. m
S
L) J
"";’

SeCo

Composing and Orchestration
of Distributed Services,
WS-BPEL

Eetu Makela and Tuukka Ruotsalo

(partly based on Alonso & Pautasso, 2004)

seco CONtents

" |ntroduction and example

= Orchestration vs. choreography

= Different approaches to composition
= Composition and coordination

= Composition middleware

* Modelling composite processes

= WS-BPEL / BPEL4WS

.
Introduction and Example: Buying

. m
S
L) J
"";’

SeCo

skateboots

In a Web Services
environment, there is a
need for combining the
functionality provided
by Web Services into a
composite service. This
IS called composition.

Depending on the
messages arriving and
sent within the partner
network, we should be
able to decide what to
do next.

= Two viewpoints:

= Process description
dominant: Orchestration

= Communication pattern
dominant: Choreography

4)
supplier
customer D R » | How does
How is this - this
communication process
ordered? advance?
[shop inventory }‘ ””””””””””” k *********** > ’ A
\ \}l
warehouse 4\ fffffffff > I
\ /
\ |

Which controls which?

W Orchestration: Supplier Process Dictates

SeCo . .
Communication Pattern.
dictates supp“ep r
emmmmmETTIITTS » receive orderGoods
__________ ; invoke]
customer T | checkLocalStock |
inSfocl=false <‘:'

shop inventory

. invoke .
TN checkShipAvailable inStock=true

% ///. . .\\ ‘L
[warehouse 1 checkShipAvailable ... g Sh'ppmgAva”:‘false PN

"
| \ AN
shippingAvail=true
| \ 4 N \ 4

{ send confirmOrder]

o

S
2000

Choreography: Communication Pattern

SeCo . . .
Requirements Dictate Supplier Workflow
supplier r
,, » receive orderGoods
dictate T ke)
- confirmOrder '&.. - »
customer | Tl T | checkLocalStock |
4 dictate |40 J
| | inStock=false <:'
shop inventory |) invoke
dictate ,/""_\r\"’[checkShipAvailable] inStock=true
[warehouse } checkShipAvailable .

__“shipping Avail=false /‘L\ |
' NZE
shippingAvail=true
send cancelOrder] e { send confirmOrder]

o

o

) HELSINKI UNIVERSITY OF TECHNOLOGY .

S
2000
(X

==co Approaches

= Process description dominant:

= Primary controller process and pre-defined execution
model
= Code approach
= Centered traditional programming language based control
= Web Service Composition Middleware
= Higher level programming models (Workflows, WS-BPEL)

= Extensions: semi-automated service composition
based on business models (WS-CDL / RosettaNet /
ebXML)

= Any partner capable may participate to controller process
requests

= Communication pattern dominant:
= Automated service composition (Al / Semantic Web
Services)

= Partners are found through their capabilities and consummg |s
planned “online” = . .

2000
%N

.cc. Code Approach

= Use traditional complex programming
languages (such as Java) to compose and
make decisions of consuming Web Services

= Useful in single enterprise settings to bridge
heterogeneous information systems

= Reliable built-in extensions exist (Axis, TP-
monitors etc.)

= Complex maintenance, but allows very
complex business logic

. m
S
20098
(XN

" .
seco Qrchestration

= Code approach may well be enough

* |n a well controlled environment there is a need for a simple
process control language that only knows how to consume
services and recover from error states (supplier controls the
process, partners control any subprocesses).

= QOrchestration provides a separated process control for pre-
defined services

= Easier maintenance because we just have to reconfigure the
process description to change the application logic

= Simple language but enough expression power to handle
the workflow execution

LSS
LSS
"’0'0.

%N

s.co Choreography
" |n an open environment
there is a need for a Y

description language that
describes the services and Choreography GUI
waits for someone to

negotiate and consume (e.g. E
Each subprocess is a

software agent that may Wws-cbL (W3C.org)
participate).

= Choreography defines the
composition of interoperable
collaborations between any
type of party regardless of
the supporting platform or
programming model used by ok aowr Traditional
the implementation of the
hosting environment i

= Extends the orchestration by
defining the abstract
communication model

Choreography between Co.
A&Co.B

Company A Company B

) HELSINKI UNIVERSITY OF TECHNOLOGY .

