
In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

APPLICATION OF CONSTRAINT LOGIC SOLVING TO
GENERATION REJECTION IN ELECTRICAL POWER UTILITY

Steve Chan† and Eero Hyvönen*

†Hydro One Inc., Toronto, Canada, ylsteve.chan@ohsc.com
*University of Helsinki, Helsinki, Finland, eero.hyvonen@cs.helsinki.fi

When a high voltage transmission line is at fault condition, it is isolated from the network by
the relaying protection system. In order to prevent excess flow in the remaining network,
generation must be somehow rejected. This paper considers the problem of deciding optimal
strategies of turning generators off. A formulation of the problem is presented and constraint
logic solving is used to solve the problem. Initial test results are presented: all globally
optimal solutions could be generated in a reasonable execution time.

1. INTRODUCTION
Many industrial problems involve making optimal choices between alternatives under
constraints. The simplest way of solving such problems is to enumerate all scenarios and then
to select the best one(s). However, this is not usually possible due to combinatorial explosion.
Linear programming [Linear, 2000] is computationally fast but deals with only linear
constraints and (usually) continuous values. Non-linear and mixed-integer programming
algorithms [Nonlinear, 2000] can get stuck with local minima/maxima, the algorithms may
not find any solution even when there is one, and even in the best case only one solution is
found although there may be several equally optimal ones. In real world situations, the
monetary cost of not finding a solution or not finding all equally optimal solutions can be
large. Furthermore, traditional mathematical programming techniques and systems [Fourer et
al., 1993] do not deal with logical and other non-arithmetic constraint that may be present in
the problem.

As an alternative approach, the idea of constraint programming and solving has emerged in
the fields of AI and logic programming [Marriot, Stuckey, 1998] and reliable or interval
computing [Interval, 2000]. In this approach both arithmetic and non-arithmetic constraints
can be incorporated and the reliability guarantee of finding all global solutions (within a user-
given precision criterion) can be given [Van Hentenryck et al., 1997]. These techniques have
usually been applied to continuous domains [Kearfott, 1996] but can be applied to
discontinuous domains as well [Heipcke, 1999].

In this paper, the constraint scheme is applied to a generation rejection problem in an
electrical power utility. In the following, the problem is first formulated. After this, an
implementation for solving it is presented and test cases are presented. Finally, conclusions
are drawn and directions of further research are suggested.

2. GENERATION REJECTION PROBLEM

2.1 Characterization of the problem
In an electrical power network where the power generation resources are concentrated in a
remote location, high voltage transmission lines are used to transport the power from the

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

generation location to the load area. To increase the reliability of this transportation system,
two or more transmission lines are built on different geographic routes. Electrically, they are
operating in parallel. When one of the lines is at fault condition, such as short-circuit or open-
circuit, the relaying protection system will isolate that line from the network. The power flow,
that has been on the faulty line before the fault occurs, will be distributed to the lines
remaining in the network. This will increase the flow on the remaining lines and might cause
two problems:

• The increase may cause the line flow exceeding its thermal limit. If this condition lasts
long enough, the line will be overheated and eventually melt down.

• The increase may also cause the network to become unstable and finally collapse. This
can occur in a short time and corrective action must be taken immediately after the
fault is detected.

Here is a typical example: A main line (operating at 500 kV) and a secondary line (operating
at 115 kV) are connected in parallel in transporting power from the generation location to the
load center. When the main line is at fault, the increase in flow on the secondary line can
cause instability in the generation area. The remedy is to disconnect (or reject) enough
generation, immediately after the fault is detected, to ensure that the flow on the secondary
line after the fault is within its stability limit.

This paper concerns the problem of selecting the right amount of generation for rejection.
In some practical cases, the number of combinations of generation units that can be selected
for rejection is very large. For example, with 22 generation units, the number of combinations
is approximately 4.2 millions; it increases exponentially with the number of units.

There is a cost penalty for selecting a generation unit for rejection. This means that when
selecting a generator combination for rejection the goal is to minimize its total penalty. Also,
there are constraints on selecting a combination, which can be expressed in Boolean or
inequality forms.

