
CIRI - An Ontology-based Query Interface for Text
Retrieval

Eija Airio, Kalervo Järvelin, Pirkko Saatsi,
Jaana Kekäläinen, and Sari Suomela

Department of Information Studies

University of Tampere, Finland
{eija.airio, kalervo.jarvelin, pirkko.saatsi, jaana.kekalainen, sari.suomela}@uta.fi

Abstract. Ontologies can be used in IR for document indexing, query
formulation and automatic query expansion. The three-level model developed
in UTA allows expressing essential ontology relationships for IR. The levels of
the model are the conceptual level, the linguistic level and the occurrence level.
The first of the levels includes hierarchically structured concepts, the second
expressions corresponding the concepts, and the last string models
corresponding the expressions. The CIRI system (Concept-based Information
Retrieval Interface) is based on the three level model. In the CIRI interface, the
user is able to open available ontologies and select concepts from them, select
available search engines and databases, select the query expansion level, create
a query from selected concepts and submit the query to the search engine.

1 Introduction

Thesaurus databases have been widely used in IR. It is possible to use a thesaurus
database interactively for document indexing and query formulation. Another way to
use it is automatic query expansion [1].

Järvelin and colleagues have presented a deductive data model for thesauri in order
to manage essential thesaurus relationships in a natural way in IR and query
expansion. The model is based on the idea of the three abstraction levels: conceptual
level, linguistic level and occurrence level. The conceptual level contains
hierarchically structured concepts. The type of the hierarchical relationship (for
example generic, partitive or instance) is included in the model as well. The model is
based on the supposition that appropriate relationships are defined for each ontology
separately. In addition of hierarchical relationships, associative relationships
between concepts may be defined. The linguistic level contains expressions
corresponding concepts. There may be none, one, or many expressions for each
concept. The expressions may be expressed in various languages, both natural and
artificial. The expressions referring to a concept may be interpreted to be synonyms
with each other. Each expression has one or more counterparts on the occurrence
level, which includes matching models corresponding expressions. Occurrences may
be for example basic words, compound words or stemmed words, depending on target
index types [1].

 CIRI - An Ontology-based Query Interface for Text Retrieval

The word ontology is often used nowadays instead of thesaurus. An ontology
describes concepts and entities of an application environment, as well as its
terminology. An ontology has to be precise and explicit, because it must be computer-
readable as well [2].

2 The CIRI system

The three-level model is applied in the CIRI system (Concept-based Information
Retrieval Interface) developed in the University of Tampere. The CIRI system is
implemented with Java servlets, and is used via a web browser. In the interface, the
user is able to open available ontologies and select concepts from them, select
available search engines and databases, create a query from selected concepts and
submit the query to the search engine (see Figure 1).

In the CIRI interface, the user can select the ontology from the menu, and open it
by pressing the open (avaa) button. In the ontology view, it is possible to browse the
ontology by opening and closing branches (see Figure 2). When the user has selected
all concepts she wants to be included into the query, she can press the create query
(muodosta kysely) button. After that the user presses the submit the query (lähetä
haku) button. The retrieval result is shown under the CIRI applet (see Figure 3). The
user may see whole documents by clicking titles, and return to the document list.

Fig. 1. The CIRI interface

CIRI - An Ontology-based Query Interface for Text Retrieval

Fig. 2. The ontology view of CIRI

The dash line in the ontology stands for an association relation. In the visible
(näkyviin) menu, the user may select the number of shown levels. The expandable
(laajennus) menu gives the possibility to choose how many levels of narrower
concepts will be taken with the query. This does not concern associative relations:
only one level of them is chosen. When the user clicks the mouse on a concept, it is
chosen to the query, and it can be seen in the query (haku) field in the interface.
Removing selected concepts from the query is possible by re-clicking the concept.

 CIRI - An Ontology-based Query Interface for Text Retrieval

Fig. 3. The retrieval result

When the user presses open the ontology (avaa) button, a servlet retrieving
concepts and concept relations in the sql-database is started (see Figure 4). These are
redirected to a servlet which depicts a graphical presentation of the ontology. When
the user presses the create query (muodosta kysely) button, a servlet retrieves
expandable concepts, as well as corresponding expressions and occurrences in the sql-
database, based on information given by the user (selected concepts and expansion
level). Retrieved information is redirected to a servlet which formulates the final
query. This servlet needs also user information about the search engine type, because
the type affects the query syntax.

A servlet submits the query to the search engine, using information given by the
user (the search engine and the database). Finally, retrieval result is submitted to the
CIRI interface.

CIRI - An Ontology-based Query Interface for Text Retrieval

Fig. 4. The functionality of CIRI

3 Implementation of the three-level model

An SQL-database is a natural solution to be applied in this type of task, where we
have a lot of relations between various items, and some of the relations are
bidirectional. We have selected the PostgreSQL open source database system1 to store
the concepts, expressions and occurrences, as well as relationships between them.

The structure of the CIRI database is given in Figure 5. The items of all the present
ontologies are stored in the same CIRI database. Each table includes an attribute
ontology_id, which is used as an identifier between ontologies.

