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Abstract. This paper focuses on the design and the development of
a text processing architecture exploiting specialized NLP tools, to pro-
duce linguistically annotated documents. This architecture is instanci-
ated using existing NLP modules and resources which need to be tuned
to specific domains. Taking as an example the biological domain, we
show how a syntactic analyser can be adapted to this domain. We focus
on parsing since it exhibits various kinds of adaptation, ranging from
unknown words analysis to specific vocabulary (terms, named entities)
and structure identification.

1 Introduction

Search engines like Google or Yahoo offer acces to billions of textual webpages.
These tools are very popular and seem to be sufficient for a large number of
general user queries on the Internet. However, some other queries are more com-
plex, requiring specific knowledge or processing strategies: no really satisfactory
solutions exist for these requests. There is thus a need for more specific search
engines dedicated to specialized domain or users.

The ALVIS project aims at developing an open source search engine, with
extended semantic search facilities. Compared to state of the art search engines
(like Google, the most popular one), ALVIS is intended to process the query more
accurately, taking into account the topic and the context of search to refine both
the query and the document analysis. The goal is achieved through a peer-to-
peer architecture: the system is made of general search capabilities enhanced
with specialized, domain-specific, knowledge-based systems called crawlers.

Crawlers may use specific resources and tools to extract relevant information
from the text. For example, recent developments in biology and biomedicine are
reported in large bibliographical databases either focused on a specific species
(e.g. Flybase, specialized on Drosophilia Menogaster) or not (e.g. Medline). This
type of information sources is crucial for biologists but there is a lack of tools to
explore them and extract relevant information. Content analysis tools (named
entity and technical term recognizers) have recently gained a certain success on
these domains. However, being able to fill structured databases from free texts
(a task known as event-based Information Extraction) is still a challenge.



Given the specificity and the reliability of the information that is sought by
scientists, it is clear than one needs more than existing search engines. For exam-
ple, biologists working on genomic data mainly focus on biological interactions
between genes and/or proteins. They more specifically look for the source and
target of the interaction as well as for the type of that interaction. We think
that looking for this kind of information requires a linguistic analysis and even
a syntactic parsing of the documents.

We developed an NLP architecture which enriches documents (such as down-
loaded Medline abstracts) with linguistic information. This platform is designed
to be generic for processing specialized documents. Actually, we carry out ex-
periments and evaluate it on biomedical texts. It can be viewed as a framework
integrating existing NLP tools. Each tool is wrapped in the platform. Most of
them can be tuned by adding domain specific lexical resources.

This paper focuses on the design and the development of a text processing
architecture exploiting specialized NLP tools, to produce linguistically annotated
documents. This architecture is instanciated using existing NLP modules and
resources which need to be tuned to specific domains. Taking as an example
the biological domain, we show how a syntactic analyser can be adapted to
this domain. We chose to focus on parsing since it exhibits various kinds of
adaptation, ranging from unknown words analysis to specific vocabulary (terms,
named entities) and structure identification.

In section 2, we give an overview of the existing architectures designed for
document annotation. Then the platform is described in section 3. We enumerate
the list of modules that are integrated and give a detailed description of the
adaptation strategy for the syntactic module in section 5. Lastly, processing
time, a key issue for this kind of architecture, is evaluated in section 6.

2 Background

Several text engineering architectures have been proposed to manage text process-
ing over the last decade [1]. GATE (General Architecture for Text Engineering)
[2] has been essentially designed for information extraction tasks. It aims at
reusing NLP tools in built-in components. The interchange annotation format
(CPSL – Common Pattern Specific Language) is based on the TIPSTER anno-
tation format [3].

Based on an external linguistic annotation platform, namely GATE, the KIM
platform [4] can be considered as a ”meta-platform”. It is an ontology popula-
tion, semantic indexing and information retrieval architecture. KIM has been
integrated in massive semantic annotation projects such as the SWAN clusters1

and SEKT2. The authors identify scalability as a critical parameter for two rea-
sons: (1) it has to be able to process large amounts of data, in order to build
and train statistical models for Information Extraction; (2) it has to support its
own use as an online public service.
1 http://deri.ie/projects/swan
2 http://sekt.semanticweb.org



UIMA[5], a new implementation architecture of TEXTRACT [6], is simi-
lar to GATE. It mainly differs from GATE in the data representation model.
UIMA is a framework for the development of analysis engines. It offers compo-
nents for the analysis of unstructured information streams as HTML web pages.
These components are supposed to range from lightweight to highly scalable im-
plementations.The UIMA annotation format is called CAS (Common Analysis
Structure). It is mainly based on the TIPSTER format [3]. Annotations in the
CAS are stand-off for the sake of flexibility. Documents can be processed either
at a single document level or at a collection level. Collections are handled in
UIMA by the Collection Processing Engine, which has some interesting features
such as filtering, performance monitoring and parallelization.

