
ONKI Ontology Server
—Extending Legacy Systems with

Ontology Mash-up Services

Kim Viljanen, Jouni Tuominen and Eero Hyvönen
Semantic Computing Research Group (SeCo)

Helsinki University of Technology and University of Helsinki
Laboratory of Media Technology

P.O. Box 5500, 02015 TKK, Finland
http://www.seco.tkk.fi/

first.last@tkk.fi

ABSTRACT
The Semantic Web is based on using shared ontologies for
enabling semantically disambiguated data exchange between
distributed systems on the web. This requires, from the on-
tology publisher’s viewpoint, efficient means for publishing
ontologies on the web to ensure the availability and accep-
tance of the ontologies. From the ontology user’s viewpoint,
support services are needed for utilizing ontologies easily
and cost-effectively in the users’ own systems that are typi-
cally legacy systems without ontology support. This paper
presents the ONKI ontology server for addressing these vi-
tal needs. For the publisher, ONKI provides a server and a
Simple Knowledge Organization (SKOS) compatible light-
weight ontology browser with ready-made web interfaces for
making ontologies available both for human and machine
users. For external legacy and other applications, ONKI
provides centralized ontology services for semantic disam-
biguation, concept finding, and concept fetching. A ma-
jor contribution of ONKI is to provide these services as
ready-to-use functionalities for creating “mash-up” applica-
tions very cost-efficiently. Two prototypes of the system—
ONKI-SKOS for all kinds of ontologies and ONKI-Geo for
geographical ontologies with a map mash-up interface—are
operational on the web and are currently being successfully
used in several pilot applications.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services; J.0 [Computer Applications]: Gen-
eral

General Terms
Ontology servers

Keywords
Ontologies, Semantic Web, Annotation, Legacy systems

1. ONTOLOGIES AS WEB 2.0 SERVICES

.

The Semantic Web1 introduces a metadata layer on top of
the World Wide Web infrastructure for describing its con-
tent and services in an explicit, machine “understandable”
way using ontologies [7, 22, 6]. When such content is avail-
able, semantically aware applications for e.g. searching and
browsing the distributed content can be created, as demon-
strated in e.g. various semantic portals [20, 11, 13]. Lots
of ontologies have been created and are available online in
RDF(S) and OWL form today. For example, the Swoogle2

[2] search engine index contains over 10,000 ontologies on
the web.

One of the main lessons learned in our work on creat-
ing semantic portals [11, 21, 14, 13] is that metadata in
data sources, such as museum databases, are often syntac-
tically heterogeneous and contain typos, are semantically
ambiguos, and are based on different vocabularies [9]. This
results in lots of tedious syntactic correction, semantic dis-
ambiguation, and ontology mapping work when making the
contents semantically interoperable, and when publishing
them on the Semantic Web. A natural solution to this
problem would be to enhance legacy cataloging and con-
tent management systems (CMS) with ontological annota-
tion functions so that the quality of the original data could
be improved and errors fixed in the content creation phase.
However, implementing such ontological functions in exist-
ing legacy systems may require lots of work and thus be
expensive, which creates a severe practical hinder for the
proliferation of the Semantic Web.

This relates to the more general challenge of the Seman-
tic Web today: ontologies are typically published as files
without much support for using them. The user is typically
expected to open the files using some ontology editor, such
as Protégé3, have a closer look of the ontology, and then
figure out whether it is of use to her. Once a suitable ontol-
ogy is found, lots of programming effort is usually needed
to utilize the ontology because it is likely to be used in a
specific application and software environment. Even if the
same ontological resources and structures could be shared by
different content providers for interoperability, like in [11],
it is not usually possible to share the functionalities of using
the ontologies across applications. Instead, each application

1http://www.w3.org/2001/sw/
2http://swoogle.umbc.edu/
3http://protege.stanford.edu/



tends to re-implement generic functions for utilizing ontolo-
gies, such as semantic autocompletion and disambiguation
[10], browsing and finding concepts, populating ontologies
with new instances, etc. It is like re-creating map services
from the scratch in different geographical web applications,
and not utilizing available services such as Google Maps4,
Yahoo Maps5, or Microsoft Live Search Maps6.

This paper presents the idea of publishing and utilizing
ontologies as lightweight services on the web for mash-up
applications. The idea is to make it possible to publish
an ontology, represented in standard SKOS7 or RDF(S)8

format, easily without practically any programming in an
ontology server called ONKI. ONKI provides the human
user with facilities for searching and browsing the ontology
semantically using an ordinary web browser. At the same
time, the services of ONKI are available to external systems
on the web as Ajax9 services for creating mash-up applica-
tions, in the same spirit as e.g. Google or Yahoo Maps are
used today. One of our ONKI servers, i.e., ONKI-Geo [8]
for geo-ontologies, is actually a “second-order” mash-up ser-
vice since its map visualization is a Google Maps mash-up.
ONKI is a key component of a general vision of creating
a national, open source Semantic Web infrastructure on a
national level in Finland [12].

