
HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions and SOA

Tuukka Ruotsalo

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 Transactions, what are they, why do we
have to think about transactions in SOA?

 Transactional requirements
 ACID

 Distributed & long living transactions
 Atomic commitment protocol

 Two-phase commit & cooperative termination

 Nested transactions
 Compensation & Saga transactions

 Forward recovery

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions

 RPCs support a single-call-at-time
interactions between clients and services

 As soon as we go beyond simple single
service invocations we need to make sure
that the data is not corrupted in any sense
 Most of the SOA solutions are more

complicated than single calls
 WS specification support

 WS-Coordination
 WS-Atomic Transactions
 WS-Business Activity

HELSINKI UNIVERSITY OF TECHNOLOGY

Example (Newcomer, 2002)

 Skate boots ordering
 Authentication
 Credit validation
 Accounting
 Probably more:

 Informing the
buyer that the
boots are on
their way

 Confirming
that the
goods have
arrived

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions ACID

 ACID defines requirements for transactions
 Designed for short-lived decisions usually

lasting under a few seconds.
 Identify a logical unit of work that is either

performed in complete or not at all. That is,
either a COMMIT or a ROLLBACK is
performed on the operations. This enables
the data to maintain a state of consistency.

 ACID
 Atomicity
 Consistency
 Isolation
 Durability

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions ACID

 Atomicity
 The actions that transaction performs in the

system are committed only if all of the actions
are successful, otherwise roll-back

 If an error occurs the original state of the
system is recovered.

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions ACID

 Consistency
 A consistent state of the system may be

expected at all times
 Changes in the system must correspond to

the actual changes and they must be done
by the integrity constraints in the system

 In most cases the system is in inconsistent
state at some point of the transaction, but
other properties of the ACID will guarantee
that it is not inconsistent for any other
transaction

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions ACID

 Isolation
 Simultaneous transactions in the system

must be isolated from each other. They must
not access inconsistent data in any state of
the transaction.

 Transaction history (schedule of the state
transitions) must be serializable
 (Pessimistic) 2 phase locking, time stamps or optimistic

concurrency control

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions ACID

 Durability
 Guarantee that once the transaction has

been committed, it will persist, and not be
undone.

 Will survive system failure, and that the
system has checked the integrity constraints
and won't need to abort the transaction.

HELSINKI UNIVERSITY OF TECHNOLOGY

Distributed and long-living
transactions
 In distributed computing transactions often

cannot be handled within a RPC –type of
call
 Think about our skate-boots example

 Transaction is committed after the actual goods arrive
to the shop

 We ”cannot” lock the service sessions (and the
underlying database) for that long time

 Need for transaction coordination
 Single or multiple coordinator processes that

control the transaction and confirm or abort
the transaction

HELSINKI UNIVERSITY OF TECHNOLOGY

2PC (Two Phase Commit)

HELSINKI UNIVERSITY OF TECHNOLOGY

Protocols for long living transactions
2PC

HELSINKI UNIVERSITY OF TECHNOLOGY

Protocols for long living transactions
2PC
 The coordinator sends vote requests to all

participants
 When a participant receives the vote

request, it replies by voting either Yes or No,
according to whether it is able to carry out
the task or not

 Participants that voted Yes start waiting for
either Commit or Abort message from the
coordinator. Participants that voted No can
unilaterally abort

HELSINKI UNIVERSITY OF TECHNOLOGY

Protocols for long living transactions
2PC
 The coordinator collects all vote messages.
 If all the participants voted Yes, the

coordinator decides to commit and sends
Commit messages to all participants.

 Otherwise, the coordinator decides to abort
and sends Abort messages to all
participants that voted Yes.

 According to the received message, a
participant decides to commit or abort.

HELSINKI UNIVERSITY OF TECHNOLOGY

Protocols for long living transactions
2PC
 It is possible that messages may not arrive

due to failures and processes may be
waiting forever! A time-out mechanism must
be able to interrupt the waiting period.