The Textpresso system [7] has been specifically developed to mine biological
documents, abstracts as well as articles. Focusing on Caenorhabditis elegans, the
system processes 16,000 abstracts and 3,000 full text articles. It is designed as
a curation system extracting gene-gene interaction that is also used as a search
engine. NLP modules are integrated: tokenizer, sentence segmentation, Part-Of-
Speech (POS) tagging, and an ontology tagging based on information provided
by Gene Ontology[8].

While Textpresso is specifically designed for biomedical texts, our platform is
near to GATE in its aim: proposing a generic platform to process large document
collections.

Generally, very little information is given to evaluate the behavior of the
systems on a collection of documents whereas from our point of view, this aspect
is crucial for such a system. Our first test shows that GATE is not suited to
process large collections of documents. GATE has been designed as a powerful
environment for conception and development of NLP applications in information
extraction. Scalability is not central in its design, and information extraction
deals with small sets of documents. However, we have observed that problems
appear on small sets of documents. We choose to propose a platform able to
analyse large amounts of documents, and focus on the efficiency of the processing.

3 A modular and tunable platform

We developed a platform exploiting existing NLP tools rather than developing
new ones3, and quickly annotating a large number of documents. The platform
allows us to test the various combinations of annotations to identify which ones
have a significant impact on the extraction rule learning. In that respect, the
platform can be viewed as a modular software architecture tunable according to
the targeted domain.

3 We developed NLP systems only when no other solution was available. We preferably
chose GPL or free licence softwares when possible.



3.1 Specific constraints

The reuse of NLP tools imposes specific constraints regarding software engi-
neering and processing domain-specific documents requires tuning resources to
better fit the data.

From the software engineering point of view, constraints concern above all
the heterogeneity of the input/output formats of the integrated NLP tools. Each
tool has its own input and output format. Linking together several tools requires
defining an interchange format. Testing various combination of annotations, in-
cluding processing time of some linguistic analysis (the main pitfall is syntactic
dependency parsing which is time consuming) incite us to propose a distributed
architecture.

Proposing a platform to annotate biomedical texts implies also NLP con-
straints like the availability of lexical and ontological resources, or tuning of
NLP tools to improve Part-of-Speech tagging or parsing. Specialized linguistic
processing can be required according to specific domains. For instance, we have
argued in [9] that identification of gene interaction requires gene name tagging,
term recognition and a reliable syntactic analysis.

3.2 General architecture

The different processing steps are traditionally separated in modules [2]. Each
module carries out a specific processing: named entity recognition, word segmen-
tation, POS tagging and parsing. It wraps an NLP tool to ensure the conformity
of the input/output format with the DTD. Annotations are recorded in an XML
stand-off format to deal with the heterogeneousness of NLP tools input/output
(the DTD is fully described in [10]).

The modularity of the architecture simplifies the substitution of a tool by
another. This implies module switching without any impact on the whole archi-
tecture.

Tuning to a specific field or species is insured by the resources used by each
module. For instance, a targeted species gene list can be added to the biology-
specific named entity recognizer to process Medline abstracts. It only depends
on the availability of such a resource.

Figure 1 gives an overview of the architecture. The various modules compos-
ing the NLP line are represented as boxes. The description of these modules are
given in section 4. The arrows represent the data processing flow. The dotted
arrows represent alternative types of outputs that the platform may produce.

We assume that input web documents are already downloaded, cleaned, en-
coded into the UTF-8 character set, and formatted in XML [10]. Documents are
first tokenized to define offsets for further linguistic units to annotate and to en-
sure the homogeneity of the various annotations. Then, documents are processed
through several modules: named entity recognition, word and sentence segmen-
tation, lemmatization, part-of-speech tagging, term tagging, and parsing.