In the following, we first ouline the notion of ontology
servers and discuss related work. The ONKI ontology server
and two prototype implementations of it are then presented.
After this, application of ONKI services in external appli-
cation is discussed by presenting two application scenarios.
Finally, contributions, results, and lessons learned are sum-
marized, and directions for further research outlined.

2. ONTOLOGY SERVERS
Ontology servers are intended for managing ontologies,

providing support for designing, choosing and accessing on-
tologies [1, 3, 16]. Different types of ontology servers and
their functionalities include the following:

Ontology search engines and ontology libraries. To sup-
port the finding and comparing ontologies when choosing
what ontologies to use in an application, specialised search
engines have been proposed [2]. Such systems maintain an
index of ontologies available on the web or a centralized li-
brary of the ontologies.

Ontology browsers. Perhaps the most obvious type of on-
tology services are browsers by which an ontology can be
published for human users to view. Practically all major
classification schemes, vocabularies, and ontologies can be
viewed on the web by using some kind of browser facili-
tating concept finding (search, indices) and visualizations
of the concepts’ semantic vicinity (broader terms, related
concepts etc.). For example, there are browsers for Word-
Net10, for the Getty vocabularies Union List of Artist Names

4http://maps.google.com/
5http://maps.yahoo.com/
6http://maps.live.com
7http://www.w3.org/2004/02/skos/core/
8http://www.w3.org/RDF/
9http://en.wikipedia.org/wiki/Ajax (programming)

10http://wordnet.princeton.edu/

(ULAN)11, Thesaurus of Geographic Names (TGN)12, and
Art and Architecture Thesaurus13, for medical thesauri and
ontologies, such as the Medical Subject Headings (MeSH)14,
etc.

Application development. Semantic web and ontology en-
abled applications require specialized functionalities includ-
ing ontological search, browsing and inference services. Ex-
amples of such servers and tools include the KAON Server [18],
the semantic web framework Jena15 for Java, and earlier ver-
sions of the ONKI Ontology Library Server [16].

Ontology development and maintenance. Ontologies are
complex information artifacts. Specialised tools for develop-
ing and maintaining them are needed especially when work-
ing collaboratively. The most widely used tool in the field
today is the Protégé editor, which contains a server ver-
sion for collaborative ontology development in addition to
the traditional stand-alone application. In addition to single
ontology developing, the problems of ontology mapping [5]
and maintaining consistency within the ontology [1] have
been addressed in the ontology server research.

Lightweight vs. heavyweight services. Ontology servers
support either lightweight or heavyweight ontologies where
lightweight ontologies support only a few ontological core
relations, such as subsumption rdfs:subClassOf, instantia-
tion rdf:type, and part-of relations, and where the ontol-
ogy server provides only limited support for inference (e.g.,
transitive closure over class and part-of hierarchies) [1]. The
lightweight ontologies are closer to thesauri and may be pre-
sented e.g. using SKOS. Heavyweight ontologies may use
e.g. description logic based systems such as OWL for defin-
ing concepts.

Our work contributes to previous work on ontology servers
in the following ways.

• Mash-up integration support. In our work, we concen-
trate on developing ontology server functionalities for
runtime usage, especially for annotation and semantic
search, which can be easily integrated with legacy and
new applications using the mash-up approach.

• Semantic autocompletion and disambiguation. Efficient
search functionalities are important when trying to
find the semantically correct concepts from large on-
tologies. Text search boosted up with semantic au-
tocompletion and disambiguation functionalities [10]
supports the user in finding the right concept by giv-
ing constant feedback of the query, and by helping in
disambiguating the intended concept meaning.

• Concept fetching. When using ontologies in combina-
tion with other applications, the idea of “copying” or
“transfering” concepts between applications is impor-
tant. We propose a concept fetching functionality for
moving concepts from the ontology server to the tar-
get application, such as a legacy cataloguing or CMS
system.

11http://www.getty.edu/research/conducting research/
vocabularies/ulan/

12http://www.getty.edu/research/conducting research/
vocabularies/tgn/

13http://www.getty.edu/research/conducting research/
vocabularies/aat/

14http://www.nlm.nih.gov/mesh/MBrowser.html
15http://jena.sourceforge.net



• Concept collecting. Usually no single concept describes
all the aspects of the entity that is being described with
a certain metadata property such as dc:subject. There-
fore, it should be possible to collect multiple concepts
from the ontology server and return these as a combi-
nation value in a specific metadata field to the legacy
system.

• Domain-specific user interfaces. The concepts of an
ontology are typically visualized as a graphical tree or
graph visualization of the currently selected concept
with its semantic vicinity [4]. As a complement to the
abstract visualization of ontological concepts, we pro-
pose presenting the content also with domain-specific
interfaces, such as a map interface for browsing a geo-
graphical ontology.