2000
%N

.co. Composition and Coordination

= Service interfaces are separated from their
Implementations

= A consumer of a service sees just the service
interface they are interested in

= A service may be composed of other services
or direct state tracking systems

= A coordinator is responsible of controlling the
external consistency of multiple services (external
iImplementation) — tied closely to choreography

= A composition engine is responsible for internal
consistency of a service (= composition of services
that have single accesspoint) — tied closely to
orchestration

= Conversation control refers to external
communication G essmormeanons

Al

SeCo

Web Service Composition Middleware

= Use higher level languages to specify the
workflow of the data and processes

= Takes care of the execution and control of
the process model and data transformations

= Easy maintenance, because of the
configurability

= May include semantics

= Services describe themselves in a knowledge
base. Any service may act as an agent and
seek (and negotiate about consuming)
suitable services
= Automated service matchmaking
= Automated planning of workflows

= Automated service composition and executien
\HEI.S[\]\'[UNIVERSITY OF TECHNOLOGY

,, What Makes Web Services Succesful
- as Composition Middleware?

= Standardization of Interfaces and Data
= XML, XSD, WSDL, uDDI

= Any traditional data structure syntax may be
transformed to XML based languages

Accessibility (WEB)
Supporting specifications

= WS-Transactions, WS-Addressing etc.
Standardization of Process level

= WS-BPEL?

= High Level Languages defined just to operate at the
process level

Extendable Semantics and Agent-Based Services
= RDF, OWL, OWL-S?, WSMO?
= Ontology based communications and intelligence

) HELSINKI UNIVERSITY OF TECHNOLOGY

Dimensions of a Web Service

Composition Model (aonso et at., 2009)
= Component Model

= Defines the nature of the elements to be composed
= Example: WSDL

= Qrchestration Model
= Abstractions and languages to execute the components
= Example: BPEL

= Data and Data Access Model
* How data is specified and exchanged
= Example: XML and SOAP

= Service Selection Model

* How the binding takes place i.e. How the service is selected to be executed
= Example: URI, UDDI

= Transactions

* How transactional semantics can be associated to the composition

RSoS
LSS
"’0'0.

W

SeCo

= Example: WS-Transactions

= Exception Handling
= Transactional recovery L UNIVERSITY OF TECHNOLOGY
\HELS[\]\IIVI\ ERSITY OF TECHNOLOGY .

LSS
LSS
"’0'0.

%N

-t. Clients in the Web Service World

A client engages in different conversations with
several Web services. In general, these
conversations may be regulated by different
protocols, and each invoked Web service may
not be aware that the client is invoking other
Web services.

The internal business logic of clients and Web
services is quite sophisticated, as it must
support the execution of different
conversations so that each party can properly
interact with every othervarty. requestQuote

4

customer orderGoads

(client)

supplier
g (Web service)

makePayment

reqfiestQuote Ve

n
L

another supplier

.) (Web service)
(Web service)) notifyPayment

HELSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

approval

2000
o

" n u u
s.co Composition Middleware
the procurement business if the supplier is implemented by means of
protocol executed among Web composition technologies, then its
services business logic is defined by a composition
\ schema and its execution ES\dr'iven by a
l:requestQuote co/mposmon engine. \ \
N supplier
2:orderGoads . S .
customer [_. £
: : - w ©
§ S composition
4:makePayment engine
depending on the implementation of N /

the (composite) service, the supplie/

may contact other Web services.
The customer is unaware of these
interactions, that may occur
according to other protocols.

another Web service,
possibly offered by
another company !)
lonso & Pautasso,2004) o TTTTmTmTmTTmTmTToTT I .

service

—— - ——

! |
' yet another Web |

s T TTESN

s
.cc. Code Approach

Company A - *Company B
,° ™ Web
[(Composite) Web service]<—' /: A \ service /
Y x4 N service
/ /// 1 « Company C
Web services middleware s T\ \‘r_LY_\
VAY \ Web
T III/ \ service
(In'rer'nal service in'rer'facew 41 \ ([Web |
/ \ i
L Implementation of the J il \ Service
composition logic 4/ A\ Company D
4 NN // /1 Web
N3I=-~2 4/_" service
)) = ~_ -

The internal application implements the composition
ic@_lt,_bWﬁTokTP\g_WEb_sQSices as needed.

