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1 Introduction

Taxonomic concept hierarchies constitute an important part of the RDF(S) [BG]
and OWL [SWM] ontologies used on the semantic web. For example, subsumption

hierarchies based on the subClassOf or partOf properties are widely used.

Europe Asia

La;WJIand |

World
Finland
Norway |l sweden

Russia

EU

World 37*23 = 851

Europe 15*23 = 345

Asia 18*23 = 414

EU 8*21 =168

Sweden 4*9 = 36

Finland 4*9 = 36

Norway 4*9 = 36

Lapland 13*2 = 26 Lapland&(Finland | Sweden | Norway) = 8 Lapland&Russia = 2 Lapland&EU = 16
Russia 18*19 = 342 Russia&Europe = 57 Russia&Asia = 285

Figure 1: A Venn diagram illustrating countries, areas, their overlap, and size in the

world.

Relations among real life entities are always a matter of degree. Subsumption hi-
erarchies, on the other hand, are based on crisp logic. Thus, they fail to describe
important aspects of real life concepts, and relations between them. This is an im-
portant drawback, that hinders the usability of ontology based information retrieval
systems [WAS03].

The Venn diagram of figure 1 illustrates some countries and areas in the world.
A crisp partOf meronymy cannot represent the partial overlap between the geo-
graphical area Lapland and the countries Finland, Sweden, Norway, and Russia, for
example. A frequently used way to model the above situation would be to represent
Lapland as the direct meronym of all the countries it overlaps, as in figure 2. This

structure, however does not represent the situation of the map correctly, because
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Lapland is not subsumed by anyone of these countries. In addition, the transitivity
of the subsumption relation disappears in this structure. See, for example, the re-
lationship between Lapland and Asia. In the Venn diagram they are disjoint, but

according to the taxonomy, Lapland is subsumed by Asia.

Wrld
/
Eur ope Asi a
EU
Fi nl and Sweden Nor way Russi a
Lapl and

Figure 2: A standard semantic web taxonomy based on the Venn diagram of figure
1.

Another way would be to partition Lapland according to the countries it overlaps,
as in figure 3. Every part is a direct meronym of both the respective country and
Lapland. This structure is correct, in principle, but it too does not contain enough
information to make inferences about the degrees of overlap between the areas. It
does not say anything about the sizes of the different parts of Lapland, and how

much they cover of the whole area of Lapland and the respective countries.

According to figure 1, the size of Lapland is 26 units, and the size of Finland is 36
units. The size of the overlapping area between Finland and Lapland is 8 units.
Thus, 8/26 of Lapland belongs to Finland, and 8/36 of Finland belongs to Lapland.

On the other hand, Lapland and Asia do not have any overlapping area, thus no
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part (0) of Laplan is part of Asia, and no part of Asia is part of Lapland. If we want
a taxonomy to be an accurate representation of the 'map’ of figure 1, there should

be a way to make this kind of inferences based on the taxonomy.

Fi nl and Sweden Nor viay RUSS
Fi nLap SwelLap Nor Lap RusLap
Lapl and

Figure 3: Representing Lapland’s overlaps by partitioning it according to the areas

it overlaps. Each part is subsumed by both Lapland and the respective country.

1.1 Problem Statement and Solution Approach

Based on the above it can be stated that with crisp taxonomies, it is not possi-
ble to quantify the coverage and the overlap between concepts. To address this
foundational problem, this thesis presents a new probabilistic method to represent
overlap in taxonomies, and to compute the overlap between a selected concept and
every other, i.e. referred concept in the taxonomy. Thus, an overlap table is cre-
ated for the selected concept. The overlap table can be created for every concept
of a taxonomy. For example, table 1 present the overlap table of Lapland based
on the the Venn diagram of figure 1. The Overlap column lists values expressing

the mutual overlap of the selected concept and the other — referred — concepts, i.e.

|SelectedNReferred|
|Referred|

mutual overlap.

Overlap = € [0,1]. These values can be used as natural measure of

Intuitively, the overlap value has the following meaning: The value is 0 for disjoint
concepts (e.g., Lapland and Asia) and 1, if the referred concept is subsumed by the
selected one. High values lesser than one imply, that the meaning of the selected

concept approaches the meaning of the referred one.

It is mathematically easy to compute the overlap tables, if a Venn diagram (the sets)



Selected | Referred | Overlap
Lapland | World 26/851 = 0.0306
Europe 26/345 = 0.0754
Asia 0/414 = 0.0

EU 16/168 = 0.0953
Norway 8/36 = 0.2222
Sweden 8/36 = 0.2222
Finland 8/36 = 0.2222
Russia 2/342 = 0.0059

Table 1: The overlap table of Lapland according to figure 1.

is known. In practice, the Venn diagram may be difficult to create from the modeling
view point, and computing with explicit sets is computationally complicated and
inefficient. For these reasons the presented method calculates the overlap values

from a taxonomic representation of the Venn diagram.

The presented method consists of two parts:

1. A graphical notation by which partial subsumption and concepts can be repre-

sented in a quantified form. The notation can be represented easily in RDF(S).

2. A method for computing degrees of overlap between the concepts of a taxon-
omy. Overlap is quantified by transforming the taxonomy first into a Bayesian
network [FF01].

1.2 Potential Applications

Overlap values could be used in a number of ways. First, one problem in information
retrieval systems is that, if the database is large, the query result sets are often very
big. What is needed is a reasonable and effective way to rank the results. This can

be done using the overlap values.

Assume that an ontology contains individual products manufactured in the different
countries and areas of figure 1. The user is interested in finding objects manufac-
tured in Lapland. The overlap values of table 1 then tell how well the annotations
“Finland”, “EU”, “Asia”, etc., match with the query concept “Lapland” in a well-

defined probabilistic sense, and the hit list can be sorted into an order of relevance



accordingly.

The overlap value between the selected concept (e.g. Lapland) and the referred
concept (e.g. Finland) can in fact be written as the conditional probability
P(Finland'|Lapland’) whose interpretation is the following: If a person is inter-
ested in data records about Lapland, what is the probability that the annotation
“Finland” matches her query? X' is a binary random variable such that X' = true
means that the annotation “X” matches the query, and X' = false means that “X”
is not a match. This conditional probability interpretation of overlap values will be

used in section 4.2 of this thesis.

A second application area could be ontology based recommendations. Because on-
tologies describe the semantic relations between the concepts of some domain, a
reasoning system should, in principle, be able to guide the user through the data
by recommendations based on the ontology. If, for example, we have a photograph
repository annotated according to an ontology, and the user is looking at a photo
taken in Finland, the system could guide the user to look also at photos of other
countries, that are somehow similar or related, i.e. semantically close, to Finland.
However, the notion of semantic closeness has proved to be a difficult concept to
define and to use in the context of the ontologies of the semantic web. In some cases,
for example in the Spectacle system [GC03|, semantic closeness has been defined on
the basis of the common instances of concepts. This seems intuitively plausible.
However, it seems that this definition is too strict and only concepts that are very
close to each other are touched by it. Based on the knowledge of the degree of
overlap between concepts it is possible to create more interesting connections be-
tween concepts. For example, Finland and Sweden would not probably have any
photographs annotated to both of them, however, they overlap with other concepts
of the taxonomy in a similar way. This information could be used as an indication of
semantic closeness between the two countries, and the ontology-based recommender
could recommend photographs of Sweden to someone who is looking at a photograph

taken from Finland.

Third, the knowledge of overlap between concepts could be used to find out how a
concept has changed over time. For example, if we had a number of taxonomies rep-
resenting the map of northern Europe at different times, we could make inferences,
of how, for example, Finland and its relations to other countries have changed over

time.



1.3 Chosen Method

The problem of representing uncertain or vague inclusion in ontologies and tax-
onomies has been tackled also by using methods of fuzzy logic [AWA102, AP03,
Zad65] and rough sets [SV00, Paw82]. See section 6 for a discussion of different
methods. In this thesis, crisp set theory and Bayesian networks were used, because
of the sound mathematical foundations they offer. The calculations are simple, but
still enable the representation of overlap and uncertain subsumption between con-
cepts. The Bayesian network representation of a taxonomy is useful not only for
the matching problem discussed, but can also be used for other reasoning tasks, for

example user modeling [KSO*01].

1.4 Organization of Thesis

The rest of the thesis is organized as follows. In chapter 2, the formalisms and meth-
ods used in this thesis are described. The discussed issues are the Semantic Web,
RDF(S) ontologies, and Bayesian networks. In chapter 3, the graphical notation is
defined. In chapter 4, the overlap calculation method is presented. In chapter 5,
an implementation of the approach is described. In chapter 6, some related work is

discussed. In chapter 7, the results of this thesis are summarized and discussed.



2 Background Knowledge

In this section some basic background knowledge to used formalisms and techniques

will be given.

2.1 The Semantic Web

Most of the Web’s content today is designed for humans to read, not for computer
programs to manipulate meaningfully. Computers can parse Web pages for layout
but in general, computers have no reliable way to process the semantics of the pages.
The Semantic Web is an extension of the current Web in which information is given
well-defined meaning, enabling computers to access the semantics of Web content.
This facilitates the cooperation between computers and people. The Semantic Web
is based on the idea of having data on the Web defined and linked such that it
can be used for more effective discovery, automation, integration, and reuse across
various applications [BLHLO1]. One key idea of the Semantic Web is to associate
semantically rich, descriptive information with any resource. For example, by adding
meta-data about the creator of a document, we can search for documents created

by different people.

On the Semantic Web not only documents are specified by URIs but more generally
any resources, such as people, concepts, and even relationships between the different
resources. Thus, the relationships between the different resources have a formal,
machine-understandable specification. Moreover, by using URIs, things with the
same name but different meaning can be differentiated. The vocabulary that is used
in the description of resources can be specified in an ontology. Ontologies are an

important part of the Semantic Web.

On the current Web, anyone can say anything about anything. The same will be
true also about the Semantic Web. It is likely, that the Semantic Web will contain
inaccurate and contradictory information. However, the software agents, function-
ing on the semantic web will have access to the ontologies, and to the reasoning
mechanisms of each other. This way they can decide whether to trust answers given
by other agents or not.

One important goal of the Semantic Web is also to support evolution of knowledge.
The technologies are designed so that pieces of information can be easily combined,

and changed if necessary.



2.2 Ontologies of the Semantic Web

An ontology is an explicit formal specification of the terms in the domain and rela-
tionships among them [Gru93|. Ontologies have been studied especially in artificial

intelligence research. However, ontologies are becoming common in the WWW too.