3. ONKI SERVICE FUNCTIONALITIES
The national semantic web infrastructure model being

built by the FinnONTO project in Finland [12] argues that
ontology services are needed for three major user groups:

1. Ontology developers need a collaborative ontology de-
velopment, versioning, and publishing environment for
ontologies [17].

2. Content indexers need services for finding the desired
annotation concepts and for transporting the corre-
sponding URIs and other data from the ontology ser-
vice into external applications.

3. Information searchers need services for finding and dis-
ambiguating keyword meanings, and for transporting
the corresponding URIs into search engines and other
applications.

The ONKI Ontology Server is used for publishing ontolo-
gies as ready-to-use services for humans and machines. It is
targeted for content indexers and information searchers to
use for concept disambiguation, searching, and fetching.

3.1 ONKI Functionalities
The main functionalities of the ONKI service are 1) a web

widget for concept searching and fetching, which is described
in this section, and 2) domain-specific ONKI Browsers. The
ONKI Browsers are user interfaces for searching and brows-
ing ontologies, and they can be used independently or ac-
cessed via the web widget. Two ONKI Browser implemen-
tations are described later on in this paper.

The general idea of the proposed mash-up approach is to
provide the developer with a widget that can utilize ONKI
services with minimal changes in the legacy system. In the
case of an HTML-based legacy system, just a few lines of
JavaScript code need to be added on the HTML page. In the
case of other user interface technologies, the Web Service16

interface can be used. The widget solves the problem of
getting right URIs into the application or a database; the
actual usage of the acquired semantically correct data is in
the responsibility of the target application. This kind of a
simple way for getting URIs is crucial e.g. in various content
creation systems for the semantic web, such as [9, 13].

The ONKI web widget on an HTML form is illustrated
in figure 1. The widget enables the user, e.g. a content

16http://www.w3.org/TR/ws-arch/

annotator, to find correct ontological concepts to describe
the content to be annotated. The user is provided with
searching and browsing capabilities to aid this task. When
the correct concept is found, its URI and label can be fetched
to the target application. In addition to annotating content,
the web widget can be used for supporting other tasks where
ontological concepts need to be searched and fetched, such
as content searching.

Figure 1: ONKI Concept Search Widget.

Part 1 of figure 1 shows the default components of the
widget. The ontology selector can be used to change the
ontology used in search. At the moment, there are 14 dif-
ferent vocabularies and ontologies to choose from, including
e.g. MeSH, Iconclass17, the General Finnish Upper Ontol-
ogy YSO18 and HPMULTI19. The search field is used for in-
puting the query string. The language of concept labels used
in matching the query string can be chosen by using the lan-
guage selector. The choice of languages depends on the on-
tology selected. For example, for YSO, English and Swedish
is supported in addition to Finnish, and the Finnish Geo-
ontology20 can be used in Finnish, Swedish, and in three

17http://www.iconclass.nl/
18http://www.seco.tkk.fi/ontologies/yso/
19The European multilingual thesaurus on health promotion
in 12 languages http://www.hpmulti.net/

20http://www.seco.tkk.fi/ontologies/suo/



dialects of Samish spoken in Lapland. It is possible to use
all languages simultaneously by selecting the option “all”.
The “Open ONKI Browser” button is used for opening the
ONKI browser in a separate window.

The widget supports concept fetching to the target appli-
cation. This can be done either by semantic autocompletion
of the input field, or by pushing the “Open ONKI Browser”
button for opening the ONKI Browser:

• Using semantic autocompletion. In part 2 of figure 1,
the user is typing a search string to the search field
of the mash-up component. The system then dynami-
cally performs a query after each input character (here
“s-h-i-p-...”) to the ONKI service, which returns the
concepts whose labels match the string, given the lan-
guage selection. The results of the query are shown
in the web widget’s result list below the input field.
The desired concepts can be selected from the results.
When selected, the concept’s URI and label are fetched
into the target application. In part 3 of figure 1, the
user has selected “ship travel” from the English ver-
sion of the YSO ontology, and the concept’s URI and
label are stored onto the HTML page with the label
shown, together with links change and [X]. In case of
a legacy application, which is not capable of handling
URIs, only the labels of concepts can be fetched. By
clicking the change link, it is possible to change the
selected concept by using the ONKI browser (whose
usage will be illustrated below). The annotation can
be removed by clicking s the link [X].

• Using ONKI Browser. The alternative for using the
autocompletion search, is to use the “Open ONKI
Browser” button to search and browse concepts in a
new ONKI Browser window. When the desired con-
cept has been found by searching or browsing the on-
tology, the concept’s URI and label are fetched into
the application by pressing the ”Fetch concept” but-
ton on the ONKI Browser page corresponding to the
concept.

