Semantic Solutions for Democratising Archaeological and Numismatic Data Analysis

ELJAS OKSANEN, University of Helsinki, Finland FRIDA EHRNSTEN, National Museum of Finland, Finland HEIKKI RANTALA, Aalto University, Finland EERO HYVÖNEN, Aalto University, Finland

This paper explores the potential of new semantic computing technologies in democratising not only public access to digital cultural heritage records, but to computational and Linked Open Data-assisted data analysis and knowledge discovery. As a case study, we consider archaeological and numismatic Open Data services in Finland, and discuss the research results obtained during the ongoing development work for the CoinSampo framework for opening Finnish and international numismatic data. Museums, heritage agencies and other institutions responsible for managing archaeological cultural heritage across Europe are engaged in developing digital platforms to better open their collections to the public as a common resource, for the purposes of discovering, learning about, and sharing our common past. These services themselves, however, are often built with the professional needs of collections management in mind. The presentation of the records is typically structured after the familiar format established for the printed catalogues of yesteryear, with few analytical tools that would take advantage of the potential of digital data to probe and visualise internal relationships and patterns within the full body of the opened material. CoinSampo, however, will provide scientific tools to new audiences among the non-professional public who have not enjoyed such level of access to numismatic data. The broad range of target audiences we envisage include collections managers, who will benefit from enhanced access to their own data for updating records and for error detection and correction, as well as academic researchers interested in using the material in scientific analysis. Importantly, it also includes non-professional groups such as coin collectors, educators, local historians, as well as the archaeological hobby metal-detectorists who produce most of the new coins finds entering Finnish and European collections. By adopting a citizen science and participatory heritage approach in the development of Open Data services, we aim to promote a technological model for cultural heritage dissemination that addresses the needs of a broad range of different user audiences inside and outside the professional sphere.

$\label{eq:CCS} \textit{Concepts:} \bullet \textbf{Information systems} \rightarrow \textbf{Web searching and information discovery}; \bullet \textbf{Applied computing} \rightarrow \textbf{Arts and humanities}.$

Additional Key Words and Phrases: Numismatics, Semantic Web, Linked Open Data, Archaeology, Collections Management, Data Analysis, Digital Humanities

ACM Reference Format:

Eljas Oksanen, Frida Ehrnsten, Heikki Rantala, and Eero Hyvönen. 2022. Semantic Solutions for Democratising Archaeological and Numismatic Data Analysis. *ACM J. Comput. Cult. Herit.* 1, 1 (December 2022), 17 pages. https://doi.org/10.1145/nnnnnnnnnnnnnnnn

Authors' addresses: Eljas Oksanen, University of Helsinki, Helsinki, Finland, ; Frida Ehrnsten, National Museum of Finland, Helsinki, Finland, ; Heikki Rantala, Aalto University, Espoo, Finland; Eero Hyvönen, Aalto University, Espoo, Finland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery. 1556-4673/2022/12-ART \$15.00 https://doi.org/10.1145/nnnnnnnnnnnnnn

1 INTRODUCTION

The previous decade has witnessed a proliferation in the number of archaeological finds being made by the public across Europe, mainly through hobby metal-detecting. This is especially so in several north-west European countries where this activity is permitted, albeit with restrictions. Several countries, including Finland, have set up national cultural heritage schemes to record and to open the material, generating an enormous amount of data that is of great value to archaeology [8]. In many instances our understanding of several common object types – including coins, dress accessories and domestic items such as spindle whorls – and thereby of the social, cultural, economic or political processes and phenomena that are linked to their production and use, are being revised (see *figure 1*) [27, 28, 31, 32, 42]. Crucially, by maintaining online platforms that present key data about these finds (archaeological descriptions, weights and measurements, images, findspot information, etc) European public finds recording schemes, and other heritage institutions managing finds records, have created a significant and growing reservoir of cultural heritage data that can be equally used by members of the public (including metal-detectorists) interested in archaeology. For responsible detectorists these digital services can play a central role in advancing the democratisation of archaeological science – in particular for those who have a serious or avocational relationship with the activity and might be described as 'citizen science archaeologists' [13, 47, 49].

In this paper we discuss and respond to a set of new large-scale needs in cultural heritage management, research and dissemination created by these developments, focusing on the democratisation of data and knowledge production through powerful but highly accessible public data analytical tools and services. Based on our ongoing research and experiences in developing new online services for the Finnish Heritage Agency's (FHA) archaeological and numismatic collections we propose a paradigm shift in opening cultural heritage data [36, 37].¹

The vast majority of public cultural heritage services open their material in a manner modelled after the traditional printed catalogue: record entry by record entry, archaeological object by archaeological object. In CoinSampo, our model cultural heritage demonstrator for Finnish numismatic data, users are able to easily explore, visualise and examine larger patterns and structures within the data through integrated semantic search-and-analysis tools. By taking an approach that from the start considers the data as a whole entity, this model empowers users to build new statistical, geographical, temporal and networked perspectives on past societies and historical phenomena as arising from a holistic body of interconnected material.

We present the current results of the intersectoral and interdisciplinary (archaeology, computer sciences, cultural heritage, digital humanities, museology and numismatics) project *DigiNUMA: Digital Solutions for European Numismatic Heritage*², conducted at the University of Helsinki and Aalto University in collaboration with the FHA and the National Museum of Finland. Our core research aim is to advance the development of open digital heritage services, approaching it from multiple interlinked directions. These are: (a) To produce new ontological infrastructure for improving the of recording process and quality of public finds data in Finland, with specific reference to international cultural heritage data harmonisation; (b) To test and interpret the data through Digital Humanities analyses; (c) And to develop a pilot online data and public access heritage services [21], with built-in apps for creating data analysis and visualisations, as a model for disseminating archaeological data within an international context.

Our approach is based on the Sampo Model [22] using the Sampo-UI framework [24] for the user interface design. This means that the data is published in two main ways: through a Linked Open Data (LOD) service with a SPARQL³ endpoint, and through a web portal, which includes various tools to search, browse, visualise and analyse the data, with an option to download the data in, for example, CSV tabular format. The SPARQL endpoint

¹This article contains material previously published in these conference papers.

²DigiNUMA project homepage: https://seco.cs.aalto.fi/projects/diginuma/

³https://www.w3.org/TR/sparql-query/

ACM J. Comput. Cult. Herit., Vol. 1, No. 1, Article . Publication date: December 2022.

is intended as the way to access the data for application developers and technically inclined researches. The search and visualization tools of the web application open the data for researchers, but perhaps more importantly also to the wider public, in a way that makes visualising and analysing the data easy. The Sampo model and framework in the context of archaeological finds and citizen science were first introduced when developing and publishing the FindSampo portal and LOD service in the *SuALT* project (2017–2021) [23, 37].