The WWW Consortium (W3C) is developing the Resource Description Framework
(RDF) to make the content of the web understandable to software agents searching
for information. The RDF Schema (RDFS) is a basic framework to define machine
understandable ontologies. Also other, more expressive ontology definition languages
such as Web Ontology Language (OWL) are developed. Many disciplines now de-
velop standardized ontologies that domain experts can use to share and annotate
information in their field. An ontology defines a common vocabulary for researchers
who need to share information in a domain. It includes machine-interpretable defi-

nitions of basic concepts in the domain and relations among them.

There are a number of reasons for using ontologies [NMO01].

1. To share common understanding of the structure of information among people
or software agents. For instance, if two web sites share the same ontology, then
each of them can benefit from the information of the other, e.g. in answering

to user queries.

2. To enable reuse of domain knowledge. As a good example we can take the
concept of time. Many different domains need to model time. If someone
creates a good ontology to model time, then other domains can simply use it.
Those previously developed ontologies can also be modified according to the

needs of the re-users.

3. To make explicit domain assumptions. Often organizations have masses of
implicit knowledge that is very hard to teach to novices. If domain assumptions
are made explicit they can be learned easily, and also changed if they prove to

be wrong.

4. To separate the domain knowledge from the operational knowledge. If we
develop algorithms in which the domain knowledge is not hard-coded, but the
knowledge comes from an ontology, then those algorithms may work in many

different situations and domains.



2.2.1 The Elements of an Ontology

An ontology has four basic elements.

1. The concepts of the domain in question. The concepts are usually called the

classes of the ontology.

2. Each concept has properties that describe various features and attributes of

the concept.

3. There might be some restrictions on these properties, for example, what kind

of values they can have.

4. The classes may have instances. Each instance represents an actual object

that is a manifestation of the respective class.

Usually, concepts are the focus of the ontology. Concepts are represented by classes
in the ontology. For example, the class beer represents all beers. Specific beers
are instances of the class beer. A class can also have subclasses. For example,
the class beer has the subclasses ale and lager, which in turn can have their own
subclasses. Subclass hierarchies are called tazonomies, which are essential parts
of ontologies. Properties describe various features of classes and instances. For
example the property yeast, will have the value top fermenting yeast for the class

ale, and bottom fermenting yeast for lager.

In practice, developing an ontology includes the following steps [NMO1|:

—

. Defining the concepts in the ontology. Usually they will be marked as classes.

[\)

. Arranging the classes in a taxonomic (subclass-superclass) hierarchy.

w

. Defining properties and describing allowed values for these slots.

=~

. Filling in the values for properties.

2.2.2 RDF and RDFS

RDF is a recommendation of W3C for representing meta-data about the resources
of the web. RDFS provides facilities to define vocabularies by which resources can
be described.
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The basis of the RDF model is the triplet, which is constructed of a subject, a
predicate, and an object. A resource (a subject) is linked to another resource (an
object) through a directed arc labeled with a third resource (a predicate). In other
words, a <subject> has a property <predicate> with value <object>. In RDF, all
resources are identified by Unified Resource Identifiers (URI). URI provides a simple
and extensible means for identifying a resource. The triplets can be presented as a
directed graph for example, as in figure 4. The meaning of the triplet of figure 4 can
be interpreted as 'MH is the creator of book.html’. An RDF triplet can also have a

literal value as the object. A literal value is not a resource, but a string.

http://something.is/ here#creat or
http://sone.is/ here#book. ht m http://sone.is/here#\H

Figure 4: An RDF triplet.

A set of RDF triplets form a directed graph, whose nodes and arcs are labeled with
URIs, as in figure 5. The graph of figure 5 states, that "MH is the creator of both
book.html and house.html, and MH lives in Finland’.

http://somet hi ng. i s/ here#cr eat or
http://sone.is/ here#book. ht m »C http://sone.is/ here#MH
http://something.i
ttp://some.is/here#house. ht m

http://sone.is/here#livesin

\ 4

http://some.is/ heref#Finl and

Figure 5: An RDF graph.

An RDF document is a list of descriptions. Each description applies usually to
one resource, and contains a list of properties. Property values are either URIs, or
literals. RDF documents can be encoded using the XML syntax. For example the
triplet of figure 4 in XML as:

<7xml version=’’1.0’’ encoding=’’UTF-8’’7>

<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’>
<!ENTITY some ‘‘http://some.is/here#’’>

1>
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<rdf:RDF xmlns:rdf=’’&rdf;’’
xmlns:some=’’&some;’’>
<rdf:Description rdf:about=’’&some;book.html’’>
<some:creator rdf:resource=’’&some;MH’’/>
</rdf:Description>
</rdf :RDF>

RDFS adds to the basic vocabulary of RDF some new primitives with which the

creation of ontologies is possible. Such primitives are:

o rdfs:Class and rdfs:subClassOf. With these terms, classes and taxonomies of

classes can be created.

e rdfs:Resource. This is the highest concept of any ontology. Every class in an

ontology is the subclass of rdfs:Resource.

o rdfs:domain and rdfs:range. With these properties, restrictions on other prop-
erties can be expressed. rdfs:domain specifies the allowed classes, instances
of which can be the subjects of the property. rdfs:range specifies the allowed
value types of the property.

e rdfs:subPropertyOf. With this term taxonomies of properties can be created.

o rdfs:Literal. With this term, it can be expressed that a value of some property

must be a literal.

Now, the beer ontology could be written with RDF(S) as follows:

<7xml version=’’1.0’’ encoding=’’UTF-8’’7>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf ‘‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’’>

<!ENTITY some ‘‘http://some.is/here#’’>
1>
<rdf:RDF xmlns:rdf=’’&rdf;’’

xmlns:some=’’&some;’’>
<rdfs:Class rdf:about=’’some;MetaClass’’>
<rdfs:subClass0f rdf:resource=’’&rdfs;Class’’/>

</rdfs:Class>

<some:MetaClass rdf:about=’’&some;Beer’’>
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<rdfs:subClass0f rdf:resource=’’&rdfs;Resource’’/>
</some:MetaClass>
<some:MetaClass rdf:about=’’&some;Ale’’>
<rdfs:subClass0f rdf:resource=’’&some;Beer’’/>
<some:yeast>top fermenting yeast</some:yeast>
</some:MetaClass>
<some:MetaClass rdf:about=’’&some:Lager’’>
<rdfs:subClass0f rdf:resource=’’&some;Beer’’/>
<some:yeast>bottom fermenting yeast</some:yeast>
</some:MetaClass>
<rdf:Property rdf:about=’’some;yeast’’>
<rdfs:domain rdf:resource=’’&some;Beer’’/>
<rdfs:range rdf:resource=’’&rdfs;Literal’’/>
</rdf :Property>
</rdf :RDF>

Usually, only instances of classes have properties, in an ontology. Because I wanted
the classes to have properties - specifically the some:yeast property - I had to create

a metaclass. The classes of the ontology are instances of this metaclass [BG| [LS]
[Chal.

2.3 Bayesian Networks

Probabilistic reasoning is developed to deal with uncertainty. Agents almost never
have access to the whole truth about their environment. For example, toothache
usually indicates that the patient has a cavity. However, sometimes it indicates

some other disease. The list of possible causes of toothache is almost unlimited.

Trying to use first-order logic to cope with a domain like medical diagnosis fails for
three main reasons: First, it is too much work to list the complete set of facts that
are somehow related to the domain. In fact, it can be argued that it is impossible.
Second, we do not have complete theories about the world. Third, even if we had
the theories, it would be untractably complex to try to find out all the needed
facts about each practical case in order to make the right inferences. The agent’s
knowledge can at best provide only a degree of belief in the relevant sentences.
The agent must, therefore, act under uncertainty. Probability theory deals with

uncertainty, by assigning to each sentence a numerical degree of belief between 0
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and 1.

With probability theory we can approximate, or summarize our knowledge about the
domain and reason based on these approximations. A probabilistic agent has a belief
state about the world. Beliefs about the world are updated based on perceptions.
Based on these beliefs the agent chooses the action that yields the best result in the
context of the agent’s goals [RN03|.

2.3.1 Basic Probability Theory

Degrees of belief are always assigned to propositions. The basic element of the
language is the random variable, which can be thought of as referring to a part of
the world whose status is initially unknown. Each variable has a domain of values
such as true or false. The simplest kind of proposition asserts that a random variable
has a particular value from its domain. The sum of the degrees of belief related to

all the values of a variable is 1, i.e., Xqcgom(a) P(a) = 1.

An atomic event is a complete specification of the state of the world about which the
agent is uncertain. It can be thought of as an assignment of particular values to all
the variables of which the world is composed. Atomic events are mutually exclusive
— exactly one atomic event holds at any one point in time. Any particular atomic
event entails the truth or falsehood of every proposition. Any proposition is logically

equivalent to the disjunction of all atomic events in which a holds.

The unconditional or prior probability associated with a proposition a is the degree
of belief accorded to it in the absence of any other information; it is written as P(a).
If we want to talk about the probabilities of all the possible values of a random
variable the expression P(A) is used, were A is the name of the variable in question.

The sum of the probabilities for all the values of A is 1.

The joint probability distribution of a number of variables is the set of probabilities
of all combinations of the values of the variables. If we include all the variables used
to describe the world of an agent we get the full joint probability distribution. A full
joint distribution specifies the probability of every atomic event and is therefore a

complete specification of one’s world.

When the agent obtains some knowledge about the world, the prior probabilities
are no longer applicable. Instead, conditional probabilities are used. The notation
is P(alb), which is interpreted as the degree of belief in the proposition a when all

we know is b.
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There is a connection between unconditional and conditional probabilities. The
connection is expressed in the equation P(a A b) = P(alb)P(b), which is called the
product rule. It comes from the fact that, for a and b to be true, we need b to be

true, and we also need a to be true given b.

Probability theory has three basic axioms:

1. For any a
0< Pa) <1.

2. Necessarily true propositions have probability 1, and necessarily false propo-

sitions have probability 0.

3. The probability of disjunction is given by
P(aVvb)=P(a)+ P(b) — P(aNb).

Because any proposition a is equivalent to the disjunction of all the atomic events
in which @ holds, and atomic events are mutually exclusive, we can derive, with
axiom 3, the following relationship: The probability of a proposition is equal to the
sum of probabilities of the atomic events in which it holds. This relation provides a
simple method for computing the probability of any proposition, given a full joint

distribution that specifies the probabilities of all atomic events.

One common task in probabilistic inference is to find unconditional marginal prob-
ability distribution of a variable or a set of variables. If we know the full joint
probability distribution we can do this by summing up all the atomic events in which
the variable in question has the desired value. This procedure is called marginaliza-

tion.

In most cases of probabilistic inference the interest in computing conditional prob-
abilities of some variables, given evidence about others. Again, if we know the full

joint probability distribution we can do this with the help of the product rule.