When the URI of a desired annotation concept is fetched,
it is stored in a concept collector. The widget provides a
default concept collector, but the concept collector can also
be implemented in the target application. The default con-
cept collector shows the fetched concepts in the widget’s
user interface, and also stores them in hidden input fields.
When the form is submitted, the hidden input fields can
be processed by the target application. This way the URIs
of the annotation concepts can be transfered, e.g., into the
database of the application. The body of a HTTP POST re-
quest message used to submit the form’s hidden fields to the
target application server looks like the following example be-
low where two URIs are selected as values of the “dc:subject”
field.

dc:subject=http://www.yso.fi/onto/yso/p14629&

dc:subject=http://www.yso.fi/onto/yso/p8038

3.2 Implementation
The web widget is implemented as an easily integrable

Ajax component. The widget uses HTML and JavaScript
for the user interface components, and the Direct Web Re-
moting (DWR)21 library for the asynchronous cross-domain

21http://getahead.org/dwr

Ajax communication between the web browser and the on-
tology server. The DWR library enables the straightforward
use of ontology server’s Java methods in the JavaScript code
in the web browser.

An input field in e.g. a cataloging system of a museum
could be defined like this:

<input id="dc:subject"/>

The web widget can be integrated into this example sys-
tem by adding the following lines of HTML/JavaScript code
into the HTML page.

1)

<script language="javascript" type="text/javascript"

src="http://www.yso.fi/onki.js"></script>

2)

<input id="dc:subject"

onkeyup="onki[’yso’].search()"/>

The code line 1) is used to load the needed ONKI li-
brary files and is typically added to the HEAD section of
the HTML page. The code line 2) is added to the BODY
section of the HTML page to the locations where the ONKI
widget component is desired. The string “yso” in the code
line 2) refers to the ontology server instance used in the
search.

When a page containing the integration code is accessed,
the ONKI JavaScript library files are loaded into the web
browser. When loaded, the JavaScript library generates the
user interface components of the web widget into the desired
locations of the page. In this way, plain input text fields are
transformed into ONKI web widgets.

The web widget can be customized e.g. by hiding the
ontology or the language selection menus, the search field,
or the “Open ONKI Browser” button. The desired cus-
tomizations can be defined in the integration code22. The
appearance of the web widget can be modified by CSS rules,
e.g. by using the class attributes of the HTML elements of
the widget, overriding the default ones.

We have defined an ONKI Java API that has to be imple-
mented by the domain-specific ONKI servers for them to be
used with the web widget. The API includes the following
methods:

• search(query, lang, maxHits, type, parent) - for search-
ing for ontological concepts.

• getLabel(URI, lang) - for fetching a label for a given
URI in a given language.

• getAvailableLanguages() - for querying for supported
languages of an ontology.

By implementing the shared API, different domain-specific
ONKI servers can be used by one single web widget. The
widget can even be used to query multiple ontology servers
within the same query.

In addition for the use of the web widget, the ONKI API
has been published as a Web Service conforming to the
SOAP23 standard. The Web Service API can be used to

22http://www.yso.fi/onki/yso/app/annotation/integration-
howto en.html

23http://www.w3.org/TR/soap12-part1/



implement user interface components for applications using
other user interface technologies than HTML.

The ontologies in an ONKI service are published also as
RDF files to support e.g. semantic web applications that
perform complex ontological inferencing. Such applications
need access to complete ontology files to be able to process
the ontologies in their entirety. When a new version of an
ontology is to be published in an ONKI service, the ontology
file is tagged with a current date. This date forms part of
the URI used for identifying the corresponding version of
the ontology file, and this URI can be used as an URL for
locating and downloading the RDF file. For every published
ontology there is also a static URI which identifies the latest
version of the ontology’s source file.

4. TWO ONKI SERVERS
Two domain-specific ONKI Servers have been implemented

conforming to the general ONKI functionalities described in
the previous section. ONKI-SKOS is intended for lightweight
ontologies and ONKI-Geo [8] for geo-ontologies. In the fol-
lowing these two systems are shortly described.

4.1 ONKI-SKOS Service
Most of the ontologies developed in the FinnONTO project

can be described as lightweight, theusaurus-like ontologies.
ONKI-SKOS is an implementation of a general ontology
service supporting using thesaurus-like ontologies especially
in content indexing. ONKI-SKOS can be used to browse,
search and visualize any vocabulary conforming to the SKOS
recommendation under preparation at W3C, and RDF(S)
ontologies. ONKI-SKOS does simple reasoning (e.g. tran-
sitive closure over class and part-of hierarchies). The im-
plementation has been piloted using various ontologies, e.g.
MeSH, the General Finnish Upper Ontology YSO and Icon-
class.

Various configuration properties are specified to enable
ONKI-SKOS to process the ontologies as desired. The con-
figurable properties include the ontological properties used
in hierarchy generation, the properties used to label the con-
cepts, the concept to be shown in the default view and the
default concept type used in restricting the searches.