The Sampo archaeological services furthermore connect their specific datasets to wider international bodies of knowledge through mapping the used concepts to international resources, enriching them with views that transcend the deep-rooted epistemological posture of archaeological cultural heritage being primarily defined, organised, understood and given relevance as bounded phenomenon occurring within the confines of modern polities and communities (e.g. a point recently raised in [17]). The project collaborates with other pan-European LOD harmonisation projects, especially ARIADNEplus⁴ (all archaeological data [39]) and Nomisma.org⁵ (specifically numismatic data [15, 44]), and ties in with the aims and objectives of the European Public Finds Recording Network [10].⁶ The larger research context we engage in is the ongoing development of transnational solutions in digital cultural heritage.

The following discussion is based on the lessons learned during the *DigiNUMA* and *SuALT* research projects. Novel semantic applications contribute to advancing social good by making digitised archaeological heritage more accessible, but developers must be aware of the needs of the target communities. The diverse user-audiences that CoinSampo is intended to serve include, in addition to heritage professionals and academic scholars, also numismatists, metal-detectorists and other public finders, local historians, and amateur archaeologists. The model heritage data service demonstrator can equally be used for educational purposes in schools and universities. We thereby aim to contribute to the broader conversation about how recent digital transformations have affected knowledge creation and exchanges between actors and stake-holders in the field of archaeological and numismatic cultural heritage: how can we not only better open data to a broad variety of audiences but also democratise the capacity for its exploration, visualisation and analysis, enhancing everyone's ownership of our shared past.

2 RESEARCH DATA

As noted, the specific research the context is provided by European portable archaeological metalwork finds and the participatory heritage activity by which they have been largely recovered. Legal conditions and professional attitudes towards the metal-detecting hobby vary across Europe [8]. But, notwithstanding many issues related to resourcing in heritage management, challenges in dealing with the increasing numbers of reported finds and safeguarding vulnerable archaeology [29], there is increasing attention paid to the added value of a permissive approach in terms of scientific knowledge and the societal impact of public participation. In those countries where finds recording schemes exist there has been an unprecedented increase in 'big data' and public engagement with archaeology [9, 11, 25]. The scope for reaching out to involve the public in archaeological knowledge generation is considerable: the longest running of the European public finds schemes, the Portable Antiquities Scheme in England and Wales (PAS) at the British Museum and Museum of Wales⁷, contains over 1 million records of over 1.6 million items reported since 1997 [30].

Followed by the PAS, public finds recording schemes have been established, or are being developed, in many European countries including Finland (FHA, Ilppari⁸ and FindSampo⁹), Denmark (Digitale Metaldetektorfund,

⁴https://ariadne-infrastructure.eu

⁵http://nomisma.org

⁶https://www.helsinki.fi/en/networks/european-public-finds-recording-network

⁷https://finds.org.uk

⁸https://www.kyppi.fi/palveluikkuna/ilmoitus/edit/asp/enk_default.aspx

⁹https://loytosampo.fi/fi/

Fig. 1. The amount of new numismatic data in Finland has significant increased in the last decade. A rare example of a medieval coin minted in Finland: an Abo type coin minted in Turku during the reign of Erik of Pomerania (*c*. 1410-1420). Only one coin of this type was known until 2017, when a metal-detectorist found this coin on a field in Häme, Finland. Since then one more fragment of this coin type has been found, showing that it was not so unique after all. National Museum of Finland, RK2017006:1. Photo: Jani Oravisjärvi.

DIME¹⁰), the Netherlands (Portable Antiquities of the Netherlands, PAN¹¹), Belgium (MEDEA¹²), as well as Estonia, the Czech Republic and Norway [1, 8, 9, 26, 30, 49]. Besides reaching out to the public to record the finds they make, which in some cases is mandatory,¹³ these schemes inform the public of the laws and guidelines related to metal-detecting and other public searching¹⁴ (especially encouraging responsible behaviour), and assist law enforcement in response to illegal metal-detecting, damage to historic monuments, and the failure to report certain categories of finds [6].

The archaeological cultural heritage recovered and reported by public finders forms a complex and diverse body of material. Therefore, as a case study we specifically target coin finds obtained from Finnish and international digital archives. Numismatic data is singularly suitable for humanities as well as semantic computing research into digital cultural heritage, because: (a) Coins are by far the most numerous object-type reported by the members of the public to the national finds recording schemes (e.g. [27, 34]); (b) Coins are of great interest to most metal detectorists and other finders as easily recognisable historical objects, which in significant part accounts for this positive bias [34, 40]; (c) There is a strong basis in numismatic scholarship for new data exploration and ontological work (e.g. in England [33] and in Finland [12, 43]), as well as the ontological foundation provided in Finland by MAO/TAO¹⁵ and internationally through Nomisma.org; (d) The data is often precise in terms of its dating and place of manufacture, making it suitable for Digital Humanities analysis; (e) And coins move across borders, recording and reflecting historical exchanges that are relevant to wider European audiences. In short, the interconnected nature of the numismatics makes it an excellent testing ground for semantic research, based on novel data visualisation and LOD applications [18].

¹⁰ https://www.metaldetektorfund.dk

¹¹https://portable-antiquities.nl

¹²https://vondsten.be

¹³According to Finnish law all finds older than 100 years must be reported: Antiquities Act 295/1963 https://www.finlex.fi/fi/laki/ajantasa/ 1963/19630295#a295-1963

 $^{^{14}} See \ e.g. \ for \ England \ and \ Wales: \ https://finds.org.uk/documents/file/Code-2017.pdf \ and \ for \ Finland \ https://www.museovirasto.fi/uploads/Arkisto-ja-kokoelmapalvelut/Julkaisut/muinaisjaannokset-ja-metallinetsin-2017.pdf$

¹⁵https://finto.fi/maotao/en

What public finds material is recorded varies from country to country. In Finland, the FHA's archaeological database contains full records of only those objects that have been taken into the national collections. In practice all objects that are pre-historic or medieval (older than *c*. AD 1570) are claimed, whereas Early Modern (after *c*. AD 1570) finds are claimed only if the object is of a particular archaeological importance or interest. The large majority are returned to the finder. But while from a collections perspective the large quantities of Early Modern coin types are less valued, since 2014 there has been a concentrated drive at the National Museum Coin Cabinet to record into a separate numismatic database all pre-20th century coins reported by finders. This has built up a dataset that serves multiple purposes: it forms in northern European terms an unusually comprehensive data sample that can be deployed in *longue durée* numismatic research, and it also provides an heritage management resource for tracking hobby detectorist activity geographically. This provides a more comprehensive picture of where people detect, even if the finds they recover are not taken into the collections and therefore do not end up in the main national archaeological database. The dataset currently stands at over 12,000 records of single coin finds and, together with other smaller datasets such as the ongoing digitisation of Viking-Age coin hoard finds, forms the core of the Finnish research material for developing the CoinSampo data service.

