L
Ssad
200
W

SeCo

Transactions and SOA

Tuukka Ruotsalo

L
e
LXK
"

SeCo

Contents

* Transactions, what are they, why do we
have to think about transactions in SOA?

* Transactional requirements
“ACID

" Distributed & long living transactions

* Atomic commitment protocol
" Two-phase commit & cooperative termination

“ Nested transactions
* Compensation & Saga transactions

* Forward recovery

Transactions

* RPCs support a single-call-at-time
interactions between clients and services

“ As soon as we go beyond simple single
service invocations we need to make sure
that the data is not corrupted in any sense

" Most of the SOA solutions are more
complicated than single calls

“ WS specification support
* WS-Coordination
* WS-Atomic Transactions
" WS-Business Activity

. |
%

’090';
L4

SeCo Example (Newcomer, 2002)

" Skate boots ordering
* Authentication
Credit validation
* Accounting
“ Probably more:

* Informing the
buyer that the
boots are on
their way

* Confirming
that the
goods have
arrived

Rgtaaafsr;-'-f"
|I‘Nﬁ‘ﬂt'|3ri e
. Bepice

l

[“Let's order some of thase trendy

skateboats for next season.”

Auﬁleﬁtaatim

4.‘}—-— wsb E@r‘mm
varm‘er

T R

| Credit Valldation.
meiér

Bﬂllng and

¥

\Q— H@t;nﬁhhng%ﬁeb
Ssﬁwcés %”mmclef

Figure 1-3 The Skateboots order entry service comprises several

other Web services.

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

200,
X

.t- Transactions ACID

“ ACID defines requirements for transactions

* Designed for short-lived decisions usually
asting under a few seconds.

* ldentify a logical unit of work that is either
performed in complete or not at all. That is,
either a COMMIT or a ROLLBACK is
performed on the operations. This enables
the data to maintain a state of consistency.

“ ACID

* Atomicity

* Consistency

“ Isolation

* Durability NG s ortanon

SeEd
200,
"

s.=co |ransactions ACID

* Atomicity
“ The actions that transaction performs in the

system are committed only if all of the actions
are successful, otherwise roll-back

“ If an error occurs the original state of the
system is recovered.

LXK
e

-.t= Transactions ACID

“ Consistency

* A consistent state of the system may be
expected at all times

* Changes in the system must correspond to
the actual changes and they must be done
by the integrity constraints in the system

* In most cases the system is in inconsistent
state at some point of the transaction, but
other properties of the ACID will guarantee
that it is not inconsistent for any other
transaction

SeEd
200,
"

.t. Transactions ACID

" Isolation

* Simultaneous transactions in the system
must be isolated from each other. They must
not access inconsistent data in any state of
the transaction.

* Transaction history (schedule of the state
transitions) must be serializable

* (Pessimistic) 2 phase locking, time stamps or optimistic
concurrency control

SeEd
200,
oy

.t. Transactions ACID

" Durability

" Guarantee that once the transaction has
been committed, it will persist, and not be
undone.

* Will survive system failure, and that the
system has checked the integrity constraints
and won't need to abort the transaction.

s
W Distributed and long-living
- transactions
“ In distributed computing transactions often
cannot be handled within a RPC —type of

call

" Think about our skate-boots example
* Transaction is committed after the actual goods arrive

to the shop
* We "cannot” lock the service sessions (and the
underlying database) for that long time

" Need for transaction coordination

* Single or multiple coordinator processes that
control the transaction and confirm or abort

the transaction

L
S
200
"

20

2PC (Two Phase Commit)

|
S

n Protocols for long living transactions
c€eLo 2PC

Rollback

r 'r.l_ _— .‘.‘ ._
lll ------- L LT ———] | e Ll -‘."
5 ReadOnly ;
"'- or _,-'
" Aborted .

Coordinator genqraseﬂl Participant generated

"é HELSINKI UNIVERSITY OF TECHNOLOGY .

W Protocols for long living transactions
7 2PC

* The coordinator sends vote requests to all
participants

* When a participant receives the vote
request, it replies by voting either Yes or No,
according to whether it is able to carry out
the task or not

" Participants that voted Yes start waiting for
either Commit or Abort message from the
coordinator. Participants that voted No can
unilaterally abort

W Protocols for long living transactions
- 2PC

* The coordinator collects all vote messages.