No support is provided by the We&msamicgsm:vr.‘-_(-mm .
middleoware in +hiec ~rAce

2000
o

" [|]]
.o Composition Middleware
Company A Company B
([Web)
_- < service
[(Composite) Web service }—> -7 [Web
I -7 service
Web services middleware b - Company C
Service composition support L ___ [Web]
odeling and executio D O service
N N . (Web N\
I \ R service
Other tiers R
TS . Company D
s N Web
service

The composite service is directly implemented at the

middleware level, by the composition engine.
lonso & Pautasso, 2004)

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

SISy
e

K
)

=co CoOmposition Middleware

the run-time environment executes

service composition model and language the Web service|business logic by
(usually characterized by a graphical and invoking other services (through
a textual representation) - ~SOAP 0”71 HTTP modules)
Web service composition middleware /
development run-time environment
environment (composition engine)

services offered
schema by other providers
composite service

designer ~schema M
supplier

execution data

warehouse

\\[accounting

J

other Web services middleware (e.g., SOAP
engine and conversation controller)

a service provider

HELSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

2000
%N

seco FOrmal Models for Processes

= Activity Diagrams, State Charts, Petri nets,
Activity Hierarchies

* Rule based orchestration
= Logical rules + event action pairs
= Situation Calculus

- IOPES (Semantic Web Services are often based on this paradigm)

|
S

X
(A}

..o AcCtiVity Diagram

supplier r

------------------- » receive orderGoods
derGoods |o.---- |
mOrder 4. ; invoke)
customer T T | checkLocalStock |
inStock=false <J:'
shop inventory invoke |
R checkShipAvailable inStock=true
\]‘ heckShipAvailabl /,/'é/l:\ipping Avai\l\‘:\false /‘L\
warehouse checkohipAvaildble 4..---- << (|
) . shippingAvail=true
\[send cancelOrder] e { send confirmOrder]

é é

HELSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

S

T
seco Statechart

r start on new order request

started

/start “invoke checklLocal Stock”

\ 4
searching for products

locally
local search complete(insStock) .
[inStock=false]/start “invoke local search complete(insStock)
checkShipAvailable” [inStock=true]/start "send

confirmOrder”

searching for products
at other supplier

external search

complete(shippingAvail)
[shippingAvail =false]/stqrt
“send caneclQrder" 4

external searc
complete(shippingAvail)
[shippingAvail =true]/start

] "send confirmOrder” [order completed]

order canceled

HELSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

.] .
5557

X

seco P @tri net

START (upon
invocation of
orderGoods operation)

invoke checkLocalStock

LOCAL SYSTEM
invoke checkShipAvailable ACCESSED
inStock=false
Do nothing

inStock=true

EXTERNAL SUPPLIER

Do nothing
shippingAvail=true

send cancelOrder
shippingAvail=false

COMPLETE
(CANCEL) READY TO SEND

CONFIRMATION
send confirmOrder

COMPLE’]‘SE]\I UNIVERSITY OF TECHNOLOGY .

lonso & Pautasso, 2004) (CONﬁRM)

. n
S

X
(A}

.co AcCtivity Hierarchy

process order

seguence
receive orderGoods invoke d'SC":m'"Iafe b“i‘ed >
checklLocalStock ocah sgarc
cholce.

inSToM \iniwle

search external

lonso & Pautasso, 2004)

supplier send confirmOrder
seqllence.
invoke discriminate based on
checkShipAvailable exfernal. search
chaoice
shippingAvail=ttue shippingAvail=false

send confirmOrder

send cancelOrder

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

=cc Rules

lonso & Pautasso, 2004)

ON receive orderGoods
IF true
THEN invoke checkLocalStock;

ON complete (checkLocalStock)
IF (inStock==true)
THEN send confirmOrder;

ON complete (checkLocalStock)
IF (inStock==false)
THEN invoke checkShipAvailable;

ON complete (checkShipAvailable)
IF (shippingAvail ==true)
THEN send confirmOrder;

ON complete(checkShipAvailable)
IF (shippingAvail ==true)
THEN send cancelOrder;

A

. CLSINKI UNIVERSITY OF TECHNOLOGY

(4]
seco |OPES

= Based on on the analyses of in which state
the system is in

" Input

= Qutput

= Precondition
= Effect

= More on IOPEs and situation calculus on
Semantics in Web Services lecture

W Back to the real world: WS-BPEL /

= Business Process Execution Language

= WS-BPEL is the new 2.0 standard (minor
changes to the current de-facto-standard)

= OASIS standard

= Originally developed by IBM and Microsoft

= Multiple implementations available from
major vendors such as Oracle, IBM, BEA,
Microsoft etc...