To ensure the compatibility of our data model outside the national context we use the following international data providers. The PAS contains over 500,000 coins records from the British Iron Age (800 BC to AD 42) to the modern period. Generated by public finders and therefore yielding insights into the same process and selection biases that underlay the Finnish data, it is also one of the largest numismatic databases in the world and highly suitable for testing applications in archaeological 'big data' analysis [2, 5]. The transnational numismatic data harmonisation project Nomisma.org (further discussed below) has opened a number of datasets sharing an ontological framework and a data model, one which has been developed specifically to provide a semantic foundation for linking and combining data arriving from diverse collections and institutional sources [15, 44]. Using the large and complex data from the British Museum and Nomisma.org alongside the Finnish material assures that the created data service model can be applied across national boundaries.

3 CURRENT CHALLENGES IN FINNISH DIGITAL COLLECTIONS MANAGEMENT

In many European countries (with the UK being a particularly early outlier) hobby metal-detecting has taken off in the last ten or fifteen years as a matter of national-level significance to cultural heritage management [3, 8]. In Finland the watershed moment took place in the mid-2010s [41, 48]. Here, as elsewhere in northern Europe where population densities have been historically lower than in the south, the absolute numbers of recorded finds are also smaller. But their relative growth since metal-detecting became popular is significant; between 2000–2010 there were some 400 finds made by members of the public recorded to the *Muinaiskalupäiväkirja*,¹⁶ the diarisation system of the FHA's archaeological collections. Between June 2015 (when finds began to be entered into the FHA's current archaeological database *Luettelointisovellus*) and September 2017 some 3000 new public finds – almost all metal-detected – were recorded [48]. These numbers continue to grow, with some 1700 to 2000 new metal-detected finds being taken into the collections and recorded per annum.¹⁷ A challenging sea-change has taken place in the course of just a couple of years, with heritage infrastructure, human resources and established management workflows struggling to keep up with the new demands that have been created.

Much as in other European countries, in Finland a number of technological solutions have been developed in response to this changing public cultural heritage management environment. Finnish institutions were, after all, early adopters in making cultural heritage data services available online. FHA's *Muinaisjäännösrekisteri* database of archaeological monuments has since 2010 published historic environment data as a free GIS service

¹⁶https://www.kyppi.fi/palveluikkuna/kmloyto

¹⁷2015-2017 records are opened by the FindSampo demonstrator at https://loytosampo.fi/en/ Later records are not yet available. Data: FHA and Ilppari.

and today contains information and linked records on over 50,000 archaeological sites across the country.¹⁸ *Luettelointisovellus* was originally developed as an administrative tool for recording archival information for all archaeological objects finds taken into the national collections. For assisting the processing of object finds discovered by members of the public (a separate though connected workflow to archival recording), in response to the metal-detecting boom the Agency launched in 2019 *Ilppari*, an online service for reporting, if not publicly opening, data on amateur archaeological findings [46]. *Muinaisjäännösrekisteri* also has a category for sites of stray finds, and if the findsite for an artefact is later recognised as an archaeological monuments site (e.g. a cemetary or a settlement), the find will linked to the relevant record.

The data service environment for recording Finnish archaeology is therefore rather complex, and fundamentally sites and stray finds remain two different data categories. A situation has therefore developed where the regularly updated monuments and sites data is open and easily accessible by a system managed in-house by the FHA, but the artefact finds data is processed by different systems. Both *Luettelointisolvellus* and *Ilppari* are primarily designed to support administrative processes in the management of stray finds, and up-to-date data is not directly opened to the public [46]. In order to improve and modernise the FHA's internal data services for collections management – including handling reported finds and archaeological artefacts – various legacy catalogues and collections-specific databases are in the process of being consolidated into the national collections management system MuseumPlus.

Arriving from a collections management paradigm (e.g. keeping track of where a given object is physically located in the archives), however, MuseumPlus was not designed with scientific archaeological information in mind, such as including finds coordinate location. Furthermore, data from MuseumPlus is opened through the national Finna¹⁹ search service and through it fed into the European cultural heritage cloud Europeana.²⁰ Finna is developed and maintained by the National Library of Finland and its data model is even further removed from the needs of archaeological cultural heritage. In these services objects are designed to be examined as individual records, not as an integrated body of material. Moreover, all the information is in Finnish, and as the development of, for example, numismatic ontologies is ongoing it is not straightforward to enrich the data through LOD principles by linking the published material to other existing international sources with fixed object classifications. Finding a solution that serves both the FHA's collections management needs and also provides an Open Data and Open Cultural Heritage service is one of the major challenges in Finnish digital cultural heritage management [46].

These problems are not, of course, very different to experiences in many other European countries, where various legacy systems and data services across diverse cultural sectors have been brought together into complicated patchworks ecosystems (see e.g. in the UK and Norway: [1, 4]). A major question of relevance to cultural heritage management at an international level therefore remains on how to open data with a complex institutional and operational background in a manner that satisfies the needs of its primary producers and administrative users in museums and agencies, as well as offers new possibilities for researchers and more casual users in appreciating heritage material across a broad spectrum of analyses. Based on our research, we propose the Sampo model as a solution, one that would not necessarily replace all existing dedicated collections management tools but would consolidate powerful new instruments for assessing and investigating data.

¹⁸https://www.kyppi.fi/palveluikkuna/mjreki

¹⁹https://finna.fi

²⁰https://europeana.eu

4 THE SAMPO MODEL AND ONTOLOGICAL INFRASTRUCTURE FOR OPENING DIGITAL COIN ARCHIVES

The 'Sampo model' [21] is a model for publishing cultural heritage LOD developed over twenty years at the Aalto University and University of Helsinki by the Semantic Computing Research Group.²¹ The model has been developed through practical experiences on working on numerous projects and some twenty online systems where cultural heritage is published on the Semantic Web.²² Most immediately, CoinSampo extends the FindSampo (*Löytösampo* in Finnish) framework developed in the Academy of Finland funded consortium project *Finnish Archaeological Finds Recording Linked Open Database (SuALT*, 2017–2021), which was launched in late 2021 for sharing metal-detected finds data collected by the FHA²³ [19, 38]. The planned date for opening the data and the CoinSampo portal to the public is at the end of 2023, but thought the FindSampo online portal the initial archaeological demonstrator is already available. What differentiates the CoinSampo from the FindSampo is the opened data (specific focus on numismatic collections), a larger selection of analytical tools and an enhanced LOD capability through more formally defined numismatic entities and concepts.

The data analysis tools aim to be easy to use so that they would not only be accessible to professional researchers, but also to hobbyists. A central aspect of Sampo model is a separation of the data service and the web services based on the data. The data is published as Linked Data in RDF format and served from an open triplestore database that can be accessed through SPARQL API. The data services can be directly accessed by the researchers with sufficient technical ability, or by application developers. A web application is developed to browse and visualise the data, based on querying the data service. In principle the data should be more permanent, and new web applications drawing upon it can be built as necessary.

