AS-75-3600
Distributed Information Systems: Use
Cases and Motivation

Tuukka Ruotsalo
Semantic Computing Research Group (SeCo)

Helsinki University of Technology (TKK),
Laboratory of Megia Technology
an
University of Helsinki, Department of Computer Science

Slides partially based on (Alonso & Pautasso, 2004)

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;'

. A

http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/
http://www.seco.hut.fi/

W HELSINKI UNIVERSITY OF TECHNOLOGY
Media Technology

g

Motivation: Basic concepts and economical aspects

A5
UNIVERSITY OF HELSINKI "'

. A

Basic Concepts

A &

® Architecture supports the evolution of a system life cycle: Requirements,
design, implementation, maintenance.

® To understand components and services, the life cycle of an IS
(Information System) has to be analyzed.

® Any architectural decision is based either on faster development or easier
maintenance of the systems

— Reuse of the components (easier requirement engineering, design
and implementation)

— Modularity to support easier replacement of the components (easier
maintenance)

® SOA (Service Oriented Architecture) is best suited to achieve dynamic
control of the development process. We don't want to redesign and re-
implement the whole system whenever there is a change in the system
environment.

® Web Services are essential, but just one, technology to be used to
implement SOA

ws SeCo

5
UNIVERSITY OF HELSINKI "

A

Motivation

® The architecture of the information systems we use is becoming
increasingly complex.

® The access methods, the capabilities, the goals, and the available
technology is continuously changing. What can we learn that will remain
valuable in the years to come?

® One example: 70 - 90 % of the software costs are maintenance costs.

® Using the right abstractions helps!! Databases used as services (e.g.
JDBC+OR mapping) remove about 40 % of the code of commercial
applications!

® Software reuse is truly efficient and make economic sense at a large
granularity. How can we build systems that can be tailored to the user
needs and yet are applicable in a wide range of areas and environments?

ws SeCo

5
UNIVERSITY OF HELSINKI "

A

Use Cases for SOA
N

® B to B systems
— Changes in the company's strategy in networked business
» Replace a subcontractor with another one
— Changes in internal business models
» In-source / outsource
» Re-organizing internal production processes
® B to C systems
— Ubiquitous computing
® Cto C systems
— Virtual community portals

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;'

A

Use Cases

A &

® Different use cases have different kinds of needs in different
levels of abstraction

® B to B networked business models

— Typically rigid and related to contracting and business
development

— When in use, there is major commitment and deep data
integration

» Purchasing electronic components from subcontractors
® B to B internal
— Changes in business environment
» Fast integration of external systems (e.g. outsourcing)
» Fast configuration of existing systems (e.g. BPR)
» Re-organization of production

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

Use Cases

® B to C systems
— Ubiquitous computing
» Short-term contracts to use services
® Print a document at airport
® Cto C Systems
— Virtual communities
» Change and integrate data

® Add and see all photographs taken by a trusted
community

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;'

A

Requirements for Use Cases

A &

¢ Different use cases of Service Oriented Computing require different kind of integration
— Purchasing electronic components from subcontractors
» Deep rigid data integration
» Tasks automated
» Stakeholders are known
» Goal: Data and process integration with as low changing costs as possible
— Re-organization of production
» Stakeholders are semi known
» Goal: Data and process integration with fast configuration
— Print a document at airport
» Stakeholders are not known
» Goal: semantic data and process integration
— Add and see all photographs taken by a trusted community
» Stakeholders are not known
» Goal: semantic data integration

M “;;‘i‘i‘;o;;;:
UNIVERSITY OF HELSINKI 0.9, S C
— we 2€L0

. Al

Summary: data-, process- and
semantic integration \(

® Data integration
— Make two or more formal data models interoperable
® Process integration
— Make two or more formal process models interoperable
® Goal: as low changing costs as possible
® Traditional approach

— Programmer changes the code whenever there is a change
In the requirements

® Configurable systems approach
— Change configuration instead of code
® Semantic approach

— Use rich data and let the computer plan, reason and decide
the best solution

ws SeCo

5
%
Y%

A

\ =z
HELSINKI UNIVERSITY OF TECHNOLOCY

Media Tech no_iog_\

Architectures supporting modularity

UNIVERSITY OF HELSINKI ";;:;z;;: S e C O

A &

Consider a system of a shop that sells products and uses payment- and

in-house delivery services.

What happens 1f we want to replace the payment service provider,
make the shop available in mobile environment and outsource the

delivery?

