
HELSINKI UNIVERSITY OF TECHNOLOGY

Composing and Orchestration
of Distributed Services,
WS-BPEL

Eetu Mäkelä and Tuukka Ruotsalo
(partly based on Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

 Introduction and example
 Orchestration vs. choreography
 Different approaches to composition
 Composition and coordination
 Composition middleware
 Modelling composite processes
 WS-BPEL / BPEL4WS

HELSINKI UNIVERSITY OF TECHNOLOGY

Introduction and Example: Buying
skateboots

 In a Web Services
environment, there is a
need for combining the
functionality provided
by Web Services into a
composite service. This
is called composition.

 Depending on the
messages arriving and
sent within the partner
network, we should be
able to decide what to
do next.

 Two viewpoints:
 Process description

dominant: Orchestration
 Communication pattern

dominant: Choreography

supplier
customer

warehouse

shop inventory

How does
this

process
advance?

How is this
communication

ordered?

Which controls which?

HELSINKI UNIVERSITY OF TECHNOLOGY

Orchestration: Supplier Process Dictates
Communication Pattern

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

shop inventory checkLocalStock

dictates

HELSINKI UNIVERSITY OF TECHNOLOGY

dictate

dictate

supplier

Choreography: Communication Pattern
Requirements Dictate Supplier Workflow

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

shop inventory checkLocalStock

dictate

HELSINKI UNIVERSITY OF TECHNOLOGY

Approaches

 Process description dominant:
 Primary controller process and pre-defined execution

model
 Code approach

 Centered traditional programming language based control

 Web Service Composition Middleware
 Higher level programming models (Workflows, WS-BPEL)

 Extensions: semi-automated service composition
based on business models (WS-CDL / RosettaNet /
ebXML)
 Any partner capable may participate to controller process

requests

 Communication pattern dominant:
 Automated service composition (AI / Semantic Web

Services)
 Partners are found through their capabilities and consuming is

planned “online”

HELSINKI UNIVERSITY OF TECHNOLOGY

Code Approach

 Use traditional complex programming
languages (such as Java) to compose and
make decisions of consuming Web Services

 Useful in single enterprise settings to bridge
heterogeneous information systems

 Reliable built-in extensions exist (Axis, TP-
monitors etc.)

 Complex maintenance, but allows very
complex business logic

HELSINKI UNIVERSITY OF TECHNOLOGY

Orchestration

 Code approach may well be enough
 In a well controlled environment there is a need for a simple

process control language that only knows how to consume
services and recover from error states (supplier controls the
process, partners control any subprocesses).

 Orchestration provides a separated process control for pre-
defined services

 Easier maintenance because we just have to reconfigure the
process description to change the application logic

 Simple language but enough expression power to handle
the workflow execution

HELSINKI UNIVERSITY OF TECHNOLOGY

Choreography

 In an open environment
there is a need for a
description language that
describes the services and
waits for someone to
negotiate and consume (e.g.
Each subprocess is a
software agent that may
participate).

 Choreography defines the
composition of interoperable
collaborations between any
type of party regardless of
the supporting platform or
programming model used by
the implementation of the
hosting environment

 Extends the orchestration by
defining the abstract
communication model

(W3C.org)

HELSINKI UNIVERSITY OF TECHNOLOGY

Composition and Coordination

 Service interfaces are separated from their
implementations
 A consumer of a service sees just the service

interface they are interested in
 A service may be composed of other services

or direct state tracking systems
 A coordinator is responsible of controlling the

external consistency of multiple services (external
implementation) – tied closely to choreography

 A composition engine is responsible for internal
consistency of a service (= composition of services
that have single accesspoint) – tied closely to
orchestration

 Conversation control refers to external
communication

HELSINKI UNIVERSITY OF TECHNOLOGY

Web Service Composition Middleware

 Use higher level languages to specify the
workflow of the data and processes

 Takes care of the execution and control of
the process model and data transformations

 Easy maintenance, because of the
configurability

 May include semantics
 Services describe themselves in a knowledge

base. Any service may act as an agent and
seek (and negotiate about consuming)
suitable services
 Automated service matchmaking
 Automated planning of workflows
 Automated service composition and execution

HELSINKI UNIVERSITY OF TECHNOLOGY

What Makes Web Services Succesful
as Composition Middleware?
 Standardization of Interfaces and Data

 XML, XSD, WSDL, UDDI
 Any traditional data structure syntax may be

transformed to XML based languages

 Accessibility (WEB)

 Supporting specifications
 WS-Transactions, WS-Addressing etc.

 Standardization of Process level
 WS-BPEL?

