opera-singer

...

ops:persons_3563392 a scop:Person ;

scop:additionalInfo "Swedish actor
Source: Svenskt
porträttgalleri,

XXI (Stockholm 1897), s. 42.
Wikipedia"@en
;

scop:dateOfBirth "7.7.1869" ;

scop:dateOfDeath "9.7.1911" ;

scop:editorNotes "Svensk skådespelare
Source: Svenskt
porträttgalleri,

XXI (Stockholm 1897), s. 42.
Wikipedia" ;

scop:placeOfBirth "Horten, Norge" ;

scop:placeOfDeath "Hornbaek, Danmark" ;

scop:role ops:occupation_roles_opera-singer ;

skos:prefLabel "Hansson Axel Mauritz"@fi ;

foaf:firstName "Axel Mauritz" ;

foaf:surname "Hansson" .

RDF

personId|firstName|lastName|displayName|dateOfBirth|dateOfDeath|placeOfBir
th|placeOfDeath|additionalInfo|editorNotes

...

3563392|Axel Mauritz|Hansson|Hansson Axel
Mauritz|7.7.1869|9.7.1911|Horten, Norge|Hornbaek, Danmark|"<?xml
version='1.0' encoding='UTF-8'?><root available-locales=""fi_FI,en_US,""
default-locale=""fi_FI""><AdditionalInfo language-id=""en_US"">Swedish
actor\nSource: Svenskt porträttgalleri, XXI (Stockholm 1897), s.
42.\nWikipedia</AdditionalInfo></root>"|Svensk skådespelare\nSource:
Svenskt porträttgalleri, XXI (Stockholm 1897), s. 42.\nWikipedia

... foc_Person.csv

foc_PersonRole.csv

foc_PersonRole.csv foc_Person.csv

Tutorial example data

● Small subset of data extracted from the original OperaSampo data for
tutorial purposes

○ Limited to the compositions of four different composers and their performers as
well as related data (venues, producers, people)
→ approx. 40 performances, 90 people

● Data and scripts as well as a portal setup available on GitHub:
https://github.com/SemanticComputing/sampo-lod-tutorial

○ Data and scipts in the ‘create-lod’ folder:
https://github.com/SemanticComputing/sampo-lod-tutorial/tree/main/create-lod

https://github.com/SemanticComputing/sampo-lod-tutorial
https://github.com/SemanticComputing/sampo-lod-tutorial/tree/main/create-lod

Tutorial example data

● Requirements for running the scripts and setting up a local Fuseki
SPARQL server
○ Python

■ Libraries:
● RDFLib (creating RDF data)
● pandas (reading CSV files, alternative library: csv)
● untangle (parsing XML to Python objects)
● BeautifulSoup (extracting formatted data from XML)

○ Docker (for running the Fuseki SPARQL server)

Example code: Imports

import necessary libraries

import pandas as pd # for JSON data: import json

import untangle as ut
from bs4 import BeautifulSoup

from rdflib import Namespace, URIRef, Literal, Graph, RDF, RDFS, XSD, FOAF

define namespaces for easier use (e.g., SCOP.Object = <http://ldf.fi/schema/operasampo/Object>)

SKOS = Namespace('http://www.w3.org/2004/02/skos/core#')

OPS = Namespace('http://ldf.fi/operasampo/')

SCOP = Namespace('http://ldf.fi/schema/operasampo/')

...

Presenter Notes
Presentation Notes
todo: CSV

Example code: Graph creation

create a new graph

graph = Graph()

bind relevant namespaces
graph.bind('rdf', 'http://www.w3.org/1999/02/22-rdf-syntax-ns#')

graph.bind('skos', 'http://www.w3.org/2004/02/skos/core#')

graph.bind('ops', 'http://ldf.fi/operasampo/')

graph.bind('scop', 'http://ldf.fi/schema/operasampo/')

graph.bind('foaf', 'http://xmlns.com/foaf/0.1/')

...

Example code: Reading files

...

open your source data file and load its data

performances_file =
pd.read_csv('../csv/foc_Performance.csv', sep=";",
dtype=object)

iterate over the rows in the CSV file

for i, row in performances_file.iterrows():

extract data from the row ...

handle_performance_row(graph, row)

...

with open('objects.json') as file:

data = json.load(file)

iterate over the objects

for item in data:

extract data from the object
base = 'http://example.org/o'
id = str(item['objectId'])
art_object = URIRef(base + id)

JSON

Example code: Handling rows

def handle_performance_row(graph, row):

form URI for the performance using the value in the performanceId column

performanceURI = URIRef('http://ldf.fi/operasampo/performances_' + str(row['performanceId']))

graph.add((performanceURI, RDF.type, SCOP.Performance))

add reference to the original composition with the value in the compositionId column

if not pd.isna(row['compositionId']):
form URI for the composition
(this should match the URI formulation in the composition conversion script)

compositionURI = URIRef('http://ldf.fi/operasampo/compositions_' +
str(row['compositionId']))

graph.add((performanceURI, SCOP.composition, compositionURI))

get the data from all the other columns ...
...

Example code: Serializing

...

serialize the graph when you’re done to save it (in this
case a file named performances.ttl’ to the folder ttl/)

g.serialize('ttl/performances.ttl', format='turtle')

Local Fuseki setup for querying data

● You can use a Apache Jena Fuseki
(https://jena.apache.org/documentation/fuseki2/) SPARQL
server with Docker for serving your data locally
○ This enables you to query your own created data locally with SPARQL

similarly to an online endpoint and use it for analysis
■ More on how to utilize SPARQL with LOD later in “Using the LOD

service via SPARQL and Notebooks, data analysis, network
analysis, and visualizations”

https://jena.apache.org/documentation/fuseki2/

Conclusions

● Your data drives the process: What is in your data?
○ Use actual example cases from your data to help you think about the data model

and conversion process – your data doesn’t have to be “beautiful” to be useful and
you can always adjust things (e.g., different modeling decisions) later

● Work in steps: Start small and iterate
○ You can first include only some properties in your conversion

■ Does the output look correct? Are there any issues with the data that might
need some preprocessing, for example?

○ Continue expanding your conversion process to include other properties when the
previous ones are OK

Conclusions

● Validating your data
○ Setting up an user interface could help you see mistakes in data (e.g.,

missing values or something being overrepresented)
○ Formal validation with SHACL, ShEx
○ Domain-specific validation

■ 8-star model – is your data truthful?
● e.g., person participating in an event after their death or a

start date being later in time than an end date

	Creating LOD from databases
	Converting Data to RDF
	Tools for Converting Data to RDF
	Example data: OperaSampo
	OperaSampo transformation process
	CSV example: OperaSampo
	Tutorial example data
	Tutorial example data
	Example code: Imports
	Example code: Graph creation
	Example code: Reading files
	Example code: Handling rows
	Example code: Serializing
	Local Fuseki setup for querying data
	Conclusions
	Conclusions

