
HELSINKI UNIVERSITY OF TECHNOLOGY

Service composition and
Schema matching

Tuukka Ruotsalo

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 Information Systems as
 Data, Processes and External events

 Schema matching
 Matching
 Alignment

 Service Composition
 Orchestration
 Choreography
 Planning

HELSINKI UNIVERSITY OF TECHNOLOGY

Information System meta-
model
 Information Systems are

 Models of the universe of discourse
 In Computer World models of

 Data
 What entities the system contains and in which

states they are at a certain time

 Processes
 What are the actions that enable transformations

of a state of entities to another state of entities

 + Interaction to cause external events
 User interfaces (how to get the system to do

something)

HELSINKI UNIVERSITY OF TECHNOLOGY

Semantic Problems

 Matching the datamodel (Schema
mapping)

 Matching the process model (Service
composition)

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

What is needed for minimizing the cost of
connecting service modules and
mazimizing reuse: Common Data Encoding,
Data Semantics

invoke
checkLocalStock

invoke
checkShipAvailab

le

send
confirmOrder

inStock=false

send
cancelOrder

inStock=tru
e

shippingAvail=tr
ue

shippingAvail=false

receive
orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrd
er

Order
Confirmati

on

ShippingRequ
est

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Needed: Common Interfaces,
Service Semantics

invoke
checkLocalStock

invoke
checkShipAvailab

le

send
confirmOrder

inStock=false

send
cancelOrder

inStock=tru
e

shippingAvail=tr
ue

shippingAvail=false

receive
orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrd
er

Order
Confirmati

on

ShippingRequ
est

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Needed: Common
communication protocols and
patterns

invoke
checkLocalStock

invoke
checkShipAvailab

le

send
confirmOrder

inStock=false

send
cancelOrder

inStock=tru
e

shippingAvail=tr
ue

shippingAvail=false

receive
orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrd
er

Order
Confirmati

on

ShippingRequ
est

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Schema matching

HELSINKI UNIVERSITY OF TECHNOLOGY

Schema matching

 The ontology matching problem:
 Resources are being expressed in

different ways must be reconciled
before being used

 Mismatch
 Different languages
 Different terminologies
 Different way of modelling

(Shvaiko & Euzenat, 2005)

HELSINKI UNIVERSITY OF TECHNOLOGY

Example: XML Schema

(Shvaiko & Euzenat, 2005)

HELSINKI UNIVERSITY OF TECHNOLOGY

Reducing heterogeneity

 Reducing heterogeneity in 2 steps
 Match (determine the alignment)
 Process the alignment (merge,

transform, etc.)
 Does not have to be totally automatic!

 e.g. transforming using logical rules

HELSINKI UNIVERSITY OF TECHNOLOGY

Mapping

 Mapping M is a 5-uple <id,e,e',R,n>

 id is a identifier of a mapping element
 e and e' are entities (e.g. XML

elements)
 R is a relation (e.g. equivalence, more

general, disjoint) or a rule etc.
 n is a confidence measure in some

mathematical structure (e.g. [0,1])

(Shvaiko & Euzenat, 2005)

HELSINKI UNIVERSITY OF TECHNOLOGY

Alignment

 Alignment A is a set of mapping
elements
 Depending on the schemas / ontologies

being matched
 Alignment can be used to merge,

transform etc. the data

(Shvaiko & Euzenat, 2005)

HELSINKI UNIVERSITY OF TECHNOLOGY

The Need for Semantics: Data
Semantics
 Suppose we have the data object

“Book” that has the fields “Writer
name”, “Book name”

 What happens if someone else expects
an object with fields “Artist first name”,
“Artist surname”and “Work name”

 If the fields were semantically
annotated, a rulebase (mapping
elements) could be used to
automatically align data objects to
each other

HELSINKI UNIVERSITY OF TECHNOLOGY

With ontologies (defining classes and relationships) and
transformation rules, it is possible to encode data
semantics in a common manner, and translate between
encodings

Artist

Writer Singer

Name
FirstName

SurName

hasName

isPartOf

isPartOf

Mapping element:
Entities: FirstName, surName
Rule: Name:=concat(FirstName, SurName)
Confidence = 1 (boolean model)

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

Service composition

HELSINKI UNIVERSITY OF TECHNOLOGY

The Need for Semantics:
Service Semantics

 Currently, we have a service that takes in a
number, two strings of text, and returns a
number. The number is termed “amount”, the
strings “currency1” and “currency2”

 Linking data semantics to interface variables
solves the problem of what the data actually
means

