AS-75.3600
Distributed Information Systems:
Use Cases and Motivation

Tuukka Ruotsalo
Semantic Computing Research Group (SeCo)

Helsinki University of Technology (TKK),
Laboratory o Meéjia Technology
an
University of Helsinki, Department of Computer Science

Slides partially based on (Alonso & Pautasso, 2004)

we SeC
ey oelo

A

http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/

4

k HELSINKI UNIVERSITY OF TECHNOLOGY

Media Technology

Motivation: basic concepts and economical aspects

‘ UNIVERSITY OF HELSINKI ’QQQ S e C 0

Basic Concepts

A &

® Architecture supports the evolution of information system life
cycle: requirements, design, implementation and maintenance.

— To understand components and services the life cycle of an IS
(Information System) has to be analysed.

® Any architectural decision is based either on faster development
or easier maintenance of the system

— Reuse of the components (easier requirements engineering,
design and implementation)

— Modularity to support easier replacement of the components
(easier maintenance)

® SOA (Service Oriented Architecture) is best suited to achieve
dynamic control of the development process.

— No re-designing and re-implementing the whole system
whenever a change in the system environment occurs.

® Web Services are essential, but just one, technology to be used to
implement SOA

S
(S 0’0' 8 C
W 2€Lo0

W

Motivation

A &

® The architecture of the information systems we use is becoming
increasingly complex.

® The access methods, the capabilities, the goals, and the available
technology is continuously changing. What can we learn that will
remain valuable in the years to come?

® One example: 70 - 90 % of the software costs are maintenance
costs.

® Using the right abstractions helps!! Databases used as services
(e.g. JDBC+O0OR mapping) remove about 40 % of the code of
commercial applications!

® Software reuse is truly efficient and make economic sense at a
large granularity. How can we build systems that can be tailored

to the user needs and yet are applicable in a wide range of areas
and environments?

- UNIVERSITY OF HELSINKI ”'

s
0.9,
o SeC
W 2ELO

A

SOA (Service Oriented
Architecture) G

SOAs build applications out of software services.
Distributed computing and modular programming
No mutual dependencies between the services
Relatively large components

— Reuse on “service level”

— Changes in system requirements typically occur on
service level

® Metadata is sufficient to describe not only the _
cﬁaracterlstlcs of services, but also the data that drives
them

e XML is the current “state of the art” language for
describing the metadata

we SeC
ey oelo

A

Use Cases for SOA C

® B to B systems

— Changes in the company's strategy in networked
business

» Replace a subcontractor with another one
— Changes in internal business models
» [n-source / outsource
» Re-organizing internal production processes
® B to C systems
— Ubiquitous computing
® Cto Csystems
— Virtual community portals

S
(S 0’0' 8 C
W 2€Lo0

55
- UNIVERSITY OF HELSINKI ;’

A

Web Services Usage Scenarios

A &

® B2B external: Purchasing electronic components from
subcontractors

— Partners are known

- Primary needs: rigid data and process integration with as
low changing costs as possible

e B2B internal: Reorganization of production in a workplace

— Partners are known

— Primary needs: process integration with fast configuration
e B2C: Print a document at airport

— Partners are not known

— Primary needs: service discovery, dynamic data and
process integration

e (C2C: Watch all photographs taken from the party last
Saturday

— Partners are not known
— Primary needs: semantic data integration

S
(S 0’0. S C
W 2€Lo0

55
- UNIVERSITY OF HELSINKI ;’

A

Summary: data-, process- and
semantic integration \(

® Data integration
— Make two or more formal data models interoperable
® Process integration

— Make two or more formal process models
interoperable

® Goal: as low changing costs as possible
® Traditional approach

— Programmer changes the code whenever there are
changes in the requirements

® Configurable systems approach
— Change configuration instead of code
® Semantic approach

— Use rich data and let the computer plan, reason and
decide the best solution (computer does the
.configuration) L

55
- UNIVERSITY OF HELSINKI ;’

A

'|J"
k HELSINKI UNIVERSITY OF TECHNOLOGY

Media Technology

Architectures supporting modularity

‘ UNIVERSITY OF HELSINKI ’QQQ S e C 0

ervice Oriented Design |

HELSINKI UNIVERSITY OF TECHNO

Media Tech no_log}

Assess
Business
Needs

Provide
Solutions

From Services

Using
Components

. (Allen and Frost, 1998).

UNIVERSITY OF HELSINKI “0"0 S e C

" semantic computing

A &

Consider a system of a shop that sells products and uses

payment- and
in-house delivery services.