 High Level Languages defined just to operate at the
process level

 Extendable Semantics and Agent-Based Services
 RDF, OWL, OWL-S?, WSMO?

 Ontology based communications and intelligence

HELSINKI UNIVERSITY OF TECHNOLOGY

Dimensions of a Web Service
Composition Model (Alonso et. al., 2004)

 Component Model
 Defines the nature of the elements to be composed

 Example: WSDL

 Orchestration Model
 Abstractions and languages to execute the components

 Example: BPEL

 Data and Data Access Model
 How data is specified and exchanged

 Example: XML and SOAP

 Service Selection Model
 How the binding takes place i.e. How the service is selected to be executed

 Example: URI, UDDI

 Transactions
 How transactional semantics can be associated to the composition

 Example: WS-Transactions

 Exception Handling
 Transactional recovery

HELSINKI UNIVERSITY OF TECHNOLOGY

requestQuote

orderGoods

makePayment

customer
(client)

supplier
(Web service)

The internal business logic of clients and Web
services is quite sophisticated, as it must
support the execution of different
conversations so that each party can properly
interact with every other party.

A client engages in different conversations with
several Web services. In general, these
conversations may be regulated by different
protocols, and each invoked Web service may
not be aware that the client is invoking other
Web services.

approval
(Web service)

another supplier
(Web service)

requestQuote

notifyPayment
(Alonso & Pautasso, 2004)

Clients in the Web Service World

HELSINKI UNIVERSITY OF TECHNOLOGY

supplier

customer

1:requestQuote

2:orderGoods

4:makePayment

3:confirmOrder

Co
nv

er
sa

ti
on

co

nt
ro

lle
r House hunting

service

Packaging service Flight reservation
service

Shipment service
Phone line

installation service

Internet DSL line
installation service

composition
engine

the procurement business
protocol executed among Web
services

another Web service,
possibly offered by
another company

yet another Web
service

if the supplier is implemented by means of
composition technologies, then its
business logic is defined by a composition
schema and its execution is driven by a
composition engine.

depending on the implementation of
the (composite) service, the supplier
may contact other Web services.
The customer is unaware of these
interactions, that may occur
according to other protocols.

(Alonso & Pautasso, 2004)

Composition Middleware

HELSINKI UNIVERSITY OF TECHNOLOGY

(Composite) Web service

Internal service interface

Implementation of the
composition logic

Company A

Web
service

Web
service

Company B

Web
service

Web
service

Company C

Web
service

Company D

The internal application implements the composition
logic, by invoking Web services as needed.
No support is provided by the Web services
middleware in this case

Web services middleware

Conventional middleware

(A
lo

n
so

 &
 P

au
ta

ss
o

, 2
00

4)

Code Approach

HELSINKI UNIVERSITY OF TECHNOLOGY

Web
service

Web
service

Web
service

Web
service

Web
service

(Composite) Web service

Other tiers

Service composition support
(modeling and execution)

Web services middleware

The composite service is directly implemented at the
middleware level, by the composition engine.

Company A Company B

Company C

Company D

(Alonso & Pautasso, 2004)

Composition Middleware

HELSINKI UNIVERSITY OF TECHNOLOGY

development
environment

composite service
execution data

schema
definitions

House hunting
service

Packaging service Flight reservation
service

Shipment service
Phone line

installation service

Internet DSL line
installation service

service composition model and language
(usually characterized by a graphical and
a textual representation)

run-time environment
(composition engine)

schema
designer

the run-time environment executes
the Web service business logic by
invoking other services (through
SOAP and HTTP modules)

Web service composition middleware

other Web services middleware (e.g., SOAP
engine and conversation controller)

supplier

services offered
by other providers

warehouse

accounting
a service provider

(Alonso & Pautasso, 2004)

Composition Middleware

HELSINKI UNIVERSITY OF TECHNOLOGY

Formal Models for Processes

 Activity Diagrams, State Charts, Petri nets,
Activity Hierarchies

 Rule based orchestration
 Logical rules + event action pairs

 Situation Calculus
 IOPEs (Semantic Web Services are often based on this paradigm)

HELSINKI UNIVERSITY OF TECHNOLOGY

invoke
checkLocalStock

invoke
checkShipAvailable

send confirmOrder

inStock=false

send cancelOrder

inStock=true

shippingAvail=true

shippingAvail=false

receive orderGoods

supplier

customer

warehouse

orderGoods

confirmOrder

cancelOrder

checkShipAvailable

shop inventory checkLocalStock

(Alonso & Pautasso, 2004)