CoinSampo will be a single page web application based on the Sampo-UI²⁴ framework [24]. The CoinSampo web application will be based on combining of faceted search with various data visualisations. It will offer tools for searching, browsing and data analysis. Compared to some other existing web applications for archaeological data, whether numismatic sites such as the Seleucid coins portal²⁵ of the American Numismatic Society (ANS) or the various European finds recording scheme portals listed above, our portal is more focused on providing tools for analysing groups of entities in the data instead of just finding data about certain entity. This means that while a user can use the faceted search to find information of one specific coin of interest, they can also use it narrow the group of entities based on some criteria and then visualise the results in various ways. For example, a specific issuing ruler could be easily selected from the ruler facet, and the results then viewed on a map that shows the spread of find spots for those coins, as a statistical breakdowns of e.g. the pertinent denominations and mints, by the chronological distribution of coin finds, or as network graph linking attribute nodes such as mints and findspots. Any user, without any training in or access to statistical software, can begin to examine the data as an integrated body of material culture evidence from multiple analytical perspectives. Furthermore, the web application will also offer an easy way to download the data in, for example, CSV format, enabling the data to be further interrogated by users proficient in specialist software.

The integrated search and analyse functionality rests on the data – the archaeological and numismatic object records – being described using controlled and ontologised vocabularies. In CoinSampo this means mainly mapping the concepts to the Finnish MAO/TAO Ontology for Museum Domain and Applied Arts²⁶ for Museum Domain and Applied Arts, and to Nomisma.org (see below) for international interoperability. Over the last few

²¹The name 'Sampo' comes from the Finnish epic Kalevala: it refers to a mythical artefact and is a metaphor of ancient technology that brings wealth and fortune to its owner.

²²Sampo portals: https://seco.cs.aalto.fi/applications/sampo

²³The portal online: https://findsampo.fi; project homepage: https://seco.cs.aalto.fi/projects/sualt

²⁴https://seco.cs.aalto.fi/tools/sampo-ui

²⁵https://numismatics.org/sco/

²⁶See https://finto.fi/maotao/en/. Note that this is a SKOS vocabulary.

years, the FHA in conjunction with the Finnish Terminology Centre has developed important archaeological ontologies describing object types, historical periods and other key concepts required for harmonising and linking heritage data [46]. Considerable research remains to be done across the full field of archaeological sciences, from adopting shared concepts for scientific material samples to describing cultural heritage landscapes, but foundational work is being laid down.

In addition to empowering the Sampo search-and-analyse knowledge discovery engine, further knowledge discovery and learning potential is achieved by linking records located within an ontological framework to national and international resources using stable URIs. For instance, a user examining a specific coin denomination could access a list of rulers that have issued the type, and in turns these rulers are linked to their Wikipedia entries. Additionally, the user could access links to other online archives with coins of the same denomination.

In this international context coin data makes an excellent case study in LOD harmonisation owing to a strong existing foundation of shared typological practices. Our research is conducted in collaboration with the international numismatic network Nomisma.org[15, 44, 50]. Nomisma.org was started by the ANS in 2010, with the aim to facilitate the presentation of numismatic concepts using LOD. As of December 2022, more than 50 different institutions have provided datasets totalling nearly 370,000 coins that are published via the Nomisma.org SPARQL endpoint hosted by the ANS. The classes and properties of the Nomisma.org ontology cover all aspects necessary for the description of coins, and their instances take the form of a controlled vocabulary, for example for denominations, mints, rulers, wear and corrosion, and even deities depicted on the coins. Currently Nomisma.org mostly includes instances related to the classical era, in part due to the breadth of international scholarship on Greek and Roman numismatics, but also thanks to the existence of universally accepted, comprehensive standard works to which reference can be made. However, work is now ongoing to extend the range of concepts to cover the medieval and eventually the Early Modern and modern periods.

The Nomisma.org paradigm will in the future serve as a base for sharing international numismatic data. Creating controlled vocabularies for so many potential Classes across the whole history of coin use, however, is a huge undertaking. Because the currently Nomisma.org vocabularies largely pertain to the classical era and to limited geographical coverage, only a very small number of the denominations and other concepts necessary for describing the Finnish coin finds are currently available in the existing vocabularies. As this work is still undergoing, we cannot currently create RDF data from the Finnish coin finds that would be fully integrated to Nomisma.org. We can, however, at a minimum use the elements of the classes and properties of the Nomisma.org ontology. This will make the data more interoperable, and ease full integration in the future. The used concepts can be mapped to Nomisma.org concepts when they become available.

The potential benefits to be gained from using internationally shared vocabularies for all numismatic data are evident. A standardised ontology makes it is possible, at least in theory, to develop a single data service model to disseminate and display data from digital coin archives from all around the world that conform to the agreed-upon paradigm. This is a very powerful concept, and that turns the traditional standards in institutional cultural heritage data (i.e. unique data models based on deep institutional histories) on its head. It not only enables enriching existing data by connecting it to other relevant publicly accessible resources, but also merging datasets for computation analysis.

Therefore, while the CoinSampo framework is specifically built to serve Finnish numismatic material (and will be integrated with the FindSampo service), we are in parallel working towards a framework keyed to the Nomisma.org ontology. Once ready, anyone could in theory install the application on their own computer, download one or more of the numismatic datasets linked to on Nomisma.org, have it ingested by the framework, and then use the application examine and visualise the data. Next, we will discuss more in depth select case studies for using CoinSampo to open Finnish coin data that illustrate the use potential of our approach among several key user audiences.

5 COINSAMPO USE CASES

The aim of the CoinSampo data service is to make it easy to find information on coins recovered in Finland, with the particular advantage of being able to examine broader patterns in coin use and circulation across large geographical distance and long periods time. As noted, the service is aimed at anyone interested in coin finds and numismatic data, but four main user groups have been identified as: 1) metal-detectorists, 2) numismatic researchers and archaeologists, 3) local historians and 4) professional collections managers. All groups benefit from the data analytical and visualisation tools in CoinSampo, and membership in the groups may overlap, but users in these different categories might also deploy the applications in different ways. To demonstrate the utility of the service four example use cases are presented.

Metal-detectorists. The metal-detectorist who is producing the new finds material – whether a more casual hobbyist or an archaeological citizen scientist – is naturally also the person with the most questions regarding their finds. If the finds are either only catalogued in the collections without opening the data or alternatively returned to the finder without creating a permanent record, their significance as historical evidence will remain unappreciated. Since most coins from the Early Modern and modern periods are returned to finders in Finland, it may even become unclear why these should be reported in the first place despite the legal obligation to do. In CoinSampo the full record of all reported coin finds is represented, showing how this new body of crowd-sourced archaeological is evidence is building up over time through the activities of the detectorists. Many detectorists finds certain coin types, for example the late medieval and Early Modern hand-struck Russian wire money (minted between mid-14th and early 18th centuries), to be particularly interesting. Therefore some of the most important features are the record catalogued view together with the point location and kernel density maps, which make it possible to examine the different coin types reported and to investigate their broad landscape or other geographic contexts (see *figure 2*).