With the full joint distribution every task of probabilistic inference can be conducted.
Nonetheless, this leads easily to intractably complex computations. Luckily, there

are ways to reduce the complexity of the computations in most real-life situations.

A property that can in some cases reduce the complexity of probabilistic inference
is independence. If propositions a and b are independent, then P(a|b) = P(a),
P(bla) = P(b), and P(aAb) = P(a)P(b). This means that in order to infer about two

independent sets of variables, we can use two separate joint probability distributions,



15

one for each set. This reduces the size of the distributions significantly. In many
cases, however, these separate joint probability distributions too become too large for
feasible computation. Moreover, it is often difficult to find completely independent
sets of variables [RN03] [Jen96].

2.3.2 Bayesian Probability and Bayesian Networks

The equation that underlies all modern AI systems for probabilistic inference is

P(alt)P(5)

P(bla) = P(a)

The equation is known as Bayes’ rule, and it can be derived easily from the product
rule. Bayes’ rule does not seem very useful, because we need to know three proba-
bilities just to calculate one. However, it is often the case, for example in diagnostic
situations, that we have good estimates for the three. Probabilistic information is
often available in the form of causal knowledge. For example, we know that if it
rains, then the grass will most certainly get wet. However, if the grass is wet, what is
the likelihood that it rained? This kind of knowledge is called diagnostic knowledge,

and it is often more difficult to obtain, and more fragile, than causal knowledge.

There are cases in which we have more than one pieces of evidence, from which we
want to infer the probability distribution of a variable. This leads quickly to similar
complexity problems as those discussed in the previous section. Independence be-
tween variables reduces the complexity of probabilistic inference, but in many cases
variables do not seem to bee independent of each other. However, often two or more
variables are independent of each other given the presence or absence of another
variable. This is called conditional independence. The situation in which variables

A and B are independent given C, can be mathematically written as:

P(A A B|C) = P(A|C)P(B|C) (1)

Now P(A|C) and P(B|C) can be evaluated separately, which reduces the number
of probabilities that need to be specified in order to define the full joint distribu-
tion. Thus, conditional independence assertions can allow probabilistic systems to
scale up, and they are much more commonly available than absolute independence

assertions.

A Bayesian network is a data structure to represent the dependencies among vari-

ables and to give a concise specification of any full joint probability distribution. A
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Bayesian network is a directed graph in which each node is annotated with quanti-
tative probability information. Each Bayesian network satisfies the following condi-

tions:

1. A set of random variables makes up the nodes of the network. Variables may
be discrete of continuous. In this thesis only discrete two state variables are

considered.

2. A set of directed arcs connects pairs of nodes. If there is an arrow from node
X tonode Y, X is said to be a parent of Y.

3. The graph has no directed cycles, and hence is a directed, acyclic graph (DAG).

4. Each node X is given a conditional probability distribution P(X |Parents(X))
that quantifies the effect of the parents on the node.

The topology of the network specifies the conditional independence relationships
that hold in the domain. The intuitive meaning of an arrow in a properly constructed

network is usually that X has a direct influence on Y.

In addition to the topology, a Bayesian network also includes conditional probability
tables (CPT). A CPT is a table, in which each row contains the conditional proba-
bility of each node value for a conditioning case. A conditioning case is a possible

combination of values for the parent nodes. Each row must sum up to 1.

A Bayesian network provides a complete description of the domain. Every entry in
the full joint probability distribution can be calculated from the information in the
network. A generic entry in the joint distribution is the probability of a conjunction
of particular assignments to each variable, for example P(z1,...z,). The value of

this entry is given by the formula

P(z1,...,xn) = [[ P(ai|parents(X;)), (2)
i=1
where parents(X;) denotes the specific values of the parents. Each conditional
probability P(z;|parents(X;) of the above formula is specified in the conditional
probability table (CPT) of the variable X; in the Bayesian network.

If two variables of a Bayesian network are in such a relation with each other that
changing the state of one will not affect the other, then they are said to be d-separated
of each other.
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There are algorithms by which probabilistic inference can be made given a Bayesian
network. Those algorithms will be used in this work, however, the description of

these algorithms is beyond the scope of this thesis.
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3 Representing Overlap

The term concept is defined as an “idea or thought that corresponds to some dis-
tinct entity or class of entities, or its essential features” [PHO1]. In the context of
the ontologies of the semantic web, a concept defines a set of individuals and the
subsumption property (e.g. subClassOf) denotes a subset relationship between the
respective sets [SWM].

A taxonomy is therefore a set of sets and can be represented, e.g., by a Venn diagram.
To be able to compute the overlap between concepts in a taxonomy, the taxonomy

should be an accurate representation of the set theoretic structure of the concepts.

3.1 The Overlap Graph

If A and B are sets, then A must be in one of the following relationships to B.

1. Ais a subset of B, ie. AC B.
2. A partially overlaps B, ie. dz,y: (t € ANz € B)A(y€ ANy ¢ B).

3. A is disjoint from B, i.e. AN B = 0.

Based on these relations, a simple graph notation has been developed for representing
uncertainty and overlap in a taxonomy as an acyclic overlap graph (OG). An OG is

constructed from the following elements:

1. Nodes represent concepts, and a number called mass is attached to each node.
The mass of concept A , is a measure of the size of the set corresponding to
A, i.e. m(A) =|s(A)|, where s(A) is the set corresponding to A.

2. A solid directed arc from concept A to B denotes crisp subsumption s(A) C
s(B).

3. A dashed arrow denotes disjointness s(A4) N s(B) = 0.

4. A dotted arrow represents quantified partial subsumption between concepts,

which means that the concepts partially overlap in the Venn diagram. The

amount of overlap is represented by the partial overlap value p = W.
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In addition to the quantities attached to the dotted arrows, also the other arrow
types have implicit overlap values. The overlap value of a solid arc is 1 (crisp
subsumption) and the value of a dashed arc is 0 (disjointness). The quantities
of the arcs emerging from a concept must sum up to 1. This means that either
only one solid arc can emerge from a node or several dotted arcs (partial overlap).
In both cases, additional dashed arcs can be used (disjointness). Intuitively, the
outgoing arcs constitute a quantified partition of the concept. Thus, the dotted
arrows emerging from a concept must always point to concepts that are mutually

disjoint with each other.

Notice, that if two concepts overlap, there must be a directed (solid or dotted) path
between them. Thus, if there is not a directed path between concepts A and B,
then they are necessarily disjoint from each other, and there is no need to use the
dashed arrow to express disjointness. If A and B are connected by a directed solid
path, then the concepts necessarily overlap, and the disjointness relation can not
be used between them. If two concepts are connected with a directed path that
includes dotted arrows, then it is possible that they do not overlap. If this is the
case, then disjointness between the concepts must be expressed explicitly using the

disjointness relation, otherwise it is assumed that the concepts do overlap.
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Figure 6: A taxonomy based on the Venn diagram of figure 1

For example, figure 6 depicts the meronymy of figure 1 as an OG. The geographic
sizes of the areas are used as masses and the partial overlap values are determined

based on the Venn diagram.
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3.2 Completeness and Correctness of the Graphical Notation

In this section it is proved that any Venn diagram can be represented with the graph
notation presented in the above section, and that this representation is correct. The
motivation for this proof is that if any venn diagram can be represented with the
graph notation, then also any collection of concepts can be represented as an overlap

graph.

First, an algorithm for constructing an overlap graph based on a Venn diagram is
presented, and then it is proved inductively that this algorithm yields an overlap

graph which represents the Venn diagram correctly.

3.2.1 The Algorithm

The algorithm operates in an iterative manner. The main idea is that after every
iteration, every distinct area in the part of the Venn diagram processed so far is
represented by a node at the leaf layer of the overlap graph. Thus, the leaf layer of
the overlap graph is a partition of the Venn diagram (the root set). The concepts
added in each iteration are connected to the existing leaf layer by the means of the
graph notation. This way the set theoretic structure of the overlap graph remains
intact. Notice, that this algorithm requires the use of auxiliary concepts, which
represent results of set operations over named sets, for example s(A)\ s(B), where A

and B are ordinary concepts. Algorithm 1 specifies the Venn to OG transformation.

In the first iteration the root set of the Venn diagram is added to the overlap
graph. It will be the root node of the resulting overlap graph. After this, a set
of mutually disjoint sets (setsToBeAdded) is extracted, in each iteration, from the
Venn diagram. Each of these sets is added to the overlap graph and connected to
the leaf layer of the existing overlap graph, according to the relations between the

sets.

If A is a set to be added, and there exists a node B in the present leaf layer of the
overlap graph such that A C B, then a solid arrow from A to B is added to the
overlap graph.

If A partially overlaps sets B ... B, then a dotted arrow is added from A to each of
the overlapped sets. Because the idea of the algorithm is to represent each distinct
area of the Venn diagram as a node in the overlap graph, nodes representing the
intersections of A and each of B;...B,, need to be added to the overlap graph.



21

Each of these concepts A N B; is added as the complete subconcept of A and it is
marked to be disjoint of all By ... B, except B;.

Data: VennDiagram V
Result: Taxonomy T
stepCounter = 0;
T = empty;
List namedSets = All the named sets in V;
Add the set that subsumes all other sets in V, to be the root in T}
while namedSets not empty do
List setsToBeAdded = A list of mutually disjoint sets extracted from namedSets;
List leafSets = the list of the sets added to T in the last iteration;
foreach s € setsToBeAdded do
Add s to T
if 3l € leafSets : (s C 1) then
mark s as the complete subconcept of 1 in T ;
end
if s partially overlaps some leafSets in T then
List overlappedSets = The list of overlapped leafSets;
foreach overlappedSet € overlappedSets do
mark s as the partial subconcept of overlappedSet;
add (s NoverlappedSet) to T, as the complete subconcept of s;
mark (s N overlappedSet) to be disjoint from all other sets in overlappedSets;
end
end
end
foreach leafSet € leafSets do

add a complement node to represent the part of leafSet that is not covered by any of the sets added above;

mark it to be the complete subnode of leafSet;
end

++stepCounter;

end

Algorithm 1: The algorithm by which any Venn diagram can be transformed into

a taxonomy

After every set of setsToBeAdded is processed, additional nodes that represent
those parts of concepts in the leaf layer of the last iteration that are not covered by
setsToBeAdded are added to the overlap graph.

Notice that this algorithm is presented only to prove that it is possible to present
any Venn diagram with the graph notation. It is not recommended that the overlap
graphs would be created using this algorithm. Usually, it is not necessary to repre-
sent every distinct area explicitly in the overlap graph. For example, in figure 6, the
part of Europe not covered by any of the countries in the Venn diagram of figure
1, is not represented explicitly, because the relations between the named sets in the

diagram can be expressed without it.
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3.2.2 The Proof

Theorem 1 The algorithm adds every named set of the processed Venn diagram to

the constructed overlap graph.

