
UNIVERSITY OF HELSINKIHELSINKI UNIVERSITY OF TECHNOLOGY

Semantic Computing Research Group
http://www.seco.tkk.fi/

Need for Semantics

WSM[O/L/X]

Eetu Mäkelä

HELSINKI UNIVERSITY OF TECHNOLOGY

What is needed for minimizing the cost of
connecting service modules and mazimizing reuse:
Common Data Encoding, Data Semantics

invoke
checkLocalStock

invoke
checkShipAvailable

send
confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=tru
e

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrder Order
Confirmation

ShippingRequest

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Needed: Common Interfaces, Service
Semantics

invoke
checkLocalStock

invoke
checkShipAvailable

send
confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=tru
e

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrder Order
Confirmation

ShippingRequest

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Needed: Common communication
protocols and patterns

invoke
checkLocalStock

invoke
checkShipAvailable

send
confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=tru
e

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

checkLocalStock

GoodsOrder Order
Confirmation

ShippingRequest

local
inventory

HELSINKI UNIVERSITY OF TECHNOLOGY

Web Services are a global effort to
standardize what is needed
 Common data encoding: XML, WSDL
 Common data semantics: (WSDL)
 Common communications protocols: SOAP,

WS-ReliableMessaging, WS-Security
 Common interfaces: WSDL, WS-Policy
 Common service semantics: (WSDL) (WS-

Transactions), (WS-Security), (WS-Policy)

HELSINKI UNIVERSITY OF TECHNOLOGY

The Need for Semantics: Data
Semantics
 Suppose we have the data object “Book”

that has the fields “Writer name”, “Book
name” and “Price (USD)”

 What happens if someone else expects an
object with fields “Artist first name”, “Artist
surname”, “Work name”, and “Price (EUR)”?

 If the fields were semantically annotated,
common translators could be used to
automatically map data objects to each other

HELSINKI UNIVERSITY OF TECHNOLOGY

With ontologies (defining classes and relationships) and
transformation rules, it is possible to encode data semantics in a
common manner, and translate between encodings

Artist

Writer Singer

Currency

Dollar Euroconversion
rate 0.78

Name
FirstName

SurName

hasName

isPartOf

isPartOf

Name:=concat(FirstName, SurName)
amountIn(Euro):=conversionRate(X,Euro)*amountIn(X)

HELSINKI UNIVERSITY OF TECHNOLOGY

Description Logics (OWL) vs Horn Logics (SWRL,
Prolog etc)

 Description logics describe restrictions about classes
and their relationships between each other

 Horn logics describe what follows if certain
prequisites are true

 Neither is a subset of the other
 It's impossible to assert that persons who study and

live in the same city are “home students” in OWL
 This can be done easily using rules: studies(X,Y),

lives(X,Z), loc(Y,U), loc(Z,U) -> homeStudent(X)
 Rules cannot assert the information that a person is

either a man or a woman
 This information is easily expressed in OWL: Man

(class) disjointWith Woman (class)

HELSINKI UNIVERSITY OF TECHNOLOGY

The Need for Semantics: Service
Semantics
 Currently, we have a service that takes in a number,

two strings of text, and returns a number. The
number is termed “amount”, the strings “currency1”
and “currency2”

 Linking data semantics to interface variables solves
the problem of what the data actually means

 But we'd also like to know what the service does
 So, semantically annotate that this is a currency

converter service (with e.g. STRIPS)
 Formally: With the prequisites of recognized

currencies and an amount, the output will be the
amount in currency one transformed into currency
two

HELSINKI UNIVERSITY OF TECHNOLOGY

Service Semantics, cont.