"
sec. BPEL

* Enabling users to describe business process
activities as Web services and define how they can
be connected to accomplish specific tasks

= |t does not directly deal with implementation of the
language but only with the semantics of the
primitives it provides. The emphasis is on
iInteroperability between systems rather than
portability of specifications

= Used to define:

= Abstract processes: conversations and protocols for
how to use a given service or between different
services

= Executable processes: essentially workflows
extended with Web service capabillities

A . e
W
(Al
s.co. BPEL

* Roles

* That take part in the message exchange
= Port Types

= Operations that must be supported
* The Orchestration

= And other ascpects in process execution
= Correlation Information

* How messages are routed to the correct
composition instances

L SoSoor
"";;'0’,'

]

W orchestration,
SeCo variables and data transfers,
exception handling,
correlgtion information (for instance routing)
ort types
roles P YP : , r
Variables:
warehouse: URI [receive orderGoods]
inStock, shippingAvail: bool
customer: String 1l
invoke
customer checkLocalStock
<J,
warehouse [invoke

shop inventory

lonso & Pautasso, 2004)

checkShipAvailable]

A 4

b

A

N

invoke canceIOrder'

A 4

[

\:

invoke
confirmOrder

J

o

.
S u p p I l e&wmm UNIVERSITY OF TECHNOLOGY .

DS
LSS
XX

%N

SeCo BaSiC Elements Of BPEL (Alonso & Pautasso, 2004)

PROCESS

PARTNERS: Web services taking part
in the process

VARIABLES: the data used by the
process

CORRELATION SETS: constructs used
to deal with conversations

FAULT HANDLERS: what to do in
case of errors (exceptions)

COMPENSATION HANDLERS: what
needs to be done to undo an activity

EVENT HANDLERS: what to do when
an event arrives

ACTIVITIES: what the process does

Equivalent to declarations in a normal
programming language. It defines

the way services are to be called, which
data is to be used and which data is to
be treated as stateful

These elements establish what the process
does, how it reacts under different
circumstances (errors, message arrivals,
events, etc.), and how data moves from
one step to the next

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

200

SeCo P a rt n e rs (Alonso & Pautasso, 2004)

= The concept of partners is used to define the Web
services that are to be invoked as part of the
process. It is based on three elements:
= Partner Link Type: it contains two PortTypes (see
WSDL), one for each of the roles in the partner entry (i.e.,

one portType is the portType of the process itself, the
other one is the portType of the service being invoked).

= Partner Link: the actual link to the service. This is where
the actual assignment to a binding is made (outside the
scope of BPEL). Several partner links may share the
same partner link type

= Partners: a group of Partner Links (this is an optional
element). A partner link can only appear in one partner.
= The notion of Partner Link Type reflects a peer-to-
peer relation between the process and each one of
the services the process calls

. n
.‘;;:.:.-.;;;:

B
"

SeCo

occurring through a partner link type. Its definition refers to a partner
link type and specifies the role played by the composite service as well

as the one played by the other par"r}V

<partnerLink name="customerP"
partnerLinkType=“orderLT"
myRole="supplier”
partnerRole=Ycustomer”>

</partner>
partner link type
orderlL T por-'r fype
supplierPT
customer / / PP
supplier

{ warehouse

shop inventory
Ionso & Pautasso, 2004) \HELSI\]\I UNIVERSITY OF TECHNOLOGY .

2000
%N

SeCo Va rl a b I es (Alonso & Pautasso, 2004)

= Variables are used in BPEL to hold data used within
the process

= Variables typically contain two basic forms of data:

= Entire messages (defined in the WSDL description of
a service)

= Process specific data (counters, state variables, etc.)