PROOF:

In every iteration of the main loop (the While loop), at least one set is extracted
from the list of named sets and added to the overlap graph. Thus, eventually all
named sets get added.

Theorem 2 Using algorithm 1, any Venn diagram can be transformed into an over-

lap graph. This overlap graph is an accurate representation of the Venn diagram.

PROOF:

Because it is known, based on the above theorem, that every named concept is
processed by the algorithm, it suffices to prove that after each step the overlap graph
represents correctly every distinct area of the part of the Venn diagram processed
so far. Each area is represented by a node in the overlap graph. Thus, after all sets

are processed, the overlap graph is a representation of the whole Venn diagram.

The base case: Step 0.
The root concept is added. Now the overlap graph presents the part of the Venn
diagram where only the root set is present. Thus, the processed part of the Venn

diagram consists of one distinct area which is presented correctly by the root node.

Induction assumption: Step k.
It is assumed that the taxonomy represents correctly every distinct area of the part
of the Venn diagram processed in the k steps of algorithm 1.

Induction step: Step k + 1.

Based on the algorithm, it is known that the concepts to be added are mutually
disjoint.

According to the induction assumption the sets corresponding to the concepts in the
leaf layer of the present overlap graph are disjoint, and they form a partition of the

Venn diagram.
Every distinct area of the corresponding part of the Venn diagram is represented

correctly also after step k£ 4+ 1 because:

e Relations are made only to the leaf layer of the present overlap graph. Thus

no cycles can be formed.
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e Each concept is added to the overlap graph with the mass value that is derived

from the Venn diagram (Size correct).

e Each concept will be connected only to the leaf concepts (concepts added at
step k). Thus there will not be a connected path between any of the concepts

added in this step (disjointness).

e Every relation is added based on the set theoretic structure of the Venn dia-
gram. Thus, the individual relations between the sets processed in step k + 1
and sets processed in step k are correct. Because the relations (arrows) in the
graphical notation cover every possible relation between two sets, the overlap

graph conforms to the graph notation, also after step k£ + 1.
e Each distinct area inside a named set is also added to the taxonomy.

e After the named sets are added, each distinct area in the Venn diagram outside

the named sets are also added.

e Because all distinct areas of the Venn diagram must be inside or outside the

named concepts of step k£ + 1, every distinct area is covered.

Thus, the algorithm yields an overlap graph conforming to the graph notation spec-
ified, and that overlap graph is an accurate representation of the set structure of the

Venn diagram.

3.3 The Efficiency of the Graphical Notation

In the worst case, the size of the overlap graph grows exponentially with respect to
the number of the named sets in the Venn diagram. Such a set structure can be seen
in figure 7. In this case the described algorithm actually has to be used to construct
the overlap graph. Only one named set per iteration is added, and each named set
partially overlaps all the sets in the leaf layer of the existing overlap graph. In this
case the number of the nodes n(OG) in the resulting overlap graph can be calculated

with the following formula.

N-1
n(OG) =ng+ni+ > (2°+1) = 2", (3)
=2

2

where n; is the number of nodes added to the overlap graph in step i, ng = 1, ny = 2,

and N is the number of named sets in the Venn diagram, including the root set.
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Figure 7: A Venn diagram which lead to intractable growth of the size of the resulting
overlap graph.

Figure 8: The overlap graph representing the Venn diagram of figure 7. Notice that
the dashed arrows (disjointness), the masses of the concepts, and the quantities of

the partial subsumptions are not shown in this figure, for the sake of simplicity.

The overlap graph representing the Venn diagram of figure 7 can be seen in figure 8.
Notice that the arrows expressing disjointness are omitted from the figure, to keep
the figure simple. In step 0, one set, ng = 1, is added, i.e. the root set. In step 1, the
set A is processed, and nodes representing A and R\ A are added to the OG. Thus,
ny; = 2. In step 2, B is processed. It partially overlaps both A and R\ A. According
to the algorithm we must represent each distinct area of the part of Venn diagram
that is represented so far by the OG. Thus, we must add four auxiliary concepts to
the OG in addition to B, two of which represent areas inside B, and two outside B.
Thus, ny = 5 = 22 + 1. When C is processed the number of auxiliary concepts is 8,
and the total number of added nodes is then 9 = 23 + 1.
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Nonetheless, the above situation is theoretical. Overlap graphs are designed to
represent overlap between real-world concepts. Based on experiences with concept
modeling, it is argued in this thesis that such highly complex overlap structure never
occur in practice, when modeling relationships between real-world concepts. In most
cases, the number of nodes in the resulting overlap graph equals or nearly equals

the number of named sets in the Venn diagram.
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4 Computing the Overlap Values

The method presented in this thesis creates an overlap table (cf. figure 1) for each
concept in the taxonomy. Computing the overlaps is easiest when there are only
solid arcs, i.e., a complete subsumption relation between concepts. There are three
ways in which two concepts A and B can be related, when the overlap graph contains

only solid graphs between concepts.

1. There is a directed solid path from A (selected) to B (referred). In this case
(A)ns(B)| _ m(A)
ls(B)| m(B)’

overlap o = &£ where m(X) is the mass of concept X.

2. The solid path is directed from B to A. Now o = ‘s(ﬁ)g)(‘B)‘ = Zggg = 1.

3. There is not a directed path between A and B. Now o = |S(’|43)$)(‘B)| = 1n|?‘B) =0.

If there is a mixed path of solid and dotted arcs between A and B, then the calcu-
lation is not as simple. Consider, for example, the relation between Lapland and
EU in figure 6. To compute the overlap, we have to follow all the paths emerging
from Lapland, take into account the disjoint relation between Lapland and Asia,

and sum up the partial subsumption values somehow.

Because of the difficulties arising from the mixed paths, and on the other hand
because of the straight forwardness of the solid path situation, the approach taken
in this thesis is to transform the taxonomy into a structure containing only solid
paths, and calculating the overlap tables of concepts based on this structure. The
upper level plan for the quantification of overlap is specified in algorithm 2. Thus,
in the transformed taxonomy structure the only relation between concepts will be

the subsumption relation.

Data: Taxonomy T

Result: OverlapTables OT

SPS = TransformIntoSolidPathStructure(T);
OT = CreateOverlapTables(SPS);

Algorithm 2: The upper level algorithm for quantifying the overlap between con-
cepts

4.1 Transformation into the Solid Path Structure

The transformation is done according to the following principle.
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Transformation Principle 1 Let A be the direct partial subconcept of B with over-
lap value o. In the solid path structure the partial subsumption is replaced by an
additional middle concept, which represents s(A) N s(B). It is marked to be the

complete subconcept of both A and B, and its mass is 0 - m(A).

See for example how the relationship between Lapland and Finland in figure 6 is

transformed into the structure in figure 9.
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Figure 9: The taxonomy of figure 6 transformed into a solid path structure containing

only subsumption relations

4.1.1 The Transformation Algorithm

The transformation is specified in algorithm 3. The algorithm processes the overlap
graph T in a breadth-first manner starting from the root concept. A concept c is
processed only after all of its super concepts (partial or complete) are processed.

Because the graph is acyclic, all the concepts will eventually be processed.

Each processed concept c¢ is written to the solid path structure SPS. Then each
arrow emerging from c is processed in the following way. If the arrow is solid,
indicating subsumption, then it is written into the solid path structure as such. If
the arrow is dotted, indicating partial subsumption, then a middle concept newMc

is added into the solid path structure. It is marked to be the complete subconcept
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of both ¢ and the concept p to which the dotted arrow points in 7. The mass of
newMc is m(newMc) = |s(c)Ns(p)| = o-m(c), where o is the overlap value attached
to the dotted arrow.

Data: OverlapGraph T

Result: SolidPathStructure SPS
SPS := empty;

foreach concept ¢ in T do
foreach complete or partial direct superconcept p of ¢ in T do
if p connected to its superconcepts through middle concepts in SPS then
mc := the middle concept that ¢ overlaps;
if ¢ complete subconcept of p then
‘ mark c to be complete subconcept of mc in SPS;
else
newMc := middle concept representing
s(c) N s(p);
mark newMC to be complete subconcept of ¢ and mc in SPS;
end
else
if ¢ complete subconcept of p then
‘ mark c as complete subconcept of p in SPS;
else
newMc .= middle concept representing
s(c) N s(p);
mark newMc to be complete subconcept of ¢ and p in SPS;

end
end
end

end

Algorithm 3: Creating the solid path structure

However, if p is connected to its superconcepts (partial or complete) with a middle
concept structure in SPS, then the processing is not as simple. In that case, ¢ has
to be connected to one of those middle concepts. The right middle concept is found
by using the information conveyed in the dashed arcs emerging from c. The right
middle concept mc is the one that is not subsumed by a concept that is marked to
be disjoint from c in the overlap graph. This is the middle concept that ¢ overlaps.
Notice, that if the overlap graph is an accurate representation of the underlying
Venn diagram, then mec is the only middle concept that fulfils the condition. If ¢

is a complete subconcept of p in the overlap graph 7', then c is marked to be the
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complete subconcept of mc in SPS. If ¢ is a partial subconcept of p in 7', then it is

connected to mc with a middle concept structure.

Notice that if ¢ was connected directly to p, instead of mec, then the information
conveyed in the dashed arrows, indicating disjointness between concepts, would have
been lost. For example, if in figure 9 Lapland was connected directly to Russia,

then the information about the disjointness of Lapland and Asia would be lost.

The running time of this algorithm is linear to the size of the OG, i.e. O(N), where
N is the number of arcs in the OG. Each arc is processed once. The processing of

each arc takes 2 processing steps at maximum.

4.1.2 Transformation of Sloppy Overlap Graphs
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Figure 10: Sloppiness in the overlap graph.

The algorithm presented above is designed to work on an overlap graph that is an
accurate representation of a Venn diagram. For the sake of usability, the graphical
notation is designed so that an overlap graph may also contain some sloppiness. For
example, see figure 10. In the figure concept D partly overlaps both A and B, and
the quantities of the overlaps are not known. The transformed structure is presented
in figure 11. D is connected with a middle concept structure to each of the middle
classes connecting C' to A and B. The mass is given based on the quantities of the

partial subsumption relations between C' and its superconcepts.
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Figure 11: The sloppy overlap graph of figure 10 transformed into a solid path

structure.
4.2 Using a Bayesian Network

Based on the solid path structure, the overlap table values o for a selected concept
A and a referred concept B could be calculated by the algorithm 4, where notation

X, denotes the set of (sub)concepts subsumed by the concept X.

if A subsumes B then

| o:=1
else
C =A;,NnB;
if C =0 then
| o0:=0
else
m(c)
.__ ceC
0= =1
end
end

Algorithm 4: Computing the overlap

The evaluation of overlap between Europe (selected) and Lapland (referred), for
example, is done in the following way. First, all the concepts subsumed by Europe
are selected, because they are constituents of Europe. Second, the masses of all
those selected concepts that are also subsumed by Lapland are summed together.

