S
2008
W

SeCo

Planning

Tuukka Ruotsalo

SeEd
200,
w0

seco CoONntents

" Semantic Web Service Use-Cases
* Information Systems
" Data, Processes and External events

" Situation Calculus
" Planning, STRIPS

200,
"

se.ce - S@Mantic web services use cases

* Automatic Web service discovery

* How can we find the service we need from
the web (like traditional services from UDDI)

* Automatic Web service invocation
“ How can we execute a service from the web
“ Automatic Web service composition and
interoperation

* How can we know which service to execute
at a certain situation to achieve a goal

"

SeCo

S5ERYICE
REGISTRY

FUBLISH

'

SERYICE
FROYIDER

Service
SERYICE description
REQUESTER
me Service interfocg

.y

=

\ HELSINKI lf!\’l\'EKﬁl'l\"OF'I‘E(‘,H]\'OLOGY.

200,
W

.cc AUtomatic Web Service Composition

“ Automatic Web Service composition and
iInteroperation

* What services are available (and executable
according to situation rules) at certain
situation

* Work-flows are planned dynamically based
on the state of the system

* Data-centric systems

" Processes are not pre-defined, but planned according
to state of the data in the system

———
W

* Depending on the conditions we might want
the “process of ordering skate boots” be

different.

n Reqyires dynamic planning and execution of
services

 Bilingand
Accounting Web

Figure 1-3 The Skateboots order entry service comprises severa
other Web services.

e
DO
wy

co [nformation System meta-model

* Information Systems are
" Models of the universe of discourse

* In Computer World models of

" Data

“ What entities the system contains and in which states
they are at a certain time

" Processes

" What are the actions that enable transformations of a
state of entities to another state of entities

* + Interaction to cause external events
* User interfaces (how to get the system to do something)

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

I
% What do we need to compose a
- configurable “semantic” IS?

* Descriptions of data

* Ontology (of data) (i.e. Entities of the given discourse)
= data model

* Descriptions of processes

* Ontology (of possible actions) = Situation Calculus
processes available

EEE
XK
W

seco Situation

" Definition
* A situation s is the complete state of the universe at an
instant of time.

" Sit:= {s | s is situation}
“ Since the universe is too large, we'll never

describe the universe completely, but give

only facts

" These facts will be used to deduce further facts about
that situation, future situations, situations that agents
can bring about

“ Requires also to consider hypothetical situations

* These situations can't be completely described, but
with sufficient details for some purposes

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

L
R
UK
W

seco Fluents

“ ldea: Partial description of a situations
* Definition
* A fluent f is a function with domain Sit

* Range of f {true,false}. propositional fluent
* Sit: situational fluent

" Fluents are often the values of functions
* T(President(Finland) = JKPaasikivi,1950)

“ Note! It is not logically equivalent that President(Finland) =
JKPaasikivi, 1950, but the function returns the correct value
for a time slice 1950

“ Itis logically identical that the situation in 1950 was that
JKPaasikivi was the President of Finland

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

s.co Causality

EEE
XK
W

Make assumptions about causality by means of a
fluent F(11) (where 11 is a fluent itself!)

F(171,8) asserts that the situations will be
followed(after some time) by a situation that
satisfies the fluent 1

Example:

“ All x, All a [raining(x) and at(a,x) and outside(x) ->
F(wet(a))]

Other useful operators
* F(m,s): For some situation s’ in the future of s holds T1(s)
* G(m,s): For all situation s in the future of s holds T11(s’)
* P(1,s): For some situation s’ in the past of s holds T1(s)
* H(,s): For all situation s’ in the past of s holds T1(s’)

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

Actions

* Fundamental role in our study of actions:
* Situational fluent: result(a,o,s) where...
“ a:Agent, o: Action/Strategy, s:Situation
“ The value of result(a,o,s) is the situation that

results when a carries out g, starting in
situation s

“ When o is non-terminating in that context,
this value is undefined

e
200
wy

c Planning as problem solving

* Problem solving based on the search
strategies consists of:

" Actions

" Available actions that may change the state of the
entities

" State description

“ Initial state, descriptions of the states before and after
the actions

* Goal description
“ Description of the state when the problem is solved

* Plan
* Ordered list of actions that solve the problem

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

200,
"

) . . .
seco - Problems in situation calculus

* Search to solve the problem takes
exponential time with respect to the length of
the path

* First Order Logic is only semi-decidable
" We can proof that a solution exists, but it is
not known if it is an optimal solution
* Solution [do(x)] is as good as [do(nothing)|
do(x)]
“ More effective languages have been
developed

* Less possible solutions and more effective
algorithms
\ HELSINKI UNIVERSITY OFTECHNOLOGY

_ l it
Al
s«co - STRIPS

" STRIPS is a classic planning language

" Describes states and operators with limited

anguage

* Describes situations with literals that are not
functions

" Predicates that contain constants as values,
negation is allowed

* For example: At(Home) \ *(Have(Cake))

* Goals are represented as conjunction of
literals

* For Example: At(Home) \ Have(Milk)
" Variables are allowed: At(x) \ Sell(x-Milk) -

L
Ssad
LXK
W

=co STRIPS representation of actions

* Actions are represented with IOPEs
* Inputs
* Outputs

* Preconditions
" In which state the action may be performed
* Conjunction of facts (only positive literals)

" Effects

* What are the changes in the universe according to the
outputs of the action

* For example:

" Action Bake(Cake)
* Precondition Have(Milk)
* Effect Have(Cake)

UK
W

)
s.co AN Example

* System has a set of data and rules what to
do if a certain situation is satisfied

" We do not give exact definition what to do
and in which order, just a set of data and set
of rules to apply to the situation