 But we'd also like to know what the service
does

 So, semantically annotate that this is a
currency converter service (with e.g. STRIPS)

 Formally: With the prequisites of recognized
currencies and an amount, the output will be
the amount in currency one transformed into
currency two

HELSINKI UNIVERSITY OF TECHNOLOGY

Automatic Web Service
Composition
 Automatic Web Service composition

and interoperation
 What services are available (and

executable according to rules) at
certain situation

 Work-flows are planned (dynamically)
based on the state of the system
 Orchestration and choreography

 Data-centric systems
 Processes are not pre-defined, but planned

according to state of the data in the system
 Planning

HELSINKI UNIVERSITY OF TECHNOLOGY

Introduction and Example:
Buying skateboots

 In a Web Services
environment, there is a need
for combining the
functionality provided by
Web Services into a
composite service. This is
called composition.

 Depending on the messages
arriving and sent within the
partner network, we should
be able to decide what to do
next.
 Process description

dominant:
OrchestrationOrchestration
 One peer

orchestrates
 Communication

pattern dominant:
ChoreographyChoreography
 “peer-to-peer

scenario”

supplier

customer

warehouse

shop
inventory

How
does
this

process
advance

?

How is this
communicati
on ordered?

Which controls
which?

HELSINKI UNIVERSITY OF TECHNOLOGY

Orchestration

 In a well controlled environment there is a need for a
simple process control language that only knows how
to consume services and recover from error states
(supplier controls the process, partners control any
subprocesses).

 Orchestration provides a separated process control
for pre-defined services

 Easier maintenance because we just have to
reconfigure the process description to change the
application logic

 Simple language but enough expression power to
handle the workflow execution

HELSINKI UNIVERSITY OF TECHNOLOGY

Back to the real world: WS-
BPEL / BPEL4WS
 Business Process Execution Language

for orchestration
 WS-BPEL is the new 2.0 standard

(minor changes to the current de-
facto-standard)

 OASIS standard
 Originally developed by IBM and

Microsoft
 Multiple implementations available

from major vendors such as Oracle,
IBM, BEA, Microsoft etc...

HELSINKI UNIVERSITY OF TECHNOLOGY

invoke
checkLocalStock

invoke
checkShipAvailabl

e

invoke
confirmOrder

invoke
cancelOrder

receive
orderGoods

supplier

customer

warehouse

shop inventory

port types

Abstract and/or executable process
orchestration,
variables and data transfers,
exception handling,
correlation information (for instance routing)

Variables:
warehouse: URI
inStock, shippingAvail: bool
 customer: String
 …

roles

(Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Basic Elements of BPEL (Alonso & Pautasso,
2004)

PROCESS

PARTNERS: Web services
taking part in the process

CORRELATION SETS:
constructs used
to deal with conversations

FAULT HANDLERS: what to do
in
case of errors (exceptions)
COMPENSATION HANDLERS:
what
needs to be done to undo an
activity

ACTIVITIES: what the process
does

EVENT HANDLERS: what to do
when
an event arrives

VARIABLES: the data used by
the
process

Equivalent to declarations in
a normal
programming language. It
defines
the way services are to be
called, which data is to be
used and which data is to be
treated as stateful

These elements establish what
the process does, how it reacts
under different circumstances
(errors, message arrivals,
events, etc.), and how data
moves from one step to the
next

HELSINKI UNIVERSITY OF TECHNOLOGY

Choreography

 In an open environment
there is a need for a
description language that
describes the services
and waits for someone to
negotiate and consume
(e.g. Each subprocess is
a software agent that
may participate).

 Choreography defines
the composition of
interoperable
collaborations between
any type of party
regardless of the
supporting platform or
programming model used
by the implementation of
the hosting environment

 Extends the orchestration
by defining the abstract
communication model

(W3C.org)

HELSINKI UNIVERSITY OF TECHNOLOGY

Planning

 Planning is a key ability for intelligent
systems to
 increase their autonomy and flexibility

through the construction of sequences
of actions to achieve their goals

 representation of actions and world
models

 reasoning about the effects of actions
 techniques for efficiently searching the

space of possible plans

HELSINKI UNIVERSITY OF TECHNOLOGY

Planning as problem solving

 Problem solving based on the search
strategies consists of:
 Actions

 Available actions that may change the state of
the entities

 State description
 Initial state, descriptions of the states before

and after the actions

 Goal description
 Description of the state when the problem is

solved

 Plan
 Ordered list of actions that solve the problem

HELSINKI UNIVERSITY OF TECHNOLOGY

Problems in situation calculus

 Search to solve the problem takes exponential
time with respect to the length of the path