In effect, this is the mass of the union of the sets corresponding to the concepts , in
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this case
|s(LapSwe) U s(LapF'in) U s(LapNor) U s(LapRus)|.
Third, the overlap value between Europe and Lapland is then

m(LapSwe) + m(LapFin) + m(LapNor) + m(LapRus)
m(Lapland)

=1

This can be verified by the Venn diagram of figure 1.

The overlap table for A could be implemented by going through all the concepts of
the graph and calculating the overlap value according to the above algorithm. How-
ever, because the overlap values between concepts can be interpreted as conditional
probabilities (see page 5 of section 1), the solid path structure was chosen to be
used as a Bayesian network topology. In the Bayesian network the boolean random
variable X' replaces the concept X of the solid path structure. The efficient evi-
dence propagation algorithms developed for Bayesian networks [FF01| take care of
the overlap computations. Furthermore, a Bayesian representation of the taxonomy

could have also some other uses. It could be used, for example, in user modeling
[KSOT01].

Recall from page 5 that if A is the selected concept and B is the referred one, then

the overlap value o can be interpreted as the conditional probability

s(A) N s(B

P(B' = true|A' = true) = W =0 (4)
where s(A) and s(B) are the sets corresponding to the concepts A and B. A’ and B’
are boolean random variables such that the value true means that the corresponding
concept is a match to the query, i.e, the concept in question is of interest to the user.
P(B'|A") tells what is the probability that concept B matches the query if we know
that A is a match. The Venn diagram from which s(A) and s(B) are taken is not
interpreted as a probability space, and the elements of the sets are not interpreted
as elementary outcomes of some random phenomenon. The overlap value between
s(A) and s(B) is used merely as a means for determining the conditional probability
defined above.

The joint probability distribution of the Bayesian network is defined by marginal
conditional probability tables (CPT) P(A'|Bi, B),...B},) for nodes with parents
B,i = 1...n, and by prior marginal probabilities set for nodes without parents.
The CPT P(A'|B}, B, ... B],) for a node A’ can be constructed by enumerating the

/

value combinations (true/false) of the parents Bj,i = 1...n, and by assigning:
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> m(B)

i€{i:bj=true}

m(A) (5)

P(A' =true|By =by,... B, =b,) =

where m(X) is the mass of concept X. Recall that m(X) = |s(X)|. The value for
the complementary case P(A' = false|B] = by,... B, = b,) is obtained simply by
subtracting from 1. The above formula is based on the above definition of conditional
probability, and algorithm 4. The intuition behind the formula is the following. If
a user is interested in Sweden and in Finland, then she is interested both in data
records about Finland and in data records about Sweden. The set corresponding to
this is s(Finland) Us(Sweden). In terms of the OG this is written as m(F'inland) +
m(Sweden). In the Bayesian network both Finland' and Sweden’ will be set “true”.
Thus, the bigger the number of European countries that the user is interested in,
the bigger the probability that the annotation “Europe” matches her query, i.e.,
P(Europe'|Sweden', Finland') > P(Europe'| Finland').

If A" has no parents, then P(A" = true) = A, where X is a very small non-zero
probability, because the posterior probabilities are wanted to result from conditional

probabilities only, i.e., from the overlap information.

The whole overlap table of a concept can now be determined efficiently by using
the Bayesian network with its conditional and prior probabilities. By instantiating
the nodes corresponding to the selected concept and the concepts subsumed by it as
evidence (their values are set “true”), the propagation algorithm returns the overlap

values as posterior probabilities of nodes.

Notice that when using the Bayesian network in the above way, a small inaccuracy is
attached to each value as the result of the A prior probability that was given to the
parentless variables. This error approaches zero as A approaches zero. The Bayesian

network was defined in the above manner for the following reasons.

1. To be able to easily use the the solid path structure as the topology of the
Bayesian network. The CPTs can be calculated directly based on the masses

of the concepts.

2. With this definition the Bayesian evidence propagation algorithm returns the
overlap values readily as posterior probabilities. Experiments were conducted
with various ways to construct a Bayesian network according to probabilistic
interpretations of the Venn diagram. Nonetheless, no one of these Bayesian

networks answered to the basic need of sorting hits in an information retrieval
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system in such a straight forward manner as the construction described in this

thesis.

. In the Bayesian network structure of this thesis d-separation indicates disjoint-
ness between the corresponding concepts. I see this as a useful characteristic,
because it makes the simultaneous selection of two or more disjoint concepts

possible.
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5 Implementation

The presented approach was implemented as a proof-of-concept. The implemen-
tation includes both the overlap graph of section 3, and the overlap quantification

algorithms of section 4.

5.1 Overlap Graph

The overlap graphs are implemented using RDF(S) in the following way. The full
RDF(S) specification is presented in Appendix 1.

Concepts. In this implementation concepts can be represented either as RDF(S)
classes or instances. For example the geographical overlap graph of figure 6
is implemented as a taxonomy of RDF(S) instances of the class Place. The
masses are expressed using a special Mass class, which has two properties:
subject and mass. Subject points to the concept in question, and mass tells
the mass of the concept. Thus, for each instance an instance of the Mass class

is created.

Subsumption. The subsumption element can be implemented with a property of

the user’s choice.

Partial subsumption. Partial subsumption is implemented by creating a special
PartialSubsumption class, which has three properties: subject, object and
overlap. The subject property points to the direct partial subconcept, the
object to the direct partial superconcept, and overlap tells the amount of
overlap between the two. Each partial subsumption relation is implemented

by instantiating the PartialSubsumption class.

Disjointness. The disjointness element is implemented by disjointFrom property.

A similar property is already an element of the OWL language.

5.2 Implementation of Overlap Quantification

The architecture of the application implementing the overlap quantification ap-

proach presented in section 4 is presented in figure 12.

As an input, the implementation takes an RDF(S) ontology, the URI of the root node

from which the inclusion relations are considered, and the URI of the subsumption
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Figure 12: The architecture of algorithm implementation

property used in the ontology. Additionally, also an RDF data file that contains data
records annotated according to the ontology may be given. The RDF(S) ontology
must include a taxonomy conforming to the implementation of the graphical notation
presented above. The root node represents the concepts that subsumes all other
concepts in the taxonomy. Because the implementation of the graphical notation
did not restrict the properties that may implement the subsumption property, it

must be given as an input.

As an output the application gives the overlap tables for every concept in the tax-
onomy extracted from the input RDF(S) ontology.

The preprocessing, transformation, and selection modules are implemented with

SWI-Prolog!. The Semantic Web package is used. The Bayesian reasoner mod-

Lhttp://www.swi-prolog.org/



36

ule is implemented in Java, and it uses the Hugin Lite 6.32 through its Java APL.

The main program is written in Perl.

Next, each module is discussed separately.

5.2.1 The Main Program

The main program functions as a glue between the different modules of the ap-
plication. It operates each of the modules according to the architecture in figure
12.

The main program contains a loop that gives each concept of the taxonomy to the
selection module and then runs the Bayesian reasoner module with the selection.
Thus, the application produces the overlap tables of all the concepts in the input

taxonomy.

5.2.2 Preprocessing

Because different users may use different subsumption properties, and because the
concepts can be RDF(S) classes or instances, they must be transformed into a pre-
defined standard form. In the standard form all the concepts are RDF(S) classes,
and the subsumption relation is the subClassOf property.

All the elements of the ontology except the subsumption predicates, the PartialSub-
sumption instances, the mass instances, and the RDF(S) classes and instances that
are connected to the root concept through subsumption or partial subsumption, are
filtered out of the ontology. Thus, the only thing that is left of the input RDF(S)

ontology for further processing is the taxonomy.

Additionally, if also an RDF data file that contains data records annotated according
to the ontology is given as input, then the preprocessing module creates the masses of
the concepts of the taxonomy based on these annotations. It is done in the following
way. First, for each concept, a sum of all the data records annotated directly to the
concept is counted. Because the concepts, or part of the concepts that are subsumed
by it, constitute a part of that concept, their masses have to be added to the sum of
annotations. In the case of partial subsumption, a factor of the partially included

concept is added. This quantification method is illustrated in figure 13.

2http:/ /www.hugin.com/



37

a
10+14+16=40

/"\

c b
10+0. 4*10=14|  [10+0. 6*10=16
'~~“. f‘i
0.4 ,-0.6

d
10

Figure 13: Quantification of concepts. The number of direct annotations to each

concept is 10.

5.2.3 Transformation

The transformation module takes the taxonomy that was extracted from the ontol-
ogy by the preprocessing module and transforms it into a Bayesian Network. Thus,

this module implements algorithm 3 and creates the CPTs.

In addition to the Bayesian network, also an RDF(S) graph with an identical topol-
ogy to the BN is created. These graph is used by the selection module while ex-
panding the selection to include also the concepts subsumed by the selected concept.

The Bayesian network is represented in the .net structure of Hugin.

5.2.4 Selection

The selection module takes an URI of the selected concept as an input and expands
the selection to include all concepts that are subsumed by the selected one in the
solid path structure. The selection module gives a list of the selected concepts as

output.

5.2.5 Bayesian Reasoner

The Bayesian reasoner takes the Bayesian network and the list of selected nodes as
input and mediates them to the Hugin decision engine, which returns the posterior
probabilities to the module. The module writes these probabilities into the overlap

table of the selected concepts.
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5.3 Example Case

As an example case, the small geographical ontology of figure 6 is used. In the
RDF(S) implementation, the places are instances of the class Place. The partOf
relation is used as the subsumption property. The RDF(S) file can be seen in

appendix 2. The taxonomy is created based on the Venn diagram of figure 1.

Sweden’ true false

Finland’ true false true | false
true (EU’) | 0.4285 | 0.2143 | 0.2143 | 0.0
false (EU’) | 0.5175 | 0.7857 | 0.7857 | 1.0

Table 2: The conditional probability table for EU’ in the created Bayesian network

Selected | Referred | Value | Expected Value
Lapland | World 0.0306 | 26/851 = 0.0306
Europe 0.0754 | 26/345 = 0.0754
Asia 0.0 0/414 =0

EU 0.0953 | 16/168 = 0.0952
Norway 0.2222 | 8/36 = 0.2222
Sweden 0.2222 | 8/36 = 0.2222
Finland 0.2222 | 8/36 = 0.2222
Russia 0.0059 | 2/342 = 0.0058

Table 3: The overlap table of Lapland as calculated by the Bayesian network. The
Ezpected Value column lists the overlap values that are calculated directly from the

Venn diagram.