2.2 The object function to be minimized
Our goal will be to minimize a penalty function of a combination of generation units. There
are several components in this function:

The site penalty

This penalty depends on individual generators, not on their combinations. Let z1, z2,…,zi,…,zn

denote the selection of generation units #1, #2,…,#i,…,#n for rejection, where zi = 1 when the
i:th generation unit is selected, and zi = 0 when it is not selected. If p1, p2,…,pi,…,pn denote
the site penalties of generation units #1, #2,…,#n, then the total site penalty of a selected
combination, sp, can be expressed as:

i
i

i pzsp ⋅= ∑ (1)

The range penalty
The range penalty refers to the fact that the amount of generation selected may not be exactly
equal to the flow of the main line. There is a range of generation amount for rejection within
which the network can be maintained stable. This range is divided into three sections. When
the selected generation amount is in the center section, there is no penalty, while if it is in the

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

two end sections, a penalty proportional to the deviation from the flow of the main line is
added to the object function.

Let w1,…,wn denote the power generated by generation units #1,…,#n. Then the total
generation amount selected for rejection, W, can be expressed as:

i
i

i wzW ⋅= ∑ (2)

The range of generation amount is divided into the three sections below:

Rlow to R1 Low-end section
R1 to R2 Center section
R2 to Rhigh High-end section

Where

R2 is the flow in the main line before the fault occurs and

R1 = R2 – k2, Rlow = R1 – k1, Rhigh = R2 + k3, and k1, k2 and k3 are constants depending on the
characteristics of the faulty line.

Let r1 and r2 be two Boolean variables representing the two end sections of Rlow to R1, and R2

to Rhigh respectively:

r1 = 1 if W <= R1, and
r1 = 0 otherwise.
r2 = 1 if W >= R2, and
r2 = 0 otherwise.

The range penalty, rp, can then be expressed as

)()(2211 RWrWRrrp −⋅+−⋅= (3)

Figure 1 illustrates the situation.

 k1 k2 k3

rp

 Rlow R1 R2 Rhigh

 W

Figure 1. Illustration of range penalty rp as a function of rejected flow W.

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

Penalties associated with specific combinations

These penalties are due to undesired combinations of generation units. In our case there are
two undesired combinations U1 and U2.

If generation units #8, #9, #19, and #20 are selected, add 7 to the object function. Let U1

denote the undesired combination, then

2019981 zzzzU ∧∧∧=

and its penalty cp1 can be expressed as:

11 7 Ucp ⋅= (4)

The other undesired combination occurs if both units #3 and #4 are selected and both units #5
and #6 are not selected, or vise versa. In this case, penalty 5 is added to the object function. If
U2 denotes the undesired combination, then

)()(654365432 zzzzzzzzU ¬∧¬∧∧∨∧∧¬∧¬=

and its penalty can be expressed as:

22 5 Ucp ⋅= (5)

The object function to be minimized is the sum of all penalty components of equations (1),
(3), (4), and (5) and can be expressed as:

21 cpcprpspP +++= (6)

2.3 Constraints
The object function (6) to be minimized is subject to the following constraints:

Range constraint
The total generation amount selected, equation (2) in section 2.1, must be within the range
between Rlow and Rhigh, and can be expressed as

highlow RWR ≤≤ (7)

Reactive power constraint
The total reactive power remaining after rejection must be greater than a given minimum k4.
Let v1, v2,…,vi,…,vn denote the reactive power remaining after rejection for units #1,
#2,…,#i,…,#n. Then the reactive power constraint can be expressed as:

4)(kvzvvzv i
i

ii
i

ii
i

i ≥⋅−=⋅− ∑∑∑ (8)

Combination constraint
Certain generator combinations may be impossible. In our case, units #16, #17, and #18 are
mutually exclusive. This constraints can be expressed as:

(¬z16 ∧¬z17) ∨ (¬z16 ∧ ¬z18) ∨ (¬z17 ∧ ¬z18) (9)

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

2.2 Summary of the formulation
The problem can now be summarized as: Minimize (6), subject to constraints of (7), (8), and
(9), by selecting sets of zi’s.