Application
with business logic
and client code

DB

Client
Y v v v v

Business logic
Y v v v v

Service logic
Y v v v v

Application

DB

ws SeCo

5
%
Y%

A

ervice Oriented Design |

HELSINKI UNIVERSITY OF TECHNO

Media Tech nolog}

Assess
Business
Needs

Provide
Solutions

From Services

Using
Components

2
UNIVERSITY OF HELSINKI »"0, S e C

" semantic computing

How did we get there: Architecture
and Design Approaches of an IS \C

® Design of an Information System
— Bottom-up: application integration
— Top-down: business requirements

— Meet-in-the-middle: applications are configured to
meet the requirements

® Architecture of an Information System
— 1,2,3,n tier architectures
— Middleware

w SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

Top-down design

A &

® The functionality of a system is divided among several
modules.

® Modules cannot act as a separate component, their
functionality depends on the functionality of other
modules.

® Hardware is typically homogeneous and the system is
designed to be distributed from the beginning.

® What you need is what you implement.

w SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

Bottom-up design

A &

— In a bottom up design, many of the basic components
already exist. These are stand alone systems which
need to be integrated into new systems.

— The components do not necessarily cease to work as
stand alone components. Often old applications
continue running at the same time as new applications.

— This approach has a wide application because the
underlying systems already exist and cannot be easily
replaced.

— Much of the work and products in this area are related
to middleware, the intermediate layer used to provide a
common interface, bridge heterogeneity, and cope with
distribution.

— What you need is what you compose from existing
|mplementat|ons

I : ”~ SeCo

Meet-in-the-middle
N

® Usually systems can't be designed from the scratch.
Several existing subsystems are needed and new
subsystems have to be implemented.

® Example: How many different (inter-organizational)
systems are needed to provide a complete web based
shop?
— Catalog interface, payment interface, transportation
interface, ordering interface etc...

® Conclusion: We often need to use both: top-down and
bottom-up design methodologies

® What you need is the new implementations and
existing services working together

w SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

Architecture and Tiers- Basic Concepts

(Alonso and Pautasso, 2004)

Client

v

Application

Logic
(=)

Resource
Mana ger

Client

v

Server

v

Database

| | UNIVERSITY OF HELSINKI

Presentation
Iayer

Business
rules

Business
nhje(“rs

Client

v

Business
PTO(‘ SSeSsS

A

Persistent

storaee
(=)

Client is any user or program that
wants to perform an operation over
the system. To support a client, the
system needs to have a presentation
layer through which the user can
submit operations and obtain a
result.

The application logic establishes
what operations can be performed
over the system and how they take
place. It takes care of enforcing the
business rules and establishing the
business processes. The application
logic can be expressed and
implemented in many different ways:
constraints, business processes,
server with encoded logic ...

The resource manager deals with the
organization (storage, indexing and
retrieval) of the data necessary to
support the application logic. This is
typically a database but it can also be
a text retrieval system or any other
data management system providing
querying capabllltles and
persistence. "

""“ SeC 0

(L

Tiers and Layers

(Alonso and Pautasso, 2004)

[& L
LT3 ¢ﬁ\m i

I

v v v v v v
Presentation logic
Support for multiple Data distribution or
clients y replication
Application Logic
Separated application v Any combination
TOBIe Resource Manager Herent
Y v v v v EREPARARA

v v v v vy & S IXAXAXAYA
i X

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;'

A

Middleware

A &

Clients

Global application
logic
Local application
logic
Local resource
managers

v v v v
Y v v v v
v v v v oy

Server
B

® Middleware is just a level of
indirection between clients and
other layers of the system.

® It introduces an additional layer of
business logic encompassing all
underlying systems.

® By doing this, a middleware
system:

— simplifies the design of the
clients by reducing the
number of interfaces,

— provides transparent access
to the underlying systems,

— acts as the platform for inter-
system functionality and high
level application logic, and

— takes care of locating
resources, accessing them,
and gatherind resul

gatheringFs s

m

Distributed IS
N

There are four basic problems to
solve in a distributed information ® How to exchange data between
system. Everything else derives machines that might use different
from these basic aspects: representations for different data
types. This involves two aspects:
® Use the appropriate abstraction — data type formats (e.g., byte
for distribution in view of the orders in different
communication infrastructure architectures)
available. The abstraction must — data structures (need to be
hide the network stack and flattened and then
provide high level primitives reconstructed)
® How to embed the service ® How to describe and find
abstraction part of the ' services:
programming language in a — so that clients can use them
more or less transparent — to avoid tight integration
manner.
— Don't forget this important
aspect: whatever you design,
dthers will have to program Wb
% SeCo

and uuwsﬂév i_t HELSINKI
. "

Real & artificial dependency and
Standardization \G

® Coupling is the dependency between interacting systems.
— Real dependency

» Set of features or services consumed from other systems. Always
exists and cannot be reduced.