In Finland only coins from the Viking Age or the medieval period (pre-1570 CE) are generally acquired by the national collections. Unlike in some other European countries with treasure legislation governing small metal finds, such as England²⁷ and Denmark²⁸ where these laws are of medieval origin, the fees paid for the objects are based only on the metal value and not the market value. As Finnish archaeological objects made of precious metals are typically small (e.g. rings, coins) the financial benefit of reporting objects is usually insignificant. Instead the system relies on the good intentions of the finders and on their interest in producing knowledge of our common cultural heritage.

Opening the finds material to the general public encourages a culture of responsible detecting. Doing so in an accessible data visualisation rich manner is a concrete way of proving to the finders the importance of reporting their finds, and showing how this will generate new archaeological and numismatic knowledge. Importantly, being able to view finds data as a whole body of archaeological evidence recontextualises metal-detecting away from 'treasure hunting' for showy individual objects such as coins made of precious metals, jewelry or weaponry; something that existing European treasure legislations arguably if inadvertently contribute to by officially valuing (by their finder's fee structures) certain object or metal types over others. Less charismatic items such as various domestic tools or common copper coins may not be as exiting or valuable finds on their own. But connecting such objects together through mapping and other analyses shows how each individual finds contributes to grander narratives about the past, and thereby supports the development of a citizen science paradigm for hobby metal-detecting.

Researchers. Most often coins as material culture evidence is studied by numismatists or archaeologists, but the term researcher might here refer to anyone using the data for purposes of investigating past phenomena through scientific methods, and includes both professional academics and non-professional citizen scientists.

²⁷ https://www.legislation.gov.uk/ukpga/1996/24/contents

²⁸https://natmus.dk/salg-og-ydelser/museumsfaglige-ydelser/danefae

Fig. 2. Geographical and historical processes: a kernel density estimation 'heat map' showing the find locations of wire kopeks issued by Peter the Great. During the Great Wrath (1714–1721) the area of present-day Finland was occupied by Russia. The Russian wire coins from this period are therefore common finds also in the western part of the country.

CoinSampo can be used as a tool for studying geographical, temporal and statistical patterns among different coin types on different spatial scales, from national through regional distributions to local finds. The data opened in the service also serves as an excellent reference material for coins that have been found on archaeological excavations. For instance, an archaeologist might be studying finds from an Early Modern (16th to 18th centuries) town in Finland. If the area remained settled, coins from the later periods are usually also encountered in the excavated finds material. A case example could be the recent excavations at the market square in Turku, formerly the largest town and the administrative capital of pre-indendence Finland [45]. The archaeologist might wonder if the numbers of Early Modern coins found is exceptional, or if the number or coins from different periods reflect the history or even individual events in the history of the town. Using the CoinSampo statistical tools and faceted search it is easy to check how common a given coin type generally is. The kernel density 'heat map' and the pie/bar chart functions, for example, immediately shows that Swedish copper öres from the 18th century are

very common finds, found everywhere where coins are reported. Silver öres from the same period, on the other hand, are quite rare. In the same manner coins from different periods or with various geographical origins can be studied, in order to reveal changes in coin circulation patterns across time. If values such as weight or diameter size is recorded in the data, these distributions among selected coin types or periods can also be easily compared with a line chart tool.

Fig. 3. Local contexts: a map showing the find spots of the oldest coins from the Savonlinna area, placed on the Senate Atlas. The Swedish örtug and the Estonian penny referred to in the text were recovered at the site indicated by the number 2, immediately due west of the town. To the right a penny minted in Tartu under Johannes V Blankenfeld (1518–1527) and under an aoristic barchart showing the chronological distribution of all coin finds.

Local historians. In this example a local historian, or any person simply interested in their local cultural heritage, uses CoinSampo to find out what kind of coin finds have been made in the municipality. Here we chose Savonlinna,

a town in the eastern part of Finland, founded in 1639 based on the medieval Olavinlinna castle. For much of its history Savonlinna was a border town between the kingdom of Sweden and the Russian Empire, and following the Russian conquest of the Finland in 1808-9 remained a major regional centre in eastern Finland. Altogether 334 coins have been reported from the area since 2014. Zooming into the map it is easy to see where the finds have been made (see *figure 3*). Using the aoristic tool the user can investigate the chronological distribution of the finds, noting that the significant increase of coin finds in the first half of the eighteenth century matches with overall increase in coins circulation in Finland during this period. An examination of the origin (by minting place and issuing ruler) of the coins with the bar/pie chart statistical tool reveals a fairly even distribution between Swedish and Russian coins, as befits a border region.

The faceted search makes it easy to locate the oldest coins from the area: a Swedish örtug from the late medieval period and a penny minted in Tartu, Estonia, between 1518 and 1528. On the map one can see exactly where these coins have been found: only a few kilometers from the modern centre of the town. The map view incorporates georeferenced historical maps, such as the Senate Atlas, the earliest high accuracy map of Finland (scale 1:21,000, compiled in 1870–1907).²⁹ From it we see that the coins had been recovered by the nineteenth-century road that led west towards the settlements of south-central Finland, which suggests its even more ancient character; supplementary cultural landscape data is available through archaeological monuments locations ingested from the FHA *Muinaisjäännösrekisteri* database. The essential numismatic information has been recorded and can be historically contextualised through the CoinSampo service.

Collections managers. From a collections manager's point of view, the faceted search function of CoinSampo is ideal for error detection. First, it is easy to see problem points related to the use of controlled vocabularies and ontologies. If recording work has not been done systematically, there might be several alternative entries describing the same coin type, historical period or other key concepts. These discrepancies must be corrected in the canonical database. Second, in CoinSampo one can sieve the numismatic material by period, ruler or mint origin, making it easy to detect erraneous records. A Viking-Age coin, for example, cannot also be dated to the 16th century. This might sound like a minor matter, but with thousands of objects and entries, many of which have been partly made through copy-pasting information from older records as a time-saving strategy, errors occur and are duplicated easily. Being able to detect these errors and to correct them is a remarkable improvement to data quality and the process of cataloguing of objects. This error detection can be done by the collection manager or by adding a simple report error function, available to any user of the service. Finally, by presenting large materials as an integrated whole, curators are able to critically examine and assess the composition of the entire collection. Lacunae, as well as particular strengths, in the body of the material are rendered more identifiable. This may assist future decisions with acquisitions policies or with regards to research on planned exhibitions.