The table concept is used to store attributes of the concepts. For each concept is
given a unique identification number, which is stored in a field cno. The field cname
includes the name of the concept, while the field category refers to the type of the

1 http://www.postgresql.com

 CIRI - An Ontology-based Query Interface for Text Retrieval

concept (for example person, process or economy). The field category includes codes
referring to id:s in the table ctype. The table ctype includes all the possible concept
categories for concepts, as well as unique codes for them. In the field definition a
short description of the concept may be stored.

Relations between the concepts are described in the table concept_relation. Each
relation is given a unique identification number rno. Fields broader_cons and
narrower_cons include the identification numbers of the referred concepts. The field
strength includes the strength of the relation between the concepts. It is possible to
adjust the CIRI system so that expansion is done only if the strength between the
concepts is high enough. The field rel_type includes the identification number of the
relation type (for example whole-part, generic, associative). Association relations are
always bidirectional, and they are therefore stored twice in the concept relation table.
Attributes of the relation corresponding the relation type number are stored in the
table relation_type.

relation_type
ontology_id id name type

concept_relation
ontology_id rno broader_cons narrower_cons rel_type strength

concept
ontology_id cno cname category definition

ctype
ontology_id id name

expression
ontology_id eno expression cno etype

etype
ontology_id id name

occurrence
ontology_id ono otype occurrence eno

otype
ontology_id id name

Fig. 5. Representation of the tables in the CIRI database

Expressions are stored in the table expression. Each expression has a unique id

number eno. The name of the expression is stored in the field expression. The field

CIRI - An Ontology-based Query Interface for Text Retrieval

cno includes the identification number of the corresponding concept. The field etype
includes the id number of the type of the expression. The names of the expression
types (for example term, verb, synonym) are stored in the table etype.

The string attributes corresponding the expressions are stored in the table
occurrence. Each occurrence has a unique id number ono. The field otype includes
an id number referring to the table otype, which includes names of the occurrence
types. The field occurrence includes the string, and the field eno includes the id
number.

When the user opens an ontology, CIRI reads the concept and concept_relation
tables, and creates the ontology view based upon this information. In query creation,
table concept_relation is used to find possible expandable concepts. The assumed
level of expansion is three, unless the user changes it. Expansion is done from broader
concept to narrower concepts. In associative relations, only one level is expanded.
The expressions corresponding the concepts are selected from the table expression,
and finally occurrences corresponding expressions are taken with the query. CIRI
creates the query from the occurrences based on the search engine information given
by the user (because search engines have different query syntax).

4 Creating three-level ontologies with the Protégé ontology editor

We have used the Protégé ontology editor for ontology creation, because it is a widely
used open source ontology editor, and used by many Fenix project participants as
well. Protégé is an open source Java-tool developed by Stanford Medical Informatics
at the Stanford University School of Medicine2. Protégé gives the possibility to
separately define classes of information (schema) and store instances of these classes.
By utilizing slots in Protégé it is possible to define features of classes or relationships
between classes, as well as properties of instances 3. Classes of Protégé correspond
concepts in the three-level model, while instances correspond expressions.

It is possible to import and export files in many formats in Protégé in addition to its
internal format: RDF, XML and OWL, utilizing plugins for Protégé. OWL format is
utilized within this research. In OWL format, Protégé applies the term property is
instead of the term slot, and the term individual instead of the term instance.

Protégé does not have the ability to deal with the three-level model. Protégé is able
to store concepts hierarchically, but it does not give a possibility to define the types of
the hierarchical relationships. Protégé does not support associative relationships
between concepts at all. The second level, expression level, is possible to introduce in
Protégé: one or more expressions corresponding a concept may be created. Protégé
does not support introducing the third level, the occurrence level, at all.

We have tried to bypass the deficiencies of Protégé for introducing the desired
features of the three-level model. To express the type of the concept relationships, we
have created a property for each relationship type (for example properties associative
and whole-part). These properties are used to attach a concept with another. The
property strength is attached with the relationship when it is created to define

2 http://protege.stanford.edu/index.html
3 http://protege.stanford.edu/doc/users_guide/index.html

 CIRI - An Ontology-based Query Interface for Text Retrieval

numerically the strength of the relationship. The problem of omitted occurrence level
is solved by utilizing properties as well. For each expression, 1-6 property triples4 are
included: occurrence string and occurrence type.

The three-level ontologies created with Protégé may be used for various purposes.
When the occurrence level is not needed, it may be omitted and the concept level with
relation types, as well as the expression level may be utilized. (It is easy to remove the
properties not needed by a simple script from the OWL-file.) When an ontology
created with Protégé is used in CIRI, the whole three-level structure will be needed.
We have compiled a php-script to handle the OWL-file created by Protégé for this
purpose. The script takes the OWL-file and the ontology_id of the new ontology as
input, and creates the insert-commands to insert all desired items into the
PostgreSQL-database of CIRI. The script goes through the OWL-file several times,
searching information of desired insertable items.