— Artificial dependency

» Factors that requesting party must compl}y with in order to
consumed features or services (e.g., platform dependency, API
dependency)

» Always exists but costs can be reduced.

® In each technology some of the following levels are standardized (as we
can see further, web services is just one standard)

¢ Standardization levels (Sheth, 1998)
— System level: Operating systems, bit-streams, protocols
— Syntactic level: Programming languages, markup languages
— Structural level: Data models, Process models
— Semantic level: Concepts and states used in data interchange
® Loose coupling describes the configuration in which artificial dependency
has been reduced to the minimum.
— Abstraction of the system in standardization levels

ws SeCo

5
%
Y%

A

SOA Summary
X

¢ Different level of integration is required depending of the economical / use-
case scenario

® Standardization of the system is done in: System level, Syntactic level,
Structural level and Semantic level

® Maintenance costs are reduced in each level: more abstraction, less
maintenance

® Depending of the stage of the system life cycle we need either bottom-up-
/ top-down- or both design methodologies

® n-tier system architecture separates the resources, global application
logic, application logic and presentation layer: more layers separated,
more abstraction possible

® Middleware simplifies the design of the systems, makes the subsystems
transparent by locating and executing resources (handles the abstraction
layers)

® Many technologies have been proposed to support middleware based
application development (RMI, Corba etc.). Web Services is a web based
middleware

ws SeCo

5
UNIVERSITY OF HELSINKI "

A

Web Services

Web Services as distributed systems
Why to use web services?

% SeCo

5
| | UNIVERSITY OF HELSINKI ;'

Al

Distributed Web-based middleware
= Web Services \(

® Web services have not appeared out of the blue but are the result of
the natural evolution of middleware and enterprise aWncatlon
integration platforms as they try to leverage the WWW, the Internet
and the globalisation of society as a whole, particularly in its
economic aspects

® A key to understanding Web services, how they are and how they
might evolve is understanding how we got there and what the
relation of Web services with existing technology is. This relation is
inescapable as only from this perspective is it possible to
understand what is happening in the Web services world.

® Many technologies have been proposed for distributed middleware
— Java RMI, DCOM,.NET, Corba, WebServices, etc...

— Each of these try to standardize the system interfaces in
different levels

— Web services seem to be the most promising technology
platform to do the trick

» Standards are developed on every dependency level
» Strong industrial support

| | UNIVERSITY OF HELSINKI ’; :";” S e C O

5
%
Y%

A

Web Services — How do they work

A &

® The Web services architecture represented by SOAP, UDDI, and
WSDL is a direct descendant of conventional middleware platforms.
They can be seen as the most basic extensions that are necessary
to allow conventional synchronous middleware to interact with each
other.

® The model and even the notation followed in this architecture mimics
to a very large extent what has been done in RPC, TP-Monitors,
CORBA, etc.

® This dependency gives a very good hint of what can be done with
these technologies today and what is missing to obtain a complete
platform for electronic commerce

® First implementations are just extensions of existing platforms to
accept invocations through a Web service interface (e.g., database
stored procedure published as Web services)

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

Web Services — How do they work

A &

® The next step in that progression leads immediately to the notion
of Web services as considered in IBM's Web service architecture.

— The notion of service in the conventional middleware is now
translated into the notion of Web service based on the access
channel to that service (the service in fact can be a pre-
existing middleware service, e.g., stored procedures in
databases made available as Web services)

— The only thing that changes from the middleware and
enterprise application integration world is that a few details
need to be changed so that they match the needs of
exchanges through the Internet rather than a LAN:

» XML as the data representation format

» SOAP as a protocol wrapper to allow conventional
communication protocols of middleware platforms to cross
the Internet and firewalls (essentially turns invocations into
document exchanges)

» WSDL as the XML version of interface descriptions
- » UDDI as the WWW version of basic name and directory

% SeCo

L Vi wservices %
. A

Web Services — How do they work %

HELSINKI UNIVERSITY OF TECHNOLOGY

Media Technology

® In context of Web Services,
artificial dependency is reduced by
making the services

— System: Hardware and
operating system
independent (http, ftp, TCP/IP
etc.)