 Also:
 You need to use this encryption to contact this

service
 You need this choreography to interact with

this service
 Non-parameter requisites (STRIPS again):

“For this stock trading service to function, the
world needs to be in such a state that the
relevant stock market is open”

HELSINKI UNIVERSITY OF TECHNOLOGY

WSMO Working Groups

A Conceptual Model for
SWS

A Formal Language for WSMO

A Rule-based Language for SWS

Execution Environment for
WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

WSMO Top Level Notions

Objectives that a client wants to
achieve by using Web Services

Provide the formally
specified terminology
of the information
used by all other
components

Semantic description of
Web Services:
- Capability (functional)
- Interfaces (usage)

Connectors between components with
mediation facilities for handling
heterogeneities

WSMO D2, version 1.2, 13 April 2005 (W3C submission)

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 WSMO ontologies and the WSML ontology
language

 WSMO Web Services
 discovery
 choreography, orchestration and mediation

 WSMX execution environment
 Comparison between OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

WSMO Ontology Usage & Principles

 Ontologies are used as the ‘data model’ throughout
WSMO
 all WSMO element descriptions rely on ontologies
 all data interchanged in Web Service usage are ontologies
 Semantic information processing & ontology reasoning

 WSMO Ontology Language WSML
 conceptual syntax for describing WSMO elements
 logical language for axiomatic expressions (WSML Layering)

 WSMO Ontology Design
 Modularization: import / re-using ontologies, modular approach

for ontology design
 De-Coupling: heterogeneity handled by OO Mediators

HELSINKI UNIVERSITY OF TECHNOLOGY

Web Service Modeling Language

 Aim – to provide a language (or a set of
interoperable languages) for representing the
elements of WSMO:
 Ontologies, Web services, Goals, Mediators

 WSML provides a formal grounding for the
conceptual elements of WSMO, based on:
 Description Logics
 Logic Programming
 First-Order Logic
 Frame Logic

HELSINKI UNIVERSITY OF TECHNOLOGY

Rationale of WSML

 Provide a Web Service Modeling Language
based on the WSMO conceptual model
 Concrete syntax
 Semantics

 Provide a Rule Language for the Semantic Web
 Many current Semantic Web languages have

 undesirable computational properties
 unintuitive conceptual modeling features
 inappropriate language layering

 RDFS/OWL
 OWL Lite/DL/Full
 OWL/SWRL

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL and WSML

 WSML aims at overcoming deficiencies of OWL
 Relation between WSML and OWL+SWRL to be defined

OWL
Lite

OWL
DL

OWL
Full

WSML
Flight

WSML
DL

WSML
Core

WSML
Rule

WSML
Full

Description Logics

full RDF(S) support

subset

Description Logics

Logic Programming

First Order Logic

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 WSMO ontologies and the WSML ontology
language

 WSMO Web Services
 discovery
 choreography, orchestration and mediation

 WSMX execution environment
 Comparison between OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

Automated WS discovery

 The task
 Identify possible web services W which are able to provide the

requested service S for its clients

 An important issue …
 „being able to provide a service“ has to be determined

based on given descriptions only (WS, Goal, Ontos)
 Discovery can only be as good as these descriptions

 Very detailed WS descriptions: are precise, enable highly
accurate results, are more difficult to provide; in general,
requires interaction with the provider (outside the pure logics
framework)

 Less detailed WS descriptions: are easy to provide for
humans, but usually less precise and provide less accurate
results



E
as

e
of

 p
ro

vi
si

on

Po
ss

ib
le

 A
cc

ur
ac

y

HELSINKI UNIVERSITY OF TECHNOLOGY

Goals

• Ontological De-coupling of Requester and Provider

• Goal-driven Architecture:
- requester formulates objective independently
- ‘intelligent’ mechanisms detect suitable services for solving the Goal
- allows re-use of Services for different purposes

• Derived from different AI-approaches for intelligent systems
– Intelligent Agents (BDI Architectures)
– Problem Solving Methods

• Requests may in principle not be satisfiable

• Ontological relationships & mediators used to link goals to web services

• Goal Resolution Process open to implementations

HELSINKI UNIVERSITY OF TECHNOLOGY

Descriptions and Discovery (II)

 Service provider side:
 Capability description & levels of abstraction

WS

{Keyword}

L
ev

el
 o

f
A

bs
tr

ac
ti

on

Syntactic

Semantic („Light“)

Semantic („Heavy“)

What do I provide?
(Syntactically)

What do I provide?
(Semantically)

What do I provide &
When (for what input)?

(Semantically)

W1 … WL

HELSINKI UNIVERSITY OF TECHNOLOGY

Descriptions and Discovery (III)

 Service requester side: Goal description

{Keyword}

L
ev

el
 o

f
A

bs
tr

ac
ti

on

Syntactic

Semantic („Light“)

Semantic („Heavy“)

What do I want?
(Syntactically)

What do I want?
(Semantically)

What do I want &
What (input) can I
provide? (Semant.)