Activity Diagram

HELSINKI UNIVERSITY OF TECHNOLOGY

started

start on new order request

local search complete(insStock)
[inStock=false]/start “invoke
checkShipAvailable”

searching for products
at other supplier

external search
complete(shippingAvail)
[shippingAvail =false]/start
“send caneclOrder”

order completed

searching for products
locally

/start “invoke checkLocalStock”

order canceled

local search complete(insStock)
[inStock=true]/start “send
confirmOrder”

external search
complete(shippingAvail)
[shippingAvail =true]/start
“send confirmOrder”

(Alonso & Pautasso, 2004)

Statechart

HELSINKI UNIVERSITY OF TECHNOLOGY

inStock=true

inStock=false

invoke checkLocalStock

invoke checkShipAvailable

send confirmOrder

Do nothing

EXTERNAL SUPPLIER
ACCESSED

LOCAL SYSTEM
ACCESSED

READY TO SEND
CONFIRMATION

COMPLETE
(CONFIRM)

START (upon
invocation of

orderGoods operation)

shippingAvail=false
send cancelOrder

shippingAvail=true
Do nothing

COMPLETE
(CANCEL)

(Alonso & Pautasso, 2004)

Petri net

HELSINKI UNIVERSITY OF TECHNOLOGY

receive orderGoods

invoke
checkShipAvailable

invoke
checkLocalStock

inStock=false

process order

sequence

search external
supplier
sequence

discriminate based on
local search

choice

send confirmOrder

discriminate based on
external search

choice

send cancelOrdersend confirmOrder

shippingAvail=true shippingAvail=false

inStock=true

(Alonso & Pautasso, 2004)

Activity Hierarchy

HELSINKI UNIVERSITY OF TECHNOLOGY

ON receive orderGoods
IF true
THEN invoke checkLocalStock;

ON complete(checkLocalStock)
IF (inStock==true)
THEN send confirmOrder;

ON complete(checkLocalStock)
IF (inStock==false)
THEN invoke checkShipAvailable;

ON complete(checkShipAvailable)
IF (shippingAvail ==true)
THEN send confirmOrder;

ON complete(checkShipAvailable)
IF (shippingAvail ==true)
THEN send cancelOrder;

(Alonso & Pautasso, 2004)

Rules

HELSINKI UNIVERSITY OF TECHNOLOGY

IOPEs

 Based on on the analyses of in which state
the system is in
 Input
 Output
 Precondition
 Effect

 More on IOPEs and situation calculus on
Semantics in Web Services lecture

HELSINKI UNIVERSITY OF TECHNOLOGY

Back to the real world: WS-BPEL /
BPEL4WS
 Business Process Execution Language
 WS-BPEL is the new 2.0 standard (minor

changes to the current de-facto-standard)
 OASIS standard
 Originally developed by IBM and Microsoft
 Multiple implementations available from

major vendors such as Oracle, IBM, BEA,
Microsoft etc...

HELSINKI UNIVERSITY OF TECHNOLOGY

BPEL

 Enabling users to describe business process
activities as Web services and define how they can
be connected to accomplish specific tasks

 It does not directly deal with implementation of the
language but only with the semantics of the
primitives it provides. The emphasis is on
interoperability between systems rather than
portability of specifications

 Used to define:
 Abstract processes: conversations and protocols for

how to use a given service or between different
services

 Executable processes: essentially workflows
extended with Web service capabilities

HELSINKI UNIVERSITY OF TECHNOLOGY

BPEL

 Roles
 That take part in the message exchange

 Port Types
 Operations that must be supported

 The Orchestration
 And other ascpects in process execution

 Correlation Information
 How messages are routed to the correct

composition instances

HELSINKI UNIVERSITY OF TECHNOLOGY

invoke
checkLocalStock

invoke
checkShipAvailable

invoke
confirmOrderinvoke cancelOrder

receive orderGoods

supplier

customer

warehouse

shop inventory

port types

Abstract and/or executable process
orchestration,
variables and data transfers,
exception handling,
correlation information (for instance routing)

Variables:
warehouse: URI
inStock, shippingAvail: bool
 customer: String
 …

roles

(Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Basic Elements of BPEL (Alonso & Pautasso, 2004)

PROCESS

PARTNERS: Web services taking part
in the process

CORRELATION SETS: constructs used
to deal with conversations

FAULT HANDLERS: what to do in
case of errors (exceptions)

COMPENSATION HANDLERS: what
needs to be done to undo an activity

ACTIVITIES: what the process does

EVENT HANDLERS: what to do when
an event arrives

VARIABLES: the data used by the
process

Equivalent to declarations in a normal
programming language. It defines
the way services are to be called, which
data is to be used and which data is to
be treated as stateful

These elements establish what the process
does, how it reacts under different
circumstances (errors, message arrivals,
events, etc.), and how data moves from
one step to the next

HELSINKI UNIVERSITY OF TECHNOLOGY

Partners (Alonso & Pautasso, 2004)

 The concept of partners is used to define the Web
services that are to be invoked as part of the
process. It is based on three elements:
 Partner Link Type: it contains two PortTypes (see

WSDL), one for each of the roles in the partner entry (i.e.,
one portType is the portType of the process itself, the
other one is the portType of the service being invoked).