3. IMPLEMENTATION AND TESTING
Interval constraint satisfaction problem (ICSP) [Hyvönen, 1992] can be defined as a tuple <E,
V> where E is a set of constraints and V is a value assignment for variable domains used in E.
In our solution approach, the object function y=f(…) and the constraints of the generation
rejection problem are seen as constraint expressions of an ICSP. Variable domain are either
real or integer intervals and constraints are either logical or arithmetical constraints. The task
is to find the solution(s) of E with minimal y-value.

An ICSP can be solved in the following way [Cleary, 1987; Van Hentenryck et al., 1997].
First, consistency algorithms can be used to refine variable domains by removing infeasible
values not participating in possible configurations satisfying E within V. When all constraints
have consistent domains, some non-exact domain is selected and forcibly split. Consistency
refinements are then performed again, and so on. The process terminates either when the
situation is found to be infeasible, or all domains are exact (down to given precision) and
constraints are consistent, i.e., when a solution is found. By splitting domains exhaustively by
a search algorithm, all solutions can eventually be generated. This basic technique applies to
both discontinuous and continuous domains.

The ICE library [Hyvönen, De Pascale, 1995] implemented a consistency algorithm for
continuous arithmetic equation and inequality constraints. For the generation rejection
problem, this basis has been extended with the following extensions:

• A splitting algorithm for generating solutions.
• Logical constraint expressions can be used and intermingled with arithmetic ones.
• Discrete integer domains and integer constraints can be used.

The splitting algorithm generates a search space. Generation can be controlled by a few
parameters: The choice of the next variable to be split, the way in which the domain is split
(e.g., symmetric bisection), and the order in which the split domain parts are investigated.

When applying splitting to finding the minimum (or maximum) of a variable, a simple
strategy is to select this variable first, instantiate it to its lower (or higher) part, apply
consistency algorithm, split the variable again etc. If a situation is found infeasible, then that
part of the search tree can be rejected. If a solution is found, then an upper bound for the
minimum (or lower bound for the maximum) is found and situations involving values above
(below) the bound can be cut off.

Our hypothesis is that this approach is likely to be efficient with non-linear problems
whose feasibility area is not large because then consistency algorithms are likely to converge
rapidly and the cut-off mechanisms become more effective. The generation rejection problem
seems to have such characteristics.

Testing scenarios
We tested the search scheme in finding the optimal solutions, sets of zi’s, for object function
(6) subject to constraints (7), (8) and (9). A Pentium 350MHz/64MB PC and Windows NT
were used.

Values for the following input variables and constants define a scenario that can be solved:
wi’s, pi’s, vi’s for each generator, the pre-fault flow R2 on the main line, and the constants k1,
k2, k3, and k4. For each scenario, a solution is a set of zi’s, the optimal combination of units,

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

and the total power for rejection (W), assuming that the constraints (7), (8) and (9) are
satisfied.

Four tests were conducted using the pre-fault flows of table 1. Table 2 lists the other
parameters used in the tests.

Test # Flow R2 (MW)
1 150
2 300
3 450
4 600

Table 1. Test scenarios for determining optimal generation rejection.

Generator i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

wi 62 61 63 64 65 65 58 54 52 53 55 47 45 44 42 40 21 101 46 38 20 54
vi 11 11 11 11 11 11 11 0 0 11 11 11 11 11 11 0 0 0 0 0 0 0
pi -1 0 5 10 15 -2 0 5 10 15 -2 0 5 10 15 -2 0 5 10 15 -2 0
k1

k2

k3

k4

10
30
10
20

Table 2. Common variable values for the test scenarios of table 1.

With a proper adjustment of the parameters in the search engine, the solutions listed in table 3
were obtained. Here Min refers to the objective function minimum. Notice that in tests 1-3
multiple optimal configurations could be found. Column Time lists the total times needed in
finding all solutions and proving that there are no other ones.