What happens if we want to replace the payment

service provider,

make the shop available in mobile environment and

outsource the delivery?

Application
with business logic
and client code

Db

v v v v v

y ¥ v v v

!

v

v v

!

Db

Client

Business logic

Service logic

Application

we SeC
Wy o€eLo

A

How did we get there:
Architecture and Design

Approaches of an IS N

® Design of an Information System
— Bottom-up: application integration
— Top-down: business requirements

— Meet-in-the-middle: applications are
configured to meet the requirements

® Architecture of an Information System
- 1,2,3,n tier architectures
— Middleware

‘;“6‘ ;;;;‘-.’i
) 0’0' S C
W 2eLo

55
- UNIVERSITY OF HELSINKI ;’

A

Top-down design

A &

® The functionality of a system is divided among several
modules.

® Modules cannot act as a separate component, their

functionality depends on the functionality of other
modules.

® Hardware is typically homogeneous and the system is
designed to be distributed from the beginning.

® What you need is what you implement.

INKI 2008 8 C
vy 2eLo

A

Bottom-up design

A &

*In a bottom up design, many of the basic components already
exist. These are stand alone systems which need to be
Integrated into new systems.

*The components do not necessarily cease to work as stand
alone components. Often old applications continue running at
the same time as new applications.

*This approach has a wide application because the underlying
systems already exist and cannot be easily replaced.

*Much of the work and products in this area are related to
middleware, the intermediate layer used to provide a common
interface, bridge heterogeneity, and cope with distribution.

*What you need is what you compose from existing
implementations.

we SeC
ey oelo

A

Meet-in-the-middle
N

® Usually systems can't be designed from the
scratch. Several existing subsystems are needed
and new subsystems have to be implemented.

® Example: How many different (inter-
organizational) systems are needed to provide a
complete web based shop?

— Catalog interface, payment interface,
transportation interface, ordering interface
etc...

® Conclusion: We often need to use both: top-down
and bottom-up design methodologies

® \What you need is the new implementations and
existing services working together

S
(S 0’0. S C
W 2€Lo0

55
- UNIVERSITY OF HELSINKI ;’

A

Architecture and
Tiers - Basic Concepts

A &

Client

v
Application

Logic
J

Resource
Manager

Client
!

Server

v

Database

- UNIVERSITY OF HELSINKI

(Alonso and Pautasso, 2004)

Presentation

laver
J

Business
rules

Business
nhjen’rq

Client

v

Business
prncesses

Persistent
stora ge

Client is any user or program that
wants to perform an operation over
the system. To support a client, the
system needs to have a presentation
layer through which the user can
submit operations and obtain a
result.

The application logic establishes what
operations can be performed over the
system and how they take place. It
takes care of enforcing the business
rules and establishing the business
processes. The application logic can
be expressed and implemented in
many different ways: constraints,
business processes, server with
encoded logic ...

The resource manager deals with the
organization (storage, indexing and
retrieval) of the data necessary to
support the application logic. This is
typically a database but it can also be
a text retrieval system or any other
data management system providing

querying capabilities and persistence.
53

3;;;3;';’
0.9
v SeC
W 280

A

Tiers and Layers

X
(3 . 0 [)
““
I ! ¢ﬁ\m ?MM@]
v v v v v
Presentation R L
Support for lochc Data distribution or
multiple clients v replication
Apphcatlon
Separated Logic Il Any comblnatlon
applicationlogic Resource thereof
P ¥t Y Manager INANARANA!
v v v v v f& éﬁ IPAPAPANA!
| " UNIVERSITY OF HELSINKI | -0 SECO

Middleware

A &

Clients * Middleware is just a level of
vy v v oy indirection between clients and
Global . other layers of the system.
application logic 77777 ® |t introduces an additional layer
Local of business logic encompassing
application logi T 1 1 1 1 all underlying systems.
Local ® By doing this, a middleware
resource system:
managers - simplifies the design of the

clients by reducing the
number of interfaces,

— provides transparent access
to the underlying systems,

;

- — acts as the platform for inter-
system functionality and high
level application logic, and

Server Server — takes care of locating
A B resources, accessing them,
and gatheriag results.

555
% SeC
e 2€ELO0

A

Distributed IS

A &

There are four basic problems to solve

Everything else derives from these
basic aspects:

® Use the appropriate abstraction for
distribution in view of the
communication infrastructure
available. The abstraction must
hide the network stack and provide
high level primitives

® How to embed the service
abstraction part of the
programming language in a more
or less transparent manner.