— Syntax: Programming
language independent
(XML/SOAP, WSDL)

— Structural: Object model
independent (XML Schema)

— Semantics: “independent”
(Ontologies / Workflows:
BPEL, ebXML, RosettaNet,
RDF/OWL, OWL-S, etc.)

» Level of semantics vary
. dramatically

UNIVERSITY OF HELSINKI XX
- ‘ W SeCo

Web Services — How do they work

v >
FIREWALL ;

FIREWALL
7

WEB SERVER

v
WEB SERVER IN.TE

API
|

databas

resairce

Front

MIDDLEW
ARE

manager

| | UNIVERSITY OF HELSINKI

¥
| | | Wrapper
S

Resource| Resource

v
FIREWALL

v

WEB SERVER

Front

MIDDLEW

¥
Wrapper

Resource

e

ARE

Web Services — How do they work

® A popular interpretation of Web
services is based on IBM’s Web
service architecture based on
three elements:

® Service requester: The potential
user of a service

® Service provider: The entity that
implements the service and offers
to carry it out on behalf of the
requester

® Service registry: A place where
available services are listed and
which allows providers to
advertise their services and
requesters to query for services

® The goal is just-in-time integratior

of applications by discovering and
rchestrating network-availabl

services

| | UNIVERSITY OF HELSINKI

SERYICE
REQUESTER

A &

S5ERYICE
REGISTEY

Service
description

FUBLISH

SERYICE
FROYIDER

Service
description

Service Interfaca

Service

S
"
[)

5
%
Y%

% SeCo

A

Web Services — How do they work

A &

The Web service architecture
proposed by IBM is based on two

key concepts: UDD

® architecture of existing
synchronous middleware
platforms

® current specifications of SOAP,
UDDI and WSDL

The architecture has a remarkable
client/server flavor

It reflects only what can be done
with
® SOAP (Simple Object Access
Protocol)
® UDDI (Universal Description
and Discovery Protocol)

® WSDL (Web Services
Description Language)

SERYICE
REQUESTER

| | UNIVERSITY OF HELSINKI

SERYICE
REGISTRY

Service
description

v

FUBLISH

SERYICE
FROYIDER

Service
description

Service interfaca

Service

Web Services — The Big Picture

SERYICE
REGISTRY

1
Service
description

FUBLISH

SERYICE
FROYIDER

Service
description

SERYICE
REQUESTER

|
| | UNIVERSITY OF HELSINKI

Service interfoce

Service

A
Yertical
Blsiness MonStandard
Serantics
Y
Security,
Reuting, Horizontal
Workdflow, Mon-Standard
TransactionManagement ¢
WECL, UDD \
SOAR, XML C ;
' H tal
XML XML Schema X i
HTTP, FTF, SMTP, Jabber \
Internet, Intranet, Extranst \
e ‘.. s
% SeCo

A

Web Services binding -
levels of dependency

® RPC (Remote Procedure Calls)

— Call the procedures over the
wan (internet) and return a
response

— Basically synchronous method
calls
® Message queues
— Send documents rather than
call methods
® Workflow descriptions
— Processes rather than fixed
clients
® Semantic Descriptions of data

— Machine understandable
descriptions of services, data
and processes

SERYICE
REGISTREY

Service
description

SERYICE

REQUESTER

S
"
[)

5
%
Y%

'

% SeCo

!

FUBLISH

FROYIDER

Service
description

Service Interfnce

Web Services Summary

A &

® Web Services are self-contained, modular, distributed, dynamic
applications that can be described, published, located, or invoked over the
network to create products, processes, and supply chains. They can be
local, distributed, or Web-based. Web services are built on top of open
standards such as TCP/IP, HTTP, HTML, and XML. Web services use
new standard technologies such as SOAP (Simple Object Access
Protocol) for messaging, and UDDI (Universal Description, Discovery and
Integration) and WSDL (Web Service Description Language) for
publishing.

® These technologies are used to represent abstractions of programming

language interfaces in the web and to provide an find/publish and
bind/execute framework to enable service oriented computing

® What we have now (IBM WS architecture) is not the final e-commerce
architecture but a good start

® Semantic web services are defined using levels of: configurability and
automation in data and process interoperability

— We will further see where the current technologies go wrong and in
which presented use cases they are not enough

ws SeCo

5
| | UNIVERSITY OF HELSINKI ;’

A