W3C’s SKOS Core24 is a vocabulary for expressing basic
structure and contents of concept schemes, such as thesauri,
classification schemes and taxonomies. The concept schemes
can be expressed as RDF graphs by using RDFS classes and
RDF properties specified in the SKOS Core. SKOS Core
defines a suitable model for expressing lightweight ontolo-
gies, such as those developed in the FinnONTO project,
and therefore ONKI-SKOS is implemented supporting load-
ing of ontologies structured as SKOS concept schemes, with
minimal configuration needs. To accomplish this, the SKOS
Core structures are configured in ONKI by default. Only the
location path of the ontology file to be loaded needs to be
configured manually. Because of this strong SKOS binding
we call our implementation of the ontology server intended
for thesauri and lightweight ontologies ONKI-SKOS.

ONKI-SKOS Browser (see figure 2) is the graphical user
interface of the ONKI-SKOS. It consists of three main com-
ponents: 1) semantic autocompletion concept search, 2) con-
cept hierarchy and 3) concept properties. When typing text
to the search field, a query is performed to match the con-

24http://www.w3.org/2004/02/skos/core/

cepts’ labels. The result list shows the matching concepts,
which can be selected for further examination.

When a concept is selected, its concept hierarchy is visu-
alized as a tree structure. ONKI-SKOS Browser supports
multi-inheritance of the concepts (i.e. a concept can have
multiple parents). Whenever a multi-inheritance structure
is met, a new branch is formed to the tree. This leads to
cloning of nodes, i.e. a concept can appear multiple times
in the hierarchy tree. This increases the overall size of the
tree, thus reducing the clarity of the visualization method.
The properties of the selected concept are shown in the user
interface.

Figure 2: ONKI-SKOS Browser.

When ONKI-SKOS Browser is accessed with no URL pa-
rameters, the concept configured to be shown in the default
view is selected, and information related to it is shown in the
browser. Usually this resource is the root resource of the on-
tology, if the ontology forms a full-blown tree hierarchy with
one single root. In case of a forest of separate smaller sub-
hierarchies, the uppermost concepts of the subhierarchies
can be added as children of a virtual root resource. This
way all the concepts are in one full-blown hierarchy and
can be accessed by browsing the concept hierarchy view. In
SKOS concept schemes the root resource is the resource rep-
resenting the concept scheme itself, i.e. the resource of type
skos:ConceptScheme.

The name of the ontology, shown in the top of the ONKI-
SKOS Browser, is fetched from the ontology being currently
browsed. In case of SKOS Core, the name is the label of
the resource representing the concept scheme. Similarly, in
RDF(S)/OWL ontologies, the name is the label of the re-
source representing the ontology itself (its URI is the names-
pace URI of the ontology).

The concept hierarchy of a concept is generated by travers-
ing the configured transitive properties. In SKOS Core these
properties are skos:narrower and skos:broader. The children
nodes of the root resource of a concept scheme are the top
concepts of the concept scheme. They are defined with prop-
erty skos:hasTopConcept.

Labels of concepts are needed in visualizing search re-
sults, concept hierarchies, and related concepts in the con-
cept property view. The label to be attached to a concept is
the value of the configured property used for labeling con-
cepts. In SKOS this property is skos:prefLabel. The label is
of the same language as the currently selected user interface
language, if such a label exists. Otherwise any label is used.

The semantic autocompletion search of ONKI-SKOS works
by searching for concepts whose labels match the search



string. To support this, the labels of the concepts are in-
dexed. The indexed properties can be configured. In SKOS
these properties are skos:prefLabel, skos:altLabel and
skos:hiddenLabel. When the user searches e.g. with the
search term “cat”, all concepts which have one of the fore-
mentioned properties with values starting with the string
“cat” are shown as the search results. The autocompletion
search also supports wildcards, so a search with a string
“*cat” returns the concepts which have the string “cat” as
a part of their label.

The search can be limited to certain types of concepts
only. To accomplish this, the types of the concepts (which
are expressed with property rdf:type) are indexed. It is also
possible to limit the search to a certain subtree of the con-
cept hierarchy by restricting the search to the children of a
specific concept. Therefore also the parents of concepts are
indexed.

A concept can be selected to be visualized by clicking on
a corresponding link in the search results, a concept link
in the concept hierarchy, or a concept link shown as a prop-
erty value in the property views. In a concept property view,
all properties selected in the configuration used are shown.
These properties consist of RDF statements that have the
selected concept as a subject. In SKOS ontologies the prop-
erty skos:hiddenLabel is not shown in the view because it is
intended only for free text search operations, not for visual
displays of resources.

In several cases, concepts may have some interesting prop-
erties, which are not represented as direct properties of the
concept, i.e., they are not expressed by simple RDF state-
ments that have the concept as a subject. For example, con-
cepts can be grouped in SKOS Core to collections that are
expressed as concepts of the type skos:Collection, and the
property skos:member is used to indicate the members of a
collection. Thus, when a concept of the type skos:Collection
is selected, the members of the collection should be shown
in the concept property view. Also, it is beneficial to show
the property skos:member inversed in the concept property
view of a concept that belongs to a collection, so that the as-
sociated collection can be seen. Support for showing similar
inverse or otherwise indirect properties can be implemented
in each separate case with little extra of work by creating a
new Java class, which we call a “property fiddler”.