As the taxonomy was created based on the Venn diagram of figure 1, the Venn
diagram can be used as an objective indicator of the accuracy of the implementa-
tion. By looking at the Venn diagram, the overlap values between concepts can be

determined, and they can be compared to the values given by the implementation.

The solid path structure that was created based on the taxonomy, can be seen in
figure 9. It is also the topology of the Bayesian network. An example of a CPT can

be seen in table 2.

Table 3 presents the overlap table of Lapland as calculated by the Bayesian network,

and as calculated from the Venn diagram. The slight differences in the overlap values
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of EU and Russia are results from the fact that in the taxonomy the overlap values
are given with the precision of 4 significant digits, and also because of the small A

value given to the nodes without parents.
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6 Related Work

In this section, alternative approaches to model uncertain and vague knowledge
are described and discussed from the view-point of representing uncertainty in tax-

onomies.

6.1 Fuzzy Logic

In order to represent vagueness and uncertainty, Lotfi Zadeh [Zad65| developed
fuzzy logic. Fuzzy logic is a logic with a continuous range of possibilities from 0 for
impossible and 1.0 for certain. Fuzzy logic is based on fuzzy set theory introduced by
Zadeh in 1965 [Zad65]. In fuzzy set theory there is a continuous range of membership
values for the inclusion operator. Zadeh also assigned numeric values to hedging

terms like almost, more or less, likely or very likely.

Fuzzy logic represents intuitive or subjective judgments. By doing this, it can some-
times handle situations with vague data. It would be very difficult to create sta-
tistical tables that relate person’s age to the probability of being called young or
old, for example. With subjective assignments of fuzzy logic this can be done easily.
Zadeh proposed functions to represent different qualifiers. To represent the qualifier
very, for example he proposed to square the values of the base distributions, e.g.

VeryY oung(z) = (young(z))?.

The most successful applications of fuzzy techniques have been in control systems
for camera focus, elevator scheduling, subway brakes etc. Fuzzy control systems
do not behave like theorem provers, but more like analog computers that simulate

continuous phenomena [Men00].

6.1.1 Criticism of Fuzzy Logic

Fuzzy logic assigns all-purpose certainty factors to statements. However, usually
certainties and statements are context-dependent. For example, a 19 years old
person would be considered young as a university student but old as a high-school
student. Human experts reason differently in different context and seem to have
implicit understanding of each context. In the absence of information about context,

fuzzy logic and related statistical methods may be useful as a first approximation.

A central goal of fuzzy logic is to make formal systems act more like human beings.
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However, according to Susan Haack [Haa96|, fuzzy logic models the way people talk
and think very poorly. For example, in fuzzy logic we might assign a certainty
factor of 0.8 to the proposition Birds fly. However it doesn’t say anything about
the particular cases. Penguings don’t fly for certain, and healthy sparrows fly for
certain. According to Susan Haack people do not reason based on likelihoods but

according to context-dependent conditions.

Fuzzy logic helps to assign certainty factors according to various situations. However,

it does not make the reasoning in any particular situation easier.

Fuzzy logic might be useful for reasoning if the certainty factors on the premises
are well chosen. However, fuzzy logic is arbitrary in the sense that there are no
objective ways to assign those values. In many cases statistics or other probabilistic

approaches are more dependable than fuzzy logic [Sow99].

6.1.2 Fuzzy Logic and Taxonomies

Angryk and Petry [AP03] introduce a way of combining fuzzy logic and ontologies.
They construct fuzzy is-a and part-of hierarchies according to definitions of Wordnet
[Fel98]. As an example they use Russia which belongs both to Europe and Asia.
Russia can be marked to be part-of Asia with the certainty of 0.75 and part-of Europe
with the certainty of 0.25. The fuzzy operations that will be used in reasoning about

the ontology are not discussed.

Akrivas et al. [AWA102] present an interesting method for context sensitive seman-
tic query expansion. In the method, user’s query words are expanded using fuzzy
concept hierarchies. An inclusion relation defines the hierarchy. The inclusion rela-
tion is defined as the composition of subclass and part-of relations. Each word in a
query is expanded by all the concepts that are included in it according to the fuzzy

hierarchy.

In [AWA 02| inclusion relation is of the form P(a,b) € [0,1]. The meaning of the
relation is the following. The concept a is completely a part of b, and high values
of the P(a,b) function mean that the meaning of a approaches the meaning of b.
Thus, the fuzziness is limited only to one direction of the hierarchy, and there is not

a way to express the fact that Lapland is a partial part of a number of countries.

Widyantoro and Yen [WY02] have created a domain-specific search engine called
PASS. The system includes an interactive query refinement mechanism to help to

find the most appropriate query terms. The system uses a fuzzy ontology of term
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associations as one of the sources of its knowledge to suggest alternative query
terms. The ontology is organized according to narrower-term relations. The ontol-
ogy is automatically built using information obtained from the system’s document

collections.

The fuzzy ontology of Widyantoro and Yen is based on a set of documents, and works
on that document set. However, in this thesis the focus is on building taxonomies
that can be used, in principle, with any data record set. The automatic creation of
ontologies is an interesting issue by itself, but it is not considered in this thesis. At
the moment, better and richer ontologies can be built by domain specialists than by

automated methods.

One limitation that is related to all of the approaches above, when compared to the
method presented in this thesis, is that the fuzziness works only in one direction of
the concept hierarchy. In the work of Akrivas et al. [AWA™02], the taxonomy is
a crisp subsumption hierarchy in one direction and the fuzzy values only indicate
how much of the meaning of the superconcept is covered by the subconcept. In
the approach of Angryk [AP03], degrees of subsumption are represented, but there
is no information about the portion of the superconcept that is covered by the
subconcept. If one wants to represent fuzziness in both directions of the taxonomy,
then fuzzy values have to be given in both directions. In the method presented in
this thesis, overlap values are computed between any two concepts in a taxonomy,
while the partial overlap values have to be given only in one direction. The coverage

is determined based on the masses of the concepts.

In addition, the representation of disjointness between concepts of a taxonomy seems
to be difficult with the tools of fuzzy logic. For example, the relationships between
Lapland, Russia, Europe, and Asia are very easily handled probabilistically, but in a
fuzzy logic based taxonomy, this situation seems complicated. There is not a readily
available fuzzy logic operation that could determine that if Lapland partly overlaps
Russia, and is disjoint from Asia, then the fuzzy inclusion value between Europe

and Lapland N Russta is 1 even though Russia is only a fuzzy part of Europe.

6.2 Nonmonotonic Logic

Classical logic is monotonic. Adding new axioms to a theory monotonically in-
creases the number of theorems that can be proved. Nonmonotonic logic allows new

information to increase or decrease the number of conclusions that can be derived.
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Information that Polly is a penguin blocks the default conclusion that Polly can fly

as a bird.

Unlike fuzzy logic, nonmonotonic logic depends on discrete changes in context rather
than a continuous range of certainties. With nonmonotonic logic things can be
grouped in a series of discrete levels of membership. Chairs, for example, can be
grouped to typical chairs, somewhat untypical chairs, and things that are not chairs
but resemble chairs in some way. However, the question, which of two untypical
chairs is more typical, is meaningless without a context. In one context a wheel
chair is more typical than rocking chair but in another context the result might be

the opposite.

6.2.1 Nonmonotonic Logic and Taxonomies

The oldest, simplest, and most popular way of dealing with defaults is to tag prop-
erties of concepts with default values. The defined defaults can be overridden by
subconcepts. For example, we define Bird as a concept and give it a property flies
with the default value true. Then we define Penguin as the subconcept of bird
and override the value of flies to false. This is a simple way of expressing vague

knowledge about things.

In principle, the concepts of taxonomies could be extended with default values that
could be overridden by subconcepts. However, the technique is good only when one
can define the default values for a concept. It is easy to come up with examples
where this approach does not work. For example in geographical ontologies based
on part-whole relations it would be difficult to come up with the appropriate default

values.

Another problem is that, the world is full of exceptions. How could we determine
which values are more important than others? This could lead to difficulties in
constructing the ontologies. Another problem is the algorithmic complexity of these
nonmonotonic systems. Nonmonotonic systems are recently more and more over-

ridden by probabilistic and fuzzy logic systems.

6.3 Rough Sets

Rough set theory is a mathematical approach to vague and uncertain data analysis

[Paw82]. Rough set theory is based on the assumption that objects are perceived
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by means of the information about them, encompassed in a set of available features
or attributes. This idea leads to the notion of information system which is a central
concept in rough set theory. The information system can be seen as a data table,
where each row represents an object, and each column represents an attribute. The

objects are known only by their attributes.

More formally, an information system is a pair I = (U, A) where U is a finite set
called the universe of objects and A is a finite set of attributes. As a consequence
of the basic assumption mentioned above, some objects may become indiscernible.
The objects z,y € U are B-indiscernible if B C A and x and y have the exactly same
attribute values for all the attributes in B. In other words, x and y are B-equivalent,
and [z]p is the B-equivalence class that x belongs to. A subset of the universe U of

objects is called a concept.
For a concept X C U, two approximations can be defined relative to a set B C A:
BX ={ze€U,D=z]g, DC X}and BX ={z €U : D=z]g, DNX # 0}

BX is called the lower approximation of X and BX is called the upper approximation
of X. BNg(X) = BX — BX is called the B-boundary region of X. If BNp(X)
is empty, the X is said to be B-exact, otherwise X is B-rough. BX collects all
those objects that belong certainly to X. The boundary region collects those objects
which are vague with respect to X, i.e., have representatives both in X and in the

complement of X.

In terms of the set theoretic approach of this thesis, if A is a concept, then the
concepts that are subsumed by A belong to the lower approximation of A. Those

concepts that partially overlap A belong to the upper approximation of A.

The rough sets approach provides an interesting view on the vagueness of concepts
and relations between concepts. However, when considering ontologies of the se-
mantic web, the problem is that rough set systems are based on the attributes of
concepts. On the semantic web, taxonomies are often created without specifying
any properties (attributes) to the concepts. Thus, a great deal of extra work will be
needed if one wanted to create taxonomies capable of representing partial overlap

based on rough set theory.

Another limitation is that the coverage between concepts still can not be expressed
with rough set theory: If B belongs to the lower approximation of A, we still do not

now, how much of A is covered by B.

Rough set theory would be a very interesting method if we would like to develop
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an automatic ontology creator based on given data. Then it could, in theory, create
ontologies with a lot of encoded knowledge about partial inclusions. The goal of this
thesis, however, is not to develop an automatic ontology creator, but only a way
to represent partial inclusions in ontologies and form the overlap tables of concepts

based on these profiles.