6 DISCUSSION

Through Open Data semantic platforms such as CoinSampo, and other Sampo services, anyone can participate in cultural heritage data analysis. It is a stated aim in Finnish collections management policy planning to meaningfully open collections to the public, and the development of accessible data services is important for bringing this material into everyone's hands [46].³⁰ To meet this need, and especially given the emergence of archaeological metal-detecting and citizen science in Finland and elsewhere in Europe, we argue that there is an urgent need to continue developing semantic and data visualisation rich services in archaeological cultural

²⁹ http://mapwarper.onki.fi/layers/5

 $^{^{30}} https://www.museovirasto.fi/uploads/Arkisto-ja-kokoelmapalvelut/Julkaisut/kokoelmapolitiikka-2015-02-03.pdf$

heritage internationally to truly achieve FAIR data principles³¹ (Findable, Accessible, Interoperable and Reusable) in its dissemination. Most numismatic (or other archaeological cultural heritage) online data services incorporate only sparse data visualisation, typically a basic mapping tool. A few portals, such as the newly released ARIADNEplus portal³² or Artefacts.mom.fr³³ for European and other international archaeological data, already go a step further and also incorporate a few other data views such as chronological breakdowns.

Taking this yet further, what differentiates CoinSampo design philosophy from most other online numismatic databases is that it seeks to seamlessly integrate an intuitive faceted search tool with a larger selection of data analytics. These fast and easy tools become a part of an integrated search-and-analysis feedback process for analysing, modelling and visualising data in the portal. In Digital Humanities and semantic computing the related terms for these are Data Exploration and Knowledge Discovery, and Serendipity, as one may come across interesting and relevant structures in the data that one did not even expect to encounter [14, 20]. Even researchers involved in archaeological data sciences-driven Digital Humanities research will benefit from the tools provided – for example by using them to pre-filter complex and messy datasets or to produce quick analyses that point the way for more nuanced work in R, Python or dedicated statistical programmes as a considerable time-saving device.

We therefore emphasise the potential of new semantic technologies to enable research along several new axis. Combined with the data harmonisation initiatives of Nomisma.org, the CoinSampo approach has the potential to facilitate new scientific research on coin production and circulation at a large historical scale, and among societies and regions of very different levels of development of a monetised and bullion economy. This plays into larger research developments in the Humanities, as Geographic Information Systems-led and other computational approaches have demonstrated new possibilities in deploying archaeological citizen science generated 'big data' to better understand long-term economic change at different geographic scales and across long periods of study (e.g. [34, 35]).

We point to Viking Age coins as a case of special interest that illustrates this point. The fact that coins were (in Finland, as in many other parts of northern Europe) used as bullion and valued by their weight (in silver) rather than their denomination made Viking Age coin circulation international, creating socio-economic links between countries in Europe and beyond. This is exceptionally well encapsulated in the Finnish material, where the two main groups of coins used were Islamic dirhams and European pennies [43]. The region was located by major intercontinental travel routes that extended from the Atlantic seaboard via the Baltic Sea to the great river routes of eastern Europe and into western Asia. This underlines the necessity of bringing numismatic data together from transnational sources to better appreciate world-historical large-scale patterns in economic growth, travel and monetisation. These perspectives for assembling, investigating, understanding, harmonising and disseminating numismatic data at a large scale can be naturally extended to all metal-detected archaeological data, as has indeed been demonstrated by recent scholarship on metal-work material culture diffusion internationally across Europe [7].

The international use potential of LOD numismatic services extends among professional or non-professional users outside our current core target demographics. A good example are customs agents and police officers working in heritage protection. It is recognised that illegal trade in archaeological artefacts is an international problem, and that within Europe illegal metal-detecting contributes to it [6, 16]. It is difficult to monitor and trace this traffic, especially when objects (frequently coins) are sold across borders on websites such as eBay.com. Digital solutions to support schemes in tackling the problem, such as the partnership between eBay and the PAS,³⁴ are being developed but new initiatives continue to be required. The model for heritage data service

³¹https://www.fairdata.fi/en/about-fairdata/fair-principles

³²https://portal.ariadne-infrastructure.eu

³³https://artefacts.mom.fr/en/home.php

³⁴https://finds.org.uk/treasure/advice/schemeandebay

Fig. 4. Between two worlds: a pierced coin imitation, found in Nousiainen, Varsinais-Suomi in 2020. The obverse of the coin imitates a Byzantine miliaresion and the reverse an Islamic dirham. A similar imitation has been found in Estonia across the Gulf of Finland, in a hoard with a terminus post quem of 1089, suggesting a regional origin.

developed in CoinSampo could be used in the future to identify and provenance illicit artefacts by creating a vast, freely accessible and easily operable analysis-driven reference catalogues including object imagery for professionals involved in heritage crime law enforcement, and thereby helping to protect material culture from black market operators.

We furthermore aim the CoinSampo data service to be also useful for heritage professionals in museums who will then gain a better understanding of the particularities of their collections. LOD and semantic research will facilitate collections management in providing linked up-to-date data on the coins, the typological definitions of which are seldom absolute and might change through new finds. In Finland, but certainly also in other European countries, definitions of coin typologies found in old museum catalogues are often outdated and may derive from publications made in the 19th century. The exploitation of already frequently underused legacy archaeological collections and dataset resources has been further hindered by the requirement to master complex specialist statistical software. Compounding these problems are the very limited resources allocated to collections management and the small number of museum professionals working at collections, who seldom have the resources to extensively examine all the available material. An entire collection may rely on individual expertise – in Finland only one person is currently dealing with the numismatic material for both the National Museum and the Heritage Agency – which may not be a sustainable state of affairs on a longer term.

Semantically intelligent data services lessen the curatorial load and empower other to share in collections management. Though its potential is not yet realised in Finland and will form future work that the *DigiNUMA* and *SuALT* projects have pointed the way towards, citizen science-led information provided by amateurs (especially avocational detectorists, who often possess considerable scientific expertise on archaeological and numismatic typologies) can also be of great help in processing and updating records [48]. As volunteer recording programs such as PASt Explorers in the UK have shown [30], it is possible use an inclusive citizen science approach and public participation for much more than just collecting stray finds. The significant hurdle in is creating the data in the first place: in cataloguing, researching, providing information on findspots and in enriching the information

by contextualising the finds in their historical and archaeological landscapes. When open cultural heritage data services incorporate a straightforward feedback function, where interested users can not only examine but identify and provide further information on objects, this can lighten a heavy administrative burden.

7 CONCLUSION

In discussions of new digital cultural heritage solutions it is professional research and management needs that are typically placed in the forefront. This is unsurprising and understandable, given the communities and stake-holders involved. But for numismatic cultural heritage – as is the case for many other pre-modern object categories as well – the overwhelming majority of new data and finds that enter the collections are produced by members of the public, especially metal-detectorists. This mass of new data sets new targets for national and international public heritage platforms for meaningfully opening their data for learning and study. Advanced data visualisations and embedding record data within existing LOD frameworks will show the public the connectedness of national bodies of heritage material, situates them within local contexts enriched with historical information, and contextualises them within wider world-historical patterns.

