Service composition and
Schema matching

Tuukka Ruotsalo

200,80
%

"
s.co - CONtents

" Information Systems as

"= Data, Processes and External events

" Schema matching
" Matching
" Alignment
" Service Composition
" Orchestration
" Choreography
" Planning

Information System meta-
model

" Information Systems are
= Models of the universe of discourse

" In Computer World models of

= Data

" What entities the system contains and in which
states they are at a certain time

= Processes

= What are the actions that enable transformations
of a state of entities to another state of entities

" + Interaction to cause external events

" User interfaces (how to get the system to do
something)

L
e
n’Q
Sel

(@]

¢ HAELSINKI UNIVERSITY OF TECHNOLOI.

.. Semantic Problems

" Matching the datamodel (Schema
mapping)

" Matching the process model (Service
composition)

Functional level:

Process level:

WSDL

BPEL4WS

Inputs

//A/
b%/?

outputs

input

e
A
y o
J///// o
e
e
t t N

oﬁ'tput v
input "
input Yy

wﬂat IS neeaea !or minimizing tHe cost o!

¥ connecting service modules and
mee ma2|m|zmg reuse: Common Data Encoding,

GoodsOrd H Confirmati \
receive

M supplier

ShippingRequ | —FH10 (. i
[e i orderGoods

e
7orderGoods | ... I
% invoke
customer ofirmOrder 4. | pacimioke
can elOrder S)
k inStock=false
N \ ez
local .checklocalStock D m
Inventory ---mmeeeee A% checksShi b e Ck=tru
/ /,'/ \\‘ 1 o
) _shippingAvait=false

—CheckShipAvailable/_.---
D

warehouse

"SR
-

N Z
shippingAvail=tr

send el send
cancelOrder confirmOrder

\ FHELSINKI UNIVERSITY OF thHNOLO.

Needed: Common Interfaces,
" Service Semantics

[Goog:Ord }—»‘ Confirmati /
N ' supplier r
receive

Shipplg\gReqT _____________ |
e e \

orderGoods

J

orderGoods ||| .. _._...-----

A 4

invoke
checkLocalStock |

N~

nfirmOrder | &

e lcak:elOrder

customer

~e
)

inStock=false

local JchecklLocalStockl, o m
Inventory “Ylooe--- Il checkShi 5 e tr

\ I
/’ \\ e
_shippingAvait=false /L

N Z
shippingAvail=tr

send e send
cancelOrder confirmOrder

\ FHELSINKI UNIVERSITY OF 'l'hCHNOLOI.

warehouse \cne@iloAvailable;__,,

—
[

patterns

communication protocols and

[Googl?Ord }——»‘ Confirmati

Shipplg\gRequ
e

N
orderGoods oo
customer 4<\ﬁ@1f rmOrder &
« cangelOrder
Ll
local \checklLpcalStock ,
inventory | X S S S
/ —
.
[warehouse \CﬂeckSh*pAvailable* _____
J

supplier r \
___________ R receive
Pl . orderGoods
_________) \ 4
invoke
1 checkLocalStock |
| inStoch,z’faIse
_________) :::::-:\\\-‘ ChECkShI%‘ |nStock=tru
s e
__shippingAvait=false |
shippingAvail=tr
send e send
cancelOrder confirmOrder

o

é

\ FHELSINKI UNIVERSITY OF 'l'hCHNOLOI.

S
200,80
"

SeCo

Schema matching

"éELSINKI UNIVERSITY OF TECHNOLO'

.. Schema matching

" The ontology matching problem:

" Resources are being expressed in
different ways must be reconciled
before being used

" Mismatch

" Different languages

" Different terminologies

" Different way of modelling

(Shvaiko & Euzenat, 2005)

I
. Example: XML Schema

» Electronics EJ) =

- I3 Electronics «

- & Personal_Computers « > PC El&
= B Microprocessors PC board &=
- [PID 1D
[l Name Brand il
[l Quantity Amount (il
[l Price Price
B Accessories Cameras_and_Photo & -
= Phntu_and_Cameras/ Accessories
i PID —Digital_Cameras
[} Name <« ID il -
[l Quantity < —Brand il -
; Il Price < - Amount
— Price (il

| .
(Shvalko & Euzenat’ 2 O O 5) '%ELSINKI UNIVERSITY OF TECHNOLO
X B

.. Reducing heterogeneity

" Reducing heterogeneity in 2 steps
* Match (determine the alignment)

" Process the alignment (merge,
transform, etc.