6.4 Rough Location

Rough location is a formalism developed by Thomas Bittner [Bit99| for character-
izing the location of a spatial object within a set of regions which form a regional

partition of space.

Spatial objects are objects that have a location in space. An important aspect
characterizing what the spatial objects are is their compositional structure, which
is the relationships between the whole object and the different parts comprising the
object. This basic relation is formally defined as P(z,y), which means that z is a

part of y.

In rough location theory, location of an object is defined in terms of relations between
spatial objects and regions of space. It is assumed that location can be character-
ized by relations between things that exist and one or more regions in which they
are located. Location relates the compositional structure of spatial objects to the
compositional structure of spatial regions. The spatial regions form a partition of
the geographical space. According to Bittner, location can be defined in terms of

exact location, part location, or rough location.

Part location is comprised of a number of locational relations. This means that there
are multiple ways in which parts of objects relate to parts of regions of space. A
part z can be fully located (FL) in y, or (OL) overlap located in y or it can exterior
(NL) to y. For example, Lapland is overlap located in Norway, Sweden, Finland,

and Russia.

The rough location of the spatial object o, within the set of regions forming the
regional partition, G, is characterized by an n-tuple of relations. Those relations
characterize the part location of the single spatial object, o, with respect to all

elements, g, of the regional partition G.

Rough location can be used to deal with the indeterminacy of location caused by
vagueness of object definitions. Consider for example the spatial objects mountain

and valley. Where does the valley end and the mountain begin? The vagueness of the
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definitions of these concepts causes indeterminacy of their location. Indeterminacy of
location means that there are multiple candidates of exact-location-regions which are
consistent with the objects definition. A vaguely defined object, o, is located within
a regional partition consisting of the three concentric regions ’core’ (FL), 'wide
boundary’ (OL), and ’exterior’ (NL). These regions resemble lower approximation,

higher approximation and exterior of the rough set theory respectively.

According to Bittner [Bit99], the notion of rough location in regional partitions
seems to play an important role in human cognition in general, so rough location
could possibly be implemented in other uncertain domains than spatial location
as well. From a cognitive point of view, rough location can be seen as a way of
understanding an object as a whole by considering how its parts relate to a frame of
reference with a known structure. The frame of reference is given by the underlying
regional partition.

The idea of modeling concepts using a Venn diagram comes close to the ideas of
Bittner. In this thesis, however, set theory was seen as a sufficient formalism to
model the overlap between concepts. The main difference between the approach of
Bittner and the method described in this thesis is that Bittner is not interested in
constructing concept hierarchies, but just in defining the location of spatial object
within a set of regions. In this thesis the focus is modeling uncertainty in concept

hierarchies, and the geographical example is just a special case.

6.5 Probabilistic Reasoning

Zhongli Ding and Yun Peng [DP04] are creating a probabilistic extension to On-
tology language OWL. Their idea is to increase the expressive power of ontologies
by additional probabilistic information. In their approach, the OWL language is
first augmented to allow additional probabilistic markup so that probability val-
ues can be attached to individual concepts and properties as well as their relations
in an OWL ontology. Second, a set of translation rules is defined to convert this

probabilistically annotated ontology into a Bayesian network.

According to the authors, the translation is plausible both because of the rigorous
and efficient probabilistic reasoning capability and also because of the structural
similarity between the DAG of a BN and the RDF graph of OWL. Their methods
are based on probabilistic extensions to description logics [KLP97, GL02].
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6.5.1 The Transformation Rules

The Bayesian network topology is generated according to a number of rules. All
classes are translated into nodes of a BN, and an arc is drawn between two nodes in
a BN only if the corresponding two classes are related by a predicate in the OWL
file. The subClassOf property is translated into an arc from the superclass to the

subclass.

Also the properties are mapped into nodes. A node represents the set of individuals
in the domain who have this property. This node is a child of the domain class of
the property. Every property node has a range node as its child. It also could have
a restriction node. The properties hierarchies of OWL are generated also to the BN.
A directed arc is constructed between two mutually exclusive or disjoint concept

nodes.

If there is no arc between two independent concept nodes, they should also be d-
separated with each other; there is also no arc between two implicitly dependent

concept nodes, although they are not be d-separated with each other.

6.5.2 Comparison of Approaches

Besides the obvious similarities to the method described in this thesis, there are a

number of clear differences between the approaches.

1. The aim of Ding and Peng is to create a method to transform any OWL on-
tology into a Bayesian network. The goal of this thesis is not to transform
existing ontologies into Bayesian networks, but to create a method by which
overlap between concepts could be represented and computed from a taxonom-
ical structure. However, the graphical notation of this thesis and its RDF(S)
implementation are designed so, that it is possible, quite easily, to convert an

existing crisp taxonomy to an overlap graph.

2. In the approach of Ding and Peng, probabilistic information must be added
to the ontology by the human modeler that needs to know probability theory.
In the method described in this thesis, the taxonomies can be constructed

without expert knowledge of probability theory or Bayesian networks.

3. The created Bayesian network in their approach is the goal of the work. In
the method of this thesis, the Bayesian network is merely a background tool

used to help in overlap modeling and query matching.
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4. There is no explicit way to express the partial inclusions between concepts,
but they have to be given through the conditional probability tables in the
approach of Ding and Peng. In the graphical notation presented in this thesis,

the partial inclusions are given explicitly by the user.

In principle, the transformation rules of Ding and Peng [DP04| could have been used
for transforming the OG into a Bayesian network. In the following, this transfor-
mation is outlined. It is done to explain why the transformation rules of Ding and

Peng were not adapted in the method described in this thesis.

World
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Figure 14: The topology of the alternative Bayesian network.

The probabilistic interpretation of the Venn diagram (i.e. the overlap graph) is given

in the following:

1. The individual elements of the Venn diagram (e.g. pixels on the map), are
interpreted as a population. Each individual in the population belongs to one
or more groups. These groups are the sets of the Venn diagram, i.e. concepts
of the taxonomy. Each group is represented by a boolean random variable in

the Bayesian network.

2. The set of elementary outcomes is the set of samples of size 1 taken from the
population. Thus the number of elementary outcomes equals the number of

the individuals in the Venn diagram.

3. If Ais aboolean random variable, then P(A) is the probability that an individ-
ual taken as a random sample belongs to the group A. In effect P(A4) =
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where |V| is the number of elements in the Venn diagram, i.e. the number of

atomic events.

4. A conditional probability P(A|B) is the probability that an individual taken

as a sample from the group B, belongs also to the group A. Thus, P(A|B) =

|s(B)Ns(A)]
's(B)]

covered by A.

, in terms of the Venn diagram the value indicates how much of B is

Based on the above, all the variables (concepts) in the Venn diagram will get a
prior probability resembling the relative size of the corresponding set. The variable
representing the root concept of the overlap graph will get a prior probability one.
According to the definition of conditional probability, if in a Bayesian network cre-
ated from the the overlap graph of figure 6, Finland was selected, Sweden should
get the probability 0. Because Sweden has a prior probability greater than zero, the
disjointness between Finland and Sweden should be represented as an arrow in the
Bayesian network. Because of this, Finland and Sweden can not be selected at the

same time.

The topology of the Bayesian network can be created from the overlap graph by
reversing the direction of each arrow in the diagram, and by adding an arrow in-
dicating disjointness, between each pair of siblings in the network. The direction
of the arrows indicating disjointness does not matter. For example, in the overlap
graph of figure 6, arrows should be added between EU and Norway, Norway and
Russia, and EU and Russia. The whole Bayesian network is presented in figure 14.

The CPTs for a variable A can be constructed in the following way. If A has no
parents, then P(A) = %. Thus, the root node gets a prior probability of 1. If
A has parents, then go through all the value combinations (true and false) of the
parent variables, operate according to algorithm 5 for each one. In the algorithm,
C is the processed concept, VCP is the value combination of the parent variables,

and CPTValue is the true value of the entry in the CPT.

The false values are computated be subtracting the true probability from 1. The
overlap table of Lapland created by this BN is presented in table 4.

In this method, there is no need to create additional nodes to compute the overlap

values. However, additional arcs have to be added.
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Selected | Referred | Overlap

Lapland | World 1
Europe 1
Asia 0
EU 0.6154

Norway 0.3077
Sweden 0.3077
Finland 0.3077
Russia 0.0769

Table 4: The overlap table of Lapland created by the alternative Bayesian network.

switch VCP do
case more than one parent is true in VCP
‘ CPTValue = 0;

case ezactly one parent B is true in VCP
‘ CPTValue = (true: [(C)0s(B)| );

|s(B)|—|s(B)N(|J{s(A):A=falseAACVCP})| />

case no true parents in VCP
‘ CPTValue = 0;

end

Algorithm 5: The algorithm by which each entry in a CPT is constructed.

From the point-of-view of sorting hits according to overlap information about con-
cepts, the posterior probabilities returned by this Bayesian network are not as good.
If, for example, we wanted to create the overlap table, as defined in chapter 1, for
Lapland, we would have to select each of the other concepts in the taxonomy one

by one, and check the posterior probability for Lapland for each selection.

Another problem is that this Bayesian network does not enable the selection of two
disjointed concepts at once. Thus, if a user is interested in Finland and Sweden, he
will have to separately search for material about each of the countries. With the

Bayesian network used in this thesis, they can be selected at once.
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7 Discussion

A method to model uncertainty in semantic web taxonomies was presented. The
method enables the modeling of the inexact, i.e. the non-crisp nature of the relation-
ships between concepts. The method consists of a notation by which relationships
between concepts can be represented, and a computing mechanism to reason based

on this representation.

The notation and the overlap calculation method are based on crisp set theory. It
is acknowledged that this is a simplification of the state of affairs in the real world.
The use of fuzzy logic as the mathematical basis for the approach would have, at
least in some cases, probably represented the outside world more realistically. In
some situations it would be natural to let the partial subsumption values exceed 1.
For example, an icon could be marked to be a utility article with the fuzzy value
0.7 and a work of art with the fuzzy value 0.8. In the method of this thesis the
sum of these values have to be normalized to 1. The decision to use set theory and
probabilistic calculus, however, has the following benefits when compared with the

other formalisms:

1. The calculations are simple, but still enable the representation of overlap and

vague subsumption between concepts.

2. By using set theory on probability calculus it is fairly easy to verify the cor-

rectness of the method.

3. The Bayesian representation of a taxonomy is argued in this thesis to be
valuable, because it can be used also to other tasks than just the matching

problem discussed in the introduction.

4. In some cases the set theoretic approach leads to better representation of the
world than, for example, fuzzy logic (consider, for example, the geographical

taxonomy presented as an example case in this thesis).