5 Ontology creation as an intellectual task

Creating the ontology is not an easy task: the creator has to familiarize with the
context of the ontology, and possibly define the users of the forthcoming ontology.
Appropriate literature: textbooks, reference books, encyclopedias as well as
newspapers, may serve as information sources, when creating the concept hierarchy.
If there are prior ontologies or thesauri, classification schemes or glossaries dealing
with the subject or some sector of the subject, they are worth as well. For creating
sub-concepts, translation dictionaries may be useful: often they give, in addition to
translations, synonyms or almost-synonyms of the input word in source language,
which may serve as sub-concepts. Advices of possible field experts are valuable as
well. Discussions with possible forthcoming users are vital in the beginning phase of
ontology creation. Users may be asked to write down which they think are the most
important concepts of the area, or they may be asked to create a mind-map of the
subject.

The expression level contains none, one or more expressions corresponding each
concept. Linguistic tools for synonym creating would be appropriate for this phase.
Unfortunately, synonym lexicons often are too general for this purpose. Translation
dictionaries, especially special dictionaries, giving synonyms in source language may
be useful, as they are in concept creation phase also. If the ontology is going to be
multilingual, translation dictionaries are vital in order to create expressions in desired
languages. Usually, the expressions of the ontology are nouns, but sometimes it is
reasonable to add related words of other word classes (verbs or adjectives) as well.
For example, if we have a concept Inspector in the ontology, we may insert an
expression inspect in addition of an inspector.

The occurrence level contains strings corresponding each expression. The purpose
of the occurrences is to help information retrieval. The type of the occurrence is
stored in the occurrence table of CIRI. The occurrence type references to certain type
of index (or certain way to use the index). Possible occurrence types are the

4 It is possible to create more property triples when desired

CIRI - An Ontology-based Query Interface for Text Retrieval

lemmatized occurrences, stemmed occurrences, truncated occurrences and
inflected occurrences. NLP (natural language processing) tools are useful in
occurrence creation. When possible, it is recommendable to utilize the same NLP
tools in occurrence creation, which were used in database indexing. The most
comfortable way for the user would be to integrate the NLP tools with the Protégé
ontology editor: when the user selects the type of the occurrence, the plugin inserted
in Protégé starts appropriate NLP tool, which offers suitable occurrence variants for
the user.

A lemmatizer is useful when creating basic form occurrences, especially in the
case of compound splitting, and a stemmer for creating stem occurrences. These are
the simplest alternatives, both to implement and to use. When we are creating
occurrences for an inflected index, we must know the type of the IR system. There are
two possibilities: in a system based on a probabilistic model, truncation is not
possible, while in a system based on a Boolean model truncation can be used. In the
latter case, a stem generator is useful: just the truncation character has to be added to
the strings given by the stem generator. When truncation is not possible, the user
should provide all the inflected word forms when creating occurrences. That is
possible for a language which does not have many cases (for example English with
two cases), but is harder with a highly inflected language (for example Finnish with
14 cases). A tool generating word cases would be convenient for this purpose, but
tools like that may not be available. The following approach might be useful to
overcome this shortcoming: first a stem generator is used to create word beginnings,
after which target index is grepped with these strings (see [3]). Manual inspecting or
automatic checking is vital in this approach, because grepping gives presumably
much garbage. For example a Finnish stem generator (see [3]: minstemma) gives
following strings for the word kissa (a cat): kissa, kisso. Grepping a Finnish index
with these strings gives a result including 69 strings. Of these only 18 are inflected
variants of the word kissa. To remove garbage, a lemmatizer should be utilized to
check the grepping result (this naturally applies only for the words recognized by the
lemmatizer).

6 Conclusion

We have introduced CIRI, an interface for concept-based information retrieval. In
CIRI, the representation of concepts is based on three abstraction level model:
concepts, expressions naming the concept, and occurrences representing the
expressions in queries. Concepts are represented to users as tree hierarchies, which
they can browse to get an idea of the conceptual relations in given subject area, and
from which they may choose the concepts for their queries. When a retrieval system is
selected a query is formulated automatically from the chosen concepts. The user does
not have to seek for the alternative names for concepts, nor be acquainted with the
syntax of query languages. At the time of writing this paper we are starting tests with
CIRI to find out how users will receive it in realistic settings.

 CIRI - An Ontology-based Query Interface for Text Retrieval

References

1. Järvelin, K., Kristensen, J., Niemi, T., Sormunen, E., Keskustalo, H.: A Deductive
Data Model for Thesaurus Navigation and Query Expansion. Finnish Information
Studies 5. University of Tampere, Finland (1996)

2. Hyvönen, E.: Ontologiat: standardeja, työkaluja, sovelluksia, tutkimusta,
http://www.cs.helsinki.fi/u/eahyvone/presentations/1%20OntologyPerspectives.pdf
(2003)

3. Kettunen, K., Kunttu, T., Järvelin, K.: How to tackle the morphological variation of
Finnish in a probabilistic best match IR environment? [Submitted] (2004)