" Does not have to be totally automatic!
" e.g. transforming using logical rules

2000
W

.cc. Mapping

" Mapping M is a 5-uple <id,e,e',R,n>

" id Is a identifier of a mapping element

" e and e' are entities (e.g. XML
elements)

" R is a relation (e.g. equivalence, more
general, disjoint) or a rule etc.

" n is a confidence measure in some
mathematical structure (e.q. [0,1])

(Shvaiko & Euzenat, 2005)

———
- Alignment

" Alignment A is a set of mapping
elements

" Depending on the schemas / ontologies
being matched

" Alignment can be used to merge,
transform etc. the data

(Shvaiko & Euzenat, 2005)

. u i
%
"

e
The Need for Semantics: Data

Semantics

" Suppose we

nave the data object

“Book” that has the fields “Writer

name”’, “Boo

< hame”

" What happens if someone else expects
an object with fields “Artist first name”,
“Artist surname”and “Work name”

" If the fields were semantically

annotated, a

rulebase (mapping

elements) could be used to
automatically align data objects to

each other

%% With ontologies (defining classes and relationships) and
' transformation rules, it is possible to encode data

semantics in a common manner, and translate between
encodings

hasName isPartOf |
Artist IrstName

Name

A 4
A

A

SurName

isPartOf

Writer Singer

Mapping element:

Entities: FirstName, surName

Rule: Name:=concat(FirstName, SurName)
Confidence = 1 (boolean model)

\ FHELSINKI UNIVERSITY OF 'l'hCHNOLOI.

"

SeCo

N

Syntactic

Element level

External

Structure level

Syntactic

AN NN

External

Semantic

Granularity /
Input Interpretation

Layer

a.

dIELSINKI UNIVERSITY OF TECHNOLO

X

String- Language- Linguistic | Constraint- Alignment || Upper level Graph- Taxonomy- |[Repository off Model-
based based resource based reuse (logic-based) based based structures based
-Name similaity (| - Tokenization - Lexicons - Type - Entire schema/ g:tMgloﬂg;ng - Graph - Taxonomic - Structure’ s - Propositional SAT

- Description - Lemmatization || - Thesauri similarity ontology) ' matching structure metadata - DL-based
similarity - Marphological - Key - Fragments - Paths
- Global analysis properties - Children
namespaces - Elimination - Leaves
Basic Technigues
Layer
Linguistic Internal Relational
Terminological Structural Semantic

SR
) 9
';"Q’

SeCo

Service composition

"éELSINKI UNIVERSITY OF TECHNOLO'

” The Need for Semantics:
" Service Semantics

" Currently, we have a service that takes in a
number, two strings of text, and returns a
number. The number is termed “amount”, the
strings “currencyl” and “currency2”

" Linking data semantics to interface variables
solves the problem of what the data actually
means

= But we'd also like to know what the service
does

" S0, semantically annotate that this is a
currency converter service (with e.g. STRIPS)

" Formally: With the prequisites of recognized
currencies and an amount, the output will be
the amount in currency one transformed into
currency two

.
n Automatic Web Service
~ Composition

" Automatic Web Service composition
and interoperation

* What services are available (and
executable according to rules) at
certain situation

" Work-flows are planned (dynamically)
based on the state of the system
" Orchestration and choreography
* Data-centric systems

" Processes are not pre-defined, but planned
according to state of the data in the system

" Planning

e
W Introduction and Example:
~ Buying skateboots

" |In a Web Services Ve ~
environment, there is a need

for combining the supplier
functionality provided by customer < > How
Web Services into a How is this | - does
composite service. This is communicati ‘this
called composition. on ordered? process
= Depending on the messages _ shop « A > [~adwance
arriving and sent within the Inventory ‘ w0
partner network, we should :
be able to decide what to do . S
nextF.) descrioti [warehouse } « e
- rocess description : :
dominant: N : -
Orchestration . .
= One peer Which controls
orchestrates which?

= Communication
pattern dominant:
Choreography

" “peer-to-peer
scenario’

\ FHELSINKI UNIVERSITY OF 'l'hCHNOLOI.

Orchestration

In a well controlled environment there is a need for a
simple process control language that only knows how
to consume services and recover from error states
(supplier controls the process, partners control any
subprocesses).

Orchestration provides a separated process control
for pre-defined services

Easier maintenance because we just have to
reconfigure the process description to change the
application logic

Simple language but enough expression power to
handle the workflow execution

¢ HAELSINKI UNIVERSITY OF TECHNOLOI.