— Don’t forget this important
aspect: whatever you design,
others will have to program
and use it

- UNIVERSITY OF HELSINKI

in a distributed information system.

® How to exchange data between
machines that might use different
representations for different data
types. This involves two aspects:

— data type formats (e.qg., byte
orders in different
architectures)

— data structures (need to be
flattened and then
reconstructed)

® How to describe and find services:
— so that clients can use them
— to avoid tight integration

we SeC
e 2eLo

A

Real & artificial dependency and
Standardisation \G

® Coupling is the dependency between interacting systems.
— Real dependency

» Set of features or services consumed from other systems.
Always exists and cannot be reduced.

— Artificial dependency

» Factors that requesting party must comply with in order to
consumed features or services (e.qg., platform
dependency, API dependency)

» Always exists but costs can be reduced.

® |n each technology some of the following levels are standardized
(as we can see further, web services is just one standard)

® Standardization levels (Sheth, 1998)
— System level: Operating systems, bit-streams, protocols
— Syntactic level: Programming languages, markup languages
— Structural level: Data models, Process models
— Semantic level: Concepts and states used in data interchange

® |oose coupling describes the configuration in which artificial
dependency has been reduced to the minimum.

— Abstraction of the system in standardization levels

we SeC
ey oelo

A

SOA Summary C

® Different level of integration is required depending of the
economical / use-case scenario

® Standardization of the system is done in: System level, Syntactic
level, Structural level and Semantic level

® Maintenance costs are reduced in each level: more abstraction,
less maintenance

® Depending of the stage of the system life cycle we need either
bottom-up- / top-down- or both design methodologies

® n-tier system architecture separates the resources, global
application logic, application logic and presentation layer: more
layers separated, more abstraction possible

® Middleware simplifies the design of the systems, makes the
subsystems transparent by locating and executing resources
(handles the abstraction layers)

® Many technologies have been proposed to support middleware
based application development (RMI, Corba etc.). Web Services is
a web based middleware

sy SeC
v 2eLo

A

Web Services

Web Services as distributed systems
Why to use web services?

‘;;;‘ ;;'I,".’""
% SeC
W SEL0

55
- UNIVERSITY OF HELSINKI ;’

A

Distributed Web-based
middleware = Web Services \(

® Web services have not apg_eared out of the blue but are the
result of the natural evolution of middleware and enterprise
ap\;:\>lllcat|on integration platforms as they try to leverage the
WWW, the Internet and the globalisation of society as a
whole, particularly in its economic aspects

® A key to understanding Web services, how they are and
how they might evolve is understanding how we got there
and what the relation of Web services with eX|st|n? .
technology is. This relation is inescapable as only from this
perspective is it possible to understand what is happening
In the Web services world.

® Many technologies have been proposed for distributed
middleware

— Java RMI, DCOM,.NET, Corba, WebServices, etc...

— Each of these try to standardize the system interfaces in
different levels

— Web services seem to be the most promising technology
platform to do the trick

» Standards are developed on every dependency level
» Strong industrial support s

e
“
[)

. %
)

3;;;3;';’
0.9
v SeC
W 280

A

Web Services - How do they
work \C

® The Web services architecture represented by SOAP, UDDI,
and WSDL is a direct descendant of conventional
middleware platforms. They can be seen as the most basic
extensions that are necessary to allow conventional
synchronous middleware to interact with each other.

® The model and even the notation followed in this
architecture mimics to a very large extent what has been
done in RPC, TP-Monitors, CORBA, etc.

® This dependency gives a very good hint of what can be
done with these technologies today and what is missing to
obtain a complete platform for electronic commerce

® First implementations are just extensions of existing
platforms to accept invocations through a Web service

Interface (e.q., database stored procedure published as
Web services)

. | | >
UNIVERSITY OF HELSINKI X 8 C
vy 2eLo

A

Web Services - How do they
work

A &

® The next step in that progression leads immediately to the ' notion
of Web services as considered in IBM’s Web service architecture.

— The notion of service in the conventional middleware is now
translated into the notion of Web service based on the access
channel to that service (the service in fact can be a pre-
existing middleware service, e.qg., stored procedures in
databases made available as Web services)

— The only thing that changes from the middleware and
enterprise application integration world is that a few details
need to be changed so that they match the needs of
exchanges through the Internet rather than a LAN:

» XML as the data representation format

» SOAP as a protocol wrapper to allow conventional
communication protocols of middleware platforms to cross
the Internet and firewalls (essentially turns invocations
into document exchanges)

» WSDL as the XML version of interface descriptions

» UDDI as the WWW version of basic name and directory
services

Sl
UNIVERSITY OF HELSINKI
E vy SeCo

W

Web Services -- How do they

work

4

Media Technology

In context of Web Services,
artificial dependency is reduced by
making the services

— System: Hardware and
operating system
independent (http, ftp, TCP/IP
etc.)