Although this architecture is quite traditional, a few points should be high-
lighted:
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Fig. 1. Architecture of the text line processing.



– Tokenisation is a first step to compute a first basic non-linguistic segmen-
tation, and is used for further reference. Those are the basic textual units
in the text processing line. Tokenization serves no other purpose but to
provide a starting point for segmentation. This level of annotation follows
the recommendations of the TC37SC4/TEI workgroup, even if we refer to
the character offset rather than pointer mark-up (TEI element ptr) in the
textual signal to mark the token boundaries. To simplify further process-
ing, we distinguish different types of tokens: alphabetical tokens, numerical
tokens,separating tokens and symbolic tokens.

– Named Entity tagging takes place very early in the NLP line because un-
recognized named entities hinder most NLP steps, in many sublanguages;

– Terminological tagging is used as such but is also considered as an aid for
syntactic parsing. As this latter step is time consuming, we exploit the fact
that terminological analysis simplifies the parsing cost.

4 Description of the NLP modules

For each document, the NLP modules are called sequentially. The outputs of the
modules are stored in memory until the end of the processing. XML output is
recorded at the end of a document processing.

This section describes the general specification of the various modules of the
NLP line that produces the various types of linguistic annotations. The tools
wrapped in the modules are examples of NLP tools integration, and they can be
substituted by others.

Name Entity tagging The Named entity tagging module aims at annotating
semantic units, with syntactic and semantic types. Each text sequence corre-
sponding to a named entity will be tagged with a unique tag corresponding to
its semantic value (for example a ”gene” type for gene names, ”species” type for
species names, etc.). All these text sequences are also assumed to be equivalent
to nouns: the tagger dynamically produces linguistic units equivalent to words
or noun phrases. We use the TagEN Named Entity tagger [11], which is based
on a set of linguistic resources and grammars.

Word and sentence Segmentation This module identifies sentence and word
boundaries. We use simple regular expressions, based on the algorithm proposed
in [12]. Part of the segmentation has been implicitly performed by the Named
Entity tagging to solve some ambiguities: identification of the sequence ”B. sub-
tilis”, and providing information on ”B.” as a short form of ”Bacillus”. Word
and sentence segmentation step is simplified.

Morpho-syntactic tagging This module aims at associating the part of speech
(POS) tag to each word.It assumes that the word and sentence segmentation
has been performed. We are using the probabilistic Part-Of-Speech tagger Tree-
Tagger [13].



Lemmatisation The module associates its lemma, i.e. its canonical form, to each
word. If the word cannot be lemmatized (for instance a number or a foreign
word where none of the rules apply), the information is omitted. It assumes that
word segmentation and morpho-syntactic information are provided. While it is
a distinct module, we currently exploit the TreeTagger’s output which provides
lemma as well as POS tags. An external resource could be required depending
on the lemmatizer and the domain tuning requirements. This resource would
provide association between the inflectional forms of a word and its lemma.

Terminology tagging This module aims at recognizing terms in the documents
differing from named entities, like gene expression, spore coat cell. Term lists
can be provided as terminological resources such as the Gene Ontology [14],
the MeSH [15] or more widely UMLS [16]. They can also be acquired through
corpus analysis. Providing a given terminology tunes the term tagging to the
corresponding domain. Previous annotation levels as lemmatisation and word
segmentation but also named entities are required.

Parsing The parsing module aims at exhibiting the graph of the syntactic depen-
dency relations between the words of the sentence. The word level of annotation
is required. Depending on the choice of the parser, the morphosyntactic level
may be needed. Processing time is a critical point for syntactic parsing, but we
argue that a good recognition of the terms can reduce significantly the number
of possible parses and consequently the parsing processing time. Term identifi-
cation is therefore performed prior to parsing. The Link Grammar Parser[17] is
integrated. More details are given in the next section.

5 Tuning a syntactic analyzer to the biological domain

This section is specificaly devoted to the way the syntactic analyser has been
tuned to analyze texts from the biological domain. It is however a typical example
of the adaptation strategy we adopted for most NLP modules.

Parsing is a time and resource consuming task for NLP, especially when
compared to other tasks like named entity recognition or part-of-speech tagging.
This technology is not yet compatible with Information Retrieval: the system
has to propose a set of relevant documents in less than one second and parsing
in this context is simply not realistic. It is even not sure that parsing is really
useful to provide more accurate answers to traditional, simple queries made of
a few keywords.

