
HELSINKI UNIVERSITY OF TECHNOLOGY

Planning

Tuukka Ruotsalo

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 Semantic Web Service Use-Cases
 Information Systems

 Data, Processes and External events
 Situation Calculus
 Planning, STRIPS

HELSINKI UNIVERSITY OF TECHNOLOGY

Semantic web services use cases

 Automatic Web service discovery
 How can we find the service we need from

the web (like traditional services from UDDI)
 Automatic Web service invocation

 How can we execute a service from the web
 Automatic Web service composition and

interoperation
 How can we know which service to execute

at a certain situation to achieve a goal

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

Automatic Web Service Composition

 Automatic Web Service composition and
interoperation
 What services are available (and executable

according to situation rules) at certain
situation

 Work-flows are planned dynamically based
on the state of the system

 Data-centric systems
 Processes are not pre-defined, but planned according

to state of the data in the system

HELSINKI UNIVERSITY OF TECHNOLOGY

An example

 Depending on the conditions we might want
the “process of ordering skate boots” be
different.

 Requires dynamic planning and execution of
services

HELSINKI UNIVERSITY OF TECHNOLOGY

Information System meta-model

 Information Systems are
 Models of the universe of discourse
 In Computer World models of

 Data
 What entities the system contains and in which states

they are at a certain time
 Processes

 What are the actions that enable transformations of a
state of entities to another state of entities

 + Interaction to cause external events
 User interfaces (how to get the system to do something)

HELSINKI UNIVERSITY OF TECHNOLOGY

What do we need to compose a
configurable “semantic” IS?
 Descriptions of data

 Ontology (of data) (i.e. Entities of the given discourse)
= data model

 Descriptions of processes
 Ontology (of possible actions) = Situation Calculus

processes available

HELSINKI UNIVERSITY OF TECHNOLOGY

Situation

 Definition
 A situation s is the complete state of the universe at an

instant of time.
 Sit:= {s | s is situation}

 Since the universe is too large, we‘ll never
describe the universe completely, but give
only facts

 These facts will be used to deduce further facts about
that situation, future situations, situations that agents
can bring about

 Requires also to consider hypothetical situations
 These situations can‘t be completely described, but

with sufficient details for some purposes

HELSINKI UNIVERSITY OF TECHNOLOGY

Fluents

 Idea: Partial description of a situations
 Definition

 A fluent f is a function with domain Sit
 Range of f {true,false}: propositional fluent
 Sit: situational fluent

 Fluents are often the values of functions
 T(President(Finland) = JKPaasikivi,1950)
 Note! It is not logically equivalent that President(Finland) =

JKPaasikivi,1950, but the function returns the correct value
for a time slice 1950

 It is logically identical that the situation in 1950 was that
JKPaasikivi was the President of Finland

HELSINKI UNIVERSITY OF TECHNOLOGY

Causality

 Make assumptions about causality by means of a
fluent F(π) (where π is a fluent itself!)

 F(π,s) asserts that the situations will be
followed(after some time) by a situation that
satisfies the fluent π

 Example:
 All x, All a [raining(x) and at(a,x) and outside(x) ->

F(wet(a))]

 Other useful operators
 F(π,s): For some situation s‘ in the future of s holds π(s‘)
 G(π,s): For all situation s‘ in the future of s holds π(s‘)
 P(π,s): For some situation s‘ in the past of s holds π(s‘)
 H(π,s): For all situation s‘ in the past of s holds π(s‘)

HELSINKI UNIVERSITY OF TECHNOLOGY

Actions

 Fundamental role in our study of actions:
 Situational fluent: result(a,σ,s) where…
 a:Agent, σ: Action/Strategy, s:Situation

 The value of result(a,σ,s) is the situation that
results when a carries out σ, starting in
situation s

 When σ is non-terminating in that context,
this value is undefined

HELSINKI UNIVERSITY OF TECHNOLOGY

Planning as problem solving

 Problem solving based on the search
strategies consists of:
 Actions

 Available actions that may change the state of the
entities

 State description
 Initial state, descriptions of the states before and after

the actions

 Goal description
 Description of the state when the problem is solved

 Plan
 Ordered list of actions that solve the problem

HELSINKI UNIVERSITY OF TECHNOLOGY

Problems in situation calculus

 Search to solve the problem takes
exponential time with respect to the length of
the path