W Back to the real world: WS-
- BPEL / BPEL4AWS

" Business Process Execution Language
for orchestration

= WS-BPEL is the new 2.0 standard
(minor changes to the current de-
facto-standard)

= OASIS standard

* Originally developed by IBM and
Microsoft

" Multiple implementations available
from major vendors such as Oracle,
IBM, BEA, Microsoft etc...

w,. orchestration,
(Al variables and data transfers,
SeCo exception handling,
correlation information (for instance routing)
ort types
roles port P : r
Variables:
warehouse: URI receive
inStock, shippingAvail: bool orderGoods
customer: String
!
[invoke]
customer checkLocalStock
INV: e
warehouse - checkShip vallabIJ
g 1
shop inventory
invoke invoke
cancelOrder . confirmOrder

é o

|onso & Pa utasso, 2004) S u p pl i qHELSINKI UNIVERSITY OF TECHNOLO.

I
Sﬁo BaSiC Elements Of BPEL (Alonso & Pautasso,

2004)
PROCESS .

PARTNERS: Web services
taking part in the process

Equivalent to declarations in

VARTIABLES: the data used by a normal
the programming language. It
process defines .
CORRETATION SETS: the way services are to be
: called, which data is to be

construct.s used . used and which data is to be
to deal with conversations _

- treated as stateful
FAULT HANDLERS: what to do
in
case of errors (exceptions)

These elements establish what

what the process does, how it reacts
needs to be done to undo an under different circumstances
activitF (errors, message arrivals,

: what to do events, etc.), and how data
when moves from one step to the
an event arrives next

ACTIVITIES: what the process
does | ot
\HhLSlNKl UNIVERSITY OF thHNOLO.

4

=.co. Choreography
" In an open environment

there is a need for a
description language that Choreography GUI
describes the services

and waits for someone to E
negotiate and consume

(e.g. Each subprocess is ws-cht (W3C.org)
a software agent that

May pPa rtiCipate). l Choreography between Co. l

A&Co.B
" Choreography defines

the composition of WS-BPEL
interoperable
collaborations between p—— S
any type of party verkew Integration
regardless of the
supporting platform or i
programming model used
by the implementation of
the hosting environment

Java

= Extends the orchestration
by defining the abstract
communication model

Company A Company B

\ FHELSINKI UNIVERSITY OF 'l'hCHNOLOI.

Se

.o
2000
W

Co

.
Planning

" Planning is a key ability for intelligent
systems to
" Increase their autonomy and flexibility

through the construction of sequences
of actions to achieve their goals

" representation of actions and world
models

" reasoning about the effects of actions

" techniques for efficiently searching the
space of possible plans

S
2000
Y% 0’0

e Planning as problem solving

" Problem solving based on the search
strategies consists of:

= Actions

" Available actions that may change the state of
the entities

" State description

" |nitial state, descriptions of the states before
and after the actions

" Goal description

" Description of the state when the problem is
solved

" Plan
" Ordered list of actions that solve the problem

5
LN
"’0

4 - - -
s.co Problems in situation calculus

" Search to solve the problem takes exponential
time with respect to the length of the path

" First Order Logic is only semi-decidable

= We can proof that a solution exists, but it is
not known if it is an optimal solution
= Solution [do(x)] is as good as [do(nothing)|
do(x)]
" More effective languages have been
developed

" Less possible solutions and more effective
algorithms

Nesso . ey
(Al
.o STRIPS

" STRIPS is a classic planning language

" Describes states and operators with limited
language

= Describes situations with literals that are not
functions

= Predicates that contain constants as values,
negation is allowed

" For example: At(Home) A ~(Have(Cake))

" Goals are represented as conjunction of
literals

" For Example: At(Home) /\ Have(Milk)
" Variables are allowed: At(x) /\ Sell(x, Milk)

00000 >~
W STRIPS representation of
actions

" Actions are represented with IOPEs
" Inputs
" Qutputs

" Preconditions
" In which state the action may be performed
" Conjunction of facts (only positive literals)

= Effects

" What are the changes in the universe according
to the outputs of the action

" For example:

= Action Bake(Cake)
" Precondition Have(Milk)
" Effect Have(Cake)

An Example

System has a set of data and rules what to do
If @ certain situation is satisfied

We do not give exact definition what to do and
In which order, just a set of data and set of
rules to apply to the situation

Example
Init(Have(Cake))
Goal (Have(Cake) & Eaten(Cake))
Action (Eat(Cake))
" Precondition(Have(Cake))
= Effect not(Have(Cake)) & Eaten(Cake)
Action Bake(Cake)
= Effect Have(Cake)

k¢ HAELSINKI UNIVERSITY OF TECHNOLO.