ONKI-SKOS is implemented as a Java Servlet using the
Jena Semantic Web Framework25, the DWR library and the
Lucene26 text search engine.

4.2 ONKI-Geo Service
ONKI-Geo [8] is an ontology service specialized for ge-

ographical data. It is based on the Finnish Place Ontol-
ogy SUO (Suomalainen Paikkaontologia) [15] being devel-
oped in FinnONTO. The SUO ontology has currently been
populated with 1) place information from the Geographic
Names Register (GNR) provided by the National Land Sur-
vey of Finland27 and with 2) place information from the
GEOnet Names Server (GNS)28 maintained by the National
Geospatial-Intelligence Agency (NGA) and the U.S. Board
on Geographic Names (US BGN). GNR contains about multi-
lingual 800,000 resources of natural and man-made features

25http://jena.sourceforge.net/
26http://lucene.apache.org/java
27http://www.maanmittauslaitos.fi/
28http://earth-info.nga.mil/gns/html/

in Finland, including data such as place type or feature type
and the coordinates of a place. The GNS register contains
similar information of about 4,100,000 places around the
world.

The ONKI-Geo Browser is depicted in figure 3. For visu-
alization of the places, the ONKI-Geo Browser uses Google
Maps and its API for mash-ups. The application is useful
e.g. for disambiguating homonymous place names: there are
e.g. hundreds of places in Finland with the name “Isosaari”.
This kind of service is needed when annotating resources us-
ing unambiguous place identifiers (URIs), or with coordinate
information about arbitrary points or polygons, and when
searhing for information about particular places.

ONKI-Geo Browser contains several facets for narrowing
the search. One of the facets is the map on which one can
draw a polygon that defines the area in which to search.
The other facets are an ontology of geographic feature types
to search (e.g., lake, city, etc), a list of languages of the
place names to search, and a substring of the name of the
place. All these facets form a combination of narrowing
search criteria by which to search the ONKI-Geo database
for place instances.

Figure 3: ONKI-Geo Browser. Search can be con-
strained by using the facets on the left or by drawing
a polygon on the map. By pushing the “Select” but-
ton in the left bottom corner, the found concept or
selected coordinate information is transferred into
the mash-up widget in a legacy application.

In our work, ONKI-Geo Browser was integrated with the
ONKI mash-up widget by implementing the DWR inter-
face29. By selecting the ontology “paikka” in the ontol-
ogy selector in figure 1 (and optionally the language), se-
mantic autocompletion can be performed using ONKI-Geo
Browser’s autocompletion function. In the same way, push-

29Integration at the ONKI-Geo side was implemented by
Robin Lindroos and Tomi Kauppinen.



1. The form without the ONKI widgets 2. The form after adding the ONKI widgets

Figure 4: A museum cataloguing system before and after integrating the ONKI widgets.

ing the “Open ONKI Browser” button opens in this case
the ONKI Geo-Browser of figure 3 with an additional “Fetch
concept” button. The communication between the widget
and the geo-ontology server is implemented using the same
Ajax techniques as when connecting the widget with the
ONKI-SKOS server (figure 2).

5. INTEGRATING ONKI WITH APPLICA-
TION SYSTEMS

In the following we describe use cases of the ONKI system.

5.1 Integrating ONKI with a Cataloging Sys-
tem

To demonstrate how to add ONKI functionalities to a
legacy system, we created a simple web form (part 1 of fig-
ure 4) presenting the MuseumFinland [11] metadata fields.
By adding the ONKI Concept Search Widget to the fields
filled with ontological resources (URIs), the possibility of
using ontologies in annotating museum collection items is
made possible. Part 2 of figure 4 depicts the original form
after adding the widgets. The changes can be done very
fast, in few minutes.

After this the form can be used for creating semantically
annotated metadata. Metadata field values are stored into
collectors from where they can be stored into a database.
If the form is attached to a legacy system, URIs or terms
fetched from ONKI have to either be in existing tables, or
the underlying database system has to be modified to han-

dle new kind of information. This depends on the legacy
application.

In addition to storing data from a web form, also the
functionality of filling up a form based on a database is of-
ten needed, for example, when editing an existing metadata
record. In such cases, the data from the database has to
be read into the collector that can be used by the ONKI
widget. In below, we present a more advanced example for
this kind of ONKI service usage.

5.2 An Annotation Editor Based on ONKI On-
tology Services

To test the ONKI solution, we have integrated ONKI wid-
gets and the mash-up functionalities to the browser-based
annotation editor SAHA30 [19, 23]. SAHA is a generic
annotation system supporting distributed collaboration in
creating annotations, and hiding the complexity of the an-
notation schema and the domain ontologies from the anno-
tators. SAHA adapts flexibly to different metadata schemas,
which makes it suitable for different applications. Support
for using ontologies is based on ONKI ontology services. The
system is being tested in various practical semantic portal
projects. Figure 5 illustrates the usage of ONKI in SAHA.