" Example
" Init(Have(Cake))
Goal (Have(Cake) & Eaten(Cake))
Action (Eat(Cake))
" Precondition(Have(Cake))
" Effect not(Have(Cake)) & Eaten(Cake)
* Action Bake(Cake)
" Effect Have(Cake)

S
UK
V”

.co Partial order planning

“ In partial order planning only the decisions
that have to be made at certain situation are

made

" We get partial orders (linearization -> total order)

" For example having cake has to be true before eating it,
how to have the cake is irrelevant for ordering the eat and
have situations

“ Plan is a data-structure that has four parts
* Set of steps (actions that must be executed)
* Set of ordering constraints (Have(Cake) < Eat(Cake)
* Set of variable bindings (Value = Variable)

* Set of causal links (Bake(Cake)-Have(Cake)->Eat(Cake))
“ Express a precondition to be set for another situation

\ HELSINKI UNIVERSITY OF TECHNOLOGY

S

W
A

SeCo
Partial-Order Plan: Total-Order Plans:
Start Start Start Start Start Start Start
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
Left Right
Sock Sock * * * * ‘ *
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
Y
LeftSockOn RightSockOn * * * * + *
. Right Left Right Left Left Right
Left Right
Shoe Shgae Shoe Shoe Shoe Shoe Sock So;k
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
LeftShoeOn, RightShoeOn * * * * ‘ *
Finish Finish Finish Finish Finish Finish Finish

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

L
Sed
200,
W

.co Partial order planning

* Solution to partial order planning problem is
a plan that certainly leads from initial state to
goal state.

* Partial order plan is allowed as long as it is
consistent and complete

* Plan is complete if

" Preconditions for each action are true because of an effect
of another action

" In between there is no action that falsifies the conditions

" Plan is consistent if

* Ordering and binding constraints are not conflicting
" (s1<s2 \Ns2 <s1)or (v=A Av=B \ A not (B))

\ HELSINKI UNIVERSITY OF TECHNOLOGY

e

" Init(Have(Cake))
* Goal (Have(Cake) & Eaten(Cake))
" Action Eat(Cake)
" Precondition(Have(Cake))
" Effect not(Have(Cake)) & Eaten(Cake)
" Action Bake(Cake)
* Effect Have(Cake)

" Step1: Eat(Cake)-not(Have(Cake)) /\ Eaten(Cake)
“ Step2: Bake(Cake)-Have(Cake)
* Step3: Goal Satisfied
* POP: Eat<Goal
No variable bindings in this case (only constants used)
Only one linearisation in this case
“ There is just one plan that satisfies the goal

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

SeEd
200,
"

) . .
.co Partial order planning

* Frame problem does not have to be
considered: all other than given effects stay
as they are (STRIPS)

* Regressive planning

* From goal state to given initial state
* May be more economical

* Progressive
* From initial state to goal state

SeEd
200,
"

=cc FINding a plan

1. In the beginning set start and finish states and
start < finish and open preconditions for finish

2. Select open precondition p for action B and find
such A that effects that p

3. Add causal link A-p->B and A<B
1. if Anotin plan add A and Start < A < Finish

4. Solve conflicts

1. For example if C conflicts with A-p->B set B<C or
C<A

5. If preconditions can not be satisfied or conflict
solved rollback

6. If open preconditions start from 2.

S

XK

%

"

SeCo

STRIPS Language ADL Language
Only positive literals in states: Positive and negative literals in states:
Poor N\ Unknown = Rich N = Famous
Closed World Assumption: Open World Assumption:
Unmentioned literals are false. Unmentioned literals are unknown.

Effect P A = means add P and delete Q. Effect P A =@ means add P and —@Q
and delete =P and Q.

Only ground literals in goals: Quantified variables in goals:

Rich N Famous dx At(Py, x) N At(Ps, x) is the goal of
having P; and P; in the same place.

Goals are conjunctions: Goals allow conjunction and disjunction:

Rich N Famous —Poor N (Famous V Smart)

Effects are conjunctions. Conditional effects allowed:

when P: F means F is an effect
only if P is satisfied.

No support for equality. Equality predicate (x = y) is built in.

No support for types. Variables can have types, as in (p : Plane).

Figure 11.1 Comparison of STRIPS and ADL languages for representing planning prob-
lems. In both cases, goals behave as the preconditions of an action with no parameters.

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

S
200
W

SeCo

An example of a semantic web service
language: OWL-S

ks

X
seco QWL=S

* Actions are grounded to web services
" Actions (Functions with inputs and outputs) are
RPCs
" Processes are described as situations

" Depending of the state of the system, according
to the preconditions of the actions some of the
services are possible candidates to be executed

" Depending of the response we'll get (output)
effects are applied to the ontology = States of the
objects are changed

* => We can use POP or more sophisticated
planning techniques to derive plans

\ HELSINKI UNIVERSITY OF TECHNOLOGY

E—————————
. OWL-S and WSDL

.................. .. OWL-S CETTETTTTETTTTECRg
Process Model DL-based Types

| |

Operation Message

]
n
" x
F
= L
* +
", at
I ---

l Binding to SOAP, HTTP, etc.

_f Atomic Process Inputs / Qutputs

S

Ne—— M Twspr, L ——

/
(7
/g HELSINKI UNIVERSITY OF TECHNOLOGY

\/

| .
St

W

s.co OWL=S Processes

&
D

e
Result % % éﬂ& & Participant
- s ‘l.\.@\
an
S et e S
* k. - -
al s r -
b
1%
=
e
-
-
-
.
-
.
-

LdisjointWith

Atomic Process

\ disjointWith

= ObjectProperty
== ===« DatatypeProperty

EEmmEm lk SubClass/Property

components

&

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