K1 … Kn

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 WSMO ontologies and the WSML ontology
language

 WSMO Web Services
 discovery
 choreography, orchestration and mediation

 WSMX execution environment
 Comparison between OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

internal
business logic

of Web
Service

(not of interest in Service
Interface Description)

Choreography Discovery

internal
business logic

of Web
Service

(not of interest in Service
Interface Description)

 a valid choreography exists if:
1) Information Compatibility

 compatible vocabulary
 homogeneous ontologies

2) Communication Compatibility
 start state for interaction
 a termination state can be reached without any additional input

HELSINKI UNIVERSITY OF TECHNOLOGY

Orchestration Validation Example

if Ø then (FWS, flightRequest) if request then offer
if order then confirmation

VTA Web Service Orchestration

Start
(VTA, FWS)

Termination
(VTA, FWS)

if flightOffer
then (HWS, hotelRequest)

if selection
then (FWS,
flightBookingOrder)
if selection,
flightBookingConf
then (HWS,
hotelBookingOrder)

Flight WS Behavior Interface

if request then offer
if order then confirmation

Hotel WS Behavior InterfaceStart
(VTA, HWS)

Termination
(VTA, HWS)

Orchestration is valid if valid choreography exists for interactions between
Orchestrator and each aggregated Web Service, done by choreography discovery

HELSINKI UNIVERSITY OF TECHNOLOGY

internal
business logic

of Web
Service

(not of interest in Service
Interface Description)

internal
business logic

of Web
Service

(not of interest in Service
Interface Description)

 Protocol & Process Level Mediation

• if a choreography does not exist, then find an
appropriate WW Mediator that

– resolves possible mismatches to establish Information
Compatibility (OO Mediator usage)

– resolves process / protocol level mismatches in to
establish Communication Compatibility

W
W

 M
ediator

HELSINKI UNIVERSITY OF TECHNOLOGY

time

price
date

R
E
Q
U
E
S
T

S
E
R
V
I
C
E

Processes Mediator

itinerary[origin,
destination, date]

origin

destination

itinerary[origin,
destination]

itinerary [route,
date, time, price]

Process Mediation Example

HELSINKI UNIVERSITY OF TECHNOLOGY

OO Mediator
Mediation Service

Train Connection
Ontology (s1)

Purchase
Ontology (s2)

Train Ticket
Purchase Ontology

Mediation
Services

Goal:
“merge s1, s2 and
s1.ticket subclassof s2.product”

Discovery

Merging 2 ontologies

OO Mediator - Example

HELSINKI UNIVERSITY OF TECHNOLOGY

GG Mediator
Mediation Service

Source
Goal

“Buy a
ticket”

Target Goal
“Buy a Train Ticket”

postcondition:
“aTicket memberof trainticket”

GG Mediators

 Aim:
 Support specification of Goals by re-using existing Goals
 Allow definition of Goal Ontologies (collection of pre-defined Goals)
 Terminology mismatches handled by OO Mediators

 Example: Goal Refinement

HELSINKI UNIVERSITY OF TECHNOLOGY

 WG Mediators:
 link a Web Service to a Goal and resolve occurring mismatches
 match Web Service and Goals that do not match a priori
 handle terminology mismatches between Web Services and Goals
⇒ broader range of Goals solvable by a Web Service

• WW Mediators:
– enable interoperability of heterogeneous Web Services
⇒ support automated collaboration between Web Services

– OO Mediators for terminology import with data level mediation
– Protocol Mediation for establishing valid multi-party collaborations
– Process Mediation for making Business Processes interoperable

WG & WW Mediators

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 WSMO ontologies and the WSML ontology
language

 WSMO Web Services
 discovery
 choreography, orchestration and mediation

 WSMX execution environment
 Comparison between OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

WSMX Design Principles

Strong Decoupling & Strong Mediation
autonomous components with mediators for interoperability

Interface vs. Implementation
distinguish interface (= description) from implementation (=program)

Peer to Peer
interaction between equal partners (in terms of control)

WSMO Design Principles == WSMX Design Principles

== SOA Design Principles

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Request to discover
Web services.
May be sent to adapter
or adapter may extract
from backend app.