 Partner Link: the actual link to the service. This is where
the actual assignment to a binding is made (outside the
scope of BPEL). Several partner links may share the
same partner link type

 Partners: a group of Partner Links (this is an optional
element). A partner link can only appear in one partner.

 The notion of Partner Link Type reflects a peer-to-
peer relation between the process and each one of
the services the process calls

HELSINKI UNIVERSITY OF TECHNOLOGY

supplier

customer

warehouse

shop inventory

A partner link definition further qualifies the interactions
occurring through a partner link type. Its definition refers to a partner
link type and specifies the role played by the composite service as well
as the one played by the other partner

<partnerLink name="customerP"
 partnerLinkType=“orderLT"
 myRole=“supplier”
 partnerRole=“customer”>
</partner>

partner link type
orderLT port type

supplierPT

(Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Variables (Alonso & Pautasso, 2004)

 Variables are used in BPEL to hold data used within
the process

 Variables typically contain two basic forms of data:
 Entire messages (defined in the WSDL description of

a service)
 Process specific data (counters, state variables, etc.)

 Variables are defined in the BPEL description of the
process without specifying their type (e.g., what
message they correspond to). Like partner link
types, the idea is that these definitions are to be
found in separate WSDL documents or in the
WSDL descriptions of the services to be invoked by
the process.

HELSINKI UNIVERSITY OF TECHNOLOGY

Variables (Alonso & Pautasso, 2004)

 Variables can be:
 A message (their type is a WSDL message,

which can be found in the WSDL description
of the service using that message)

 An XML type (f.i. integer; typically used for
internal operations within the process)

 An XML element (used to refer to complex
XML types)

HELSINKI UNIVERSITY OF TECHNOLOGY

Correlation Sets

 Intended to help in mapping an abstract
specification to running instances of that
specification

 The problem: an abstract process describes what to
do in general, while each running instance of the
process must work only on its own data (f.i. on the
messages that correspond to a particular purchase
order). The correlation problem is how to specify in
BPEL the way each running instance can identify
the messages it has to process according to that
abstract description of the process.

 Example: assign a name to a part of a order
message: OrderID. This name is then used to
“correlate” the process

HELSINKI UNIVERSITY OF TECHNOLOGY

Correlation Sets

 BPEL assumes the process is responsible
for its own state

 Most middleware solutions (rather than
direct compilation to Java, as most current
implementations do) would not use
correlation sets in the way BPEL describes
them

 The problem can be solved in a much
easier manner than through correlation sets
(f.i. using a case identification number
generated at the start of the process)

HELSINKI UNIVERSITY OF TECHNOLOGY

supplierwarehouse

message checkAvailability
orderID
requestedDeliveryDate
deliveryLocation
…

message availability
orderID
shippingAvail

the orderID can be used for
correlating the two
messages

(Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Scope (Alonso & Pautasso, 2004)

 BPEL has three types of handlers:
 Fault handlers (executed when an exception is thrown)
 Compensation handlers (that are executed to undo the effects of

operations)
 Event handlers (executed when a particular message arrives or an

alarm is raised)

 All handlers must be associated with a scope
(similar to a code block in programming languages):
 If an exception is raised within a given scope, then the corresponding

fault handler for that exception is called (identical to try-catch
statements in Java)

 If the effects of an scope need to be undone, then the corresponding
compensation handler is called. If there are nested scopes, then the
compensation handlers of the low level scopes are called in reverse
order of execution

 Event handlers are active for as long as the control flow remains within
the corresponding scope. Event handlers are executed either when a
message arrives or a given alarm condition (f.i. a timer) is raised