 In addition, the coordinator may attach the
list of the participants to the vote request
message and thereby let the participants to
know each other! Cooperative termination
protocol.

HELSINKI UNIVERSITY OF TECHNOLOGY

Nested Transactions

HELSINKI UNIVERSITY OF TECHNOLOGY

Nested transactions

 A mechanism to facilitate transactions in
distributed systems (Moss 1981)

 A tree-like model with parents, children, top-
level (root), leaves.

HELSINKI UNIVERSITY OF TECHNOLOGY

Nested transactions

 Rules
 A parent can spawn any number of children.
 Any number of children may be active concurrently.
 Parent can’t access data when its children are alive.
 A child can inherit a lock held by any ancestor.
 On child commit, its locks inherited (anti-inheritance)

by parent.
 Commit dependency: parent can commit only after all

its children terminate (abort/commit).
 Abort dependency: On parent abort, even updates of

committed children are undone.
 Updates persist only if all ancestors commit.

HELSINKI UNIVERSITY OF TECHNOLOGY

Nested Transactions

 Intra-transactional parallelism
 Safe concurrency
 Reduced response time

 Intra-transactional recovery control
 Finer control of error handling
 Improves availability

 System modularity
 Composition of separately developed

modules

HELSINKI UNIVERSITY OF TECHNOLOGY

Save Points

 Can be seen as a check point in a
transaction that forces the system to save
the state of the running application and
return a save point identifier for future
reference

 Instead of removing an entire transaction
after a failure of single operation (sub-
process) backward recovery can return the
last valid state of the transaction saved in
save point reference

HELSINKI UNIVERSITY OF TECHNOLOGY

Compensating Transactions

 In Saga (Garcia-Molina & Salem, 1987) model a long-living
transaction is broken up into a collection of sub-transactions
that interleave with other transactions.

 The results of sub-transaction can be made immediately
visible after it’s committed.

 Each Saga sub-transaction (Ti) is provided with a
compensating transaction (Ci).
 If the compensation is not needed saga (T1, T2, …, Tn)

will execute as a sequence of transactions.
 In case of compensation the sequence would be (T1, T2,

…, Tj, Cj, …, C2, C1) where 0 ! j < n, and Ci is a
predefined compensating transaction of Ti.

 The compensating transaction does not necessarily restore
the state that prevailed before the execution of Ti but rather
undoes operation of Ti from a semantic point of view.

HELSINKI UNIVERSITY OF TECHNOLOGY

Forward Recovery

 Combining the save points and compensation and
recovery of failed transaction.
 The transaction that caused the failure is aborted

using the conventional roll-back.
 Then committed transactions are undone in

reversed order by their compensating counterparts
until the save point is found (backward recovery).

 Finally, the transaction is restarted from the location
of found save point (forward recovery).

 The same objective can be achieved by different
ways. Alternative methods of forward recovery
should be considered

HELSINKI UNIVERSITY OF TECHNOLOGY

Transactions Summary

 ACID properties must be met
 Not necessarily possible with single-call

type of methods
 Long living transactions

 Coordination
 Several methods / combinations usable

depending of the case
 2PC
 Nested Transactions
 Compensation
 Forward Recovery

HELSINKI UNIVERSITY OF TECHNOLOGY

So we are using Web Service
framework...
 WS-Transaction specification has two main

paradigms for transaction control
 Atomic Transactions (AT)

 Pure ACID for short transactions with 2PC or similar

 Business Activity (BA)
 Long living transactions
 Uses Compensation

HELSINKI UNIVERSITY OF TECHNOLOGY

Even if you do everything right...

 Transactions in web services world are
different from their traditional environment =
database transactions

 Web service is a service, not a state tracking
system in IS world
 Transactions may include or reflect to parts

that are not automated
 Sending a bill to a customer may be done by letter
 How do you roll-back sending a letter?

 May require a BPR (Business Process Re-
engineering)