Finnish heritage institutions are committed to enabling learning and new knowledge discovery for a wider body of interested participants. Cultural heritage belongs to all, both to citizens and the researchers, not to the keeper of the collection who controls access to it. From a traditional collections management perspective this is a substantive paradigm shift. To be fully effective, however, this model requires developing new heritage management workflows and approaches, as well as the technologies that allow those interested to responsibly engage with the material beyond simply reporting it. And in the wider social level of this ongoing conversation, access to cultural heritage is enshrined in the Faro Convention³⁵ as a human right. By building public accessible digital infrastructure that embraces and links together historical material culture not just as a closed national phenomenon but as transnational heritage, these participatory and international approaches counter narratives empowering exclusion and discrimination.

ACKNOWLEDGMENTS

The project has been funded by the Jenny and Antti Wihuri Foundation. CSC – IT Center for Science has provided computational resources.

REFERENCES

- I. Axelsen and Fredriksen C. 2023. Organically homegrown archaeological databases and their inherent 'messiness': The curious case of hobby metal detecting in Norway. *European Journal of Archaeology* (2023). Forthcoming.
- [2] Andrew Bevan. 2012. Spatial methods for analysing large-scale artefact inventories. Antiquity 86 (2012), 492–506. https://doi.org/10. 1017/S0003598X0006289X
- [3] R. Bland. 2005. A pragmatic approach to the problem of portable antiquities: the experience of England and Wales. Antiquity 79 (2005), 440–447. https://doi.org/10.1017/S0003598X00114218
- [4] A. Cooper and C. Green. 2016. Embracing the Complexities of 'Big Data' in Archaeology: the Case of the English Landscape and Identities Project. Journal of Archaeological Method and Theory 23 (2016), 271–304. https://doi.org/10.1007/s10816-015-9240-4
- [5] A. Cooper and C. Green. 2017. Big Questions for Large, Complex Datasets: approaching time and space using composite object assemblages. *Internet Archaeology* 45 (2017). https://doi.org/10.11141/ia.45.1
- [6] A. Daubney and L. Nicholas. 2019. Detecting Heritage Crime(s). What We Know about Illicit Metal Detecting in England and Wales. International Journal of Cultural Property 26 (2019), 139–165.
- [7] P. Deckers, S. Croix, and S. M. Sindbæk. 2021. Assembling the Full Cast: Ritual Performance, Gender Transgression and Iconographic Innovation in Viking-Age Ribe. *Medieval Archaeology* 65 (2021), 30–65.
- [8] P. Deckers, M. Lewis, and S Thomas (Eds.). 2016. Aspects of Non-professional Metal Detecting in Europe. De Gruyter. Topical Issue of Open Archaeology.

 $^{^{35}} https://www.coe.int/en/web/culture-and-heritage/faro-convention$

- [9] A. Dobat, T. Christiansen, M. Jessen, M. Henriksen, and P. Jensen. 2019. The Dime Project Background, Status and Future Perspectives of a User Driven Recording Scheme for Metal Detector Finds as an Example of Participatory Heritage. *Danish Journal of Archaeology* 8 (2019), 1–15.
- [10] A. Dobat, P. Deckers, S. Heeren, M. Lewis, S. Thomas, and A. Wessman. 2020. Towards a Cooperative Approach to Hobby Metal Detecting: The European Public Finds Recording Network (EPFRN) Vision Statement. *European Journal of Archaeology* 23:2 (2020), 272–292. https://doi.org/10.1017/eaa.2020.1
- [11] A. Dobat, S. Wood, B. Jensen, S. Schmidt, and A. Dobat. 2020. "I now look forward to the future, by finding things from our past..." Exploring the potential of metal detector archaeology as a source of well-being and happiness for British Armed Forces veterans with mental health impairments. *International Journal of Heritage Studies* 26, 4 (2020), 370–386.
- [12] F. Ehrnsten. 2019. Pengar för gemene man? Det medeltida myntbruket i Finland. Suomen keskiajan arkeologinen seura, Helsinki.
- [13] N. Ferguson. 2013. Biting the bullet: the role of hobbyist metal detecting within battlefield archaeology. Internet Archaeology 33 (2013). https://doi.org/10.11141/ia.33.3
- [14] G. Grolemund and H. Wickham. 2017. R for Data Science. O'Reilly Media.
- [15] E. Gruber and A. Meadows. 2021. Numismatic and Linked Open Data. ISAW Papers 20.6 (2021).
- [16] S. Hardy. 2016. Black Archaeology in Eastern Europe: Metal Detecting, Illicit Trafficking of Cultural Objects, and "Legal Nihilism" in Belarus, Poland, Russia, and Ukraine. Public Archaeology 15, 4 (2016), 214–237.
- [17] L. Holland-Lulewicz. 2021. From Categories to Connections in the Archaeology of Eastern North America. Journal of Archaeological Research 29 (2021), 537-579. https://doi.org/10.1007/s10814-020-09154-w
- [18] Eero Hyvönen. 2012. Publishing and using cultural heritage linked data on the semantic web. Morgan & Claypool, Palo Alto, CA. https://doi.org/10.2200/S00452ED1V01Y201210WBE003
- [19] E. Hyvönen, H. Rantala, E. Ikkala, M. Koho, J. Tuominen, B. Anafi, S. Thomas, A. Wessman, E. Oksanen, V. Rohiola, J. Kuitunen, and M. Ryyppö. 2021. Citizen Science Archaeological Finds on the Semantic Web: The FindSampo Framework. Antiquity 95 (2021), 1–7.
- [20] E. Hyvönen. 2019. Using the Semantic Web in Digital Humanities: Shift from Data Publishing to Data-analysis and Serendipitous Knowledge Discovery. Semantic Web 11 (2019), 187–193.
- [21] Eero Hyvönen. 2021. Digital Humanities on the Semantic Web: Sampo Model and Portal Series. Semantic Web Interoperability, Usability, Applicability (2021). http://www.semantic-web-journal.net/content/digital-humanities-semantic-web-sampo-model-and-portal-series Submitted.
- [22] Eero Hyvönen. 2022. Digital Humanities on the Semantic Web: Sampo Model and Portal Series. Semantic Web Interoperability, Usability, Applicability (2022). submitted.
- [23] Eero Hyvönen, Heikki Rantala, Esko Ikkala, Mikko Koho, Jouni Tuominen, Babatunde Anafi, Suzie Thomas, Anna Wessman, Eljas Oksanen, Ville Rohiola, Jutta Kuitunen, and Minna Ryyppö. 2021. Citizen Science Archaeological Finds on the Semantic Web: The FindSampo Framework. Antiquity, A Review of World Archaeology 95, 382 (August 2021), e24. https://doi.org/10.15184/aqy.2021.87
- [24] Esko Ikkala, Eero Hyvönen, Heikki Rantala, and Mikko Koho. 2022. Sampo-UI: A full stack JavaScript framework for developing semantic portal user interfaces. Semantic Web – Interoperability, Usability, Applicability 13, 1 (2022), 69–84. https://doi.org/10.3233/SW-210428
- [25] V. Immonen and J. Kinnunen. 2020. Metal detecting as a social formation: A longitudinal survey study from Finland. Journal of Social Archaeology 20, 3 (2020), 313–334.
- [26] T. Kurisoo, R. Ramme, and M. Smirnova. 2020. Discoveries made by the users of searching devices and the public in 2019 and the new Heritage Conservation Act. Arheoloogised Välitööd Eestis. Archaeological Fieldword in Estonia 2019 (2020), 263–287.
- [27] K. Leahy and M. Lewis. 2018. Finds Identified. An illustrated guide to metal detecting and archaeological finds. Greenlight Publishing, Witham.
- [28] K. Leahy and M. Lewis. 2018. Finds Identified II. Dress Fittings & Ornaments. Greenlight Publishing, Witham.
- [29] M. Lewis. 2016. A Detectorist's Utopia? Archaeology and Metal-Detecting in England and Wales. Open Archaeology 2 (2016), 126–139.
 [30] M. Lewis. 2021. The Portable Antiquities Scheme Annual Report 2020. British Museum, London.
- [31] J. C. Moesgaard. 2013. A stepping stone in the Baltic sea. Two millennia of coin finds and coin use a case study of Vester Herred, Borhnolm. The Journal of Archaeological Numismatics 8 (2013), 175–206.
- [32] M. Märcher, H. Horsnaes, and M. Vennersdorf. 2013. Reconstructing the context of metal detector finds from top soil. A case study of the redundant/abandoned churches of Oldrup and Uld, Jutland, Denmark. *The Journal of Archæological Numismatics* 3 (2013), 1–65.
- [33] R. Naismith. 2017. Medieval European coinage with a catalogue of the coins in the Fitzwilliam Museum, Cambridge, vol. 8: Britain and Ireland c. 400–1066. Cambridge University Press, Cambridge.
- [34] E. Oksanen and M. Lewis. 2020. Medieval Commercial Sites as seen through Portable Antiquities Scheme data. *Antiquaries Journal* 100 (2020), 1–32.
- [35] E. Oksanen and M. Lewis. 2023. Evaluating Transformations in Small Metal Finds Following the Black Death. Medieval Archaeology (2023). Forthcoming.
- [36] Eljas Oksanen, Heikki Rantala, Jouni Tuominen, MIchael Lewis, David Wigg-Wolf, Frida Ehrnsten, and Eero Hyvönen. 2022. Digital Humanities Solutions for Pan-European Numismatic and Archaeological Heritage Based on Linked Open Data. 353–361. https://ceur-