HELSINKI UNIVERSITY OF TECHNOLOGY

receive orderGoods

invoke
checkShipAvailable

invoke
checkLocalStock

inStock=false

processOrder

sequence

searchExternal
sequence

chooseLocal
switch

invoke confirmOrder

chooseExternal
switch

invoke cancelOrderinvoke confirmOrder

shippingAvail=true shippingAvail=false

inStock=true

scope of the searchExternal
activity

due to the behavior of the default handler, implicitly associated
with each activity, a fault F occurring in activity send confirmOrder would

propagate up until activity searchExternal, where the handler resides

includes fault
handler for fault F

(Alonso & Pautasso, 2004)

HELSINKI UNIVERSITY OF TECHNOLOGY

Activities (Alonso & Pautasso, 2004)

 Activities are the actual operations the process will
complete:

• <receive> blocks until a message is received
• <reply> sends a message in response to a received message
• <invoke> sends a message to invoke an operation on a remote

service

• <assign> updates the value of variables

• <throw> raises a fault for a fault handler to catch
• <terminate> finishes the process
• <wait> suspends execution for a given time period
• <empty> no-op used for synchronization purposes
• <scope> defines a block of activities
• <sequence> executes a set of activities one after another
• <flow> executes in parallel a set of activities
• <while> repeats an activity depending on certain conditions
• <switch> chooses between a set of activities
• <pick> waits for a message or an alarm
• <compensate> defines the activities of a compensation block

HELSINKI UNIVERSITY OF TECHNOLOGY

WSDL in BPEL (Alonso & Pautasso, 2004)

 A call to an operation in WSDL can be
mapped to BPEL as follows:
 Use invoke to call the operation

 An input variable with the request (the input message of the WSDL operation)

 An output variable for the response (the output message of the WSDL operation)

 A WSDL fault can be handled by using a fault handler attached to the invoke activity

invoke

Partner link PortType

operation

input variable output variable

Fault handler

Compensation handler

HELSINKI UNIVERSITY OF TECHNOLOGY

WSDL in BPEL

 A WSDL operation in BPEL
 Use receive to wait for the input

message
 Use reply to send the output message

or a fault message (as applicable)

HELSINKI UNIVERSITY OF TECHNOLOGY

Example BPEL
[htttp://www-106.ibm.com/developerworks/webservices/library/ws-bpel/]

Let consider the following
process. Two Files are

required
 WSDL file
 BPEL file

HELSINKI UNIVERSITY OF TECHNOLOGY

Example BPEL

<definitions targetNamespace="http://manufacturing.org/wsdl/purchase"
 xmlns:sns="http://manufacturing.org/xsd/purchase"
…
<message name="POMessage">
 <part name="customerInfo" type="sns:customerInfo"/>
 <part name="purchaseOrder" type="sns:purchaseOrder"/>
</message>
…
<message name="scheduleMessage">
 <part name="schedule" type="sns:scheduleInfo"/>
</message>

<portType name="purchaseOrderPT">
 <operation name="sendPurchaseOrder">
 <input message="pos:POMessage"/>
 <output message="pos:InvMessage"/>
 <fault name="cannotCompleteOrder"
 message="pos:orderFaultType"/>
 </operation>
</portType>
…
<slnk:serviceLinkType name="purchaseLT">
 <slnk:role name="purchaseService">
 <slnk:portType name="pos:purchaseOrderPT"/>
 </slnk:role>
</slnk:serviceLinkType>
…
</definitions>

The WSDL portType offered by the
service to its customer

Messages

Roles

HELSINKI UNIVERSITY OF TECHNOLOGY

Example BPEL

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
…
 <partners>
 <partner name="customer"
 serviceLinkType="lns:purchaseLT"
 myRole="purchaseService"/>
 …
 </partners>

 <containers>
 <container name="PO" messageType="lns:POMessage"/>
 <container name="Invoice"
 messageType="lns:InvMessage"/>
 …
 </containers>

 <faultHandlers>
 <catch faultName="lns:cannotCompleteOrder"
 faultContainer="POFault">
 <reply partner="customer"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="POFault"
 faultName="cannotCompleteOrder"/>
 </catch>
 </faultHandlers>
…

This section defines the data containers
used by the process, providing their
definitions in terms of WSDL message
types.

This section defines the different
parties that interact with the
business process in the course of
processing the order.

This section contains fault handlers
defining the activities that must be
executed in response to faults.

HELSINKI UNIVERSITY OF TECHNOLOGY

Example BPEL

…
 <sequence>

 <receive partner="customer"

portType="lns:purchaseOrderPT"

operation="sendPurchaseOrder"
 container="PO">
 </receive>

 <flow>
 …

 </flow>

 <reply partner="customer"

portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder"
 container="Invoice"/>
 </sequence>

</process>

HELSINKI UNIVERSITY OF TECHNOLOGY

Questions?