“ If all the participants voted Yes, the
coordinator decides to commit and sends
Commit messages to all participants.

* Otherwise, the coordinator decides to abort
and sends Abort messages to all
participants that voted Yes.

* According to the received message, a
participant decides to commit or abort.

W Protocols for long living transactions
- 2PC

“ It is possible that messages may not arrive
due to failures and processes may be
waiting forever! A time-out mechanism must
be able to interrupt the waiting period.

* In addition, the coordinator may attach the
list of the participants to the vote request
message and thereby let the participants to
know each other! Cooperative termination
protocol.

L
Sed
200
W

SeCo

Nested Transactions

SeEd
200,
w0

s.co Ne@sted transactions

" A mechanism to facilitate transactions in
distributed systems (Moss 1981)

“ A tree-like model with parents, children, top-
level (root), leaves.

Top-level —— - S - (T
Parent —— o
o - - B = -“| i --I
I —) B
Child—m—r—"""" _—7

B L
Leaf—= HT3 "¢ (T4)

L
R
UK
W

s.co Ne@sted transactions

* Rules

* A parent can spawn any number of children.

* Any number of children may be active concurrently.
Parent can’t access data when its children are alive.
A child can inherit a lock held by any ancestor.

On child commit, its locks inherited (anti-inheritance)
by parent.

Commit dependency: parent can commit only after all
its children terminate (abort/commit).

Abort dependency: On parent abort, even updates of
committed children are undone.

Updates persist only if all ancestors commit.

\ HELSINKI UNIVERSITY OF TECHNOLOGY

LXK
e

seco - N@sted Transactions

" Intra-transactional parallelism
" Safe concurrency
“ Reduced response time
* Intra-transactional recovery control
* Finer control of error handling
“ Improves availability
" System modularity

* Composition of separately developed
modules

200,
"

seco Save Points

* Can be seen as a check pointin a
transaction that forces the system to save
the state of the running application and
return a save point identifier for future
reference

* Instead of removing an entire transaction
after a failure of single operation (sub-
process) backward recovery can return the
last valid state of the transaction saved in
save point reference

S
UK
O'N

=c. Compensating Transactions

In Saga (Garcia-Molina & Salem, 1987) model a long-living
transaction is broken up into a collection of sub-transactions
that interleave with other transactions.

The results of sub-transaction can be made immediately
visible after it's committed.

Each Saga sub-transaction (Ti) is provided with a
compensating transaction (Ci).

* If the compensation is not needed saga (T1, T2, ..., Tn)
will execute as a sequence of transactions.

* In case of compensation the sequence would be (T1, T2,
ey 1, Cj, ..., C2,C1)where 0 !j<n,and Ciis a
predefined compensating transaction of Ti.

The compensating transaction does not necessarily restore
the state that prevailed before the execution of Ti but rather
undoes operation of Ti from a semantic point of view.

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

L
Sed
200,
W

.co Forward Recovery

* Combining the save points and compensation and
recovery of failed transaction.

" The transaction that caused the failure is aborted
using the conventional roll-back.

* Then committed transactions are undone in
reversed order by their compensating counterparts
until the save point is found (backward recovery).

* Finally, the transaction is restarted from the location
of found save point (forward recovery).

* The same objective can be achieved by different
ways. Alternative methods of forward recovery
should be considered

SeEd
200,
"

s.co Jransactions Summary

* ACID properties must be met

“ Not necessarily possible with single-call
type of methods

* Long living transactions
* Coordination

" Several methods / combinations usable
depending of the case
" 2PC
* Nested Transactions
* Compensation
* Forward Recovery

W So we are using Web Service
-~ framework...

* WS-Transaction specification has two main
paradigms for transaction control

* Atomic Transactions (AT)
" Pure ACID for short transactions with 2PC or similar

“ Business Activity (BA)

* Long living transactions
" Uses Compensation

S
UK
0'00

- Even if you do everything right...

* Transactions in web services world are
different from their traditional environment =
database transactions

" Web service is a service, not a state tracking
system in IS world

* Transactions may include or reflect to parts
that are not automated
" Sending a bill to a customer may be done by letter

* How do you roll-back sending a letter?

“ May require a BPR (Business Process Re-
engineering)