However, in order to extract structured pieces of information from texts,
one needs to link isolated chunks of texts together. Most of the time, chunks
of texts correspond to named entity and relations are expressed through verbs
or predicative nouns. We thus need a reliable and precise analysis of syntactic
relations between phrases. For those reasons, we chose to integrate a symbolic
dependency-based parser seemed (in contrast with a constituent-based parser).

Instead of redeveloping new parsers for each sublanguage, we try to define
a method for adapting a general parser to a specific sublanguage. This section



presents a strategy to adapt the Link Parser (LP) [18] to parse Medline abstracts
dealing with genomics. More details are given in [19].

5.1 The initial parser choice

LP presents several advantages among which the robustness, the good quality
of the parsing, the adequation of the dependency technique and representation
with our IE task and the declarative format of its lexicon.

In order to test various parsers, different corpora were built from Medline4

abstracts (in English) dealing with transcription in Bacillus subtilis [19]. This
short description will be based on results obtained from the (MED-TEST) corpus.
Our test corpus contains 212 randomly selected sentences (5,992 words). The
sentences contain an average of 25.4 words (from 8 to 59). Despite its relatively
small size, this corpus is a good sample of the sublanguage of genomics. Medline
abstracts present the following characteristics : they are made of long and syn-
tactically complex sentences, technical lexicon, scientific notations and numerous
agrammatical constructions.

From the results of the evaluation that we did on different parsers, it turned
out that dependency-based parsers have better results on long and complex sen-
tences, particularly with coordinations. For example, LP seems to offer better
performances than a constituent-based parser applied on Medline abstracts (see
([20] for an experiment using a GPSG parser). This conclusion is shared by [21]
who also worked on te same kind of corpus. Other experiments, in the context
of the ExtrAns project [22], showed that 76% of 2,781 sentences from a Unix
manpage corpus were completely parsed by LP with no regard to the parsing
quality, while we reach only 54% on the biological corpus. When looking at the
quality of the parses, we noticed different kinds of errors depending either on
the biological domain or on more general linguistic difficulties like ambiguous
constructions. We propose three solutions to address these issues: text normal-
ization, terminology analysis and lexicon/grammar adaptation.

5.2 Diagnosis and adaptation

Our analysis of the performance of the Link grammar on the biological corpus
confirms previous works. The main problems can be classified along the following
axes.

”Textual noise” Scientific texts present particularities that we chose to handle
in a normalization step prior to the parsing. First, the segmentation in sen-
tences and words was taken off from the parser and enriched with named enti-
ties recognition and rules specific to the biological domain. We also delete some
extra-textual information that alters parsing quality. Finally, we use dictionaries
and transducers to replace genes and species names by two codes, which averts
extending the LP dictionary too much.
4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi



Unknown words In a corpus made of full Medline abstracts, we identified 6,005
out-of-lexicon forms (45,804 occurences) among 12,584 distinct words, i.e. 47.72%.
They are mostly latin words, numbers, DNA sequences, gene names, misspellings
and technical lexicon.

However, LP includes a module that can assign a syntactic category to an
unknown word. It is based on the word suffix. Modifying the morpho-guessing
(MG) module seemed a better strategy than extending the dictionary since bi-
ological objects differ from an organism to another ([20] also reports a similat
process). We then created 19 new MG classes for nouns (-ase, -ity, etc.) and
adjectives (-al, -ous, etc.) along with their rule. At the same time, we added
about 500 words of the biological domain to the LP lexicon in different classes,
mainly nouns, adjectives and verbs.

Specific constructions Some words already defined in the LP lexicon present a
specific usage in biological texts, which implied some modifications including
moving words from one class to another and adaptating or creating rules.

The main motivation for moving words from one class to another is that
the abstracts are written by non-native English speakers. This point was also
raised by [23]. One way to allow the parsing of such ungrammatical sentences
is to relax constraints by moving some words from the countable to the mass-
countable class for instance. Some very frequent words present idiosyncratic
uses (particular valency of verbs for instance), which induced the modification
or creation of rules. Numbers and measure units are omnipresent in the corpus
and were not necessarily well described or even present in the lexicon/grammar.

Structural ambiguity We identified two cases of ambiguity that can be partially
resolved by using terminology.