— Syntax: Programming
language independent
(XML/SOAP, WSDL)

— Structural: Object model
independent (XML Schema)

— Semantics: “independent”
(Ontologies / Workflows: BPEL,
ebXML, RosettaNet, RDF/OWL,
OWL-S, etc.)

» Level of semantics vary
dramatically

HELSINKI UNIVERSITY OF TECHNOLOGY

1

‘ UNIVERSITY OF HELSINKI

semantic computing

Web Services -- How do they

work

A &

FIREWALL

v
FIREWALL

v
WEB SERVER

[
»

7

-

WEB SERVER FNTER

application L4
logic API

[I

database
resource

Front
end

manager

NET

v
FIREWALL

v

WEB SERVER

Front
end

WARE

V)

Web Services -- How do they
work

A &

® A popular interpretation of Web
services is based on IBM’s Web
service architecture based on three
elements:

® Service requester: The potential
user of a service

® Service provider: The entity that
implements the service and offers
to carry it out on behalf of the
requester

® Service registry: A place where
available services are listed and
which allows providers to advertise
their services and requesters to
query for services

® The goal is just-in-time integration
of applications by discovering and
orchestrating network-available
services

- UNIVERSITY OF HELSINKI

SERYICE
REQUESTER

SERYICE
REGISTRY

Service
description

PFUBLISH

SERYICE
PFROYIDER

Service
description

Service interface

Service

" " SeCO

()

Web Services -- How do they
work \C

— The Web service architecture
proposed by IBM is based on

two key concepts: UDD#

® architecture of existing
synchronous middleware
platforms

® current specifications of
SOAP, UDDI and WSDL

— The architecture has a
remarkable client/server flavor

— It reflects only what can be
done with
® SOAP (Simple Object
Access Protocol)
® UDDI (Universal
Description and Discovery
Protocol)

® WSDL (Web Services
Description Language)

SERYICE
REQUESTER

Service
description

SERYICE
REGISTEY

v

PFUBLISH

SERYICE
PFROYIDER

Service
description

Service interface

Service

WSDL

we SeC
e 2eLo

A

Web Services - The Big Picture

A &

Fy
SERVICE
REGISTRY k2
Service | Business MorStandard
| description Serantics
PUBLISH ¥
Decurty,
Reuting, Haorizontal
SERVICE Worlflow, MNon-Standard
PROVIDER Transaction Management ¢
Service / WSEL, UDD \
RESTJ&L?;R Qescription / SOAD MMLNTC .
Service tnterkics / XML XML Schema N
Service / HTTR, FTP, SMTF, Jabber \
Internet, Intranet, Extranet \

|
- UNIVERSITY OF HELSINKI

"’"" S eCo

()

Web Services binding -
levels of dependency \G

® RPC (Remote Procedure Calls)

— Call the procedures over
the wan (internet) and
return a response

— Basically synchronous
method calls

® Message queues

— Send documents rather
than call methods

® Workflow descriptions

— Processes rather than fixed
clients

® Semantic Descriptions of data

— Machine understandable
descriptions of services,
data and processes

SERYICE
REGISTRY

Service
description

FUBLISH

FROYIDER

Service
description

SERYICE
REQUESTER

Service Interfoce

- UNIVERSITY OF HELSINKI ”'

s
QN
v SelC
W 2eLo

A

Web Services Summary

A &

® Web Services are self-contained, modular, distributed, dynamic
applications that can be described, published, located, or invoked
over the network to create products, processes, and supply
chains. They can be local, distributed, or Web-based. Web services
are built on top of open standards such as TCP/IP, HTTP, HTML,
and XML. Web services use new standard technologies such as
SOAP (Simple Object Access Protocol) for messaging, and UDDI
(Universal Description, Discovery and Integration) and WSDL (Web
Service Description Language) for publishing.

® These technologies are used to represent abstractions of
programming language interfaces in the web and to provide an
find/publish and bind/execute framework to enable service
oriented computing

® What we have now (IBM WS architecture) is not the final e-
commerce architecture but a good start

® Semantic web services are defined using levels of: configurability
and automation in data and process interoperability

— We will further see where the current technologies go wrong
.and in which presented use cases they are not enqugh

S
- (S 0’0. S C
W 2€Lo0

5
UNIVERSITY OF HELSINKI ”

A