 First Order Logic is only semi-decidable
 We can proof that a solution exists, but it is

not known if it is an optimal solution
 Solution [do(x)] is as good as [do(nothing)|

do(x)]
 More effective languages have been

developed
 Less possible solutions and more effective

algorithms

HELSINKI UNIVERSITY OF TECHNOLOGY

STRIPS

 STRIPS is a classic planning language
 Describes states and operators with limited

language
 Describes situations with literals that are not

functions
 Predicates that contain constants as values,

negation is allowed
 For example: At(Home) /\ ^(Have(Cake))

 Goals are represented as conjunction of
literals
 For Example: At(Home) /\ Have(Milk)

 Variables are allowed: At(x) /\ Sell(x, Milk)

HELSINKI UNIVERSITY OF TECHNOLOGY

STRIPS representation of
actions
 Actions are represented with IOPEs

 Inputs
 Outputs
 Preconditions

 In which state the action may be performed
 Conjunction of facts (only positive literals)

 Effects
 What are the changes in the universe according

to the outputs of the action

 For example:
 Action Bake(Cake)

 Precondition Have(Milk)
 Effect Have(Cake)

HELSINKI UNIVERSITY OF TECHNOLOGY

An Example

 System has a set of data and rules what to do
if a certain situation is satisfied

 We do not give exact definition what to do and
in which order, just a set of data and set of
rules to apply to the situation

 Example
 Init(Have(Cake))
 Goal (Have(Cake) & Eaten(Cake))
 Action (Eat(Cake))

 Precondition(Have(Cake))
 Effect not(Have(Cake)) & Eaten(Cake)

 Action Bake(Cake)
 Effect Have(Cake)

HELSINKI UNIVERSITY OF TECHNOLOGY

Partial order planning

 In partial order planning only the decisions
that have to be made at certain situation are
made
 We get partial orders (linearization -> total order)
 For example having cake has to be true before

eating it, how to have the cake is irrelevant for
ordering the eat and have situations

 Plan is a data-structure that has four parts
 Set of steps (actions that must be executed)
 Set of ordering constraints (Have(Cake) <

Eat(Cake)
 Set of variable bindings (Value = Variable)
 Set of causal links (Bake(Cake)-Have(Cake)-

>Eat(Cake))
 Express a precondition to be set for another

situation

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

Partial order planning

 Solution to partial order planning
problem is a plan that certainly leads
from initial state to goal state.
 Partial order plan is allowed as long as

it is consistent and complete
 Plan is complete if

 Preconditions for each action are true because of
an effect of another action

 In between there is no action that falsifies the
conditions

 Plan is consistent if
 Ordering and binding constraints are not conflicting

 (s1<s2 /\ s2 < s1) or (v=A /\ v=B /\ A not (B))

HELSINKI UNIVERSITY OF TECHNOLOGY

Example
 Init(Have(Cake))
 Goal (Have(Cake) & Eaten(Cake))
 Action Eat(Cake)

 Precondition(Have(Cake))
 Effect not(Have(Cake)) & Eaten(Cake)

 Action Bake(Cake)
 Effect Have(Cake)

 Step1: Eat(Cake)-not(Have(Cake)) /\ Eaten(Cake)
 Step2: Bake(Cake)-Have(Cake)
 Step3: Goal Satisfied
 POP: Eat<Goal
 No variable bindings in this case (only constants used)
 Only one linearisation in this case

 There is just one plan that satisfies the goal

HELSINKI UNIVERSITY OF TECHNOLOGY

Finding a plan

1. In the beginning set start and finish states
and start < finish and open preconditions for
finish

2. Select open precondition p for action B and
find such A that effects that p

3. Add causal link A-p->B and A<B
1. if A not in plan add A and Start < A < Finish

4. Solve conflicts
1. For example if C conflicts with A-p->B set

B<C or C<A

5. If preconditions can not be satisfied or
conflict solved rollback

6. If open preconditions start from 2.

HELSINKI UNIVERSITY OF TECHNOLOGY

..more expressive languages

HELSINKI UNIVERSITY OF TECHNOLOGY

An example of a semantic web service
language: OWL-S

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S

 Actions are grounded to web services
 Actions (Functions with inputs and outputs)

are RPCs
 Processes are described as actions

 Depending of the state of the system,
according to the preconditions of the
actions some of the services are possible
candidates to be executed

 Depending of the response we'll get
(output) effects are applied to the ontology
= States of the objects are changed

 => We can use POP or more sophisticated
planning techniques to derive plans

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S and WSDL

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S Processes