The metadata field elements are implemented using the
standard ONKI mash-up widget, as discussed above. De-
pending on the field, different ONKI servers are used as
specified in the SAHA configuration in use. In this case the

30http://www.seco.tkk.fi/services/saha/



Finnish General Upper Ontology YSO [12], published as an
ONKI service31, is used and has been added as a mash-
up component to SAHA for selecting annotation concepts.
SAHA can also make use of our automatic text extraction
component POKA in extracting potential annotations from
web resources [19].

Annotations created with SAHA are stored in a central-
ized database, from which they can be retrieved for editing
or to be used in applications such as semantic portals. It
is possible to view and edit existing annotations by read-
ing the metadata fields in corresponding widget collectors.
Furthermore, SAHA supports population of its own anno-
tation ontologies by new resources. In this way, different
persons creating annotations collaboratively can share new
resources created by anyone, e.g., instances of new works of
art or other artifacts. ONKI service ontologies themselves
cannot be populated with new resources wihout reloading a
new version of the ontology by the service provider.

ONKI-SKOS serverYSO
ontology

SAHA annotation editor

ONKI Browser

Dynamic inclusion of 

the ONKI web widget

link

Figure 5: ONKI integrated with the SAHA annota-
tion editor.

5.3 ONKI Concept Fetching for Content Search-
ing

A complementing use-case of concept fetching for annota-
tion purposes is to use the ONKI Concept Search Widget in
content searching in legacy systems. The concepts can be se-
lected from ontologies and disambiguated using the Concept
Search Widget. After this, the URIs of the chosen concepts
can be used in the query to the underlying legacy system.
If the content has been annotated using URIs, they can be
matched to the query URIs using string matching if each
concept has a single URI.

6. DISCUSSION
The main contribution of this paper is to present the idea

of publishing ontologies as mash-up services that can be in-
tegrated in a lightweight fashion to legacy systems on the
user interface level. To demonstrate the applicability of the
idea, we presented the ONKI service and two implemen-
tations of the ONKI interface: the general ontology server
ONKI-SKOS and the geographical ontology server ONKI-
Geo. The two ONKI implementations also demonstrated
the idea of creating domain specific user interfaces to better
support the usage of different types of ontologies. A prac-
tical contribution of the paper was to introduce the idea

31http://www.yso.fi/onto/yso/

of concept fetching between applications and the need for
concept collecting when using an ontology server for anno-
tation purposes. Finally, semantical autocompletition was
proposed and implemented in the user interface components
to provide an efficient method for finding and disambiguat-
ing concepts.

A lesson learned from implementing the concept fetching
functionality as a web browser application was that special
gimmics is needed to transfer data between browser windows
loaded from different domains. Despite security is an impor-
tant concern, we suggest, that browsers should provide some
standardized solution for communication between domains.

In the near future, we plan to investigate how the auto-
completion concept search component could support show-
ing relations between concepts. This would help the user
in disambiguating concept meanings without opening the
ONKI Browser. In the current implementation, the mash-
up components are created using HTML and JavaScript.
However, in some legacy systems also other user interface
environments should be supported, e.g., a Java Swing com-
ponent connected to ONKI using the web service API. Our
current focus has been on supporting semantic annotation.
However, mash-up ontology support for content search in
legacy systems will be researched in more detail. Finally,
according to our vision of a national ontology service, the
ontologies in such a service should be extensively and mu-
tually interlinked to support creating cross-domain applica-
tions. Therefore, the question of how to support developing
and using mutually interlinked ontologies is on our research
aganda, too.

7. ACKNOWLEDGMENTS
We thank Ville Komulainen for his work on the first ver-

sion of the ONKI server, and Robin Lindroos and Tomi
Kauppinen for collaboration in ONKI-Geo development.
Our research is a part of the National Semantic Web Ontol-
ogy Project in Finland32 (FinnONTO) 2003–2007 funded by
the Finnish Funding Agency for Technology and Innovation
(Tekes) and 36 companies and public organizations.

8. REFERENCES
[1] M. N. Ahmad and R. M. Colomb. Managing

ontologies: a comparative study of ontology servers. In
ADC ’07: Proceedings of the eighteenth conference on
Australasian database, pages 13–22, Darlinghurst,
Australia, Australia, 2007. Australian Computer
Society, Inc.

[2] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost,
Y. Peng, P. Reddivari, V. Doshi, and J. Sachs.
Swoogle: a search and metadata engine for the
semantic web. In CIKM ’04: Proceedings of the
thirteenth ACM international conference on
Information and knowledge management, pages
652–659, New York, NY, USA, 2004. ACM Press.

[3] Y. Ding and D. Fensel. Ontology library systems: The
key to successful ontology reuse. In Proceedings of
SWWS’01, The first Semantic Web Working
Symposium, Stanford University, USA, pages 93–112,
2001.