= Variables are defined in the BPEL description of the
process without specifying their type (e.g., what
message they correspond to). Like partner link
types, the idea is that these definitions are to be
found in separate WSDL documents or in the
WSDL descriptions of the services to be invoked by
the process.

2000
%N

SeCo

Va ri a b I es (Alonso & Pautasso, 2004)

= Variables can be:

= A message (their type is a WSDL message,
which can be found in the WSDL description
of the service using that message)

= An XM
Interna

= An XM

_ type (f.i. integer; typically used for
operations within the process)

_ element (used to refer to complex

XML types)

200
%N

seco CoOrrelation Sets

* |ntended to help in mapping an abstract
specification to running instances of that
specification

= The problem: an abstract process describes what to

do in general, while each running instance of the
process must work only on its own data (f.i. on the
messages that correspond to a particular purchase
order). The correlation problem is how to specify in
BPEL the way each running instance can identify
the messages it has to process according to that
abstract description of the process.

= Example: assign a name to a part of a order
message: OrderlD. This name is then used to
“correlate” the process

2000
%N

" .
seco CoOrrelation Sets

= BPEL assumes the process is responsible
for its own state

* Most middleware solutions (rather than
direct compilation to Java, as most current
implementations do) would not use
correlation sets in the way BPEL describes
them

* The problem can be solved in a much
easier manner than through correlation sets
(f.I. using a case identification number
generated at the start of the process)

| | >

SR
L) J
"";’

SeCo

the orderID can be used for

correlating the two message checkAvailability
messages orderID
requestedDeliveryDate
deliverylLocation

N
[warehouse [supplier }

/ >

A

message availability
orderID
shippingAvail

H¥. LSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

LSS
LSS
"’0'0.

%N

SeCo S CO pe (Alonso & Pautasso, 2004)

. BPEL has three types of handlers:

Fault handlers (executed when an exception is thrown)

= Compensation handlers (that are executed to undo the effects of
operations)

= Event handlers (executed when a particular message arrives or an
alarm is raised)

= All handlers must be associated with a scope
(similar to a code block in programming languages):

= |f an exception is raised within a given scope, then the corresponding
fault handler for that exception is called (identical to try-catch
statements in Java)

= |f the effects of an scope need to be undone, then the corresponding
compensation handler is called. If there are nested scopes, then the
compensation handlers of the low level scopes are called in reverse
order of execution

= Event handlers are active for as long as the control flow remains within
the corresponding scope. Event handlers are executed either when a
message arrives or a given alarm condition (f.i. a timer) is raised

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

';;;;; processOrder
seguence
. invoke
receive orderGoods choos.eLocaI
checkLocalStock switch

inStock=fa

\ins*q@]e

invoke confirmOrder

- searchExternal

. sequence
includes fault d
handler for fault F
invoke chooseExternal
checkShipAvailable switch
shippingAWme/\ﬁ\bﬂm\gAva”zfalse
invoke confirmOrder invoke cancelOrder

scope of the searchExternal
activity \
due to the behavior of the default handler, implicitly associated
with each activity, a fault F occurring in activity send confirmOrder would
propagate up until activity searchExternal, where the handler resides

HELSINKI UNIVERSITY OF TECHNOLOGY
lonso & Pautasso, 2004) A

A . e
(Al

2880 ACtIVItI es (Alonso & Pautasso, 2004)

= Activities are the actual operations the process will

complete:
® <receive> blocks until a message is received
 <reply> sends a message in response to a received message
* <invoke> sends a message to invoke an operation on a remote
service
 <assign> updates the value of variables
» <throw> raises a fault for a fault handler to catch
» <terminate> finishes the process
« <wait> suspends execution for a given time period
» <empty> no-op used for synchronization purposes
» <scope> defines a block of activities
» <sequence> executes a set of activities one after another
» <flow> executes in parallel a set of activities
* <while> repeats an activity depending on certain conditions
 <switch> chooses between a set of activities
 <pick> waits for a message or an alarm

« <compensate> defines the activities of a compensation bleck

\ HELSINKI UNIVERSITY OF TECHNOLOGY

_om
S

e
W :
SeCo WS D L I n B P E L (Alonso & Pautasso, 2004)