Test # R2 (MW) Solution # Generator selection W Min Time (s)
1 150 1

2
3
4
5

1, 11, 21
6, 11, 21
1, 6, 21
1, 16, 21
6, 16, 21

137
140
147
122
125

-6 19.5

2 300 1
2

1, 6, 11, 12, 16, 21
1, 6, 11, 16, 21, 22

289
296

-10 14.7

3 450 1
2
3

1, 2, 6, 7, 11, 12, 21, 22
1, 2, 6, 7, 11, 12, 16, 22
1, 2, 6, 7, 11, 12, 17, 21, 22

422
442
443

-8 18.0

4 600 1 1, 2, 3, 6, 7, 8, 11, 12, 16, 21, 22 579 0 174.3

Table3. Optimal generation selections for the test scenarios of tables 1-2.

4. DISCUSSION
The results obtained in the experiment are promising. Multiple solutions could be identified
and the guarantee for global optimum can be given. Logical and integer constraints and
domains could be used in the model without reformulating them in some arithmetical form.

The execution times of table 3 are a little longer than the desired goal (less than 10s) set
beforehand. However, with a 100% faster 700MHz CPU, test cases 1-3 could be solved in 10s

In: STeP 2000 – Millenium of Artificial Intelligence, Proceedings of the 9th Finnish AI Conference. Publications of
the Finnish AI Society, No 16, 2000, pp. 175-179.

without further algorithm/code optimization or problem reformulation. In the worst case (test
4), the desired order of execution time would not be very far away.

Parameter tuning of the search procedure was needed in order find the solutions
effectively. Further research is needed in order to automate such tuning based on problem
characteristics, if the algorithm is used for solving other kind of problems. Planned future
work includes comparizon of the interval solving approach with traditional mixed integer
solvers, such as CPLEX and XLSOLVE [Fourer et al., 1993]. Problems such as the
generation rejection problem of this paper are challenging to traditional optimization
techniques whose iterative algorithms cannot easily make use of the discrete value domains
and constraints. Furthermore, with these systems at most one solution can be found while with
interval techniques the guarantee for finding all solutions can be given.

ACKNOWLEDGEMENTS

Thanks to Patrick Anam for fruitful comments and help in finishing the paper.

REFERENCES
[Cleary, 1987] Cleary, J., Logical arithmetic. Future Comput ing Systems 2 (2), 1987.

[Fourer et al., 1993] Fourer, R., Gay, D., Kernighan, B., AMPL. A modeling language for mathematical
programming. Boyd & Freaser Publ. Company, 1993.

[Hansen, 1992] Hansen, E., Global optimization using interval analysis. Marcel Dekker, New York.

[Heipcke, 1999] Heipcke, S., An example of integrating constraint programming and mathematical
programming. Research report, University of Buckingham, School of Business, Buckingham, U.K., 1999.

[Hyvönen, 1992] Hyvönen, E., Constraint reasoning based on interval arithmetic: the tolerance propagation
approach. Artificial Intelligence 58, 71-112.

[Hyvönen, De Pascale, 1995] Hyvönen, E., De Pascale, S., InC++ library family for interval computations.
International Journal of Reliable Computing, supplement, Proceedings of Applications of Interval
Computations, El Paso, Texas, USA, 1995.

[Interval, 2000] Home page of interval computations research: http://cs.utep.edu/interval-comp/main.html.

[Kearfott, 1996] Kearfott, B., Rigorous global search: Continuous problems. Kluwer, New York, 1996.

[Linear, 2000] Linear programming FAQ:
http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming.

[Marriot, Stuckey, 1998] Marriot, K., Stuckey, P., Programming with constraints. An introduction. The
MIT Press, 1998.

[Nonlinear, 2000] Nonlinear programming FAQ:
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming.

[Van Hentenryck et al., 1997] Van Hentenryck, P., Michel, L., Deville, Y., Numerica. A Modeling
Language for Global Optimization. MIT Press, Cambridge, 1997.