Prepositional attachment is a tricky point that is often fixed using statistical
information from the text itself [24], a larger corpus [25], the web [26] or external
resources such as WordNet [27].

The second major ambiguity factor is the attachment of series of more than
two nouns. like in “two-component signal transduction systems”. We noticed
that such cases often appear inside larger nominal phrases often corresponding
to domain specific terms. For this reason, we decided to identify terms in a pre-
processing step and to reduce them to their syntactic head. If needed, the internal
analysis of terms is added to the parsing result for the simplified sentence. The
strategy proposed by [28] that consists in the linkage of the words contained
in a compound (for instance “sporulation process”) was excluded. It makes the
lexicon size augment and does not reduce complexity for reasons due to the
implementation of LP.

Before practically integrating the use of terminology in our processing suite,
we made a simulation of this simplification of terms.



5.3 Evaluation

We performed a two-stage evaluation of the modifications in order to measure
the respective contribution of the LP adaptation on the one hand and of the
term simplification on the other hand.

Corpus and criteria We used a subset (10 files5) of the MED-TEST corpus but,
contrary to the first evaluation (choice of a parser), we wanted to look at the
quality of the whole parse and not only at specific relations.

Table 1 (for the MED-TEST subset) shows the way that out-of-lexicon words
(OoL), i.e. unknown (UW) and guessed (GW) words, are handled by giving the
percentage of incorrect morpho-syntactic category assignations with the original
resources (lp), those adapted to biology (lp-bio) and finally the latter associated
with the simplification of terms (lp-bio-t).

lp lp-bio lp-bio-t

a b a b a b

UW 244 41.4% 53 52.8% 26 19.2%

GW 24 4.2% 72 0% 31 0%

OoL 268 38% 125 22.4% 57 8.8%

a : total MS assignations, b : % of incorrect assignations

Table 1. Incorrect MS category assignations

In Table 2, five criteria inform on the parsing time and quality for each
sentence : the number of linkages (NbL), the parsing time (PT) in seconds, the
fact that a complete linkage is found or not (CLF), the number of erroneous
links (EL) and the quality of the constituency parse (CQ). (NbW) is the average
number of words in a sentence which varies with term simplification. The results
are given for each one of the three versions of the parser.

lp lp-bio lp-bio-t

crit. avg avg %/lp avg %/lp

NbW 24.05 24.05 100% 18.9 78.6%

NbL 190,306 232,622 122.2% 1,431 0.75%

PT 37.83 29.4 77.7% 0.53 1.4%

CLF 0.54 0.72 133% 0.77 142.6%

EL 2.87 1.91 66.5% 1.15 40.1%

CQ 0.54 0.7 129.6% 0.8 148.1%

Table 2. Parsing time and quality

5 141 sentences, 2630 words



UW, GW, NbL, PT and CLF are objective data while EL and CQ necessitate
linguistic expertise. The CQ evaluation consisted in the assignation of a general
quality score to the sentence.

Results and comments The extension of the MG module reduced the number
of erroneous morpho-syntactic category assignations (see Table 1) from 38% to
22.4%. 61% of the sentences where one or more assignation error was corrected by
the MG module actually have better parsing results (15% have been degraded).
More generally, the increase of guessed forms makes category assignation more
reliable.

The extension of the lexicon and the normalization of genes and
species names discharged the two modules from 143 assignations out of 268,
50 of which were wrong. 64% of the sentences where one or more assignation
error was corrected by the extension of lexicon have better parsing results (18%
of the sentences were degraded).

The effect of rule modification and creation is difficult to evaluate pre-
cisely though it is certain to play a part in the parsing improvement, especially
the relaxing of constraints on determiners and inserts.

The most obvious contribution to the better parsing quality is the one of
term simplification. The drastic reduction in parsing time and number of
linkages gives an idea of the reduction of complexity. It is not only due to the
smaller number of words since the number of erroneous links is reduced by 60%
while the number of words is reduced by only 21.4%. This confirms previous
similar studies that showed a reduction of 40% of the error rate on the main
syntactic relations with a French corpus.

Remaining errors are mainly due to four different phenomena. First, the
normalization step, prior to parsing, needs to be enhanced. Concerning LP, there
are still lexicon gaps, wrong class assignations and a still unsatisfactory handling
of numerical expressions. In addition, and like [28], we identified a weakness of
LP regarding coordination. A specific study of the coordination system in LP
and in the biological texts may be necessary. Finally, some ambiguous nominal
and prepositional attachments still remain in spite of term simplification. These
may be resolved in a post-processing step like in ExtrAns that uses a corpus
based approach to retrieve the correct attachment from the different linkages
given by LP for a sentence.