In this thesis, concepts are viewed mainly from the extensional point of view. A
concept is seen as the set of entities belonging to it. Concepts can also be viewed
from an intentional point of view. In this view, a concept is defined based on its
features and not the entities belonging to it. There are situations in which a relation
between concepts seems different, depending on whether they are viewed from the

extensional or the intensional point of view. For example, icons share some features
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with utility articles, and some with works of art. Thus, from the intentional point
of view, the concept icon is partially subsumed by both of these upper concepts.
Based on the extension the concept there is no partial overlap, because each icon is

both a utility article and a work of art.

However, it is still possible to represent this situation of intentional partial overlap
in a Venn diagram. The overlap values could also be determined based on statistical
data, by taking a random sample of N people, and asking each of them, whether
an icon is a utility article or a work of art. The overlap value could be determined
based on the frequencies of the different answers. Thus, the method presented is

not limited, in principle, to the cases of extension based overlap.

Next the graph notation and the overlap calculation methods will be discussed

separately.

7.1 Representing Overlap

In chapter 3 a graph notation was defined, by which partial subsumption and con-
cepts can be represented in a quantified form. It was proved to enable the represen-
tation of any Venn diagram. However, there are some set structures that are very
difficult to represent in practice, as the one in figure 7. However, in realistic concept

modeling situations, these situations are rare.

In order for the notation to be useful, it should be easy to implement. The easiness
of the RDF implementation can be considered from two different view point of views.
First is the view point of conceptual simpleness, i.e. how simple it is to understand
the notation and the meaning of different elements contained in it. As the number
of elements of the language is small, and as the language is based on basic set theory,

it is fair to say that the notation is conceptually simple.

Second is the view point of simplicity of use. The usability depends on the im-
plementation of the notation. Thus, the usability can not be evaluated based on
the structure of the notation only. However, the implementation of the notation,
given in chapter 5, enabled the building of taxonomies with the graphical ontology

development tool Protege®.

3http:/ /protege.stanford.edu/
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7.2 The Computation of Overlap Values

The calculation of the overlap values between concepts is done by transforming the
overlap graph into a Bayesian network. In principle, the calculations could have
been done without the Bayesian network, however, it was chosen from the following

reasons.

1. As the goal was to create a method for calculating the overlap values between
a selected concept and every other concept in the taxonomy, the well known
algorithms of evidence propagation over a Bayesian network offered effective

tools.

2. The Bayesian network created in the process can be used also in other tasks
than in the basic concept matching problem described in this thesis. For
example, it could be used as a basis for personalization: If we had a user
profile described in terms of the concepts of the taxonomy, we could enter it
as evidence to the Bayesian reasoner, and it would suggest relevant material

to the user. Bayesian networks have been used as a tool in user modeling
[KSOT*01].

The Bayesian network that is created with the presented method is only one of
the possible Bayesian networks that can be created based on the taxonomy. This
one was chosen, because it answers to the problem statement of this thesis in the
most direct manner, and because it is constructed easily based on the solid path
structure. Moreover, in the used Bayesian network, disjointness between concepts
is represented with d-separation. This is a valuable characteristic, as it enables the
selection of two disjoint elements at once. For example, the user might be interested
in Spain and France, and because of the structure of the network both could be

selected at once.

The created Bayesian network does not calculate the posterior probabilities exactly
by the definition of the conditional probability, but the inexactness is very small,

and it should not cause any problems in practice.

7.3 Future Work

In the future we plan to test the presented method in practice in an ontology based

search engine. We also intend to apply the above method to non-geographical tax-
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onomies, for example to the domains of art and culture.

Also the refinement and further development of the graphical notation and its
RDF(S) implementation will be considered to enhance its usability. The trans-
formation of the taxonomy to another Bayesian network structures is yet another
goal for future work, as well as the problem of using Bayesian networks as a basis

for personalization.
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Appendix 1. RDF(S) Implementation of the Graph-

ical Notation

<?7xml version=’1.0’ encoding=’IS0-8859-1’7>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY a ’http://protege.stanford.edu/system#’>
<!ENTITY uncertain ’http://uncertain.com/uncertain#’>
<!ENTITY kb ’http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ’http://www.w3.org/TR/1999/PR-rdf-schema-19990303#’>
1>

<rdf:RDF xmlns:rdf="&rdf;"

xmlns:a="&a;"

xmlns:uncertain="&uncertain;"

xmlns:kb="&kb;"

xmlns:rdfs="&rdfs;">

<rdfs:Class rdf:about="&uncertain;PartialSubsumption"
rdfs:label="uncertain:PartialSubsumption">
<rdfs:subClass0f rdf:resource="&rdfs;Resource"/>
</rdfs:Class>

<rdfs:Class rdf:about="uncertain;Mass"
rdfs:label="unceretain:Mass">

<rdfs:subClass0f rdf:resource="&rdfs;Resource"/>
</rdfs:Class>

<rdf:Property rdf:about="&uncertain;mass"
rdfs:label="uncertain:mass">

<rdfs:domain rdf:resource="&rdfs;Resource"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf :Property>

<rdf:Property rdf:about="&uncertain;overlap"
rdfs:label="uncertain:overlap">

<rdfs:domain rdf:resource="&uncertain;PartialSubsumption"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>

</rdf :Property>

<rdf:Property rdf:about="&uncertain;disjointFrom"

rdfs:label="uncertain:disjointFrom">



<rdfs:domain rdf:resource="&rdfs;Resource"/>

<rdfs:range rdf:resource="&rdfs;Resource"/>

</rdf :Property>

<rdf :Property rdf:about="&uncertain;object"
rdfs:label="uncertain:object">

<rdfs:domain rdf:resource="&uncertain;PartialSubsumption"/>
<rdfs:range rdf:resource="&rdfs;Resource"/>

</rdf :Property>

<rdf:Property rdf:about="&uncertain;subject"
rdfs:label="uncertain:subject">

<rdfs:domain rdf:resource="&uncertain;PartialSubsumption"/>
<rdfs:range rdf:resource="&rdfs;Resource"/>

</rdf :Property>

</rdf :RDF>



Appendix 2. The Example Case RDF(S)

<7xml version=’1.0’ encoding=’IS0-8859-1’7>
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY uncertain ’http://uncertain.com/uncertain#’>
<!ENTITY kb ’http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ’http://www.w3.org/TR/1999/PR-rdf-schema-19990303#’>
1>
<rdf:RDF xmlns:rdf="&rdf;"
xmlns:uncertain="&uncertain;"
xmlns:kb="&kb;"
xmlns:rdfs="&rdfs;">
<rdfs:Class rdf:about="&kb;Place"
rdfs:label="Place">
<rdfs:subClass0f rdf:resource="&rdfs;Resource"/>
</rdfs:Class>
<rdf:Property rdf:about="&kb;partOf"
rdfs:label="part0f">
<rdfs:domain rdf:resource="&kb;Place"/>
<rdfs:range rdf:resource="&kb;Place"/>
</rdf :Property>
<kb:Place rdf:about="&kb;World"/>
<kb:Place rdf:about="&kb;Europe">
<kb:part0f rdf:resource="&kb;World"/>
</kb:Place>
<kb:Place rdf:about="&kb;Asia">
<kb:part0f rdf:resource="&kb;World"/>
</kb:Place>
<kb:Place rdf:about="&kb;Russia">
</kb:Place>
<uncertain:PartialSubsumption rdf:about="&kb;RussiaEurope"
uncertain:overlap="0.1667">
<uncertain:object rdf:resource="&kb;Russia"/>
<uncertain:object rdf:resource="&kb;Europe"/>

</uncertain:PartialSubsumption>



<uncertain:PartialSubsumption rdf:about="&kb;RussiaAsia"
uncertain:overlap="0.8333">

<uncertain:subject rdf:resource="&kb;Russia"/>
<uncertain:object rdf:resource="&kb;Asia"/>
</uncertain:PartialSubsumption>

<kb:Place rdf:about="&kb;EU">

<kb:part0f rdf:resource="&kb;Europe"/>

</kb:Place>

<kb:Place rdf:about="&kb;Finland">

<kb:part0f rdf:resource="&kb;EU"/>

</kb:Place>

<kb:Place rdf:about="&kb;Sweden">

<kb:part0f rdf:resource="&kb;EU"/>

</kb:Place>

<kb:Place rdf:about="&kb;Norway">

<kb:part0f rdf:resource="&kb;Europe"/>

</kb:Place>

<kb:Place rdf:about="&kb;Lapland">

</kb:Place>

<uncertain:PartialSubsumption rdf:about="&kb;LaplandFinland"
uncertain:overlap="0.3077">

<uncertain:subject rdf:resource="&kb;Lapland"/>

<uncertain:object rdf:resource="&kb;Finland"/>
</uncertain:PartialSubsumption>
<uncertain:PartialSubsumption rdf:about="&kb;LaplandSweden"
uncertain:overlap="0.3077">
<uncertain:object rdf:resource="&kb;Finland"/>
<uncertain:object rdf:resource="&kb;Sweden"/>
</uncertain:PartialSubsumption>
<uncertain:PartialSubsumption rdf:about="&kb;LaplandNorway"
uncertain:overlap="0.3077">
<uncertain:subject rdf:resource="&kb;Lapland"/>
<uncertain:object rdf:resource="&kb;Norway"/>
</uncertain:PartialSubsumption>
<uncertain:PartialSubsumption rdf:about="&kb;LaplandRussia"

uncertain:overlap="0.0769">



<uncertain:subject rdf:resource="&kb;Lapland"/>
<uncertain:object rdf:resource="&kb;Russia"/>
</uncertain:PartialSubsumption>
<uncertain:Mass rdf:about="&kb;MassWorld">
<uncertain:subject rdf:resource="&kb;World"/>
<uncertain:mass="851"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassAsia">
<uncertain:subject rdf:resource="&kb;Asia"/>
<uncertain:mass="414"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassEurope">
<uncertain:subject rdf:resource="&kb;Europe"/>
<uncertain:mass="345"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassEU">
<uncertain:subject rdf:resource="&kb;EU"/>
<uncertain:mass="168"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassRussia'">
<uncertain:subject rdf:resource="&kb;Russia"/>
<uncertain:mass="342"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassNorway">
<uncertain:subject rdf:resource="&kb;Norway"/>
<uncertain:mass="36"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassFinland">
<uncertain:subject rdf:resource="&kb;Finland"/>
<uncertain:mass="36"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassSweden'">
<uncertain:subject rdf:resource="&kb;Sweden"/>
<uncertain:mass="36"/>

</uncertain:Mass>

<uncertain:Mass rdf:about="&kb;MassLapland">



<uncertain:subject rdf:resource="&kb;Lapland"/>
<uncertain:mass="26"/>

</uncertain:Mass>

</rdf :RDF>