 First Order Logic is only semi-decidable
 We can proof that a solution exists, but it is

not known if it is an optimal solution
 Solution [do(x)] is as good as [do(nothing)|

do(x)]
 More effective languages have been

developed
 Less possible solutions and more effective

algorithms

HELSINKI UNIVERSITY OF TECHNOLOGY

STRIPS

 STRIPS is a classic planning language
 Describes states and operators with limited

language
 Describes situations with literals that are not

functions
 Predicates that contain constants as values,

negation is allowed
 For example: At(Home) /\ ^(Have(Cake))

 Goals are represented as conjunction of
literals
 For Example: At(Home) /\ Have(Milk)

 Variables are allowed: At(x) /\ Sell(x, Milk)

HELSINKI UNIVERSITY OF TECHNOLOGY

STRIPS representation of actions

 Actions are represented with IOPEs
 Inputs
 Outputs
 Preconditions

 In which state the action may be performed
 Conjunction of facts (only positive literals)

 Effects
 What are the changes in the universe according to the

outputs of the action

 For example:
 Action Bake(Cake)

 Precondition Have(Milk)
 Effect Have(Cake)

HELSINKI UNIVERSITY OF TECHNOLOGY

An Example

 System has a set of data and rules what to
do if a certain situation is satisfied

 We do not give exact definition what to do
and in which order, just a set of data and set
of rules to apply to the situation

 Example
 Init(Have(Cake))
 Goal (Have(Cake) & Eaten(Cake))
 Action (Eat(Cake))

 Precondition(Have(Cake))
 Effect not(Have(Cake)) & Eaten(Cake)

 Action Bake(Cake)
 Effect Have(Cake)

HELSINKI UNIVERSITY OF TECHNOLOGY

Partial order planning

 In partial order planning only the decisions
that have to be made at certain situation are
made
 We get partial orders (linearization -> total order)
 For example having cake has to be true before eating it,

how to have the cake is irrelevant for ordering the eat and
have situations

 Plan is a data-structure that has four parts
 Set of steps (actions that must be executed)
 Set of ordering constraints (Have(Cake) < Eat(Cake)
 Set of variable bindings (Value = Variable)
 Set of causal links (Bake(Cake)-Have(Cake)->Eat(Cake))

 Express a precondition to be set for another situation

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

Partial order planning

 Solution to partial order planning problem is
a plan that certainly leads from initial state to
goal state.
 Partial order plan is allowed as long as it is

consistent and complete
 Plan is complete if

 Preconditions for each action are true because of an effect
of another action

 In between there is no action that falsifies the conditions

 Plan is consistent if
 Ordering and binding constraints are not conflicting

 (s1<s2 /\ s2 < s1) or (v=A /\ v=B /\ A not (B))

HELSINKI UNIVERSITY OF TECHNOLOGY

Example
 Init(Have(Cake))
 Goal (Have(Cake) & Eaten(Cake))
 Action Eat(Cake)

 Precondition(Have(Cake))
 Effect not(Have(Cake)) & Eaten(Cake)

 Action Bake(Cake)
 Effect Have(Cake)

 Step1: Eat(Cake)-not(Have(Cake)) /\ Eaten(Cake)
 Step2: Bake(Cake)-Have(Cake)
 Step3: Goal Satisfied
 POP: Eat<Goal
 No variable bindings in this case (only constants used)
 Only one linearisation in this case

 There is just one plan that satisfies the goal

HELSINKI UNIVERSITY OF TECHNOLOGY

Partial order planning

 Frame problem does not have to be
considered: all other than given effects stay
as they are (STRIPS)

 Regressive planning
 From goal state to given initial state
 May be more economical

 Progressive
 From initial state to goal state

HELSINKI UNIVERSITY OF TECHNOLOGY

Finding a plan

1. In the beginning set start and finish states and
start < finish and open preconditions for finish

2. Select open precondition p for action B and find
such A that effects that p

3. Add causal link A-p->B and A<B
1. if A not in plan add A and Start < A < Finish

4. Solve conflicts
1. For example if C conflicts with A-p->B set B<C or

C<A

5. If preconditions can not be satisfied or conflict
solved rollback

6. If open preconditions start from 2.

HELSINKI UNIVERSITY OF TECHNOLOGY

HELSINKI UNIVERSITY OF TECHNOLOGY

An example of a semantic web service
language: OWL-S

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S

 Actions are grounded to web services
 Actions (Functions with inputs and outputs) are

RPCs
 Processes are described as situations

 Depending of the state of the system, according
to the preconditions of the actions some of the
services are possible candidates to be executed

 Depending of the response we'll get (output)
effects are applied to the ontology = States of the
objects are changed

 => We can use POP or more sophisticated
planning techniques to derive plans

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S and WSDL

HELSINKI UNIVERSITY OF TECHNOLOGY

OWL-S Processes