2000
%N

.. Partial order planning

" |n partial order planning only the decisions
that have to be made at certain situation are
made

" We get partial orders (linearization -> total order)

" For example having cake has to be true before
eating it, how to have the cake is irrelevant for
ordering the eat and have situations

" Plan is a data-structure that has four parts
= Set of steps (actions that must be executed)

= Set of ordering constraints (Have(Cake) <
Eat(Cake)

= Set of variable bindings (Value = Variable)

= Set of causal links (Bake(Cake)-Have(Cake)-
>Eat(Cake))

" Express a precondition to be set for another
Situ ation \HELSINKI UNIVERSITY OF TECHNOLO

554
"

SeCo
Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * * * * ‘ *
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
Y
LeftSockOn RightSockOn * * * * + *
. Right Left Right Left Left Right
Left Right
Shoe Shgae Shoe Shoe Shoe Shoe Sock So;k
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn * * * * ‘ *
Finish Finish Finish Finish Finish Finish Finish

¢ HAELSINKI UNIVERSITY OF TECHNOLOI.

2000
%N

.. Partial order planning

" Solution to partial order planning
problem is a plan that certainly leads
from initial state to goal state.

* Partial order plan is allowed as long as
It Is consistent and complete

" Plan is complete if

= Preconditions for each action are true because of
an effect of another action

"= |In between there is no action that falsifies the
conditions

* Plan is consistent if

" Ordering and binding constraints are not conflicting
" (sl<s2 \Ns2 <sl)or(v=A/\v=B /\ Anot (B))

\ FELSINKI UNIVERSITY OF TECHNOLO

200,80
W

SeCo

Example

= [|nit(Have(Cake))
* Goal (Have(Cake) & Eaten(Cake))
= Action Eat(Cake)
" Precondition(Have(Cake))
= Effect not(Have(Cake)) & Eaten(Cake)
= Action Bake(Cake)
= Effect Have(Cake)

= Stepl: Eat(Cake)-not(Have(Cake)) /\ Eaten(Cake)
" Step2: Bake(Cake)-Have(Cake)
" Step3: Goal Satisfied
"= POP: Eat<Goal
" No variable bindings in this case (only constants used)
" Only one linearisation in this case
" There is just one plan that satisfies the goal

2000
L X

<= Finding a plan

1. In the beginning set start and finish states
and start < finish and open preconditions for
finish

2. Select open precondition p for action B and
find such A that effects that p

3. Add causal link A-p->B and A<B
1. if Anotin plan add A and Start < A < Finish

4. Solve conflicts

1. For example if C conflicts with A-p->B set
B<C or C<A

5. If preconditions can not be satisfied or
conflict solved rollback

6. If open preconditions start from 2.

..more expressive languages

STRIPS Language

ADL Language

Only positive literals in states:
Poor N Unknown

Positive and negative literals in states:
= Rich N = Famous

Closed World Assumption:
Unmentioned literals are false.

Open World Assumption:
Unmentioned literals are unknown.

Effect P A —Q means add P and delete Q.

Effect P A =@ means add P and =@
and delete =P and Q.

Only ground literals in goals:
Rich N Famous

Quantified variables in goals:
dr At(P1, z) N At(Ps, x) is the goal of
having P; and P; in the same place.

Goals are conjunctions:
Rich N\ Famous

Goals allow conjunction and disjunction:
—Poor N (Famous \V Smart)

Effects are conjunctions.

Conditional effects allowed:
when P: F means F is an effect
only if P is satisfied.

No support for equality.

Equality predicate (z = y) is built in.

No support for types.

Variables can have types, as in (p : Plane).

Figure 11.1

Comparison of STRIPS and ADL languages for representing planning prob-
lems. In both cases, goals behave as the preconditions of an action with no parameters.

200,80
"

SeCo

An example of a semantic web service
language: OWL-S

kS

X
seco QWL=S

= Actions are grounded to web services

= Actions (Functions with inputs and outputs)
are RPCs

" Processes are described as actions

" Depending of the state of the system,
according to the preconditions of the
actions some of the services are possible
candidates to be executed

" Depending of the response we'll get
(output) effects are applied to the ontology

= States of the objects are changed

= => We can use POP or more sophisticated
planning techniques to derive plans

L
2. OWL-S and WSDL

.................. .. OWL-S CPTTTTRTTTPITTTIENg
Process Model DL-based Types

| 1

Operation Message

- »
- -
’, »*

*
| ...

I Binding to SOAP, HTTP, etc. |

N T e L———

{ Atomic Process Inputs / Qutputs

——

]
s

S
BRRK

S

W
OWL-S Processes

SeCo

&expr#Condition)
%, &,
-3
. ra,

&

guB RN g,

LdisjointWith
Atomic Process

\ disjointWith

= ObjectProperty

------h- DatatypeProperty
ammaas -‘ SubClass/Property

components