= A call to an operation in WSDL can be
mapped to BPEL as follows:

Use invoke to call the operation
* Aninput variable with the request (the input message of the WSDL operation)

* An output variable for the response (the output message of the WSDL operation)
= A WSDL fault can be handled by using a fault handler attached to the invoke activity

invoke

Partner link PortType

operation

input variable output variable

Fault handler

Compensation handler

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

) d

Se

Co

WSDL in BPEL

= A WSDL operation in BPEL

= Use receive to wait for the input
message

= Use reply to send the output message
or a fault message (as applicable)

e

.
. Example BPEL

[htttp://www-106.ibm.com/developerworks/webservices/library/ws-bpel/]

Let consider the following

Process. Two Files are
required
Receive WSDL ﬁle

Purchase

BPEL file

hd
r” ™
[nitiate _ Initiate
Price Decide Production
Calculation on Scheduling
- Shipper T
i T 1
]] 1
]] :
i A4 .
L)
. 4 Arrange Y
Complete Logistics h-‘-h"‘*ah Complete
Price Production
Calculation Scheduling
h : .
1
hd

Imvoice
Frocessing

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

e

s
s Example BPEL

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
xmlns:sns="http://manufacturing.org/xsd/purchase"

<message name="POMessage">
<part name="customerInfo" type="sns:customerInfo"/>
<part name="purchaseOrder" type="sns:purchaseOrder"/>

</message>
<message name="scheduleMessage">

<part name="schedule" type="sns:scheduleInfo"/> hdessages
</message>

<portType name="purchaseOrderPT">
<operation name="sendPurchaseOrder">

<input message="pos:POMessage"/> The WSDL portType offered by the
<output message="pos:InvMessage"/> . .
<fault name="cannotCompleteOrder" service to 1ts customer
message="pos:orderFaultType"/>
</operation>
</portType>

<slnk:servicelLinkType name="purchaseLT">
<slnk:role name="purchaseService">
<slnk:portType name="pos:purchaseOrderPT"/> Roles
</slnk:role>
</slnk:serviceLinkType>

</definitions>

\ HELSINKI UNIVERSITY OF TECHNOLOGY .

~ . 7
S

K XJ
!

e Example BPEL

<process name="purchaseOrderProcess"
targetNamespace="http://acme.com/ws-bp/purchase"

Rt _n " This section defines the different
<partner name="customer . . o
serviceLinkType="1ns:purchaseLT" par@esthatlnﬁxaptvvnhthe
myRole="purchaseService"/> business process in the course of
</partners> processing the order.
<containers>

<container name="PO" messageType="lns:POMessage"/>
<container name="Invoice"
messageType="1lns:InvMessage"/>

. This section defines the data containers
</containers> used by the process, providing their
<faultHandlers> definitions in terms of WSDL message
<catch faultName=flns:cannotCompleteOrder" type&
faultContainer="POFault">

<reply partner="customer"
portType="1ns:purchaseOrderPT"] ; ;
operation="sendPurchaseOrder" This section contains fault handlers

container="POFault" : o ey
faultName—"cannotCompleteOrder™ /> defining the activities that must be

</catch> executed in response to faults.
</faultHandlers>

\ HELSINKI UNIVERSITY OF TECHNOLOGY

e
“;0;0".'

s Example BPEL

<sequence>
<receive partner="customer" -
Receive
F'nglcha se
rder
portType="1ns:purchaseOrderPT" .
1
Y
operation="sendPurchaseOrder" A e T K
) nitiate - s
container="PO"> Frice Decide Production
; Calculation on Scheduling
</receive> ; Shipper 1
1
: : :
[] "
<flow> ' ¥ i
L]
< ki frrangu Y
</flow> Complete Cpsics Complete
Price “'\-..____‘)_ Production
Calculation Schedufing
<reply partner="customer" M > A
1
Y
portType="1ns:purchaseOrderPT" —
operation="sendPurchaseOrder" Processing
container="Invoice"/> <
</sequence>

</process>

‘/g‘l‘&lxl\'l UNIVERSITY OF TECHNOLOGY .

W

SeCo

3

Questions?

‘//LSINI(I UNIVERSITY OF TECHNOLOGY .