[4] P. Eklund, N. Roberts, and S. Green. Ontorama:
Browsing rdf ontologies using a hyperbolic-style

32http://www.seco.tkk.fi/projects/finnonto/



browser. In First International Symposium on Cyber
Worlds, CW02, Theory and Practices, IEEE Press.,
pages 405–411, 2002.

[5] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, Berlin, 2007.

[6] D. Fensel. Ontologies: Silver bullet for knowledge
management and electronic commerce (2nd Edition).
Springer-Verlag, 2004.

[7] T. R. Gruber. A translation approach to portable
ontology specification. Knowledge Acquisition,
5(2):199–220, June 1993.

[8] E. Hyvönen, R. Lindroos, T. Kauppinen, and
R. Henriksson. An ontology service for geographical
content. In Poster Proceedings of the 6th International
Semantic Web Conference (ISWC/ASWC 2007),
Busan, Korea, Nov 2007.

[9] E. Hyvönen, M. Salminen, S. Kettula, and M. Junnila.
A content creation process for the Semantic Web,
2004. Proceeding of OntoLex 2004: Ontologies and
Lexical Resources in Distributed Environments, May
29, Lisbon, Portugal.

[10] E. Hyvönen and E. Mäkelä. Semantic autocompletion.
In Proceedings of the first Asia Semantic Web
Conference (ASWC 2006), Beijing. Springer-Verlag,
New York, August 4–9 2006.

[11] E. Hyvönen, E. Mäkelä, M. Salminen, A. Valo,
K. Viljanen, S. Saarela, M. Junnila, and S. Kettula.
Museumfinland—Finnish museums on the semantic
web. Journal of Web Semantics, 3(2):25, 2005.

[12] E. Hyvönen, K. Viljanen, E. Mäkelä, T. Kauppinen,
T. Ruotsalo, O. Valkeapää, K. Seppälä, O. Suominen,
O. Alm, R. Lindroos, T. Känsälä, R. Henriksson,
M. Frosterus, J. Tuominen, R. Sinkkilä, and J. Kurki.
Elements of a national semantic web
infrastructure—case study finland on the semantic
web (invited paper). In Proceedings of the First
International Semantic Computing Conference (IEEE
ICSC 2007), Irvine, California, September 2007.
IEEE Press, forth-coming.

[13] E. Hyvönen, K. Viljanen, and O. Suominen.
Healthfinland—Finnish health information on the
semantic web. In Proceedings of the 6th International
Semantic Web Conference (ISWC 2007), Busan,
Korea. Springer-Verlag, Nov 2007.

[14] T. Känsälä and E. Hyvönen. A semantic view-based
portal utilizing Learning Object Metadata, August
2006. 1st Asian Semantic Web Conference
(ASWC2006), Semantic Web Applications and Tools
Workshop.

[15] T. Kauppinen, R. Henriksson, J. Väätäinen,
C. Deichstetter, and E. Hyvönen. Ontology-based
modeling and visualization of cultural spatio-temporal
knowledge. In Developments in Artificial Intelligence
and the Semantic Web. Proceedings of the 12th
Finnish AI Conference STeP 2006, October 26–27
2006.

[16] V. Komulainen. Public services for ontology library
systems. Master’s thesis, University of Helsinki,
Department of Computer Science, January 2007.

[17] V. Komulainen, A. Valo, and E. Hyvönen. A tool for
collaborative ontology development for the semantic
web. In Proc. of the International Conference on

Dublin Core and Metadata Applications (DC 2005),
Nov 2005.

[18] D. Oberle, R. Volz, B. Motik, and S. Staab. An
extensible ontology software environment. In S. Staab
and R. Studer, editors, Handbook on Ontologies,
International Handbooks on Information Systems,
chapter III, pages 311–333. Springer, 2004.

[19] O. A. Onni Valkeapää and E. Hyvönen. Efficient
content creation on the semantic web using metadata
schemas with domain ontology services (system
description). In Proceedings of the European Semantic
Web Conference ESWC 2007, Innsbruck, Austria.
Springer, June 4–5 2007.

[20] D. Reynolds, P. Shabajee, and S. Cayzer. Semantic
Information Portals. In Proceedings of the 13th
International World Wide Web Conference on
Alternate track papers & posters, New York, NY,
USA, May 2004. ACM Press.

[21] T. Sidoroff and E. Hyvönen. Semantic e-goverment
portals - a case study. In Proceedings of the
ISWC-2005 Workshop Semantic Web Case Studies
and Best Practices for eBusiness SWCASE05, Nov
2005.

[22] S. Staab and R. S. (eds.). Handbook on ontologies.
Springer-Verlag, 2004.

[23] O. Valkeapää and E. Hyvönen. A browser-based tool
for collaborative distributed annotation for the
semantic web. In Proceedings of the Semantic
Authoring and Annotation Workshop, 5th
International Semantic Web Conference, November
2006.