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Goal expressed in WSML
sent to WSMX System Interface

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Comm Manager component
implements the interface
to receive WSML goals

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Comm Manager tells core
Goal has been recieved

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Choreography wrapper
Picks up event for
Choreography component

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

A new choreography
Instance is created

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Core is notified that
choreography instance
has been created.

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Discovery is invoked
for parsed goal

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Discovery component
requires data mediation.

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

After data mediation,
discovery component
completes its task.

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

After discovery, the
choreography instance for
goal requester is checked
for next step in interaction.

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Next step in choreography
is to return set of discovered
Web services to goal requester

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Set of Web Service descriptions
expressed in WSML sent to
appropriate adapter

HELSINKI UNIVERSITY OF TECHNOLOGY

System Architecture

Set of Web Service descriptions
expressed in requester’s own
format returned to goal requester

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 WSMO ontologies and the WSML ontology
language

 WSMO Web Services
 discovery
 choreography, orchestration and mediation

 WSMX execution environment
 Comparison between OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

Perspective

 OWL-S is an ontology and a language to describe Web services
 Strong relation to Web Services standards

 rather than proposing another WS standard, OWL-S aims at enriching
existing standards

 OWL-S is grounded in WSDL and it has been mapped into UDDI
 Based on the Semantic Web

 Ontologies provide conceptual framework to describe the domain of Web
services and an inference engine to reason about the domain

 Ontologies are essential elements of interoperation between Web services
 WSMO is a conceptual model for the core elements of Semantic

Web Services
 core elements: Ontologies, Web Services, Goals, Mediators

 language for semantic element description (WSML)
 reference implementation (WSMX)

 Mediation as a key element
 Ontologies as data model

 every resource description is based on ontologies
 every data element interchanged is an ontology instance

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S and WSMO

 OWL-S uses Profiles to express existing capabilities
(advertisements) and desired capabilities (requests)

 WSMO separates provider (capabilities) and requester
points of view (goals)

OWL-S profile ≈ WSMO capability +
 goal +

 non-functional properties

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S and WSMO

 Perspective:
 OWL-S Process Model describes operations performed by Web Service,

including consumption as well as aggregation
 WSMO separates Choreography and Orchestration

 Formal Model:
 OWL-S formal semantics has been developed in very different frameworks

such as Situation Calculus, Petri Nets, Pi-calculus
 WSMO service interface description model with ASM-based formal semantics
 OWL-S Process Model is extended by SWRL / FLOWS

both approaches are not finalized yet

 OWL-S Process Model ≈ WSMO Service Interfaces

HELSINKI UNIVERSITY OF TECHNOLOGY

 OWL-S provides default mapping to WSDL
 clear separation between WS description and interface

implementation
 other mappings could be used

 WSMO also defines a mapping to WSDL, but aims at an
ontology-based grounding
 avoid loss of ontological descriptions throughout service usage

process
 ‘Triple-Spaced Computing’ as innovative communication

technology

 OWL-S Grounding ≈ current WSMO Grounding

OWL-S and WSMO

HELSINKI UNIVERSITY OF TECHNOLOGY

Mediation in OWL-S and WSMO

 OWL-S does not have an explicit notion of mediator
 Mediation is a by-product of the orchestration process

 E.g. protocol mismatches are resolved by constructing a plan that
coordinates the activity of the Web services

 …or it results from translation axioms that are available to the
Web services
 It is not the mission of OWL-S to generate these axioms

 WSMO regards mediators as key conceptual elements
 Different kinds of mediators:

 OO Mediators for ensuring semantic interoperability
 GG, WG mediators to link Goals and Web Services
 WW Mediators to establish service interoperability

 Reusable mediators
 Mediation techniques under development

HELSINKI UNIVERSITY OF TECHNOLOGY

Semantic Representation

 OWL-S and WSMO adopt a similar view on the need of
ontologies and explicit semantics but they rely on
different logics:

 OWL-S is based on OWL / SWRL
 OWL represent taxonomical knowledge
 SWRL provides inference rules
 FLOWS as formal model for process model

 WSMO is based on WSML a family of languages with a
common basis for compatibility and extensions in the
direction of Description Logics and Logic Programming