Semantic Solutions for Democratising Archaeological and Numismatic Data Analysis • 17

ws.org/Vol-3232/paper34.pdf

- [37] Heikki Ranta, Eljas Oksanen, and Eero Hyvönen. 2022. Harmonizing and Using Numismatic Linked Data in Digital Humanities Research and Application Development: Case DigiNUMA. In *The Semantic Web. ESWC 2022*. Springer-Verlag. https://seco.cs.aalto.fi/publications/ 2022/rantala-et-al-harmonizing-2022.pdf
- [38] H. Rantala, E. Ikkala, M. Koho, J. Tuominen, V. Rohiola, and E. Hyvönen. 2021. Using FindSampo Linked Open Data Service and Portal for Spatio-temporal Data Analysis of Archaeological Finds in Digital Humanities. In Proc. of the Digital Humanities in the Nordic Countries (DHN 2021). CEUR Workshop Proceedings. http://ceur-ws.org/Vol-2980/paper330.pdf
- [39] J. Richards and F. Niccolucci (Eds.). 2019. The Ariadne Impact. Archaeolingua, Budapest. https://doi.org/10.5281/zenodo.3476712
- [40] K. Robbins. 2012. Understanding the Impact of Sampling Bias Data Recorded by the Portable Antiquities Scheme. Ph. D. Dissertation. University of Southampton.
- [41] V. Rohiola. 2014. Metallinilmaisinlöydöt ja -harrastajat. Katsaus Kansallismuseon kokoelmien metallinilmaisinlöytöihin vv. 2011–2014. SKAS 2 (2014), 17–25.
- [42] R. Standley. 2016. Spinning Yarns: The Archaeological Evidence for Hand Spinning and its Social Implications, c ad 1200–1500. Medieval Archaeology 60:2 (2016), 266–299.
- [43] T. Talvio. 2002. Coins and coin finds in Finland AD 800-1200. Vol. 12. Suomen Muinaismuistoyhdistys, Vammala.
- [44] K. Tolle and D. Wigg-Wolf. 2020. Improving Data Quality by Rules: A Numismatic Example. In Digital Archaeologies, Material Worlds (Past and Present). Proc. of the 45rd Annual Conference on Computer Applications and Quantitative Methods in Archaeology, 193–201.
- [45] K. Uotila, G. Haggrén, M. Carpelan, and M. Helamaa. 2021. Uuden Torin kantilla 1650 1827 vol. 1: Turun Kauppatorin arkeologiset tutkimukset vuosina 2018-2021. Muuritutkimus.
- [46] Rohiola V. and Kuitunen J. 2022. Cooperative platforms for curating and managing digitally recorded finds data: Metal-detecting and FindSampo in Finland. In *The Oxford Handbook of Museum Archaeology*, A. Stevenson (Ed.). Oxford University Press, Oxford. https://doi.org/10.1093/oxfordhb/9780198847526.001.0001
- [47] A. Wessman and E. Oksanen. 2022. Metal-detecting data as citizen science archaeology. In Odes to Mika. Professor Mika Lavento's Festschrift as he turns 60 years old., V. Halinen, P. Heyd and K. Mannermaa (Eds.). The Archaeological Society of Finland, 293–302.
- [48] A. Wessman, S. Thomas, and V. Rohiola. 2019. Digital archaeology and citizen science. Introducing the goals and FindSampo and the SuALT project. SKAS 1 (2019), 1–17.
- [49] A. Wessman, S. Thomas, V. Rohiola, J. Kuitunen, E. Ikkala, J. Tuominen, and E. Koho, M. Hyvönen. 2019. A citizen science approach to archaeology: Finnish Archaeological Finds Recording Linked Open Database (SuALT). In Proc of the Digital Humanities in the Nordic Countries 4th Conference (DHN 2019).
- [50] David Wigg-Wolf and Frédérique Duyrat. 2017. La révolution des Linked Open Data en numismatique : Les exemples de nomisma.org et Online Greek Coinage. Archéologies numériques 17 (10 2017). https://doi.org/10.21494/ISTE.OP.2017.0171