Other questions like the feeding of LP with a morpho-syntactically tagged
text or the amelioration of the parse ranking in LP were not discussed in this
paper but are interesting issues that we intend to study.

6 Performance analysis

We carried out an experiment on a collection of 55329 web documents from the
biological domain. Figure 2 shows the distribution of the input document size
(both axes are on a log scale). Most documents have an XML size between 1KB
and 100KB. The size of the biggest document is about 5.7 MB.
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We used 16 machines to annotate these documents. Most of these machines
are standard Personal Computers with 1GB of RAM and 2.9 or 3.1 GHz proces-
sor; Others are four elements of a cluster with a similar configuration and a
computer with 8GB of RAM and two 2.8GHz Xeon (dual-core) processors. Their
operating system is Debian Linux or Mandrake Linux. The server and three NLP
clients were running on the 8GB/biprocessor. Only one NLP client was running
on each standard Personal Computer, with a low priority.

We consider these performances to be an indication of the platform process-
ing time (a real benchmark would require several series of tests). Timers are run
between each function call in order to measure the processing time of each mod-
ule. We use the functions provided in the Time::Hires package. All the time
results are recorded in the XML annotated documents, except for the XML ren-
dering step. The annotation of the documents was completed in three days. Each
client processed 2790 documents on average.

Table 3. Average and total of linguistic units.

Average number of Total number of units
units by document in the document collection

Tokens 5,290.72 276,532,529
Named entities 136.61 7,202,367

Words 1,494.23 79,165,931
Sentences 67.96 3,639,945

Part-of-speech tags and lemma 992.79 53,594,958
Terms 326.29 17,193,097

Table 3 shows the total number of entities found in the document collection.
79 million words and 3.6 million sentences were processed, 7.2 million named



entities and 17 million terms were identified. Each document contains, on aver-
age, 1494 words, 68 sentences, 136 named entities and 326 terms. 176 documents
contained no words at all, they therefore underwent the tokenization step only.
One of our NLP clients processed a 350,444 word document.

Table 4 shows the average processing time for each document. Less than one
minute is required to process each document. The most time-consuming steps are
term tagging (78% of the overall processing time) and named entity recognition
(12% of the overall processing time).

Table 4. Average of document processing time in second

Average document Percentage
time processing Percentage

loading XML input doc. 0.67 1.2

tokenization 0.56 1
named entity recognition 6.68 12

word segmentation 1.39 2.5
sentence segmentation 0.38 0.7

part-of-speech tagging and lemmatization 2.2 4
term tagging 43.63 78.6

Total 55.52 100

These performances are reported for a very first version of the platform.
Some bugs had a negative influence on the results and slowed down the indexing
process. Only 27 documents out of 55329 have not been annotated (0.04%). Un-
fortunately, this is mainly due to an unidentified bug in a NLP tool we use, which
froze some of our client machines. This problem noticeably increased processing
times. We also noticed that certain external NLP tools may encounter difficul-
ties with the UTF-8 character set when used on different machines, with various
environments. Lastly, standard personal computers were being used by other
connected users. In that respect, the CPU load varied and computers may have
been rebooted.

However, despite these problems, this experiment shows that the platform
is able to process large corpora on a distributed architecture. We have proven
the efficiency of the overall process for semantic crawlers and its accuracy for a
precise indexing of documents on the web.

7 Conclusion

We have presented in this paper a platform to enrich specialized domain doc-
uments with linguistic annotations. While developments and experiments have
been performed on biomedical texts, we assume that this architecture is generic
enough to process other specialized documents and to be tuneable for any sub-
domain of biomedecine. The platform is designed as a framework using existing
NLP tools which can be substituted by others if necessary. Several NLP modules



have been integrated: Named entity tagging, word and sentence segmentation,
POS tagging, lemmatization and term tagging. We are working on a better in-
tegration of syntactic parsing.

We also focus on the performances of the system, since this point is crucial
for most Internet applications. We have experimented a distributed design of
the platform, by splitting the corpus in equal parts: this strategy dramatically
increased the overall performances (see [29]).
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